JP2003100720A - Plasma apparatus - Google Patents
Plasma apparatusInfo
- Publication number
- JP2003100720A JP2003100720A JP2001295591A JP2001295591A JP2003100720A JP 2003100720 A JP2003100720 A JP 2003100720A JP 2001295591 A JP2001295591 A JP 2001295591A JP 2001295591 A JP2001295591 A JP 2001295591A JP 2003100720 A JP2003100720 A JP 2003100720A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- particle removing
- plasma
- plasma device
- surface insulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 claims abstract description 79
- 239000012212 insulator Substances 0.000 claims abstract description 43
- 239000004020 conductor Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 230000003247 decreasing effect Effects 0.000 claims abstract 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 10
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 abstract description 5
- 238000009489 vacuum treatment Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 13
- 230000002159 abnormal effect Effects 0.000 description 11
- 238000005530 etching Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 241000981595 Zoysia japonica Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はプラズマを用いて基
板を加工するプラズマ装置に装着し、特にプロセス中に
発生するパーティクルが基板上に落下して付着すること
を防止する機能を備えたプラズマ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mounted on a plasma apparatus for processing a substrate using plasma, and particularly has a function of preventing particles generated during the process from dropping and adhering on the substrate. Regarding
【0002】[0002]
【従来の技術】プラズマを用いて半導体等の基板を加工
するプラズマ装置として、基板上に薄膜を形成する成膜
装置や基板表面に対してエッチングを行うエッチング装
置があり、一般的には、図8に示すように、真空処理室
10と、この処理室内に設置された上部電極21と下部
電極22からなる一対の加工電極20と、加工される基
板Wを前記下部電極22上に固定するための吸着用電源
33を有するサセプタ30を備えており、真空処理室1
0内を真空状態に排気するとともにガス供給口23から
プロセスガスを真空処理室10内に導入し、加工電極2
0間に高周波電源25の高周波電圧を印加してプロセス
ガスをプラズマ化し、サセプタ30上の基板Wに対して
加工を行う構成がとられている。この種のプラズマ装置
では、プロセスにおける反応生成物からなる異物(パー
ティスル)が発生し、このパーティクルが真空処理室1
0の内壁に付着し、当該内壁から剥離したときにサセプ
タ30上の基板Wの表面に落下、付着し、基板Wで製造
する半導体装置等の製造歩留りを低下させる要因にな
る。2. Description of the Related Art As a plasma apparatus for processing a substrate such as a semiconductor using plasma, there are a film forming apparatus for forming a thin film on the substrate and an etching apparatus for etching the surface of the substrate. As shown in FIG. 8, in order to fix the vacuum processing chamber 10, the pair of processing electrodes 20 including the upper electrode 21 and the lower electrode 22 installed in the processing chamber, and the substrate W to be processed on the lower electrode 22. The vacuum processing chamber 1 is provided with a susceptor 30 having a suction power source 33.
0 is evacuated to a vacuum state, and a process gas is introduced into the vacuum processing chamber 10 through the gas supply port 23,
A high-frequency voltage of a high-frequency power supply 25 is applied between 0s to convert the process gas into plasma, and the substrate W on the susceptor 30 is processed. In this type of plasma apparatus, foreign matter (partiesle) that is a reaction product of the process is generated, and these particles are generated in the vacuum processing chamber 1.
When it adheres to the inner wall of No. 0 and is separated from the inner wall, it drops and adheres to the surface of the substrate W on the susceptor 30 and becomes a factor to reduce the manufacturing yield of the semiconductor device manufactured by the substrate W.
【0003】そこで、このようなパーティクルが基板上
に付着することがないように、パーティクルを除去する
技術が提案されている。例えば、特開2000−390
2号公報には、真空処理室内に負の電圧を印加した電
極、グリッド、カバー等の導電体を設置しておき、プラ
ズマ処理によって生じた正に帯電したパーティクルを当
該導電体によってトラップ、あるいは誘導するなどして
基板上に落下しないようにしたものである。Therefore, a technique for removing particles has been proposed so that such particles do not adhere to the substrate. For example, Japanese Patent Laid-Open No. 2000-390
In Japanese Patent Laid-Open No. 2 (1994), a conductor such as an electrode, a grid, and a cover to which a negative voltage is applied is installed in a vacuum processing chamber, and positively charged particles generated by plasma treatment are trapped or induced by the conductor. This is done so that it does not fall on the substrate.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、公報に
記載の従来のプラズマ装置では、真空処理室内に負電圧
を印加した導電体の電極を設置すると、プラズマ中の正
イオンを引き込み、電源に大きなリーク電流が流れて、
これを破壊する可能性がある。この問題に対しては、同
プラズマ装置では、加工電極間への高周波電圧の印加を
停止してプラズマ処理を終了した時点に負電圧を導電体
に印加することによってリーク電流を抑制しているが、
そのための制御を行う回路装置が必要であり、プラズマ
装置の構造が複雑化することになる。一方、公報に記載
のプラズマ装置において負電圧を印加した導電体の代わ
りに、負に帯電した絶縁物を真空処理室内に設置するこ
とも考えられるが、プラズマ放電によって当該絶縁物の
表面がチャージアップし、異常放電によって部品が破壊
される可能性がある。また、このチャージアップによっ
てパーティクルを引き寄せるために十分な電界を形成す
ることができなくなる可能性もある。However, in the conventional plasma device described in the publication, when the electrode of the conductor to which the negative voltage is applied is installed in the vacuum processing chamber, the positive ions in the plasma are attracted and a large leak occurs in the power supply. An electric current flows,
There is a possibility of destroying this. With respect to this problem, in the same plasma device, the leakage current is suppressed by applying a negative voltage to the conductor at the time when the application of the high frequency voltage between the processing electrodes is stopped and the plasma processing is completed. ,
A circuit device for performing the control is required, which complicates the structure of the plasma device. On the other hand, in the plasma device described in the publication, a negatively charged insulator may be installed in the vacuum processing chamber instead of the conductor to which a negative voltage is applied, but the surface of the insulator is charged up by plasma discharge. However, there is a possibility that parts may be destroyed due to abnormal discharge. In addition, there is a possibility that an electric field sufficient to attract the particles cannot be formed due to this charge-up.
【0005】本発明の目的は、プラズマ放電中に発生す
るパーティクルを効率よく除去するとともに、その一方
でリーク電流やチャージアップを抑制してプラズマ装置
の損傷を防止することを可能にしたプラズマ装置を提供
するものである。An object of the present invention is to provide a plasma device capable of efficiently removing particles generated during plasma discharge, while suppressing leakage current and charge-up to prevent damage to the plasma device. It is provided.
【0006】[0006]
【課題を解決するための手段】本発明は、真空処理室
と、この真空処理室内に設置された上部電極と下部電極
からなる一対の加工電極と、加工される基板を下部電極
上に固定するサセプタを備えるプラズマ装置において、
真空処理室内に配置されて負の電圧が印加されるパーテ
ィクル除去電極を備えており、当該パーティクル除去電
極は、負の電圧が印加される導電体と、この導電体の表
面を覆う薄い表面絶縁物とを備えることを特徴とする。According to the present invention, a vacuum processing chamber, a pair of processing electrodes including an upper electrode and a lower electrode installed in the vacuum processing chamber, and a substrate to be processed are fixed on the lower electrode. In a plasma device equipped with a susceptor,
The particle removal electrode is provided in the vacuum processing chamber and is applied with a negative voltage. The particle removal electrode is a conductor to which a negative voltage is applied and a thin surface insulator covering the surface of the conductor. And is provided.
【0007】ここで、前記パーティクル除去電極の表面
絶縁物は、例えば、表面絶縁物として、酸化アルミニウ
ム、酸化シリコン、窒化シリコン、酸化タンタルを用い
る。この場合、誘電率を高める不純物、あるいは抵抗率
を下げる不純物が添加されていることが好ましい。ま
た、表面絶縁物として酸化アルミニウムを用いたとき
に、添加不純物に酸化チタンを用いる。さらに、表面絶
縁膜は100μm程度の厚さとすることが好ましい。Here, as the surface insulator of the particle removing electrode, for example, aluminum oxide, silicon oxide, silicon nitride, or tantalum oxide is used as the surface insulator. In this case, it is preferable to add impurities that increase the dielectric constant or impurities that decrease the resistivity. Further, when aluminum oxide is used as the surface insulator, titanium oxide is used as an additive impurity. Further, the surface insulating film preferably has a thickness of about 100 μm.
【0008】一方、パーティクル除去電極は、加工電極
の周囲の真空処理室の内壁に沿って配置される。あるい
は、加工電極内に形成されるプラズマ放電領域を囲む位
置に配置される。さらには、パーティクル除去電極はメ
ッシュ状に形成され、上部電極と下部電極との間に配置
される。On the other hand, the particle removing electrode is arranged along the inner wall of the vacuum processing chamber around the processing electrode. Alternatively, it is arranged at a position surrounding the plasma discharge region formed in the processing electrode. Further, the particle removing electrode is formed in a mesh shape and is arranged between the upper electrode and the lower electrode.
【0009】本発明によれば、正に帯電したパーティク
ルを負電圧が印加されたパーティクル除去電極で吸着し
て基板上への落下を防止する一方で、パーティクル除去
電極の表面絶縁物によってプラズマ中の正イオンがパー
ティクル除去電極の導電体に流れ込むのを防止してリー
ク電流を抑制する。また、表面絶縁物は薄く形成されて
いることで、また好ましくは誘電率を高める不純物、あ
るいは抵抗率を下げる不純物を表面絶縁物に添加するこ
とで、異常放電を引き起こすチャージアップを抑制する
ことができる。According to the present invention, positively charged particles are adsorbed by the particle removing electrode to which a negative voltage is applied to prevent the particles from falling onto the substrate, while the surface insulator of the particle removing electrode prevents the particles in the plasma from being absorbed. Positive ions are prevented from flowing into the conductor of the particle removing electrode, and the leak current is suppressed. Further, since the surface insulator is formed thinly, and preferably, an impurity that increases the dielectric constant or an impurity that decreases the resistivity is added to the surface insulator, it is possible to suppress the charge-up that causes abnormal discharge. it can.
【0010】[0010]
【発明の実施の形態】次に、本発明の実施の形態につい
て詳細に説明する。図1は本発明によるプラズマ装置の
概略構成を示す断面図である。真空処理室10内には上
部電極21と下部電極22からなる一対の加工電極20
が配置されており、前記下部電極22上には加工される
基板Wを前記下部電極22上に固定するサセプタ30が
備えられる。前記サセプタ30は、前記下部電極22上
の絶縁体31とその上の静電吸着電極32とで構成され
る。また、前記上部電極21には、プロセスガスを真空
処理室内に導入するための反応ガス導入口23が開口さ
れ、当該開口位置に設けられたガス吹き出し板24から
プロセスガスを加工電極20間に供給するようになって
いる。また、前記サセプタ30に静電吸着用の電位を与
えるための吸着用電源と33、加工電極20に高周波電
力を供給するための高周波電源25が接続されている。
さらに、前記加工電極20間の空間を囲む位置には前記
真空処理室10の内壁面を覆うようにパーティクル除去
電極40が配置され、前記上部電極21との間に接続さ
れる除去用電源43によって、前記上部電極21に対し
て所要の電位が印加されるようになっている。BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in detail. FIG. 1 is a sectional view showing a schematic configuration of a plasma device according to the present invention. In the vacuum processing chamber 10, a pair of processing electrodes 20 composed of an upper electrode 21 and a lower electrode 22.
And a susceptor 30 for fixing the substrate W to be processed on the lower electrode 22 is provided on the lower electrode 22. The susceptor 30 includes an insulator 31 on the lower electrode 22 and an electrostatic attraction electrode 32 thereon. Further, the upper electrode 21 is provided with a reaction gas introduction port 23 for introducing the process gas into the vacuum processing chamber, and the process gas is supplied between the processing electrodes 20 from a gas blowing plate 24 provided at the opening position. It is supposed to do. Further, an attraction power supply 33 for applying a potential for electrostatic attraction to the susceptor 30 and a high frequency power source 25 for supplying high frequency power to the machining electrode 20 are connected.
Further, a particle removing electrode 40 is disposed at a position surrounding a space between the processing electrodes 20 so as to cover the inner wall surface of the vacuum processing chamber 10, and a removing power source 43 connected to the upper electrode 21 is used. A required electric potential is applied to the upper electrode 21.
【0011】前記パーティクル除去電極40は、図2に
断面構造を示すように、例えばアルミニウム等の導電体
41の表面に表面絶縁物42を皮膜状に形成したもので
あり、この表面絶縁物42は酸化アルミニウム、酸化シ
リコン、酸化タンタル、窒化シリコン等、種々の絶縁材
料が適用可能である。ここでは、酸化アルミニウムを1
00μmの厚さに形成する。なお、酸化アルミニウム膜
の形成方法は、熱酸化でも溶射でもよい。そして、前記
導電体41に対して前記除去用電源43を電気接続し、
所要の電位を印加する構成となっている。As shown in the sectional structure of FIG. 2, the particle removing electrode 40 is formed by forming a surface insulator 42 in the form of a film on the surface of a conductor 41 such as aluminum. Various insulating materials such as aluminum oxide, silicon oxide, tantalum oxide, and silicon nitride can be applied. Here, 1 aluminum oxide
It is formed to a thickness of 00 μm. The method for forming the aluminum oxide film may be thermal oxidation or thermal spraying. Then, the removing power source 43 is electrically connected to the conductor 41,
It is configured to apply a required potential.
【0012】以上の構成のプラズマ装置をエッチング装
置として構成した場合におけるプラズマエッチング動作
について説明する。反応ガス供給口23からプロセスガ
スを真空処理室10内に導入するとともに、加工電極2
0間に高周波電源25からの高周波電圧を印加し、プロ
セスガスをプラズマ化する。プロセスガスとしては六弗
化イオウ、酸素、窒素を用い、RF(高周波)パワー6
00Wとする。これにより、サセプタ30上に載置され
た基板、例えば半導体ウェハWの表面に対してエッチン
グが行われる。エッチングに際して生じる反応物は加工
電極20間から周辺部に飛散されるが、このプラズマ処
理を行っている最中に、除去用電源43によりパーティ
クル除去電極40に0〜−300Vの電圧を印加する。
これにより、飛散される反応物、すなわちパーティクル
は正に帯電しているため、負のパーティクル除去電極4
0に吸着される。したがって、パーティクルが一旦真空
処理室10の内壁に付着してその後に真空処理室10の
内壁から剥離されて半導体ウェハWの表面に落下される
こと、あるいはパーティクルが直接半導体ウェハWの表
面に付着することが防止される。一方、前記パーティク
ル除去電極40に対して前述のように除去用電源43か
ら電圧を印加した場合においても、パーティクル除去電
極40は導電体41の表面が表面絶縁物42によって被
覆されているため、加工電極20からパーティクル除去
電極40ないし除去用電源43に流れ込む電流は0.1
mA以下であり、十分な絶縁が確認される。A plasma etching operation in the case where the plasma apparatus having the above-mentioned configuration is configured as an etching apparatus will be described. The process gas is introduced into the vacuum processing chamber 10 through the reaction gas supply port 23, and the processing electrode 2
A high-frequency voltage from the high-frequency power supply 25 is applied during zero time to turn the process gas into plasma. As the process gas, sulfur hexafluoride, oxygen, and nitrogen are used, and RF (high frequency) power 6
00W. As a result, the substrate mounted on the susceptor 30, for example, the surface of the semiconductor wafer W is etched. Although the reaction product generated during etching is scattered from between the processing electrodes 20 to the peripheral portion, a voltage of 0 to -300 V is applied to the particle removal electrode 40 by the removal power supply 43 during the plasma processing.
As a result, the scattered reactant, that is, the particles, are positively charged, and thus the negative particle removing electrode 4 is used.
Adsorbed at 0. Therefore, the particles are once attached to the inner wall of the vacuum processing chamber 10 and then separated from the inner wall of the vacuum processing chamber 10 and dropped on the surface of the semiconductor wafer W, or the particles are directly attached to the surface of the semiconductor wafer W. Is prevented. On the other hand, even when a voltage is applied to the particle removing electrode 40 from the removing power source 43 as described above, the surface of the conductor 41 of the particle removing electrode 40 is covered with the surface insulator 42, The current flowing from the electrode 20 to the particle removing electrode 40 or the removing power source 43 is 0.1.
It is below mA, and sufficient insulation is confirmed.
【0013】ここで、本発明にかかるパーティクル除去
電極40では、導電体41の表面を覆う表面絶縁物42
の誘電率を高め、あるいは抵抗率を低くすることが好ま
しい。例えば、パーティクル除去電極40の導電体41
としてのアルミニウムの表面を被覆する表面絶縁物42
として、前記実施形態の酸化アルミニウムに代えて、酸
化チタンを添加した酸化アルミニウムを用いてもよい。
酸化チタンは酸化アルミニウムより誘電率が高く、酸化
アルミニウムに添加することで誘電率を高く調整でき
る。図3(a),(b)は、表面絶縁物42の誘電率の
違いによる電場の違いを示す図である。本発明のように
加工電極20間に発生するプラズマ放電領域に対向して
パーティクル除去電極40を配置したときには、当該プ
ラズマ放電領域Pとパーティクル除去電極40との間に
は、電位が急激に変化するシースSと呼ばれる空間が形
成される。そして、パーティクル除去電極40の表面絶
縁物42に酸化チタンを添加していない酸化アルミニウ
ム(以下、純酸化アルミニウム)や酸化シリコンのよう
な誘電率の低い物質を用いた場合には、図3(a)の様
に、表面絶縁物42表面の電位は導電体41に印加した
電圧に対して正の方向に高くなる。プラズマ放電領域P
のポテンシャルは、パーティクル除去電極40の影響を
ほとんど受けないので、シースSの電場は表面絶縁物4
2表面の電位で決まる。従って、図3(a)に示したよ
うに、シースSの電場の強さは、パーティクル除去電極
40が表面絶縁物42で覆われていない時よりも弱くな
り、パーティクルの除去効率が低くなる。一方、表面絶
縁物42に酸化チタンを添加した酸化アルミニウムや酸
化タンタルのような誘電率の高い物質を用いた場合に
は、図3(b)のように、表面絶縁物42表面の電位
は、導電体41に印加した電圧とほぼ等しい値をとる。
そのため、シースSの電場の強さは、パーティクル除去
電極40の導電体41が表面絶縁物42で覆われていな
い場合とほぼ等しくなり、パーティクルの除去効率があ
がることになる。Here, in the particle removing electrode 40 according to the present invention, the surface insulator 42 covering the surface of the conductor 41.
It is preferable to increase the dielectric constant or decrease the resistivity. For example, the conductor 41 of the particle removal electrode 40
Insulator 42 for covering the surface of aluminum as a material
As an alternative, aluminum oxide added with titanium oxide may be used in place of the aluminum oxide of the above embodiment.
Titanium oxide has a higher dielectric constant than aluminum oxide, and the dielectric constant can be adjusted to be high by adding it to aluminum oxide. 3A and 3B are views showing the difference in electric field due to the difference in dielectric constant of the surface insulator 42. When the particle removal electrode 40 is arranged so as to face the plasma discharge region generated between the processing electrodes 20 as in the present invention, the potential changes rapidly between the plasma discharge region P and the particle removal electrode 40. A space called a sheath S is formed. Then, when a material having a low dielectric constant such as aluminum oxide (hereinafter referred to as pure aluminum oxide) to which titanium oxide is not added or silicon oxide is used for the surface insulator 42 of the particle removing electrode 40, FIG. ), The potential of the surface of the surface insulator 42 increases in the positive direction with respect to the voltage applied to the conductor 41. Plasma discharge area P
Since the potential of the sheath S is hardly influenced by the particle removal electrode 40, the electric field of the sheath S is
2 Determined by the potential on the surface. Therefore, as shown in FIG. 3A, the electric field strength of the sheath S is weaker than that when the particle removing electrode 40 is not covered with the surface insulator 42, and the particle removing efficiency is low. On the other hand, when a material having a high dielectric constant such as aluminum oxide or tantalum oxide to which titanium oxide is added is used for the surface insulator 42, the potential of the surface of the surface insulator 42 is as shown in FIG. 3B. It has a value almost equal to the voltage applied to the conductor 41.
Therefore, the electric field strength of the sheath S is almost equal to that in the case where the conductor 41 of the particle removing electrode 40 is not covered with the surface insulator 42, and the particle removing efficiency is improved.
【0014】また、本発明において、パーティクル除去
電極40の導電体41の表面を抵抗率の低い表面絶縁物
42で被覆した場合について説明する。ここでは、パー
ティクル除去電極40の表面絶縁物42として、酸化ア
ルミニウムよりも抵抗率が低い酸化チタンを添加した酸
化アルミニウムで構成した例である。図4は、パーティ
クル除去電極40に対する電圧の印加とプラズマ装置、
すなわちエッチング装置の動作状態のタイミングを表し
た図である。RFパワーの停止する約5秒前にパーティ
クル除去電極40に−200Vの電圧を印加した。プラ
ズマ中の正イオンが、パーティクル除去電極40の負電
位に引き寄せられ、酸化アルミニウムより低い抵抗率の
表面絶縁膜42を通過して導電体41にわずかに電流が
流れる。電流が流れることで、表面絶縁物42の表面が
チャージアップすることが防止できる。図5は、表面絶
縁物42に酸化チタンを添加していない酸化アルミニウ
ム(以下、純酸化アルミニウム)を使用した場合と、酸
化チタンを添加した酸化アルミニウムを用いた場合と
で、異常放電の発生の違いを示した表である。同一条件
でエッチング中にパーティクル除去電極40に0〜−3
00Vの電圧を印加し、異常放電が起きない条件を○、
異常放電が起きる場合を×で示した。純酸化アルミニウ
ムの場合は、−250Vより負に大きい電圧を印加する
と異常放電が発生するのに対し、酸化チタンを添加した
酸化アルミニウムの場合は−300Vまでの電圧では異
常放電が発生しない。これはチャージアップを防止する
ことで、異常放電の発生が予防できたためである。In the present invention, the case where the surface of the conductor 41 of the particle removing electrode 40 is covered with the surface insulator 42 having a low resistivity will be described. In this example, the surface insulator 42 of the particle removing electrode 40 is made of aluminum oxide to which titanium oxide having a lower resistivity than aluminum oxide is added. FIG. 4 shows application of voltage to the particle removing electrode 40 and a plasma device,
That is, it is a diagram showing the timing of the operating state of the etching apparatus. A voltage of -200 V was applied to the particle removing electrode 40 about 5 seconds before the RF power was stopped. Positive ions in the plasma are attracted to the negative potential of the particle removal electrode 40, pass through the surface insulating film 42 having a lower resistivity than aluminum oxide, and a slight current flows through the conductor 41. The flow of current can prevent the surface of the surface insulator 42 from being charged up. FIG. 5 shows the occurrence of abnormal discharge when the surface insulator 42 uses aluminum oxide to which titanium oxide is not added (hereinafter referred to as pure aluminum oxide) and when aluminum oxide to which titanium oxide is added is used. It is the table which showed the difference. The particle removal electrode 40 is 0 to -3 during etching under the same conditions.
Applying a voltage of 00V, the condition that abnormal discharge does not occur is ○,
The case where abnormal discharge occurs is indicated by x. In the case of pure aluminum oxide, abnormal discharge occurs when a voltage negatively higher than -250 V is applied, whereas in the case of aluminum oxide to which titanium oxide is added, abnormal discharge does not occur at voltages up to -300 V. This is because the occurrence of abnormal discharge could be prevented by preventing charge-up.
【0015】図6は本発明の第2の実施形態のプラズマ
処理装置の概略断面図であり、図1と等価な部分には同
一符号を付してある。この実施形態では、パーティクル
除去電極40は加工電極20間に近接した位置におい
て、加工電極20間に発生されるプラズマ放電領域Pを
囲むように配置されている。このように、パーティクル
除去電極40をプラズマ放電領域Pに近接配置すること
で、パーティクルの吸着除去効果を高めることが可能に
なる。その一方で、パーティクル除去電極40は図2に
示したように、導電体41が表面絶縁物42によって被
覆されており、プラズマ発生に際してのリークを防止
し、かつチャージアップを抑制することができることは
前記実施形態と同様である。FIG. 6 is a schematic sectional view of a plasma processing apparatus according to a second embodiment of the present invention, in which parts equivalent to those in FIG. 1 are designated by the same reference numerals. In this embodiment, the particle removal electrodes 40 are arranged at positions close to the processing electrodes 20 so as to surround the plasma discharge region P generated between the processing electrodes 20. As described above, by disposing the particle removing electrode 40 close to the plasma discharge region P, it is possible to enhance the effect of adsorbing and removing particles. On the other hand, in the particle removing electrode 40, as shown in FIG. 2, the conductor 41 is covered with the surface insulator 42, so that it is possible to prevent leakage at the time of plasma generation and suppress charge-up. This is the same as the above embodiment.
【0016】図7は本発明の第3の実施形態のプラズマ
処理装置の概略断面図であり、図1と等価な部分には同
一符号を付してある。この実施形態では、パーティクル
除去電極40はメッシュ状に形成されて加工電極20の
間、すなわちプラズマ放電領域P内に配置されている。
このようにすることで、プロセスガスをパーティクル除
去電極40のメッシュを通して移動させることができ、
真空処理室10内でのプロセスガスの吸排気等の流動を
阻害することなく、すなわちプラズマ発生に影響を与え
ることなく、パーティクル除去電極40をプラズマ放電
領域Pに接した状態としてパーティクルの吸着除去効果
を高めることが可能になる。その一方で、パーティクル
除去電極40は、図2に示したように、導電体41が表
面絶縁物42によって被覆されており、プラズマ発生に
際してのリークを防止し、かつチャージアップを抑制す
ることができることは前記各実施形態と同様である。FIG. 7 is a schematic sectional view of a plasma processing apparatus according to a third embodiment of the present invention, in which parts equivalent to those in FIG. 1 are designated by the same reference numerals. In this embodiment, the particle removing electrodes 40 are formed in a mesh shape and are arranged between the processing electrodes 20, that is, in the plasma discharge region P.
By doing so, the process gas can be moved through the mesh of the particle removing electrode 40,
Adsorption and removal effect of particles by keeping the particle removal electrode 40 in contact with the plasma discharge region P without obstructing the flow of the process gas such as intake and exhaust in the vacuum processing chamber 10, that is, without affecting plasma generation. Can be increased. On the other hand, in the particle removing electrode 40, as shown in FIG. 2, the conductor 41 is covered with the surface insulator 42, and thus it is possible to prevent leakage at the time of plasma generation and suppress charge-up. Is the same as each of the above embodiments.
【0017】[0017]
【発明の効果】以上説明したように、本発明はプラズマ
装置の真空処理室内に負の電圧が印加されるパーティク
ル除去電極を備えており、当該パーティクル除去電極は
薄い表面絶縁物を備えているので、真空処理室内で発生
した正に帯電したパーティクルを負電圧が印加されたパ
ーティクル除去電極で吸着して基板上への落下を防止す
ることができる。その一方で、パーティクル除去電極の
表面絶縁物によってプラズマ中の正イオンがパーティク
ル除去電極の導電体に流れ込むのを防止してリーク電流
を抑制する。また、表面絶縁物は薄く形成されているこ
とで、また好ましくは誘電率を高める不純物、あるいは
抵抗率を下げる不純物を表面絶縁物に添加することで、
異常放電を引き起こすチャージアップを抑制することが
できる。As described above, according to the present invention, the particle removal electrode to which a negative voltage is applied is provided in the vacuum processing chamber of the plasma device, and the particle removal electrode is provided with the thin surface insulator. The positively charged particles generated in the vacuum processing chamber can be attracted by the particle removing electrode to which the negative voltage is applied to prevent the particles from falling onto the substrate. On the other hand, the surface insulator of the particle removing electrode prevents positive ions in the plasma from flowing into the conductor of the particle removing electrode, thereby suppressing the leak current. In addition, since the surface insulator is formed thinly, and preferably, an impurity that increases the dielectric constant or an impurity that decreases the resistivity is added to the surface insulator,
It is possible to suppress charge-up that causes abnormal discharge.
【図1】本発明をエッチング装置として構成したプラズ
マ装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a plasma device in which the present invention is configured as an etching device.
【図2】パーティクル除去電極の断面図である。FIG. 2 is a cross-sectional view of a particle removal electrode.
【図3】誘電率の異なる表面絶縁物を有するパーティク
ル除去電極における電場の強さを示す模式図である。FIG. 3 is a schematic diagram showing the strength of an electric field in a particle removal electrode having surface insulators having different dielectric constants.
【図4】本発明のパーティクル除去電極に印加した電圧
値と電流値の変化を示す図である。FIG. 4 is a diagram showing changes in voltage value and current value applied to the particle removing electrode of the present invention.
【図5】本発明の異常放電防止効果を表す表で、パーテ
ィクル除去電極に印加した電圧値と異常放電の発生を示
す表である。FIG. 5 is a table showing an abnormal discharge prevention effect of the present invention, which is a table showing a voltage value applied to a particle removing electrode and occurrence of abnormal discharge.
【図6】本発明の第2の実施形態のプラズマ装置の概略
断面図である。FIG. 6 is a schematic sectional view of a plasma device according to a second embodiment of the present invention.
【図7】本発明の第3の実施形態のプラズマ装置の概略
断面図である。FIG. 7 is a schematic sectional view of a plasma device according to a third embodiment of the present invention.
【図8】従来のプラズマ装置の一例の概略断面図であ
る。FIG. 8 is a schematic cross-sectional view of an example of a conventional plasma device.
10 真空処理室 20 加工電極 21 上部電極 22 下部電極 23 ガス供給口 24 ガス吹き出し板 25 RF電源 30 サセプタ 31 絶縁板 32 静電吸着電極 33 吸着用電源 40 パーティクル除去電極 41 導電体 42 表面絶縁物 43 除去用電源 P プラズマ放電領域 S シース領域 W 基板(半導体ウェハ) 10 Vacuum processing chamber 20 Processing electrode 21 upper electrode 22 Lower electrode 23 Gas supply port 24 gas outlet 25 RF power supply 30 susceptor 31 Insulation plate 32 Electrostatic adsorption electrode 33 Adsorption power supply 40 Particle removal electrode 41 conductor 42 Surface insulator 43 Removal power supply P plasma discharge area S sheath area W substrate (semiconductor wafer)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上杉 文彦 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 4K029 BD01 DA09 4K030 KA14 KA15 KA46 KA47 5F004 AA06 AA15 BA05 BA06 BB29 CA03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Fumihiko Uesugi 5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation Inside the company F-term (reference) 4K029 BD01 DA09 4K030 KA14 KA15 KA46 KA47 5F004 AA06 AA15 BA05 BA06 BB29 CA03
Claims (8)
された上部電極と下部電極からなる一対の加工電極と、
加工される基板を前記下部電極上に固定するサセプタを
備え、プロセスガスを前記処理室内に導入し、前記加工
電極間に高周波電圧を印加して、前記プロセスガスをプ
ラズマ化し、前記サセプタ上の基板を加工するプラズマ
装置において、前記真空処理室内に配置されて負の電圧
が印加されるパーティクル除去電極を備え、前記パーテ
ィクル除去電極は、前記負の電圧が印加される導電体
と、前記導電体の表面を覆う薄い表面絶縁物とを備える
ことを特徴とするプラズマ装置。1. A vacuum processing chamber, a pair of processing electrodes including an upper electrode and a lower electrode installed in the vacuum processing chamber,
The substrate on the susceptor is provided with a susceptor for fixing a substrate to be processed on the lower electrode, a process gas is introduced into the processing chamber, a high frequency voltage is applied between the processing electrodes to plasmaize the process gas. In the plasma device for processing, a particle removal electrode, which is arranged in the vacuum processing chamber and to which a negative voltage is applied, is provided, and the particle removal electrode includes a conductor to which the negative voltage is applied and a conductor to which the negative voltage is applied. A plasma device comprising: a thin surface insulator covering the surface.
ム、酸化シリコン、窒化シリコン、酸化タンタルを用い
ることを特徴とする請求項1に記載のプラズマ装置。2. The plasma device according to claim 1, wherein aluminum oxide, silicon oxide, silicon nitride, or tantalum oxide is used as the surface insulator.
は、誘電率を高める不純物、あるいは抵抗率を下げる不
純物が添加されていることを特徴とする請求項1又は2
に記載のプラズマ装置。3. The surface insulator of the particle removing electrode is added with an impurity for increasing a dielectric constant or an impurity for decreasing a resistivity.
The plasma device according to.
を用いたときに、前記添加不純物に酸化チタンを用いた
ことを特徴とする請求項3に記載のプラズマ装置。4. The plasma device according to claim 3, wherein when aluminum oxide is used as the surface insulator, titanium oxide is used as the additive impurity.
ることを特徴とする請求項1ないし4のいずれかに記載
のプラズマ装置。5. The plasma device according to claim 1, wherein the film thickness of the surface insulator is 100 μm.
電極の周囲の前記真空処理室の内壁に沿って配置されて
いることを特徴とする請求項1ないし5のいずれかに記
載のプラズマ装置。6. The plasma device according to claim 1, wherein the particle removing electrode is arranged along an inner wall of the vacuum processing chamber around the processing electrode.
電極内に形成されるプラズマ放電領域を囲む位置に配置
されていることを特徴とする請求項1ないし5のいずれ
かに記載のプラズマ装置。7. The plasma device according to claim 1, wherein the particle removing electrode is arranged at a position surrounding a plasma discharge region formed in the processing electrode.
に形成され、前記上部電極と下部電極との間に配置され
ていることを特徴とする請求項1ないし5のいずれかに
記載のプラズマ装置。8. The plasma device according to claim 1, wherein the particle removing electrode is formed in a mesh shape and is arranged between the upper electrode and the lower electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295591A JP3578739B2 (en) | 2001-09-27 | 2001-09-27 | Plasma equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295591A JP3578739B2 (en) | 2001-09-27 | 2001-09-27 | Plasma equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003100720A true JP2003100720A (en) | 2003-04-04 |
JP3578739B2 JP3578739B2 (en) | 2004-10-20 |
Family
ID=19116994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001295591A Expired - Fee Related JP3578739B2 (en) | 2001-09-27 | 2001-09-27 | Plasma equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3578739B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100776831B1 (en) | 2005-02-10 | 2007-11-16 | 동경 엘렉트론 주식회사 | Vacuum processing apparatus and method of using the same |
US7335601B2 (en) | 2004-11-12 | 2008-02-26 | Samsung Electronics Co., Ltd. | Method of processing an object and method of controlling processing apparatus to prevent contamination of the object |
CN100454495C (en) * | 2003-06-16 | 2009-01-21 | 三星电子株式会社 | Semiconductor manufacturing equipment |
US20100003422A1 (en) * | 2008-07-04 | 2010-01-07 | Fujitsu Limited | Deposition apparatus, film manufacturing method, and magnetic recording medium manufacturing method |
US7651586B2 (en) | 2003-08-22 | 2010-01-26 | Tokyo Electron Limited | Particle removal apparatus and method and plasma processing apparatus |
JP2015167157A (en) * | 2014-03-03 | 2015-09-24 | 東京エレクトロン株式会社 | Semiconductor production apparatus, deposition method and storage medium |
KR20160012904A (en) | 2014-07-25 | 2016-02-03 | 가부시키가이샤 히다치 하이테크놀로지즈 | Plasma treatment apparatus |
JP2016208006A (en) * | 2015-04-22 | 2016-12-08 | キヤノン株式会社 | Imprint device, imprint method, and manufacturing method of article |
-
2001
- 2001-09-27 JP JP2001295591A patent/JP3578739B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100454495C (en) * | 2003-06-16 | 2009-01-21 | 三星电子株式会社 | Semiconductor manufacturing equipment |
US8052798B2 (en) | 2003-08-22 | 2011-11-08 | Tokyo Electron Limited | Particle removal apparatus and method and plasma processing apparatus |
US8323414B2 (en) | 2003-08-22 | 2012-12-04 | Tokyo Electron Limited | Particle removal apparatus and method and plasma processing apparatus |
US7651586B2 (en) | 2003-08-22 | 2010-01-26 | Tokyo Electron Limited | Particle removal apparatus and method and plasma processing apparatus |
US7335601B2 (en) | 2004-11-12 | 2008-02-26 | Samsung Electronics Co., Ltd. | Method of processing an object and method of controlling processing apparatus to prevent contamination of the object |
KR100776831B1 (en) | 2005-02-10 | 2007-11-16 | 동경 엘렉트론 주식회사 | Vacuum processing apparatus and method of using the same |
US20100003422A1 (en) * | 2008-07-04 | 2010-01-07 | Fujitsu Limited | Deposition apparatus, film manufacturing method, and magnetic recording medium manufacturing method |
JP2010013709A (en) * | 2008-07-04 | 2010-01-21 | Fujitsu Ltd | Film deposition apparatus and film deposition method |
JP2015167157A (en) * | 2014-03-03 | 2015-09-24 | 東京エレクトロン株式会社 | Semiconductor production apparatus, deposition method and storage medium |
KR20160012904A (en) | 2014-07-25 | 2016-02-03 | 가부시키가이샤 히다치 하이테크놀로지즈 | Plasma treatment apparatus |
US11257661B2 (en) | 2014-07-25 | 2022-02-22 | Hitachi High-Tech Corporation | Plasma processing apparatus |
US12112925B2 (en) | 2014-07-25 | 2024-10-08 | Hitachi High-Tech Corporation | Plasma processing apparatus |
JP2016208006A (en) * | 2015-04-22 | 2016-12-08 | キヤノン株式会社 | Imprint device, imprint method, and manufacturing method of article |
Also Published As
Publication number | Publication date |
---|---|
JP3578739B2 (en) | 2004-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3296292B2 (en) | Etching method, cleaning method, and plasma processing apparatus | |
TWI523099B (en) | Plasma processing apparatus and method of manufacturing semiconductor device | |
TWI479046B (en) | Plasma processing device | |
US9011635B2 (en) | Plasma processing apparatus | |
KR100842947B1 (en) | Plasma processing method and plasma processing apparatus | |
JP2008182081A (en) | Plasma processing equipment | |
KR100782621B1 (en) | Plasma processing method and plasma processing device | |
US20150206722A1 (en) | Lower electrode and plasma processing apparatus | |
JP4642809B2 (en) | Plasma processing method and plasma processing apparatus | |
JP2009224385A (en) | Annular component for plasma processing, plasma processing apparatus, and outer annular member | |
US8034213B2 (en) | Plasma processing apparatus and plasma processing method | |
JP2006165093A (en) | Plasma processing device | |
JP4584572B2 (en) | Plasma processing apparatus and processing method | |
JPH04279044A (en) | Sample holding device | |
JP2003100720A (en) | Plasma apparatus | |
JP3343629B2 (en) | Plasma processing equipment | |
JP2002100614A (en) | Apparatus and method for manufacturing semiconductor | |
TW201503281A (en) | Plasma processing device and electrostatic chuck thereof | |
JP2011187881A (en) | Plasma processing device and method | |
JP3948296B2 (en) | Plasma etching processing method and apparatus | |
JP2002289587A (en) | Plasma processing apparatus and plasma processing method | |
CN219873426U (en) | Semiconductor pre-cleaning equipment | |
JP5640135B2 (en) | Plasma processing equipment | |
JP2002217168A (en) | Method of plasma treatment | |
JPH06177078A (en) | Electrostatic chuck |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040713 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070723 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120723 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120723 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |