JP2003104798A - Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal - Google Patents
Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystalInfo
- Publication number
- JP2003104798A JP2003104798A JP2001301935A JP2001301935A JP2003104798A JP 2003104798 A JP2003104798 A JP 2003104798A JP 2001301935 A JP2001301935 A JP 2001301935A JP 2001301935 A JP2001301935 A JP 2001301935A JP 2003104798 A JP2003104798 A JP 2003104798A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- single crystal
- crystal
- vanadium
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
(57)【要約】
【課題】 高抵抗率で高品質の大口径炭化珪素単結晶イ
ンゴットの製造方法、その方法に用いる炭化珪素単結晶
育成用炭化珪素結晶原料、その方法より製造される炭化
珪素単結晶を提供する。
【解決手段】 昇華再結晶法により種結晶上に炭化珪素
単結晶を成長させる工程を包含する炭化珪素単結晶の製
造方法であって、原料としてバナジウムの濃度が1×1
018〜6×1019atom/cm3であり、バナジウム
以外の不可避不純物の濃度が前記バナジウムの濃度未満
である炭化珪素結晶を用いて、炭化珪素単結晶を成長さ
せることを特徴とする炭化珪素単結晶の製造方法、その
方法に用いる炭化珪素単結晶育成用炭化珪素結晶原料、
その方法より製造される炭化珪素単結晶である。(57) [PROBLEMS] To provide a method of manufacturing a large-diameter silicon carbide single crystal ingot having high resistivity and high quality, a silicon carbide crystal raw material for growing a silicon carbide single crystal used in the method, and silicon carbide manufactured by the method A single crystal is provided. A silicon carbide single crystal manufacturing method including a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein the concentration of vanadium as a raw material is 1 × 1.
A silicon carbide single crystal is grown using a silicon carbide crystal having a concentration of 0 18 to 6 × 10 19 atoms / cm 3 and inevitable impurities other than vanadium being less than the vanadium concentration. Method for producing single crystal, silicon carbide crystal raw material for growing silicon carbide single crystal used in the method,
It is a silicon carbide single crystal manufactured by the method.
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、炭化珪素単結晶及
びその製造方法に係わり、特に、高周波電子デバイスの
基板ウェハとなる良質で大型の単結晶インゴット及びそ
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide single crystal and a method for manufacturing the same, and more particularly to a large-sized high quality single crystal ingot which is a substrate wafer of a high frequency electronic device and a method for manufacturing the same.
【0002】[0002]
【従来の技術】炭化珪素(SiC)は耐熱性及び機械的
強度も優れ、放射線に強いなどの物理的、化学的性質か
ら耐環境性半導体材料として注目されている。また近
年、青色から紫外にかけての短波長光デバイス、高周波
高耐圧電子デバイス等の基板ウェハとしてSiC単結晶
ウェハの需要が高まっている。しかしながら、大面積を
有する高品質のSiC単結晶を、工業的規模で安定に供
給し得る結晶成長技術は、いまだ確立されていない。そ
れゆえ、SiCは、上述のような多くの利点及び可能性
を有する半導体材料にもかかわらず、その実用化が阻ま
れていた。2. Description of the Related Art Silicon carbide (SiC) has attracted attention as an environment-resistant semiconductor material because of its excellent heat resistance and mechanical strength and its physical and chemical properties such as resistance to radiation. In recent years, demand for SiC single crystal wafers as substrate wafers for short-wavelength optical devices from blue to ultraviolet, high-frequency high-voltage electronic devices, etc. has been increasing. However, a crystal growth technique capable of stably supplying a high-quality SiC single crystal having a large area on an industrial scale has not yet been established. Therefore, despite the semiconductor material having many advantages and possibilities as described above, SiC has been hindered from its practical use.
【0003】従来、研究室程度の規模では、例えば昇華
再結晶法(レーリー法)でSiC単結晶を成長させ、半
導体素子の作製が可能なサイズのSiC単結晶を得てい
た。しかしながら、この方法では、得られた単結晶の面
積が小さく、その寸法及び形状を高精度に制御すること
は困難である。また、SiCが有する結晶多形及び不純
物キャリア濃度の制御も容易ではない。また、化学気相
成長法(CVD法)を用いて珪素(Si)などの異種基
板上にヘテロエピタキシャル成長させることにより立方
晶の炭化珪素単結晶を成長させることも行われている。
この方法では、大面積の単結晶は得られるが、基板との
格子不整合が約20%もあること等により多くの欠陥
(〜107cm-2)を含むSiC単結晶しか成長させる
ことができず、高品質のSiC単結晶を得ることは容易
でない。これらの問題点を解決するために、SiC単結
晶ウェハを種結晶として用いて昇華再結晶を行う改良型
のレーリー法が提案されている(Yu.M.Tairo
v and V.F.Tsvetkov,Journa
l of Crystal Growth,vol.5
2(1981)pp.146−150)。この方法で
は、種結晶を用いているため結晶の核形成過程が制御で
き、また不活性ガスにより雰囲気圧力を100Paから
15kPa程度に制御することにより結晶の成長速度等
を再現性良くコントロールできる。改良レーリー法の原
理を、図1を用いて説明する。種結晶となるSiC単結
晶と原料となるSiC結晶粉末(通常、Acheson
法で作製された研磨材を洗浄・前処理したものが使用さ
れる)は坩堝(通常黒鉛)の中に収納され、アルゴン等
の不活性ガス雰囲気中(133Pa〜13.3kP
a)、摂氏2000〜2400度に加熱される。この
際、原料粉末に比べ種結晶がやや低温になるように温度
勾配が設定される。原料は昇華後、濃度勾配(温度勾配
により形成される)により種結晶方向へ拡散、輸送され
る。単結晶成長は、種結晶に到着した原料ガスが種結晶
上で再結晶化することにより実現される。改良レーリー
法を用いれば、SiC単結晶の結晶多形(6H型、4H
型、15R型等)及び形状、キャリア型及び濃度を制御
しながら、SiC単結晶を成長させることができる。Conventionally, on a scale of a laboratory, an SiC single crystal was grown by, for example, a sublimation recrystallization method (Rayleigh method) to obtain an SiC single crystal of a size capable of producing a semiconductor device. However, with this method, the area of the obtained single crystal is small, and it is difficult to control the size and shape with high accuracy. Moreover, it is not easy to control the crystal polymorphism and the impurity carrier concentration of SiC. Further, a cubic silicon carbide single crystal is also grown by performing heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method).
Although a large area single crystal can be obtained by this method, only a SiC single crystal containing many defects (~ 10 7 cm -2 ) can be grown due to the fact that the lattice mismatch with the substrate is about 20%. It is not possible to obtain a high quality SiC single crystal. In order to solve these problems, an improved Rayleigh method in which sublimation recrystallization is performed using a SiC single crystal wafer as a seed crystal has been proposed (Yu. M. Tairo).
v and V. F. Tsvetkov, Journa
l of Crystal Growth, vol. 5
2 (1981) pp. 146-150). In this method, since the seed crystal is used, the nucleation process of the crystal can be controlled, and the growth rate of the crystal can be controlled with good reproducibility by controlling the atmosphere pressure from 100 Pa to 15 kPa with an inert gas. The principle of the modified Rayleigh method will be described with reference to FIG. SiC single crystal as a seed crystal and SiC crystal powder as a raw material (usually Acheson
The abrasive produced by the method is used after cleaning and pretreatment. It is stored in a crucible (usually graphite) and is placed in an inert gas atmosphere such as argon (133 Pa to 13.3 kP).
a), heated to 2000-2400 degrees Celsius. At this time, the temperature gradient is set so that the seed crystal is slightly lower in temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the seed crystal direction by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallizing the source gas that has reached the seed crystal on the seed crystal. If the modified Rayleigh method is used, the crystal polymorph of SiC single crystal (6H type, 4H type,
Type, 15R type, etc.) and shape, carrier type and concentration can be controlled to grow an SiC single crystal.
【0004】現在、上記の改良レーリー法で作製したS
iC単結晶から口径2インチ(50mm)から3インチ
(75mm)のSiC単結晶ウェハが切り出され、エピ
タキシャル薄膜成長、デバイス作製に供されている。こ
のようなSiC単結晶基板の高周波応用として、基板の
高抵抗率化(106Wcm以上)が望まれている。基板
の高抵抗率化は、その上に作製される素子の寄生容量低
減と素子間分離において不可欠な技術となっている。現
在このような高抵抗率基板は、SiC単結晶にバナジウ
ム元素を添加することによって、工業的に得られる。具
体的には上記した昇華再結晶法において、原料となるS
iC結晶粉末中に金属バナジウムあるいはバナジウム化
合物(酸化物、珪化物等)を含有させ、SiC原料と共
に昇華させることにより、成長結晶中に添加している
(例えば、S.A.Reshanov et al.,
Materials Science Forum,v
ols.353−356(2001)pp.53−5
6)。しかしながら、このようにして作製したSiC単
結晶は高抵抗率を有するものの結晶品質が悪く、また高
抵抗率を有する結晶部位は成長結晶中の極めて限られた
部分となっていた。Currently, the S produced by the above modified Rayleigh method is used.
A SiC single crystal wafer having a diameter of 2 inches (50 mm) to 3 inches (75 mm) is cut out from the iC single crystal, and is used for epitaxial thin film growth and device fabrication. As a high frequency application of such a SiC single crystal substrate, it is desired to increase the resistivity of the substrate (10 6 Wcm or more). Increasing the resistivity of the substrate has become an indispensable technique for reducing the parasitic capacitance of the devices formed thereon and separating the devices. At present, such a high resistivity substrate is industrially obtained by adding vanadium element to a SiC single crystal. Specifically, in the sublimation recrystallization method described above, S that is a raw material
Metal vanadium or a vanadium compound (oxide, silicide, etc.) is contained in the iC crystal powder and is added to the grown crystal by sublimation together with the SiC raw material (for example, SA Reshanov et al.
Materials Science Forum, v
ols. 353-356 (2001) pp. 53-5
6). However, although the SiC single crystal thus produced has a high resistivity, the crystal quality is poor, and the crystal portion having a high resistivity is a very limited portion in the grown crystal.
【0005】[0005]
【発明が解決しようとする課題】上記したように、従来
技術で作られたバナジウム添加の高抵抗率SiC単結晶
は結晶品質が低く、また高抵抗率を有する結晶部位は成
長結晶の極めて限られた部分となっていた。このことは
SiC原料の昇華速度に比べ、バナジウム原料の昇華あ
るいは蒸発速度が極めて大きいことに起因していた。バ
ナジウムの昇華あるいは蒸発速度がSiC原料の昇華速
度に比べ大きいために成長初期に多くのバナジウムが成
長結晶に取り込まれる(図2(a))。その結果、成長
結晶中のバナジウムの量が固溶限界(3×1017ato
m/cm3)を超え、析出物の発生を伴って結晶性を劣
化させる(この成長初期部の結晶性劣化は、その後に成
長されるSiC単結晶の結晶性にも悪影響する)。ま
た、通常の研磨材を基にしたSiC結晶粉末を原料とし
て用いた場合、SiC単結晶中に取り込まれる他の残留
不純物濃度が1×1017atom/cm3程度と高く、
その結果高抵抗率の単結晶が得られる部位が極めて限ら
れたものとなっていた。これは、図2(a)に示したよ
うに、バナジウム原料の昇華ガス圧が高いために成長開
始後数時間でバナジウム原料が枯渇してしまい、その結
果残留不純物濃度以上にバナジウムが添加される領域が
成長結晶の極めて限られた部位となっていたためであ
る。SiC単結晶中のバナジウムの濃度が残留不純物濃
度以下であると、SiC単結晶の電気的特性が他の不純
物によって決まってしまい高抵抗率の単結晶が得られな
い。As described above, the vanadium-added high-resistivity SiC single crystal produced by the conventional technique has a low crystal quality, and the crystal portion having a high resistivity is extremely limited in the grown crystal. It was the part where This is because the sublimation or evaporation rate of the vanadium raw material is much higher than the sublimation rate of the SiC raw material. Since the sublimation or evaporation rate of vanadium is higher than the sublimation rate of the SiC raw material, a large amount of vanadium is incorporated into the grown crystal at the early stage of growth (FIG. 2 (a)). As a result, the amount of vanadium in the grown crystal was limited to the solid solution limit (3 × 10 17 ato).
m / cm 3 ) and deteriorates the crystallinity with the generation of precipitates (this crystallinity deterioration in the initial growth portion also adversely affects the crystallinity of the SiC single crystal grown thereafter). When SiC crystal powder based on an ordinary abrasive is used as a raw material, the concentration of other residual impurities taken into the SiC single crystal is as high as about 1 × 10 17 atom / cm 3 ,
As a result, the site where a high resistivity single crystal can be obtained has been extremely limited. This is because, as shown in FIG. 2A, the vanadium raw material is depleted within a few hours after the start of growth because the sublimation gas pressure of the vanadium raw material is high, and as a result, vanadium is added to a concentration higher than the residual impurity concentration. This is because the region was a very limited part of the grown crystal. If the vanadium concentration in the SiC single crystal is equal to or lower than the residual impurity concentration, the electrical characteristics of the SiC single crystal are determined by other impurities, and a high resistivity single crystal cannot be obtained.
【0006】本発明は上記事情に鑑みてなされたもので
あり、高抵抗率で高品質な大口径インゴットと、それを
再現性良く製造し得るSiC単結晶の製造方法及び原料
を提供するものである。The present invention has been made in view of the above circumstances, and provides a large-diameter ingot with high resistivity and high quality, and a method and a raw material for producing a SiC single crystal capable of producing the ingot with good reproducibility. is there.
【0007】[0007]
【課題を解決するための手段】従って、本発明のSiC
単結晶の製造方法は、(1)昇華再結晶法により種結晶
上に炭化珪素単結晶を成長させる工程を包含する炭化珪
素単結晶の製造方法であって、原料としてバナジウムの
濃度が1×1018〜6×1019atom/cm3であ
り、バナジウム以外の不可避不純物の濃度が前記バナジ
ウムの濃度未満である炭化珪素結晶を用いて、炭化珪素
単結晶を成長させることを特徴とする炭化珪素単結晶の
製造方法、(2)前記バナジウムの濃度は1×1018〜
6×1019atom/cm3であり、前記不可避不純物
の濃度は1×1015atom/cm3以下である、
(1)に記載の製造方法、(3)前記バナジウムの濃度
は1×1019〜6×1019atom/cm3であり、前
記不可避不純物の濃度は1×1016atom/cm3以
下である、(1)に記載の製造方法、(4)バナジウム
の濃度が1×1018〜6×1019atom/cm3であ
り、バナジウム以外の不可避不純物の濃度が前記バナジ
ウムの濃度未満である、炭化珪素単結晶育成用炭化珪素
結晶原料、(5)バナジウムの濃度が1×1018〜6×
1019atom/cm3であり、バナジウム以外の不可
避不純物の濃度が1×1015atom/cm3以下であ
る、炭化珪素単結晶育成用炭化珪素結晶原料、(6)バ
ナジウムの濃度が1×1019〜6×1019atom/c
m3であり、バナジウム以外の不可避不純物の濃度が1
×1016atom/cm3以下である、炭化珪素単結晶
育成用炭化珪素結晶原料、(7)(1)〜(3)のいず
れか一項に記載の製造方法で得られた炭化珪素単結晶で
あって、50mm以上の口径を有することを特徴とす
る、炭化珪素単結晶、(8)種結晶を除く炭化珪素単結
晶の全長に亘って、バナジウムの濃度が1×1015〜3
×1017atom/cm3であることを特徴とする炭化
珪素単結晶、(9)前記バナジウムの濃度は1×1016
〜3×1017atom/cm3である、(8)に記載の
炭化珪素単結晶、(10)50mm以上の口径を有する
ことを特徴とする、(8)または(9)に記載の炭化珪
素単結晶、(11)(7)〜(10)のいずれか一項に
記載の炭化珪素単結晶を切断、研磨してなる炭化珪素単
結晶基板、(12)(11)に記載の炭化珪素単結晶基
板に、炭化珪素薄膜をエピタキシャル成長してなる炭化
珪素エピタキシャルウェハ、(13)(11)に記載の
炭化珪素単結晶基板に、窒化ガリウム、窒化アルミニウ
ム、窒化インジウムまたはこれらの混晶をエピタキシャ
ル成長してなる薄膜エピタキシャルウェハ、である。Accordingly, the SiC of the present invention
The method for producing a single crystal is (1) a method for producing a silicon carbide single crystal that includes a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, and the concentration of vanadium as a raw material is 1 × 10. A silicon carbide single crystal is grown using a silicon carbide crystal having a concentration of 18 to 6 × 10 19 atoms / cm 3 and an unavoidable impurity other than vanadium less than the concentration of vanadium. (2) The vanadium concentration is 1 × 10 18 to
6 × 10 19 atom / cm 3 , and the concentration of the unavoidable impurities is 1 × 10 15 atom / cm 3 or less,
(1) The production method according to (1), (3) the vanadium concentration is 1 × 10 19 to 6 × 10 19 atom / cm 3 , and the unavoidable impurity concentration is 1 × 10 16 atom / cm 3 or less. And (4) the vanadium concentration is 1 × 10 18 to 6 × 10 19 atom / cm 3 , and the concentration of unavoidable impurities other than vanadium is less than the vanadium concentration. Silicon carbide crystal raw material for growing silicon single crystal, (5) Vanadium concentration is 1 × 10 18 to 6 ×
10 19 atom / cm 3 , and the concentration of unavoidable impurities other than vanadium is 1 × 10 15 atom / cm 3 or less, a silicon carbide crystal raw material for growing a silicon carbide single crystal, (6) the concentration of vanadium is 1 × 10 19 to 6 × 10 19 atom / c
m 3 and the concentration of unavoidable impurities other than vanadium is 1
A silicon carbide crystal raw material for growing a silicon carbide single crystal having a density of × 10 16 atoms / cm 3 or less, and a silicon carbide single crystal obtained by the manufacturing method according to any one of (7) (1) to (3). And a vanadium concentration of 1 × 10 15 to 3 over the entire length of the silicon carbide single crystal excluding the (8) seed crystal, which has a diameter of 50 mm or more.
× 10 17 atom / cm 3 silicon carbide single crystal, (9) The vanadium concentration is 1 × 10 16
The silicon carbide single crystal according to (8), having a diameter of 3 × 10 17 atoms / cm 3 , and (10) having a diameter of 50 mm or more, the silicon carbide according to (8) or (9). Single crystal, a silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal according to any one of (11), (7) to (10), and the silicon carbide single crystal according to (12) and (11). A silicon carbide epitaxial wafer obtained by epitaxially growing a silicon carbide thin film on a crystal substrate, and a gallium nitride, aluminum nitride, indium nitride or a mixed crystal thereof is epitaxially grown on the silicon carbide single crystal substrate according to (13) or (11). Thin film epitaxial wafer.
【0008】[0008]
【発明の実施の形態】本発明の製造方法では、炭化珪素
(以下、「SiC」とも称する)原料として、予めバナ
ジウムの濃度が1×1018〜6×1019atom/cm
3、好ましくは1×1019〜6×1019atom/cm3
であり、且つバナジウム以外の不可避不純物の濃度が前
記バナジウムの濃度未満、好ましくはバナジウムの濃度
が1×1018〜6×1019atom/cm3の場合には
1×1015atom/cm3以下、バナジウムの濃度が
1×1019〜6×1019atom/cm3の場合には1
×1016atom/cm3以下であるSiC単結晶を用
いることにより、高抵抗率(106Wcm以上)で高品
質な大口径のSiC単結晶インゴットを得ることができ
る。BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention, the concentration of vanadium is previously set to 1 × 10 18 to 6 × 10 19 atom / cm as a silicon carbide (hereinafter also referred to as “SiC”) raw material.
3 , preferably 1 × 10 19 to 6 × 10 19 atom / cm 3.
And the concentration of unavoidable impurities other than vanadium is less than the concentration of vanadium, preferably 1 × 10 15 to less than 1 × 10 15 atom / cm 3 when the concentration of vanadium is 1 × 10 18 to 6 × 10 19 atom / cm 3. , 1 if the vanadium concentration is 1 × 10 19 to 6 × 10 19 atom / cm 3.
By using a SiC single crystal having a density of × 10 16 atoms / cm 3 or less, a high-quality large-diameter SiC single crystal ingot with a high resistivity (10 6 Wcm or more) can be obtained.
【0009】図2(b)を用いて、本発明の効果を説明
する。昇華再結晶法によるSiC単結晶の成長におい
て、バナジウムを予めSiC結晶に結晶内不純物として
含むSiC結晶原料を用いてバナジウムを成長結晶中に
添加した場合、原料からのバナジウムの昇華あるいは蒸
発はSiC結晶原料の分解(昇華)により律速されるこ
とになる。従ってこの場合バナジウムの昇華あるいは蒸
発速度は、従来法のように金属バナジウムあるいはバナ
ジウム化合物の昇華あるいは蒸発速度によって決定され
るのではなく、常にSiC結晶原料のそれと同じにな
り、従来法で問題となっていたバナジウムとSiC間の
昇華あるいは蒸発速度差は生じない。このように、バナ
ジウムの昇華あるいは蒸発速度がSiC結晶の昇華速度
と同じになった場合には、成長開始後数時間でバナジウ
ムが枯渇してしまうようなことはなく、成長中常に一定
量のバナジウムを昇華あるいは蒸発させることができ
る。その結果、バナジウムを成長結晶中に常に一定量添
加することが可能となる。また、SiC結晶原料中への
バナジウムの添加量を予め調整しておけば、成長結晶中
への添加量も調整できる。例えば、SiC結晶原料中の
バナジウム量を2×1019atom/cm3としておけ
ば、成長結晶に取り込まれるバナジウム量は、2×10
16atom/cm3〜1×1017atom/cm3とな
る。バナジウムの濃度が原料中よりも成長結晶中で低く
なるのは、原料からのSiC単結晶中へのバナジウム取
り込み率(成長結晶中のバナジウム濃度÷結晶原料中の
バナジウム濃度)が0.001〜0.005と低いため
である。この取り込み率はSiC単結晶の成長条件に依
存し、SiC結晶原料中に仕込むバナジウム濃度は、こ
のことを考慮した上で決定されなければならない。この
ように、成長結晶への取り込み率を考慮に入れながら、
SiC結晶原料中のバナジウム濃度を決定し、この原料
を用いて昇華再結晶法によりSiC単結晶を成長すれ
ば、成長されたSiC単結晶全体に渡って一定且つ固溶
限界量以下のバナジウムを再現性良く添加することがで
き、その結果高品質のSiC単結晶を得ることができ
る。The effect of the present invention will be described with reference to FIG. In the growth of a SiC single crystal by the sublimation recrystallization method, when vanadium is added to a growing crystal by using a SiC crystal raw material containing vanadium as an intracrystalline impurity in the SiC crystal in advance, sublimation or evaporation of vanadium from the raw material results in the SiC crystal. The rate is limited by the decomposition (sublimation) of the raw materials. Therefore, in this case, the sublimation or evaporation rate of vanadium is not determined by the sublimation or evaporation rate of metal vanadium or a vanadium compound as in the conventional method, but is always the same as that of the SiC crystal raw material, which is a problem in the conventional method. There is no difference in sublimation or evaporation rate between vanadium and SiC. As described above, when the sublimation or evaporation rate of vanadium becomes the same as the sublimation rate of SiC crystal, vanadium is not depleted within a few hours after the start of growth, and a constant amount of vanadium is always maintained during growth. Can be sublimated or evaporated. As a result, it becomes possible to always add vanadium to the grown crystal in a constant amount. Further, if the amount of vanadium added to the SiC crystal raw material is adjusted in advance, the amount added to the grown crystal can also be adjusted. For example, if the amount of vanadium in the SiC crystal raw material is set to 2 × 10 19 atom / cm 3 , the amount of vanadium taken into the grown crystal is 2 × 10.
16 atom / cm 3 to 1 × 10 17 atom / cm 3 . The vanadium concentration is lower in the grown crystal than in the raw material because the vanadium incorporation rate from the raw material into the SiC single crystal (vanadium concentration in the grown crystal ÷ vanadium concentration in the crystal raw material) is 0.001 to 0. This is because it is as low as 0.005. This uptake rate depends on the growth conditions of the SiC single crystal, and the vanadium concentration charged in the SiC crystal raw material must be determined in consideration of this. In this way, taking into consideration the rate of incorporation into the grown crystal,
If the vanadium concentration in the SiC crystal raw material is determined and the SiC single crystal is grown by the sublimation recrystallization method using this raw material, vanadium that is constant and below the solid solution limit amount is reproduced throughout the grown SiC single crystal. It can be added with good properties, and as a result, a high quality SiC single crystal can be obtained.
【0010】本発明のSiC単結晶の製造方法では、S
iC結晶原料中のバナジウム以外の不可避不純物濃度を
バナジウムの濃度未満であるSiC結晶原料を用いるこ
とを特徴とする。当該不可避不純物の濃度はバナジウム
の濃度未満であればよく、好ましくは、バナジウムの濃
度が1×1018〜6×1019atom/cm3の場合に
は1×1015atom/cm3以下、あるいは、バナジ
ウムの濃度が1×101 9〜6×1019atom/cm3
の場合には1×1016atom/cm3以下である。こ
れら濃度範囲の条件は、成長したSiC単結晶中のバナ
ジウム濃度が常に不可避不純物濃度以上になるようにす
るためであり、上記具体例の濃度条件において特に好ま
しいSiC単結晶を製造することが出来る。バナジウム
を添加したSiC単結晶で高抵抗率を得るためには、添
加したバナジウムの量を上回る量の不可避不純物がSi
C単結晶中に存在してはならない。成長結晶中のバナジ
ウム濃度よりも不可避不純物濃度が高くなってしまった
場合には、単結晶の電気的特性は、その不可避不純物に
より決定されてしまい、高抵抗率(106Wcm以上)
にはなり得ない。バナジウム以外の不純物の取り込み率
は、高いものではほぼ1.0となるので、SiC結晶原
料中のバナジウム以外の不純物濃度は、成長結晶中で許
容される濃度と同程度、あるいはそれ以下にしておかな
ければならない。In the method for producing a SiC single crystal of the present invention, S
The SiC crystal raw material is characterized in that the concentration of unavoidable impurities other than vanadium in the iC crystal raw material is less than the concentration of vanadium. Concentration of the inevitable impurities may be less than the concentration of vanadium, preferably, the concentration of vanadium 1 × 10 15 atom / cm 3 or less in the case of 1 × 10 18 ~6 × 10 19 atom / cm 3, or , the concentration of vanadium 1 × 10 1 9 ~6 × 10 19 atom / cm 3
In the case of, it is 1 × 10 16 atoms / cm 3 or less. The conditions of these concentration ranges are so that the vanadium concentration in the grown SiC single crystal is always higher than the inevitable impurity concentration, and particularly preferable SiC single crystals can be manufactured under the concentration conditions of the above specific examples. In order to obtain a high resistivity in the SiC single crystal with vanadium added, the amount of unavoidable impurities exceeding the amount of vanadium added is Si.
It must not be present in the C single crystal. When the unavoidable impurity concentration becomes higher than the vanadium concentration in the grown crystal, the electrical characteristics of the single crystal are determined by the unavoidable impurities, and the high resistivity (10 6 Wcm or more)
It cannot be. Since the rate of incorporation of impurities other than vanadium is about 1.0 at a high level, the concentration of impurities other than vanadium in the SiC crystal raw material should be set to the same level as or lower than the concentration allowed in the grown crystal. There must be.
【0011】昇華再結晶法の原料として用いるSiC結
晶中のバナジウム及びバナジウム以外の不可避不純物濃
度を本発明の範囲に設定すれば、再現性良く高抵抗率
(10 6Wcm以上)のSiC単結晶が得られること
は、発明者らが数多くの実験から見出したものである。A SiC crystal used as a raw material for the sublimation recrystallization method.
Concentration of inevitable impurities other than vanadium and vanadium in crystals
If the degree is set within the range of the present invention, high reproducibility and high resistivity
(10 6A SiC single crystal of Wcm or more) can be obtained.
The present inventors have found out from many experiments.
【0012】本発明に用いられるSiC単結晶育成用S
iC結晶原料は、例えば、高純度の二酸化珪素(SiO
2)と黒鉛を高温で反応させることにより製造される。
SiO2に含まれている酸素は、高温(摂氏2000度
以上)での反応では、一酸化炭素として系外に排出さ
れ、SiC結晶には残らない。バナジウムは上記SiO
2+黒鉛に高純度金属バナジウムの形で添加され、上記
反応中にSiC結晶中に取り込まれる。SiC結晶中の
バナジウム濃度は、成長部位によって異なるが、成長
後、結晶を粉砕・粒度調節(粉末化)する際に均一化さ
れる。SiC結晶原料中のバナジウム濃度を1×1019
〜6×1019atom/cm3、あるいは1×1018〜
6×1019atom/cm3の範囲とするには、モル比
で1:1に調合されたSiO2+黒鉛中に、Siに対す
るモル比で4〜24%、あるいは0.4〜24%の高純
度バナジウムを添加すればよい。ただしこの際、製造さ
れた結晶粒の周囲には、SiC結晶に取り込まれず残存
した金属バナジウムが付着しているので、所望のバナジ
ウム濃度のSiC結晶原料を得るためには、結晶を粉砕
・粒度調節する前に、酸洗浄によりこの付着層を取り除
く必要がある。また、このように製造されるSiC結晶
原料中の不可避不純物濃度を前記バナジウム濃度未満、
好ましくは1×1016atom/cm3以下、あるい
は、1×1015atom/cm3以下とするには、出発
原料となるSiO2、黒鉛、バナジウム中の不可避不純
物濃度を原子濃度で0.2ppm以下、あるいは0.0
2ppm以下とする必要がある。S for growing SiC single crystal used in the present invention
The iC crystal raw material is, for example, high-purity silicon dioxide (SiO 2).
2) And graphite at high temperature.
SiO2The oxygen contained in is high temperature (2000 degrees Celsius
In the above reaction, carbon monoxide is discharged to the outside of the system.
And does not remain in the SiC crystal. Vanadium is the above SiO
2+ Added to graphite in the form of high-purity metal vanadium,
It is incorporated into the SiC crystal during the reaction. In the SiC crystal
Vanadium concentration varies depending on the growth site, but
After that, when the crystals are crushed and the particle size is adjusted (powdered), they are made uniform.
Be done. The vanadium concentration in the SiC crystal raw material is set to 1 × 10.19
~ 6 × 1019atom / cm3, Or 1 × 1018~
6 x 1019atom / cm3To the range of the molar ratio
1: 1 mixed with SiO2+ Si in graphite
High purity of 4 to 24% or 0.4 to 24% in terms of molar ratio
Vanadium may be added once. However, at this time,
Around the crystal grains that were formed, the SiC crystal remained without being incorporated.
The desired vanadium is
To obtain a SiC crystal raw material with a high um concentration, crush the crystal
・ Remove this adhesion layer by acid cleaning before adjusting the particle size.
It is needed. Moreover, the SiC crystal manufactured in this way
The unavoidable impurity concentration in the raw material is less than the vanadium concentration,
Preferably 1 × 1016atom / cm3Below,
Is 1 × 1015atom / cm3To depart,
Raw material SiO2Unavoidable impurities in graphite, graphite and vanadium
The atomic concentration is 0.2 ppm or less, or 0.0
It should be 2 ppm or less.
【0013】本発明の製造方法で作製されたSiC単結
晶インゴットは、50mm以上の大口径を有し、且つ高
抵抗率で、さらにバナジウムの析出物に起因した結晶欠
陥が少ないという特徴を有し得る。また、種結晶を除く
炭化珪素単結晶の全長に亘って、バナジウム濃度が1×
1015〜3×1017atom/cm3、好ましくは1×
1016〜3×1017atom/cm3であれば、不可避
不純物の影響を受けずに、106Wcm以上の高抵抗率
を示す。3×1017atom/cm3を超えるバナジウ
ム濃度ではSiC単結晶中にバナジウムが析出するので
好ましくない。The SiC single crystal ingot produced by the production method of the present invention is characterized by having a large diameter of 50 mm or more, a high resistivity, and a small number of crystal defects caused by vanadium precipitates. obtain. In addition, the vanadium concentration is 1 × over the entire length of the silicon carbide single crystal excluding the seed crystal.
10 15 to 3 × 10 17 atom / cm 3 , preferably 1 ×
When it is 10 16 to 3 × 10 17 atom / cm 3 , it exhibits a high resistivity of 10 6 Wcm or more without being affected by unavoidable impurities. A vanadium concentration exceeding 3 × 10 17 atom / cm 3 is not preferable because vanadium is precipitated in the SiC single crystal.
【0014】このようにして製造したSiC単結晶イン
ゴットを切断、研磨してなるSiC単結晶基板は、50
mm以上の口径を有しているので、この基板を用いて各
種デバイスを製造する際、工業的に確立されている従来
の半導体(Si、GaAs等)ウェハ用の製造ラインを
使用することができ、量産に適している。特に、当該基
板の抵抗率は高いので、動作周波数の高いデバイスへの
適用が可能である。さらに、このSiC単結晶基板上に
CVD法等によりエピタキシャル薄膜を成長して作製さ
れるSiC単結晶エピタキシャルウェハ、あるいはGa
N、AlN、InN及びこららの混晶をエピタキシャル
成長してなる薄膜エピタキシャルウェハは、その基板と
なるSiC単結晶基板中にバナジウム析出物に起因した
結晶欠陥が極めて少ないために、良好な特性(エピタキ
シャル薄膜の表面モフォロジー、電気特性等)を有する
ようになる。The SiC single crystal ingot manufactured by cutting and polishing the SiC single crystal ingot thus manufactured has 50
Since it has a diameter of mm or more, when manufacturing various devices using this substrate, it is possible to use a conventional industrially established manufacturing line for semiconductor (Si, GaAs, etc.) wafers. Suitable for mass production. In particular, since the substrate has a high resistivity, it can be applied to a device having a high operating frequency. Further, a SiC single crystal epitaxial wafer produced by growing an epitaxial thin film on this SiC single crystal substrate by a CVD method or the like, or Ga
A thin film epitaxial wafer obtained by epitaxially growing a mixed crystal of N, AlN, InN and these has excellent characteristics (epitaxial growth) because the SiC single crystal substrate used as the substrate has extremely few crystal defects due to vanadium precipitates. Surface morphology, electrical properties, etc.) of the thin film.
【0015】[0015]
【実施例】(実施例)以下に、本発明の実施例を図3を
用いて述べる。まず、この単結晶成長装置について簡単
に説明する。結晶成長は、SiC結晶粉末原料2を昇華
させ、種結晶として用いたSiC単結晶1上で再結晶化
させることによりに行われる。種結晶のSiC単結晶1
は、高純度黒鉛製の坩堝3の黒鉛製坩堝蓋4の内面に取
り付けられる。SiC結晶粉末原料2は、坩堝3の内部
に充填されている。このような坩堝3は、二重石英管5
の内部に、黒鉛の支持棒6により設置される。坩堝3の
周囲には、熱シールドのための黒鉛製フェルト7が設置
されている。二重石英管5は、真空排気装置11により
高真空排気(10-3Pa以下)することができ、かつ内
部雰囲気をArガスにより圧力制御することができる。
また、二重石英管5の外周には、ワークコイル8が設置
されており、高周波電流を流すことにより坩堝3を加熱
し、原料及び種結晶を所望の温度に加熱することができ
る。坩堝温度の計測は、坩堝上部及び下部を覆うフェル
トの中央部に直径2〜4mmの光路を設け坩堝上部及び
下部からの光を取りだし、二色温度計を用いて行う。坩
堝下部の温度を原料温度、坩堝上部の温度を種温度とす
る。EXAMPLE An example of the present invention will be described below with reference to FIG. First, the single crystal growth apparatus will be briefly described. Crystal growth is performed by sublimating the SiC crystal powder raw material 2 and recrystallizing it on the SiC single crystal 1 used as a seed crystal. Seed crystal SiC single crystal 1
Is attached to the inner surface of the graphite crucible lid 4 of the high-purity graphite crucible 3. The SiC crystal powder raw material 2 is filled in the crucible 3. Such a crucible 3 has a double quartz tube 5
It is installed by a graphite support rod 6 inside. Around the crucible 3, a graphite felt 7 for heat shield is installed. The double quartz tube 5 can be evacuated to high vacuum (10 −3 Pa or less) by the vacuum exhaust device 11, and the internal atmosphere can be pressure-controlled by Ar gas.
Further, a work coil 8 is installed on the outer circumference of the double quartz tube 5, and the crucible 3 can be heated by passing a high-frequency current to heat the raw material and the seed crystal to a desired temperature. The temperature of the crucible is measured by using a two-color thermometer by providing an optical path with a diameter of 2 to 4 mm in the center of the felt that covers the upper and lower portions of the crucible and extracting light from the upper and lower portions of the crucible. The temperature of the lower part of the crucible is the raw material temperature, and the temperature of the upper part of the crucible is the seed temperature.
【0016】次に、この結晶成長装置を用いたSiC単
結晶の製造について実施例を説明する。まず、種結晶と
して、口径50mmの(0001)面を有した六方晶系
のSiC単結晶ウェハを用意した。次に、種結晶1を坩
堝3の黒鉛製坩堝蓋4の内面に取り付けた。坩堝3の内
部には、SiC結晶原料粉末2を充填した。原料粉末と
なるSiC結晶は、モル比で1:1に調合されたSiO
2+黒鉛中に、高純度バナジウムをSiに対するモル比
で8%添加して、高温炉で反応させて作製した。この際
用いたSiO2、黒鉛、バナジウム中の不可避不純物濃
度は1×1016atom/cm3以下であった。得られ
たSiC結晶粉末中のバナジウム濃度は2×1019at
om/cm3であった。また、バナジウム以外の不可避
不純物濃度は、1×1016atom/cm3以下であっ
た。次いで、原料を充填した坩堝3を、黒鉛製坩堝蓋4
で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒
6の上に乗せ、二重石英管5の内部に設置した。そし
て、石英管の内部を真空排気した後、ワークコイルに電
流を流し原料温度を摂氏2000度まで上げた。その
後、雰囲気ガスとして高純度Arガスを、高純度Arガ
ス配管9を介し、高純度Arガス用マスフローコントロ
ーラ10で制御しながら流入させ、石英管内圧力を約8
0kPaに保ちながら、原料温度を目標温度である摂氏
2400度まで上昇させた。成長圧力である1.3kP
aには約30分かけて減圧し、その後約20時間成長を
続けた。この際の坩堝内の温度勾配は摂氏15度/cm
で、成長速度は約0.8mm/時であった。得られた結
晶の口径は51mmで、高さは16mm程度であった。Next, an example of the production of a SiC single crystal using this crystal growth apparatus will be described. First, as a seed crystal, a hexagonal SiC single crystal wafer having a (0001) plane with a diameter of 50 mm was prepared. Next, the seed crystal 1 was attached to the inner surface of the graphite crucible lid 4 of the crucible 3. Inside the crucible 3, SiC crystal raw material powder 2 was filled. The SiC crystal that is the raw material powder is SiO that is prepared in a molar ratio of 1: 1.
High purity vanadium was added to 2 + graphite in a molar ratio of 8% with respect to Si and reacted in a high temperature furnace. The unavoidable impurity concentration in SiO 2 , graphite and vanadium used at this time was 1 × 10 16 atom / cm 3 or less. The vanadium concentration in the obtained SiC crystal powder was 2 × 10 19 at
It was om / cm 3 . The unavoidable impurity concentration other than vanadium was 1 × 10 16 atom / cm 3 or less. Next, the crucible 3 filled with the raw material is replaced with the graphite crucible lid 4
After closing with, and covering with a felt 7 made of graphite, it was placed on a support rod 6 made of graphite and placed inside a double quartz tube 5. After evacuating the inside of the quartz tube, an electric current was passed through the work coil to raise the raw material temperature to 2000 degrees Celsius. After that, high-purity Ar gas as an atmospheric gas is introduced through the high-purity Ar gas pipe 9 while being controlled by the high-purity Ar gas mass flow controller 10, and the pressure inside the quartz tube is set to about 8
While maintaining at 0 kPa, the raw material temperature was raised to the target temperature of 2400 degrees Celsius. Growth pressure of 1.3 kP
The pressure was reduced to a in about 30 minutes, and then the growth was continued for about 20 hours. The temperature gradient in the crucible at this time is 15 degrees Celsius / cm.
The growth rate was about 0.8 mm / hour. The obtained crystal had a diameter of 51 mm and a height of about 16 mm.
【0017】こうして得られた炭化珪素単結晶をX線回
折及びラマン散乱により分析したところ、六方晶系のS
iC単結晶が成長したことを確認できた。結晶の不純物
濃度を測定する目的で、成長した単結晶インゴットから
厚さ1mmのウェハを9枚切り出した。ウェハの面方位
は(0001)面から<11−20>方向に3.5度オ
フとした。成長結晶の上部、中部、下部(種結晶近傍)
に相当するウェハ(それぞれ種結晶から数えて9枚目、
5枚目、2枚目)中の不純物濃度をしらべたところ、バ
ナジウムの濃度は、どのウェハにおいても6×1016a
tom/cm3程度で、それ以外の不可避不純物の濃度
は全て1×1016atom/cm3以下であった。ま
た、得られたウェハを顕微鏡で観察したところ、バナジ
ウムの析出物に起因すると思われる欠陥は観察されなか
った。また、電気測定により各ウェハの抵抗率を調べた
ところ、どのウェハも106Wcm以上という高い抵抗
率を示した。The silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering. As a result, hexagonal S
It was confirmed that the iC single crystal had grown. For the purpose of measuring the impurity concentration of the crystal, nine 1 mm-thick wafers were cut out from the grown single crystal ingot. The plane orientation of the wafer was set to 3.5 degrees off from the (0001) plane in the <11-20> direction. Upper, middle and lower part of grown crystal (near seed crystal)
Wafer corresponding to (the 9th wafer from each seed crystal,
When the impurity concentration in the fifth and second wafers was examined, the vanadium concentration was 6 × 10 16 a for all wafers.
In tom / cm 3 or so, it the concentration of inevitable impurities other than were all below 1 × 10 16 atom / cm 3 . Further, when the obtained wafer was observed with a microscope, no defects that were considered to be caused by vanadium precipitates were observed. When the resistivity of each wafer was examined by electrical measurement, all the wafers exhibited a high resistivity of 10 6 Wcm or more.
【0018】次に、このようにして製造したSiC単結
晶ウェハを研磨して、厚さ300ミクロン、口径51m
mのSiC単結晶鏡面ウェハを作製した。Next, the thus-produced SiC single crystal wafer is polished to have a thickness of 300 μm and a diameter of 51 m.
m SiC single crystal mirror-finished wafer was produced.
【0019】さらに、この51mm口径のSiC単結晶
鏡面ウェハを基板として用いて、SiCのエピタキシャ
ル成長を行った。SiCエピタキシャル薄膜の成長条件
は、成長温度摂氏1500度、シラン(SiH4)、プ
ロパン(C3H8)、水素(H2)の流量が、それぞれ
5.0×10-9m3/sec、3.3×10-9m3/se
c、5.0×10-5m3/secであった。成長圧力は
大気圧とした。成長時間は2時間で、膜厚としては約5
μm成長した。Further, using this SiC single crystal mirror-polished wafer having a diameter of 51 mm as a substrate, SiC was epitaxially grown. The growth conditions for the SiC epitaxial thin film are as follows: growth temperature 1500 ° C., silane (SiH 4 ), propane (C 3 H 8 ), and hydrogen (H 2 ) flow rates of 5.0 × 10 −9 m 3 / sec, respectively. 3.3 × 10 -9 m 3 / se
c, 5.0 × 10 −5 m 3 / sec. The growth pressure was atmospheric pressure. The growth time is 2 hours and the film thickness is about 5
μm was grown.
【0020】エピタキシャル薄膜成長後、ノマルスキー
光学顕微鏡により、得られたエピタキシャル薄膜の表面
モフォロジーを観察したところ、ウェハ全面に渡って非
常に平坦で、ピット等の表面欠陥の非常に少ない良好な
表面モフォロジーを有するSiCエピタキシャル薄膜が
成長されているのが分かった。After growth of the epitaxial thin film, the surface morphology of the obtained epitaxial thin film was observed by a Nomarski optical microscope. It has been found that the SiC epitaxial thin films that it has grown.
【0021】また、同様にして作製した別のSiC単結
晶インゴットからオフ角度が0度の(0001)面ウェ
ハを切り出し、鏡面研磨した後、その上にGaN薄膜を
有機金属化学気相成長(MOCVD)法によりエピタキ
シャル成長させた。成長条件は、成長温度摂氏1050
度、トリメチルガリウム(TMG)、アンモニア(NH
3)、シラン(SiH4)をそれぞれ、54×10-6モル
/min、4リットル/min、22×10-11モル/
min流した。また、成長圧力は大気圧とした。成長時
間は60分間で、n型の窒化ガリウムを3μmの膜厚で
成長させた。Further, a (0001) plane wafer having an off angle of 0 degree was cut out from another SiC single crystal ingot produced in the same manner, mirror-polished, and then a GaN thin film was formed thereon by metal organic chemical vapor deposition (MOCVD). ) Method was used for epitaxial growth. The growth condition is a growth temperature of 1050 degrees Celsius.
Degree, trimethylgallium (TMG), ammonia (NH
3 ) and silane (SiH 4 ) at 54 × 10 −6 mol / min, 4 l / min, and 22 × 10 −11 mol / min, respectively.
I shed min. The growth pressure was atmospheric pressure. The growth time was 60 minutes, and n-type gallium nitride was grown to a film thickness of 3 μm.
【0022】得られたGaN薄膜の表面状態を調べる目
的で、成長表面をノマルスキー光学顕微鏡により観察し
た。ウェハ全面に渡って非常に平坦なモフォロジーが得
られ、全面に渡って高品質なGaN薄膜が形成されてい
るのが分かった。The growth surface was observed by a Nomarski optical microscope for the purpose of examining the surface state of the obtained GaN thin film. It was found that a very flat morphology was obtained over the entire surface of the wafer and a high quality GaN thin film was formed over the entire surface.
【0023】(比較例)比較例として、従来法による高
抵抗率SiC単結晶の製造について述べる。上記実施例
と同じく、種結晶として、口径50mmの(0001)
面を有した六方晶系のSiC単結晶ウェハを用意した。
次に、種結晶1を黒鉛製の坩堝3の黒鉛製坩堝蓋4の内
面に取り付け、坩堝3の内部に、研磨材を洗浄処理した
SiC結晶原料粉末2を充填した。さらに、この原料粉
末に金属バナジウムをSiに対するモル比で0.4%添
加した。原料を充填した坩堝3を、黒鉛製坩堝蓋4で閉
じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の
上に乗せ、二重石英管5の内部に設置した。そして、石
英管の内部を真空排気した後、ワークコイルに電流を流
し原料温度を摂氏2000度まで上げた。その後、雰囲
気ガスとして高純度Arガスを流入させ、石英管内圧力
を約80kPaに保ちながら、原料温度を目標温度であ
る摂氏2400度まで上昇させた。成長圧力である1.
3kPaには約30分かけて減圧し、その後約20時間
成長を続けた。この際の坩堝内の温度勾配は摂氏15度
/cmで、成長速度は約0.8mm/時であった。得ら
れた結晶の口径は51mmで、高さは17mm程度であ
った。Comparative Example As a comparative example, production of a high resistivity SiC single crystal by the conventional method will be described. As in the above example, a seed crystal (0001) with a diameter of 50 mm was used.
A hexagonal SiC single crystal wafer having a face was prepared.
Next, the seed crystal 1 was attached to the inner surface of the graphite crucible lid 4 of the graphite crucible 3, and the inside of the crucible 3 was filled with the SiC crystal raw material powder 2 having the abrasive material washed. Further, vanadium metal was added to the raw material powder in a molar ratio to Si of 0.4%. The crucible 3 filled with the raw material was closed with a graphite crucible lid 4, covered with a graphite felt 7, and then placed on a graphite support rod 6 and placed inside a double quartz tube 5. After evacuating the inside of the quartz tube, an electric current was passed through the work coil to raise the raw material temperature to 2000 degrees Celsius. After that, high-purity Ar gas was introduced as an atmosphere gas, and the raw material temperature was raised to a target temperature of 2400 degrees Celsius while maintaining the pressure in the quartz tube at about 80 kPa. Growth pressure is 1.
The pressure was reduced to 3 kPa over about 30 minutes, and then the growth was continued for about 20 hours. At this time, the temperature gradient inside the crucible was 15 degrees Celsius / cm, and the growth rate was about 0.8 mm / hour. The obtained crystal had a diameter of 51 mm and a height of about 17 mm.
【0024】こうして得られた炭化珪素単結晶をX線回
折及びラマン散乱により分析したところ、六方晶系のS
iC単結晶が成長したことを確認できた。結晶の不純物
濃度を測定する目的で、成長した単結晶インゴットから
厚さ1mmのウェハを9枚切り出した。ウェハの面方位
は(0001)面から<11−20>方向に3.5度オ
フとした。成長結晶の上部、中部、下部(種結晶近傍)
に相当するウェハ(それぞれ種結晶から数えて9枚目、
5枚目、2枚目)中の不純物濃度をしらべたところ、バ
ナジウムの濃度は、成長結晶の下部に相当するウェハで
5×1018atom/cm3で、中部、上部に相当する
ウェハでは5×1016atom/cm3以下であった。
また、全てのウェハにおいてバナジウム以外の不可避不
純物の濃度は2×1017atom/cm3程度であっ
た。得られたウェハを顕微鏡で観察したところ、成長結
晶の下部に相当するウェハでバナジウムの析出物に起因
すると思われる結晶欠陥が観察された。また、電気測定
により各ウェハの抵抗率を調べたところ、成長結晶の下
部に相当するウェハは106Wcm以上という高い抵抗
率を示したが、中部、上部に相当するウェハは、0.4
Wcmと低い抵抗率を示した。The silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering. As a result, hexagonal S
It was confirmed that the iC single crystal had grown. For the purpose of measuring the impurity concentration of the crystal, nine 1 mm-thick wafers were cut out from the grown single crystal ingot. The plane orientation of the wafer was set to 3.5 degrees off from the (0001) plane in the <11-20> direction. Upper, middle and lower part of grown crystal (near seed crystal)
Wafer corresponding to (the 9th wafer from each seed crystal,
When the impurity concentration in the fifth and second wafers was examined, the concentration of vanadium was 5 × 10 18 atoms / cm 3 in the lower wafer and 5 in the middle and upper wafers. It was less than or equal to × 10 16 atom / cm 3 .
The concentration of unavoidable impurities other than vanadium was about 2 × 10 17 atoms / cm 3 in all the wafers. When the obtained wafer was observed with a microscope, crystal defects that were considered to be caused by vanadium precipitates were observed in the wafer corresponding to the lower part of the grown crystal. When the resistivity of each wafer was examined by electrical measurement, the wafer corresponding to the lower part of the grown crystal showed a high resistivity of 10 6 Wcm or more, but the wafer corresponding to the middle part and the upper part showed 0.4
It showed a low resistivity of Wcm.
【0025】次に、このようにして製造したSiC単結
晶ウェハの内、高抵抗率のもの(成長結晶の下部に相当
するウェハ)を研磨して、厚さ300ミクロン、口径5
1mmのSiC単結晶鏡面ウェハを作製した。Next, among the SiC single crystal wafers manufactured in this way, one having a high resistivity (wafer corresponding to the lower part of the growing crystal) is polished to have a thickness of 300 μm and a diameter of 5
A 1 mm SiC single crystal mirror-finished wafer was prepared.
【0026】さらに、この51mm口径のSiC単結晶
鏡面ウェハを基板として用いて、SiCのエピタキシャ
ル成長を行った。SiCエピタキシャル薄膜の成長条件
は、成長温度摂氏1500度、シラン(SiH4)、プ
ロパン(C3H8)、水素(H2)の流量が、それぞれ
5.0×10-9m3/sec、3.3×10-9m3/se
c、5.0×10-5m3/secであった。成長圧力は
大気圧とした。成長時間は2時間で、膜厚としては約5
μm成長した。Further, using this 51 mm diameter SiC single crystal mirror-finished wafer as a substrate, SiC was epitaxially grown. The growth conditions for the SiC epitaxial thin film are as follows: growth temperature 1500 ° C., silane (SiH 4 ), propane (C 3 H 8 ), and hydrogen (H 2 ) flow rates of 5.0 × 10 −9 m 3 / sec, respectively. 3.3 × 10 -9 m 3 / se
c, 5.0 × 10 −5 m 3 / sec. The growth pressure was atmospheric pressure. The growth time is 2 hours and the film thickness is about 5
μm was grown.
【0027】エピタキシャル薄膜成長後、ノマルスキー
光学顕微鏡により、得られたエピタキシャル薄膜の表面
モフォロジーを観察したところ、基板ウェハ中にバナジ
ウム析出物に起因する欠陥が存在する場所上に成長した
部位には、ピット状の表面欠陥が現れていた。After growth of the epitaxial thin film, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. As a result, it was found that pits were found at the sites where defects due to vanadium precipitates were present in the substrate wafer. -Like surface defects appeared.
【0028】また、同様にして作製した別のSiC単結
晶インゴットからオフ角度が0度の高抵抗率(000
1)面ウェハを切り出し(種結晶近傍の領域から切り出
した)、鏡面研磨した後、その上にGaN薄膜を有機金
属化学気相成長(MOCVD)法によりエピタキシャル
成長させた。成長条件は、成長温度摂氏1050度、ト
リメチルガリウム(TMG)、アンモニア(NH3)、
シラン(SiH4)をそれぞれ、54×10-6モル/m
in、4リットル/min、22×10-11モル/mi
n流した。また、成長圧力は大気圧とした。成長時間は
60分間で、n型の窒化ガリウムを3μmの膜厚で成長
させた。Further, from another SiC single crystal ingot produced in the same manner, a high resistivity (000
1) A plane wafer was cut out (cut out from a region near the seed crystal), mirror-polished, and then a GaN thin film was epitaxially grown thereon by a metal organic chemical vapor deposition (MOCVD) method. The growth conditions are as follows: growth temperature 1050 ° C., trimethylgallium (TMG), ammonia (NH 3 ),
Silane (SiH 4 ) 54 × 10 -6 mol / m 2, respectively
in, 4 liters / min, 22 × 10 -11 mol / mi
flowed n times. The growth pressure was atmospheric pressure. The growth time was 60 minutes, and n-type gallium nitride was grown to a film thickness of 3 μm.
【0029】得られたGaN薄膜の表面状態を調べる目
的で、成長表面をノマルスキー光学顕微鏡により観察し
たところ、やはりウェハ中にバナジウム析出物に起因し
た欠陥が存在する場所上に成長した部位には、ピット状
の表面欠陥が発生していた。For the purpose of investigating the surface condition of the obtained GaN thin film, the growth surface was observed by a Nomarski optical microscope. As a result, it was found that the portion grown on the place where the defect caused by the vanadium precipitate was present in the wafer also showed that Pit-like surface defects had occurred.
【0030】[0030]
【発明の効果】以上説明したように、本発明によれば、
種結晶を用いた改良型昇華再結晶法(レーリー法)によ
り、高抵抗率で且つ良質のSiC単結晶を再現性良く成
長させることができる。このような結晶から切り出した
SiC単結晶ウェハを用いれば、特性の優れた高周波電
子デバイスを低価格で製作することができる。As described above, according to the present invention,
By the improved sublimation recrystallization method using a seed crystal (Rayleigh method), it is possible to grow a SiC single crystal having high resistivity and good quality with good reproducibility. If a SiC single crystal wafer cut out from such a crystal is used, a high frequency electronic device having excellent characteristics can be manufactured at a low cost.
【図面の簡単な説明】[Brief description of drawings]
【図1】 改良レーリー法の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of an improved Rayleigh method.
【図2】 本発明の効果を説明する図であって、(a)
は従来法によって製造されたSiC単結晶中のバナジウ
ムおよび残留不純物濃度分布を、および、(b)は本発
明によって製造されたSiC単結晶中のバナジウムおよ
び残留不純物濃度分布を示す。FIG. 2 is a diagram for explaining the effect of the present invention, in which (a)
Shows the vanadium and residual impurity concentration distribution in the SiC single crystal produced by the conventional method, and (b) shows the vanadium and residual impurity concentration distribution in the SiC single crystal produced by the present invention.
【図3】 本発明の製造方法に用いられる単結晶成長装
置の一例を示す構成図である。FIG. 3 is a configuration diagram showing an example of a single crystal growth apparatus used in the manufacturing method of the present invention.
1 種結晶(SiC単結晶) 2 SiC結晶粉末原料 3 坩堝(黒鉛あるいはタンタル等の高融点金属) 4 黒鉛製坩堝蓋 5 二重石英管 6 支持棒 7 黒鉛製フェルト(断熱材) 8 ワークコイル 9 高純度Arガス配管 10 高純度Arガス用マスフローコントローラ 11 真空排気装置 1 seed crystal (SiC single crystal) 2 SiC crystal powder raw material 3 Crucible (high melting point metal such as graphite or tantalum) 4 Graphite crucible lid 5 Double quartz tube 6 Support rod 7 Graphite felt (heat insulating material) 8 work coil 9 High-purity Ar gas piping 10 Mass flow controller for high-purity Ar gas 11 Vacuum exhaust device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 辰雄 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 矢代 弘克 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4G077 AA02 BE08 DA02 EB01 HA06 SA04 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Tatsuo Fujimoto 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares Company Technology Development Division (72) Inventor Hirokatsu Yashiro 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares Company Technology Development Division F-term (reference) 4G077 AA02 BE08 DA02 EB01 HA06 SA04
Claims (13)
単結晶を成長させる工程を包含する炭化珪素単結晶の製
造方法であって、原料としてバナジウムの濃度が1×1
018〜6×1019atom/cm3であり、バナジウム
以外の不可避不純物の濃度が前記バナジウムの濃度未満
である炭化珪素結晶を用いて、炭化珪素単結晶を成長さ
せることを特徴とする炭化珪素単結晶の製造方法。1. A method for producing a silicon carbide single crystal, which comprises a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein a vanadium concentration as a raw material is 1 × 1.
A silicon carbide single crystal is grown using a silicon carbide crystal having a concentration of 0 18 to 6 × 10 19 atoms / cm 3 and an unavoidable impurity other than vanadium less than the concentration of vanadium. Method for producing single crystal.
×1019atom/cm3であり、前記不可避不純物の
濃度は1×1015atom/cm3以下である、請求項
1に記載の製造方法。2. The vanadium concentration is 1 × 10 18 to 6
The production method according to claim 1, wherein the concentration of the unavoidable impurities is × 10 19 atoms / cm 3 , and the concentration of the unavoidable impurities is 1 × 10 15 atoms / cm 3 or less.
×1019atom/cm3であり、前記不可避不純物の
濃度は1×1016atom/cm3以下である、請求項
1に記載の製造方法。3. The vanadium concentration is 1 × 10 19 to 6
The manufacturing method according to claim 1, wherein the concentration of the inevitable impurities is × 10 19 atoms / cm 3 , and the concentration of the unavoidable impurities is 1 × 10 16 atoms / cm 3 or less.
019atom/cm 3であり、バナジウム以外の不可避
不純物の濃度が前記バナジウムの濃度未満である、炭化
珪素単結晶育成用炭化珪素結晶原料。4. The vanadium concentration is 1 × 10.18~ 6 x 1
019atom / cm 3And unavoidable except vanadium
If the concentration of impurities is less than the concentration of vanadium, carbonization
A silicon carbide crystal raw material for growing a silicon single crystal.
019atom/cm 3であり、バナジウム以外の不可避
不純物の濃度が1×1015atom/cm3以下であ
る、炭化珪素単結晶育成用炭化珪素結晶原料。5. The vanadium concentration is 1 × 10.18~ 6 x 1
019atom / cm 3And unavoidable except vanadium
Impurity concentration is 1 × 1015atom / cm3Below
A silicon carbide crystal raw material for growing a silicon carbide single crystal.
019atom/cm 3であり、バナジウム以外の不可避
不純物の濃度が1×1016atom/cm3以下であ
る、炭化珪素単結晶育成用炭化珪素結晶原料。6. The vanadium concentration is 1 × 10.19~ 6 x 1
019atom / cm 3And unavoidable except vanadium
Impurity concentration is 1 × 1016atom / cm3Below
A silicon carbide crystal raw material for growing a silicon carbide single crystal.
造方法で得られた炭化珪素単結晶であって、50mm以
上の口径を有することを特徴とする、炭化珪素単結晶。7. A silicon carbide single crystal obtained by the manufacturing method according to claim 1, wherein the silicon carbide single crystal has a diameter of 50 mm or more.
って、バナジウムの濃度が1×1015〜3×1017at
om/cm3であることを特徴とする炭化珪素単結晶。8. The vanadium concentration is 1 × 10 15 to 3 × 10 17 at over the entire length of the silicon carbide single crystal excluding the seed crystal.
A silicon carbide single crystal characterized in that it is om / cm 3 .
×1017atom/cm3である、請求項8に記載の炭
化珪素単結晶。9. The vanadium concentration is 1 × 10 16 to 3
The silicon carbide single crystal according to claim 8, having a density of × 10 17 atom / cm 3 .
徴とする、請求項8または9に記載の炭化珪素単結晶。10. The silicon carbide single crystal according to claim 8, which has a diameter of 50 mm or more.
の炭化珪素単結晶を切断、研磨してなる炭化珪素単結晶
基板。11. A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal according to claim 7.
板に、炭化珪素薄膜をエピタキシャル成長してなる炭化
珪素エピタキシャルウェハ。12. A silicon carbide epitaxial wafer obtained by epitaxially growing a silicon carbide thin film on the silicon carbide single crystal substrate according to claim 11.
板に、窒化ガリウム、窒化アルミニウム、窒化インジウ
ムまたはこれらの混晶をエピタキシャル成長してなる薄
膜エピタキシャルウェハ。13. A thin-film epitaxial wafer obtained by epitaxially growing gallium nitride, aluminum nitride, indium nitride, or a mixed crystal thereof on the silicon carbide single crystal substrate according to claim 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001301935A JP4733882B2 (en) | 2001-09-28 | 2001-09-28 | Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001301935A JP4733882B2 (en) | 2001-09-28 | 2001-09-28 | Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003104798A true JP2003104798A (en) | 2003-04-09 |
JP4733882B2 JP4733882B2 (en) | 2011-07-27 |
Family
ID=19122269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001301935A Expired - Fee Related JP4733882B2 (en) | 2001-09-28 | 2001-09-28 | Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4733882B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005008472A (en) * | 2003-06-18 | 2005-01-13 | Nippon Steel Corp | High quality 4H silicon carbide single crystal and single crystal wafer |
JP2005041710A (en) * | 2003-07-23 | 2005-02-17 | Nippon Steel Corp | Silicon carbide single crystal, silicon carbide single crystal wafer and manufacturing method thereof |
JP2005239496A (en) * | 2004-02-27 | 2005-09-08 | Nippon Steel Corp | Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal and method for producing the same |
JP2006096578A (en) * | 2004-09-28 | 2006-04-13 | Nippon Steel Corp | Method for producing silicon carbide single crystal and silicon carbide single crystal ingot |
JP2006111478A (en) * | 2004-10-13 | 2006-04-27 | Nippon Steel Corp | Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof |
EP1652973A1 (en) * | 2004-10-29 | 2006-05-03 | Sixon Ltd. | Silicon carbide single crystal, silicon carbide substrate and manufacturing method for silicon carbide single crystal |
WO2006070480A1 (en) * | 2004-12-27 | 2006-07-06 | Nippon Steel Corporation | Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same |
KR100821360B1 (en) * | 2006-08-23 | 2008-04-11 | 신닛뽄세이테쯔 카부시키카이샤 | Silicon Carbide Monocrystalline, Silicon Carbide Single Crystal Wafers and Manufacturing Method Thereof |
JP2009292723A (en) * | 2009-09-08 | 2009-12-17 | Nippon Steel Corp | Silicon carbide single crystal ingot with seed crystal, silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer |
JP2010077023A (en) * | 2009-11-30 | 2010-04-08 | Nippon Steel Corp | Silicon carbide single crystal and method of manufacturing the same |
JP2013028475A (en) * | 2011-07-27 | 2013-02-07 | Kyocera Corp | Single crystal substrate and semiconductor element using the same |
EP2471981A4 (en) * | 2009-08-27 | 2013-04-17 | Nippon Steel & Sumitomo Metal Corp | SIC MONOCRYSTAL WAFER AND METHOD FOR MANUFACTURING THE SAME |
KR101614325B1 (en) | 2015-01-21 | 2016-04-21 | 한국세라믹기술원 | Method of manufacturing silicon carbide powder contaning vanadium and silicon carbide single cryctal thereof |
CN106716596A (en) * | 2014-07-29 | 2017-05-24 | 美国道康宁公司 | Method of manufacturing large diameter silicon carbide crystal by sublimation and related semiconductor SIC wafer |
CN113981528A (en) * | 2020-07-27 | 2022-01-28 | 环球晶圆股份有限公司 | Manufacturing method of silicon carbide wafer and semiconductor structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500861A (en) * | 1993-07-31 | 1997-01-28 | ダイムラー−ベンツ アクチエンゲゼルシャフト | Manufacturing method of high and low anti-silicon carbide |
JP2001509768A (en) * | 1997-01-31 | 2001-07-24 | ノースロップ グラマン コーポレーション | High-resistance silicon carbide substrate for high-power microwave equipment |
JP2003500321A (en) * | 1999-05-18 | 2003-01-07 | クリー インコーポレイテッド | Semi-insulating silicon carbide that does not occupy vanadium |
-
2001
- 2001-09-28 JP JP2001301935A patent/JP4733882B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500861A (en) * | 1993-07-31 | 1997-01-28 | ダイムラー−ベンツ アクチエンゲゼルシャフト | Manufacturing method of high and low anti-silicon carbide |
JP2001509768A (en) * | 1997-01-31 | 2001-07-24 | ノースロップ グラマン コーポレーション | High-resistance silicon carbide substrate for high-power microwave equipment |
JP2003500321A (en) * | 1999-05-18 | 2003-01-07 | クリー インコーポレイテッド | Semi-insulating silicon carbide that does not occupy vanadium |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005008472A (en) * | 2003-06-18 | 2005-01-13 | Nippon Steel Corp | High quality 4H silicon carbide single crystal and single crystal wafer |
JP2005041710A (en) * | 2003-07-23 | 2005-02-17 | Nippon Steel Corp | Silicon carbide single crystal, silicon carbide single crystal wafer and manufacturing method thereof |
JP2005239496A (en) * | 2004-02-27 | 2005-09-08 | Nippon Steel Corp | Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal and method for producing the same |
JP2006096578A (en) * | 2004-09-28 | 2006-04-13 | Nippon Steel Corp | Method for producing silicon carbide single crystal and silicon carbide single crystal ingot |
JP2006111478A (en) * | 2004-10-13 | 2006-04-27 | Nippon Steel Corp | Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof |
US8795624B2 (en) | 2004-10-13 | 2014-08-05 | Nippon Steel & Sumitomo Metal Corporation | Monocrystalline silicon carbide ingot, monocrystalline silicon carbide wafer and method of manufacturing the same |
US8673254B2 (en) | 2004-10-13 | 2014-03-18 | Nippon Steel & Sumitomo Metal Corporation | Monocrystalline silicon carbide ingot, monocrystalline silicon carbide wafer and method of manufacturing the same |
US8178389B2 (en) | 2004-10-13 | 2012-05-15 | Nippon Steel Corporation | Monocrystalline silicon carbide ingot, monocrystalline silicon carbide wafer and method of manufacturing the same |
US8013343B2 (en) | 2004-10-29 | 2011-09-06 | Sumitomo Electric Industries, Ltd. | Silicon carbide single crystal, silicon carbide substrate and manufacturing method for silicon carbide single crystal |
EP1652973A1 (en) * | 2004-10-29 | 2006-05-03 | Sixon Ltd. | Silicon carbide single crystal, silicon carbide substrate and manufacturing method for silicon carbide single crystal |
WO2006070480A1 (en) * | 2004-12-27 | 2006-07-06 | Nippon Steel Corporation | Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same |
US7794842B2 (en) | 2004-12-27 | 2010-09-14 | Nippon Steel Corporation | Silicon carbide single crystal, silicon carbide single crystal wafer, and method of production of same |
US8491719B2 (en) | 2004-12-27 | 2013-07-23 | Nippon Steel & Sumitomo Metal Corporation | Silicon carbide single crystal, silicon carbide single crystal wafer, and method of production of same |
KR100821360B1 (en) * | 2006-08-23 | 2008-04-11 | 신닛뽄세이테쯔 카부시키카이샤 | Silicon Carbide Monocrystalline, Silicon Carbide Single Crystal Wafers and Manufacturing Method Thereof |
EP2471981A4 (en) * | 2009-08-27 | 2013-04-17 | Nippon Steel & Sumitomo Metal Corp | SIC MONOCRYSTAL WAFER AND METHOD FOR MANUFACTURING THE SAME |
US9222198B2 (en) | 2009-08-27 | 2015-12-29 | Nippon Steel & Sumitomo Metal Corporation | SiC single crystal wafer and process for production thereof |
JP2009292723A (en) * | 2009-09-08 | 2009-12-17 | Nippon Steel Corp | Silicon carbide single crystal ingot with seed crystal, silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer |
JP2010077023A (en) * | 2009-11-30 | 2010-04-08 | Nippon Steel Corp | Silicon carbide single crystal and method of manufacturing the same |
JP2013028475A (en) * | 2011-07-27 | 2013-02-07 | Kyocera Corp | Single crystal substrate and semiconductor element using the same |
CN106716596A (en) * | 2014-07-29 | 2017-05-24 | 美国道康宁公司 | Method of manufacturing large diameter silicon carbide crystal by sublimation and related semiconductor SIC wafer |
CN106716596B (en) * | 2014-07-29 | 2020-11-17 | Sk硅德荣有限公司 | Method for producing large-diameter silicon carbide crystals and associated semiconductor SIC wafers by sublimation |
KR101614325B1 (en) | 2015-01-21 | 2016-04-21 | 한국세라믹기술원 | Method of manufacturing silicon carbide powder contaning vanadium and silicon carbide single cryctal thereof |
CN113981528A (en) * | 2020-07-27 | 2022-01-28 | 环球晶圆股份有限公司 | Manufacturing method of silicon carbide wafer and semiconductor structure |
US11987902B2 (en) | 2020-07-27 | 2024-05-21 | Globalwafers Co., Ltd. | Manufacturing method of silicon carbide wafer and semiconductor structure |
Also Published As
Publication number | Publication date |
---|---|
JP4733882B2 (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5068423B2 (en) | Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof | |
CN101896647B (en) | Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot | |
JP4964672B2 (en) | Low resistivity silicon carbide single crystal substrate | |
JP4818754B2 (en) | Method for producing silicon carbide single crystal ingot | |
US8491719B2 (en) | Silicon carbide single crystal, silicon carbide single crystal wafer, and method of production of same | |
JP2003104798A (en) | Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal | |
JPH06316499A (en) | Production of sic single crystal | |
JP4460236B2 (en) | Silicon carbide single crystal wafer | |
JP2008110907A (en) | Method for producing silicon carbide single crystal ingot and silicon carbide single crystal ingot | |
JP4733485B2 (en) | Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal | |
JP2002308697A (en) | Silicon carbide single crystal ingot, method for producing the same, and method of mounting seed crystal for growing silicon carbide single crystal | |
JP4603386B2 (en) | Method for producing silicon carbide single crystal | |
JP2005239496A (en) | Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal and method for producing the same | |
JP4408247B2 (en) | Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same | |
JP5131262B2 (en) | Silicon carbide single crystal and method for producing the same | |
JP2002274994A (en) | Method and apparatus for producing silicon carbide single crystal and silicon carbide single crystal ingot | |
JP4494856B2 (en) | Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same | |
JP4850807B2 (en) | Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same | |
JP4585137B2 (en) | Method for producing silicon carbide single crystal ingot | |
JPH06219898A (en) | Production of n-type silicon carbide single crystal | |
JP4157326B2 (en) | 4H type silicon carbide single crystal ingot and wafer | |
JP5333363B2 (en) | Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same | |
JP5370025B2 (en) | Silicon carbide single crystal ingot | |
JP2003137694A (en) | Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, and method for producing same | |
JPH061698A (en) | Production of silicon carbide bulk single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110419 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4733882 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |