JP2003100516A - Laminated inductor and its manufacturing method - Google Patents
Laminated inductor and its manufacturing methodInfo
- Publication number
- JP2003100516A JP2003100516A JP2001295732A JP2001295732A JP2003100516A JP 2003100516 A JP2003100516 A JP 2003100516A JP 2001295732 A JP2001295732 A JP 2001295732A JP 2001295732 A JP2001295732 A JP 2001295732A JP 2003100516 A JP2003100516 A JP 2003100516A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- laminated
- conductor
- layer
- laminated body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主として直流電源
ラインのノイズ対策部品やチョークコイル等としてプリ
ント配線基板等に表面実装されると共に、片側励磁下で
使用されるインダクタンス素子である積層型インダクタ
及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated inductor, which is an inductance element which is mainly mounted on a printed wiring board or the like as a noise countermeasure component for a DC power supply line or a choke coil, and which is used under one-sided excitation. The manufacturing method is related.
【0002】[0002]
【従来の技術】従来、この種の積層型インダクタとして
は、例えば図7(a)〜(c)に示されるような構成の
ものが挙げられる。但し、図7は従来の積層型インダク
タの基本構成を説明するために示したもので、同図
(a)は分解斜視図に関するもの,同図(b)は外観斜
視図に関するもの,同図(c)は内部の導体パターンを
透視抽出して示した概略斜視図に関するものである。2. Description of the Related Art Conventionally, as a laminated inductor of this type, for example, one having a structure as shown in FIGS. However, FIG. 7 is shown to explain the basic structure of a conventional multilayer inductor, FIG. 7A is an exploded perspective view, FIG. 7B is an external perspective view, and FIG. c) relates to a schematic perspective view showing the internal conductor pattern by perspective extraction.
【0003】図7(a)〜(c)を参照すれば、この積
層型インダクタ10は、Ni,Zn,Cu,Feを主成
分とするスピネル型軟磁性体フェライトの磁性粉末とA
gやAg−Pd等の導電性粉末とをそれぞれバインダー
及び溶剤と配合して混練して磁性体用ペースト、内部導
体用ペーストとしたものをそれぞれスクリーン版により
交互に印刷する所謂スクリーン印刷法により磁性体層と
内部導体層とを有する印刷積層体を作製することで製造
されるものである。Referring to FIGS. 7 (a) to 7 (c), this laminated inductor 10 has a magnetic powder of spinel type soft magnetic ferrite containing Ni, Zn, Cu and Fe as main components and A.
and a conductive powder such as Ag-Pd are mixed with a binder and a solvent and kneaded to form a magnetic material paste and an internal conductor paste, which are alternately printed with a screen plate. It is produced by producing a printed laminate having a body layer and an internal conductor layer.
【0004】具体的に言えば、図7(a)に示されるよ
うに、先ず磁性体層形成段階として、フェライト等の磁
性材を加工した磁性体から成る第1の磁性体層となるグ
リーンシート5を形成しておき、次に積層体形成段階と
してグリーンシート5間に内部導体となる所定の異なる
導体パターン61〜65を有する内部導体層及び所定の
異なる位置に貫通窓711,721,731,741を
配設するように磁性体から成る第2の磁性体層となる磁
性体シート71〜74を交互に積層介在させ、焼結によ
り各貫通窓711,721,731,741を通して各
導体パターン61〜65同士(即ち、導体パターン6
1,62、導体パターン62,63、導体パターン6
3,64、導体パターン64,65の組み合わせを示
す)が導通され、且つ積層方向と垂直な外側面に導体パ
ターンの一部(ここでは導体パターン61,65の互い
に対向する一辺縁側に延在する部分を示す)が露出され
るように積層体を形成する。Specifically, as shown in FIG. 7A, first, in the step of forming a magnetic layer, a green sheet which is a first magnetic layer made of a magnetic material obtained by processing a magnetic material such as ferrite. 5 are formed in advance, and then, in the step of forming a laminated body, internal conductor layers having predetermined different conductor patterns 61 to 65 to be internal conductors between the green sheets 5 and through windows 711, 721, 731 at predetermined different positions. The magnetic material sheets 71 to 74, which are the second magnetic material layers made of a magnetic material, are alternately laminated so as to dispose 741 and are sintered to pass through the through windows 711, 721, 731, and 741 and the conductor patterns 61. ~ 65 (that is, the conductor pattern 6)
1, 62, conductor patterns 62, 63, conductor pattern 6
3, 64 and a combination of the conductor patterns 64 and 65 are conducted, and a part of the conductor pattern (here, one side of the conductor patterns 61 and 65 facing each other) is extended to the outer surface perpendicular to the stacking direction. The stack is formed so that the exposed portions (showing portions) are exposed.
【0005】この場合、下面側のグリーンシート5上面
に対してスクリーン印刷法によりコイル状内部導体(内
部電極)4の局部となる導体パターン61の内部導体層
を印刷形成した後、その上面に対して貫通窓711が形
成されるように磁性体シート71による第2の磁性体層
を印刷形成する。又、同様に磁性体シート71上面に対
してスクリーン印刷法によりコイル状内部導体4の他の
局部となる導体パターン62の内部導体層を印刷形成し
た後、その上面に対して貫通窓721が形成されるよう
に磁性体シート72による第2の磁性体層を印刷形成す
る。更に、同様に磁性体シート72上面に対してスクリ
ーン印刷法によりコイル状内部導体4の別の局部となる
導体パターン63の内部導体層を印刷形成した後、その
上面に対して貫通窓731が形成されるように磁性体シ
ート73による第2の磁性体層を印刷形成する。引き続
き、磁性体シート73上面に対してスクリーン印刷法に
よりコイル状内部導体4の更に他の局部となる導体パタ
ーン64の内部導体層を印刷形成した後、その上面に対
して貫通窓741が形成されるように磁性体シート74
による第2の磁性体層を印刷形成する。更に、磁性体シ
ート74上面に対してスクリーン印刷法によりコイル状
内部導体4の更に別の局部となる導体パターン65の内
部導体層を印刷形成した後、その上面に対して上面側の
グリーンシート5を重畳する。In this case, after the inner conductor layer of the conductor pattern 61, which is a local portion of the coil-shaped inner conductor (inner electrode) 4, is formed by printing on the upper surface of the green sheet 5 on the lower surface side, the upper surface thereof is formed. The second magnetic layer is formed by printing the magnetic sheet 71 so that the through window 711 is formed. Similarly, after the inner conductor layer of the conductor pattern 62, which is another local portion of the coil-shaped inner conductor 4, is formed by printing on the upper surface of the magnetic material sheet 71, a through window 721 is formed on the upper surface. As described above, the second magnetic layer formed of the magnetic sheet 72 is formed by printing. Further, similarly, an inner conductor layer of the conductor pattern 63 which is another local portion of the coil-shaped inner conductor 4 is formed by printing on the upper surface of the magnetic material sheet 72, and then a through window 731 is formed on the upper surface. As described above, the second magnetic layer formed of the magnetic sheet 73 is formed by printing. Subsequently, an inner conductor layer of the conductor pattern 64, which is still another local portion of the coiled inner conductor 4, is formed by printing on the upper surface of the magnetic sheet 73 by screen printing, and then a through window 741 is formed on the upper surface. Magnetic sheet 74
To form a second magnetic layer by printing. Further, an inner conductor layer of the conductor pattern 65, which is another local portion of the coil-shaped inner conductor 4, is formed by printing on the upper surface of the magnetic material sheet 74, and then the green sheet 5 on the upper surface side with respect to the upper surface. Superimpose.
【0006】即ち、積層体形成段階では、内部導体層及
び第2の磁性体層を形成する工程が交互に複数回繰り返
されることになり、各導体層と各磁性体層とが直接的に
接触しない状態で磁性体内部に所望の巻数のコイル状内
部導体4が形成されるように所定の積層厚にしてから一
定圧力で圧着して印刷積層体を作製する。That is, in the step of forming the laminated body, the steps of forming the internal conductor layers and the second magnetic layer are alternately repeated a plurality of times, so that each conductor layer and each magnetic layer directly contact each other. In such a state that the coil-shaped inner conductor 4 having a desired number of turns is formed inside the magnetic material, the printed laminated body is manufactured by press-bonding the laminated body to a predetermined laminated thickness and applying a constant pressure.
【0007】更に、作製された印刷積層体を所定の大き
さの単体となるように切断してから脱バインダを行った
後、焼成段階で焼結可能な温度で同時に一体化焼成する
ことにより、各導体パターン61〜65が各貫通窓71
1,721,731,741を通して導通接続されて図
7(c)に示されるようにコイル状内部導体4として形
成され、外側面に露出した導体パターン61,65の露
出部がそれぞれコイル状内部導体4の始端,終端とな
り、この後に外部電極形成段階で図7(b)に示される
ように積層体の外側面に露出された導体パターン61,
65の露出部に対して外部電極2をそれぞれ接続配備す
ることにより積層型インダクタ10が作製される。尚、
このような構成の積層型インダクタのコイル状内部導体
4における巻数を変更するときには、導体パターンの形
状を変えたり、或いは内部導体層及び第2の磁性体層の
積層数を増減すれば良い。Further, after the produced printed laminated body is cut into a single body of a predetermined size, the binder is removed, and then integrally fired at a temperature at which sintering is possible in the firing step, Each of the conductor patterns 61 to 65 has a through window 71.
7, 721, 731, and 741 are conductively connected to each other to form the coil-shaped inner conductor 4 as shown in FIG. 7C, and the exposed portions of the conductor patterns 61 and 65 exposed on the outer surfaces are respectively coil-shaped inner conductors. 4 is the start end and the end end of the conductor pattern 4, and the conductor patterns 61 exposed on the outer surface of the laminated body as shown in FIG.
The laminated inductor 10 is manufactured by connecting and arranging the external electrodes 2 to the exposed portions of 65, respectively. still,
When changing the number of turns in the coiled inner conductor 4 of the laminated inductor having such a configuration, the shape of the conductor pattern may be changed, or the number of laminated layers of the inner conductor layer and the second magnetic layer may be increased or decreased.
【0008】[0008]
【発明が解決しようとする課題】上述した積層型インダ
クタの場合、内部導体に対して磁性体が密着される構造
とした上で焼成段階で積層体を焼結可能な所定の温度で
一体化焼成しているが、焼成後の冷却過程で印刷積層体
における第2の磁性体層と内部導体層との熱膨張係数の
差により残留応力が発生することが知られており、ここ
で発生した残留応力が内部導体から磁性体へ働くと磁性
体の磁気特性を劣化させ、これによってL値(インダク
タンス値)やQ値(品質係数値)を低下させてしまった
り、或いはそれらの値にばらつきを発生させてしまうと
いう問題を引き起こしている。In the case of the above-mentioned laminated inductor, the structure is such that the magnetic body is in close contact with the internal conductor, and the laminated body is integrally fired at a predetermined temperature at which it can be sintered in the firing step. However, it is known that residual stress occurs due to the difference in thermal expansion coefficient between the second magnetic layer and the internal conductor layer in the printed laminate during the cooling process after firing. When stress acts on the magnetic substance from the inner conductor, the magnetic properties of the magnetic substance are deteriorated, which causes the L value (inductance value) and the Q value (quality factor value) to be reduced, or the values are varied. It is causing the problem of letting it go.
【0009】本発明は、このような問題点を解決すべく
なされたもので、その技術的課題は、内部導体から磁性
体への残留応力の影響が回避されて本来の磁気特性を維
持し得る構造であると共に、磁気特性の劣化によるL値
及びQ値の低下防止とそれらの値のばらつきの抑制とを
図り得る積層型インダクタ及びその製造方法を提供する
ことにある。The present invention has been made to solve such a problem, and its technical problem is that the effect of residual stress from the internal conductor to the magnetic body can be avoided and the original magnetic characteristics can be maintained. It is an object of the present invention to provide a laminated inductor and a manufacturing method thereof, which has a structure and which can prevent a decrease in the L value and the Q value due to deterioration of the magnetic characteristics and suppress variation in those values.
【0010】[0010]
【課題を解決するための手段】本発明によれば、磁性体
から成る第1の磁性体層間に、内部導体となる所定の導
体パターンを有する内部導体層及び所定の位置に貫通窓
が設けられた磁性体から成る第2の磁性体層を交互に積
層介在させて成ると共に、焼結により該貫通窓を通して
該導体パターン同士が導通可能となり、且つ積層方向と
垂直な外側面に該導体パターンの一部が露出されるよう
に一体化焼成されて成る積層体における該外側面に露出
された該導体パターンの一部に対して外部電極を接続配
備して構成される積層型インダクタにおいて、導体パタ
ーンの周囲には、所定の範囲の厚さで不連続に隙間が形
成された積層型インダクタが得られる。この積層型イン
ダクタにおいて、所定の範囲は0.1〜5μmであるこ
と、更に、隙間は第2の磁性体層又は内部導体層の何れ
か一方に形成されたことは、それぞれ好ましい。According to the present invention, an inner conductor layer having a predetermined conductor pattern to be an inner conductor and a through window are provided at a predetermined position between first magnetic layers made of a magnetic material. Second magnetic material layers made of magnetic material are alternately laminated, and the conductor patterns can be electrically connected to each other through the through window by sintering, and the conductor patterns are formed on the outer surface perpendicular to the laminating direction. In a laminated inductor formed by connecting and arranging an external electrode to a part of the conductor pattern exposed on the outer surface of a laminated body integrally fired so as to expose a part of the conductor pattern, A laminated inductor in which gaps are discontinuously formed in the predetermined range with a thickness within a predetermined range can be obtained. In this laminated inductor, it is preferable that the predetermined range is 0.1 to 5 μm, and that the gap is formed in either the second magnetic layer or the internal conductor layer.
【0011】一方、本発明によれば、磁性体から成る第
1の磁性体層を形成する磁性体層形成段階と、第1の磁
性体層間に内部導体となる所定の導体パターンを有する
内部導体層及び所定の位置に貫通窓を配設するように磁
性体から成る第2の磁性体層を交互に積層介在させ、焼
結により該貫通窓を通して該導体パターン同士が導通さ
れ、且つ積層方向と垂直な外側面に該導体パターンの一
部が露出されるように積層体を形成する積層体形成段階
と、積層体を焼結可能な温度で一体化焼成する焼成段階
と、積層体の外周面に露出された導体パターンの一部に
対して外部電極を接続配備して積層型インダクタを得る
外部電極形成段階とを有する積層型インダクタの製造方
法において、積層体形成段階では、内部導体層の材料に
300〜400℃の温度範囲で熱収縮率が10%以上と
なるものを用い、焼成段階では、一体化焼成により導体
パターンの周囲に0.1μm〜5μmの範囲の厚さで不
連続に隙間を形成する積層型インダクタの製造方法が得
られる。On the other hand, according to the present invention, a magnetic layer forming step for forming a first magnetic layer made of a magnetic material and an internal conductor having a predetermined conductor pattern to be an internal conductor between the first magnetic layers. Layers and second magnetic material layers made of a magnetic material are alternately laminated so as to arrange the through windows at predetermined positions, and the conductor patterns are electrically connected to each other through the through windows by sintering, and the lamination direction is A laminated body forming step of forming a laminated body so that a part of the conductor pattern is exposed on a vertical outer surface; a firing step of integrally firing the laminated body at a temperature at which the laminated body can be sintered; and an outer peripheral surface of the laminated body. And a step of forming an external electrode by connecting an external electrode to a portion of the conductor pattern exposed at the step of forming a laminated inductor, wherein in the laminated body forming step, the material of the internal conductor layer is formed. 300 ~ 400 ℃ A laminated inductor in which a material having a heat shrinkage ratio of 10% or more in a temperature range is used, and in the firing step, a gap is discontinuously formed around the conductor pattern in a thickness of 0.1 μm to 5 μm by integral firing. Can be obtained.
【0012】又、本発明によれば、上記積層型インダク
タの製造方法において、積層体形成段階で用いる内部導
体層の材料は、800〜900℃の温度範囲で熱収縮率
の差が第2の磁性体層との間で20%以上となる積層型
インダクタの製造方法が得られる。Further, according to the present invention, in the above-mentioned method for manufacturing a laminated inductor, the material of the internal conductor layer used in the step of forming a laminated body has a second difference in thermal shrinkage in the temperature range of 800 to 900 ° C. It is possible to obtain a method for manufacturing a laminated inductor in which the ratio between the magnetic layer and the magnetic layer is 20% or more.
【0013】他方、本発明によれば、磁性体から成る第
1の磁性体層を形成する磁性体層形成段階と、第1の磁
性体層間に内部導体となる所定の導体パターンを有する
内部導体層及び所定の位置に貫通窓を配設するように磁
性体から成る第2の磁性体層を交互に積層介在させ、焼
結により該貫通窓を通して該導体パターン同士が導通さ
れ、且つ積層方向と垂直な外側面に該導体パターンの一
部が露出されるように積層体を形成する積層体形成段階
と、積層体を焼結可能な温度で一体化焼成する焼成段階
と、積層体の外側面に露出された導体パターンの一部に
対して外部電極を接続配備して積層型インダクタを得る
外部電極形成段階とを有する積層型インダクタの製造方
法において、積層体形成段階では、第2の磁性体層とし
て予め内部導体層の導体パターンに当接される箇所の近
傍が非接触となるように不連続に凹状に肉薄化されて形
成されたものを用いることで積層体における導体パター
ンの周囲に0.1μm〜5μmの範囲の厚さで隙間を不
連続に形成する積層型インダクタの製造方法が得られ
る。On the other hand, according to the present invention, a magnetic layer forming step for forming a first magnetic layer made of a magnetic material and an internal conductor having a predetermined conductor pattern to be an internal conductor between the first magnetic layers. Layers and second magnetic material layers made of a magnetic material are alternately laminated so as to arrange the through windows at predetermined positions, and the conductor patterns are electrically connected to each other through the through windows by sintering, and the lamination direction is A laminate forming step of forming a laminate so that a part of the conductor pattern is exposed on a vertical outer surface; a firing step of integrally firing the laminate at a temperature at which it can be sintered; and an outer surface of the laminate. And a step of forming an external electrode by connecting and deploying an external electrode to a part of the conductor pattern exposed at the step of forming a laminated inductor. The inner conductor layer in advance as a layer By using the one that is formed by thinly forming a concave shape in a discontinuous manner so that the vicinity of the portion contacting the conductor pattern is not in contact with the conductor pattern, a range of 0.1 μm to 5 μm is provided around the conductor pattern in the laminate. A method of manufacturing a laminated inductor in which a gap is formed discontinuously in thickness is obtained.
【0014】[0014]
【発明の実施の形態】以下に実施例を挙げ、本発明の積
層型インダクタ及びその製造方法について、図面を参照
して詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The multilayer inductor and the method for manufacturing the same according to the present invention will be described below in detail with reference to the drawings.
【0015】最初に、本発明の積層型インダクタ及びそ
の製造方法の技術的概要を簡単に説明する。本発明の積
層型インダクタは、磁性体から成る第1の磁性体層間
に、内部導体となる所定の導体パターンを有する内部導
体層及び所定の位置に貫通窓が設けられた磁性体から成
る第2の磁性体層を交互に積層介在させて成ると共に、
焼結により貫通窓を通して導体パターン同士が導通可能
となり、且つ積層方向と垂直な外側面に導体パターンの
一部が露出されるように一体化焼成されて成る積層体に
おける外側面に露出された導体パターンの一部に対して
外部電極を接続配備して構成される図7(a)〜(c)
で説明した従来通りの基本構成を有する点は共通してい
るが、基本構造として導体パターンの周囲に所定の0.
1〜5μmの範囲の厚さで不連続に隙間が形成された構
造である点が相違している。但し、ここでの隙間は、第
2の磁性体層又は内部導体層の何れか一方に形成されれ
ば良いものである。First, the technical outline of the laminated inductor and the manufacturing method thereof according to the present invention will be briefly described. The multilayer inductor according to the present invention is configured such that, between the first magnetic material layer made of a magnetic material, the internal conductor layer having a predetermined conductor pattern as an internal conductor and the magnetic material having a through window provided at a predetermined position are provided. Magnetic layers are alternately laminated and
The conductor exposed on the outer surface of the laminated body which is integrally fired so that the conductor patterns can be electrically connected to each other through the through window by sintering and a part of the conductor pattern is exposed on the outer surface perpendicular to the stacking direction. 7 (a) to 7 (c) configured by connecting and deploying external electrodes to a part of the pattern.
The common point is that they have the same basic structure as described above, but as a basic structure, a predetermined 0.
The difference lies in the structure in which gaps are formed discontinuously with a thickness in the range of 1 to 5 μm. However, the gap here may be formed in either the second magnetic layer or the internal conductor layer.
【0016】このような積層型インダクタを製造する場
合、基本的には図7(a)〜(c)で説明したように磁
性体層形成段階,積層体形成段階,積層体形成段階,及
び外部電極形成段階を実施するものとし、積層体形成段
階で内部導体層の材料に300〜400℃の温度範囲で
熱収縮率が10%以上となるものを用いることにより、
焼成段階で一体化焼成により導体パターンの周囲に0.
1μm〜5μmの範囲の厚さで不連続に隙間を形成する
ようにするか、或いは積層体形成段階で第2の磁性体層
として予め内部導体層の導体パターンに当接される箇所
の近傍が非接触となるように不連続に凹状に肉薄化され
て形成されたものを用いることで積層体における導体パ
ターンの周囲に0.1μm〜5μmの範囲の厚さで隙間
を不連続に形成するようにすれば良い。但し、前者の製
造方法の場合、積層体形成段階で用いる内部導体層の材
料を800〜900℃の温度範囲で熱収縮率の差が第2
の磁性体層との間で20%以上となるものとすることが
好ましい。In manufacturing such a laminated inductor, basically, as described with reference to FIGS. 7A to 7C, a magnetic layer forming step, a laminated body forming step, a laminated body forming step, and an external step. It is assumed that the electrode forming step is carried out, and the material of the internal conductor layer having a heat shrinkage ratio of 10% or more in the temperature range of 300 to 400 ° C. is used in the laminate forming step.
In the firing step, integral firing is performed to reduce the area around the conductor pattern to 0.
A gap may be formed discontinuously in a thickness range of 1 μm to 5 μm, or a portion near a portion of the inner conductor layer that is previously abutted with the conductor pattern as the second magnetic layer in the layered body forming step may be formed. By using a material that is formed by thinning a concave shape in a discontinuous manner so as not to contact with each other, it is possible to discontinuously form a gap with a thickness in the range of 0.1 μm to 5 μm around the conductor pattern in the laminated body. You can do it. However, in the case of the former manufacturing method, when the material of the internal conductor layer used in the step of forming the laminated body has a difference in the heat shrinkage ratio within the temperature range of 800 to 900 ° C.
It is preferable to be 20% or more with respect to the magnetic layer.
【0017】前者の製造方法に従うと、内部導体層の導
体パターンの形成に用いる内部導体用ペーストの収縮率
を300〜400℃の温度範囲で10%以上収縮するも
のとすることにより、印刷積層体の焼結時にあっての3
00〜400℃の比較的低い温度範囲で内部導体層及び
磁性体層の間に隙間が形成されることになり、更に焼結
温度850〜930℃の温度範囲で磁性体用ペーストと
内部導体用ペーストとの熱収縮率に20%以上の収縮差
が持たされていることにより両者の間に形成された隙間
が十分大きくなる。According to the former manufacturing method, the shrinkage rate of the internal conductor paste used for forming the conductor pattern of the internal conductor layer is set to shrink by 10% or more in the temperature range of 300 to 400 ° C., whereby a printed laminate is obtained. 3 at the time of sintering
A gap is formed between the inner conductor layer and the magnetic layer in the relatively low temperature range of 00 to 400 ° C., and the magnetic paste and the inner conductor are used in the sintering temperature range of 850 to 930 ° C. Since the difference in shrinkage between the paste and the heat shrinkage is 20% or more, the gap formed between the two becomes sufficiently large.
【0018】後者の製造方法に従った場合でも、内部導
体層及び磁性体層の間に隙間として空隙が存在するた
め、焼結後の冷却過程で内部導体層から磁性体層への残
留応力の影響が回避されて磁性体層の内部に残留応力が
発生しなくなり、磁性体層が本来持つ磁気特性を維持す
ることができるので、磁気特性の劣化によるL値及びQ
値の低下を防止できると共に、それらの値のばらつきを
抑制することが可能となる。Even when the latter manufacturing method is followed, since there is a gap as a gap between the internal conductor layer and the magnetic material layer, residual stress from the internal conductor layer to the magnetic material layer is generated during the cooling process after sintering. Since the influence is avoided, residual stress is not generated inside the magnetic layer, and the magnetic characteristic originally possessed by the magnetic layer can be maintained. Therefore, the L value and Q due to the deterioration of the magnetic characteristic can be maintained.
It is possible to prevent a decrease in the values and suppress variations in those values.
【0019】以下は、本発明の積層型インダクタについ
て、幾つかの実施例と比較例とを挙げてその製造方法を
合わせて具体的に説明する。The laminated inductor of the present invention will be described below in detail with reference to some examples and comparative examples together with the manufacturing method thereof.
【0020】(実施例1)本発明の実施例1に係る積層
型インダクタは、基本構成上において、磁性体内にコイ
ル状内部導体(内部電極)を埋設した積層体の両端部に
外部電極を配備して構成される点は従来通りであるが、
ここでは積層体形成段階で内部導体層の材料に300〜
400℃の温度範囲で熱収縮率が10%以上となる一形
態に係る材料を用いる。(Embodiment 1) In the laminated inductor according to Embodiment 1 of the present invention, external electrodes are arranged at both ends of a laminated body in which a coiled internal conductor (internal electrode) is embedded in a magnetic body in the basic structure. It is the same as before, but
Here, the material of the inner conductor layer is 300 to
A material according to one embodiment having a thermal shrinkage of 10% or more in the temperature range of 400 ° C. is used.
【0021】具体的には、磁性体層を形成するための磁
性粉末としてNi−Zn−Cu系フェライト粉末を用意
し、このフェライト粉末をバインダ及び溶剤とにより配
合して得られる配合物を三本ロールで混練して磁性体用
ペーストを作製した。又、内部導体層の導体パターンの
形成に用いる粉末として、Ag粉末をバインダ及び溶剤
と配合して得られる配合物を三本ロールで混練して内部
導体用ペーストを作製した。Specifically, Ni--Zn--Cu ferrite powder is prepared as the magnetic powder for forming the magnetic layer, and the ferrite powder is mixed with a binder and a solvent to obtain three compounds. The mixture was kneaded with a roll to prepare a magnetic paste. Further, as a powder used for forming the conductor pattern of the internal conductor layer, a mixture obtained by mixing Ag powder with a binder and a solvent was kneaded with a three-roll to prepare an internal conductor paste.
【0022】図1は、ここでの実施例1に係る積層型イ
ンダクタの製造に用いられる磁性体材料(磁性体用ペー
スト)及び内部導体材料(内部導体用ペースト)の温度
℃に対する収縮率%を測定した結果の熱収縮率特性を示
したものである。但し、この熱収縮率特性では磁性体用
ペーストに関するものが熱収縮率曲線CM 1,内部導体
用ペーストに関するものが熱収縮率曲線CP 1となって
いる。FIG. 1 shows the shrinkage percentage (%) of the magnetic material (paste for magnetic material) and the internal conductor material (paste for internal conductor) used for manufacturing the laminated inductor according to the first embodiment, with respect to temperature ° C. It shows the heat shrinkage rate characteristics of the measurement results. However, in this heat shrinkage rate characteristic, the one for the magnetic paste is the heat shrinkage curve C M1, and the one for the internal conductor paste is the heat shrinkage curve C P 1.
【0023】図1では、磁性体用ペーストの熱収縮率曲
線CM 1の場合、800℃を越えても収縮率がほぼ0%
となっているのに対し、内部導体用ペーストの熱収縮率
曲線CP 1の場合には300℃付近で収縮が開始して4
00℃までに10%以上収縮する様子を示している。In FIG. 1, in the case of the thermal contraction rate curve C M 1 of the magnetic paste, the contraction rate is almost 0% even if it exceeds 800 ° C.
On the other hand, in the case of the thermal contraction rate curve C P 1 of the internal conductor paste, the contraction starts around 300 ° C.
It shows the state of shrinking by 10% or more by 00 ° C.
【0024】即ち、実施例1では、積層型インダクタを
製造するための基本的な自体工程は従来通りであるの
で、図7(a)を参照すれば、磁性体用ペーストに熱収
縮率曲線CM 1に示されるような特性の材料を用いてグ
リーンシート5を作製し、その上面に対して内部導体用
ペーストに熱収縮率曲線CP 1に示されるような特性の
材料を用いてスクリーン印刷法によりコイル状内部導体
(内部電極)4の局部となる導体パターン61の内部導
体層を印刷形成した後、その上面に対して同様に熱収縮
率曲線CM 1に示されるような特性の材料を用いて貫通
窓711が形成されるように磁性体シート71による第
2の磁性体層を印刷形成する。この段階では予め貫通窓
711を設けているので磁性体シート71の磁性パター
ンを印刷した後に導体パターン61の端部が貫通窓71
1を通して上面側に露出し、以降に形成する導体パター
ン62との接合部分を確保している。That is, in Example 1, the basic self-process for manufacturing the laminated inductor is the same as the conventional process. Therefore, referring to FIG. 7A, the heat-shrinkage curve C is added to the magnetic paste. A green sheet 5 is produced using a material having a characteristic as shown by M 1, and screen printing is performed on the upper surface of the green sheet 5 by using a material having a characteristic as shown by a heat shrinkage rate curve C P 1 for an internal conductor paste. After the inner conductor layer of the conductor pattern 61 which is a local portion of the coiled inner conductor (inner electrode) 4 is formed by printing by the method, the material having the characteristic as shown by the heat shrinkage ratio curve C M 1 on the upper surface thereof is also formed. The second magnetic material layer of the magnetic material sheet 71 is formed by printing so that the through window 711 is formed by using. At this stage, since the through window 711 is provided in advance, after the magnetic pattern of the magnetic material sheet 71 is printed, the end portion of the conductor pattern 61 is located at the through window 71.
It is exposed to the upper surface side through 1 and secures a joint portion with a conductor pattern 62 formed later.
【0025】又、同様に磁性体シート71上面に対して
熱収縮率曲線CP 1に示されるような特性の材料を用い
てスクリーン印刷法によりコイル状内部導体4の他の局
部となる導体パターン62の内部導体層を印刷形成した
後、その上面に対して熱収縮率曲線CM 1に示されるよ
うな特性の材料を用いて貫通窓721が形成されるよう
に磁性体シート72による第2の磁性体層を印刷形成す
る。更に、同様に磁性体シート72上面に対して熱収縮
率曲線CP 1に示されるような特性の材料を用いてスク
リーン印刷法によりコイル状内部導体4の別の局部とな
る導体パターン63の内部導体層を印刷形成した後、そ
の上面に対して熱収縮率曲線CM 1に示されるような特
性の材料を用いて貫通窓731が形成されるように磁性
体シート73による第2の磁性体層を印刷形成する。引
き続き、磁性体シート73上面に対して熱収縮率曲線C
P 1に示されるような特性の材料を用いてスクリーン印
刷法によりコイル状内部導体4の更に他の局部となる導
体パターン64の内部導体層を印刷形成した後、その上
面に対して熱収縮率曲線CM 1に示されるような特性の
材料を用いて貫通窓741が形成されるように磁性体シ
ート74による第2の磁性体層を印刷形成する。更に、
磁性体シート74上面に対して熱収縮率曲線CP 1に示
されるような特性の材料を用いてスクリーン印刷法によ
りコイル状内部導体4の更に別の局部となる導体パター
ン65の内部導体層を印刷形成した後、その上面に対し
て熱収縮率曲線CM 1に示されるような特性の材料を用
いて上面側のグリーンシート5を重畳する。Similarly, a conductor pattern to be another local portion of the coil-shaped inner conductor 4 is formed on the upper surface of the magnetic sheet 71 by screen printing using a material having a characteristic as shown by the heat shrinkage rate curve C P 1. After the inner conductor layer 62 is formed by printing, a second magnetic sheet 72 is formed so that a through window 721 is formed on the upper surface of the inner conductor layer by using a material having a characteristic as indicated by the heat shrinkage rate curve C M 1. The magnetic layer is formed by printing. Further, similarly, the inside of the conductor pattern 63, which is another local portion of the coil-shaped inner conductor 4, is formed by the screen printing method using a material having the characteristics shown by the heat shrinkage rate curve C P 1 on the upper surface of the magnetic material sheet 72. After the conductor layer is formed by printing, the second magnetic material formed by the magnetic material sheet 73 is formed on the upper surface of the conductor layer so that the through window 731 is formed by using the material having the characteristic shown by the heat shrinkage rate curve C M 1. Print the layers. Subsequently, the heat shrinkage rate curve C is applied to the upper surface of the magnetic sheet 73.
After the inner conductor layer of the conductor pattern 64, which is the other local portion of the coiled inner conductor 4, is formed by screen printing by using the material having the characteristics shown in P 1, the heat shrinkage rate is applied to the upper surface of the inner conductor layer. The second magnetic material layer of the magnetic material sheet 74 is formed by printing so that the through window 741 is formed by using the material having the characteristics shown by the curve C M 1. Furthermore,
An inner conductor layer of the conductor pattern 65, which is another local portion of the coiled inner conductor 4, is formed on the upper surface of the magnetic sheet 74 by a screen printing method using a material having a characteristic as shown by the heat shrinkage rate curve C P 1. After printing and forming, a green sheet 5 on the upper surface side is superposed on the upper surface by using a material having a characteristic as shown by the heat shrinkage rate curve C M 1.
【0026】即ち、ここでも積層体形成段階で内部導体
層及び第2の磁性体層を形成する工程を交互に複数回繰
り返すことにより、各導体層と各磁性体層とが直接的に
接触しない状態で磁性体内部に3.5ターンのコイル状
内部導体4を形成し、積層厚1.3mmにしてから一定
圧力で圧着して印刷積層体を作製する。尚、ここでは、
コイル状内部導体4における巻数を3.5ターンとした
が、これ以外の巻数にしても良く、巻数は必要なインダ
クタンスが得られるように調整されるものである。That is, here again, by alternately repeating the step of forming the inner conductor layer and the second magnetic layer in the step of forming the laminated body a plurality of times, each conductor layer does not directly contact with each magnetic layer. In this state, the coil-shaped inner conductor 4 having 3.5 turns is formed inside the magnetic material, and the laminated thickness is set to 1.3 mm, and then pressure-bonded with a constant pressure to produce a printed laminated body. In addition, here
Although the number of turns in the coiled inner conductor 4 is 3.5, other numbers of turns may be used, and the number of turns is adjusted so as to obtain a required inductance.
【0027】更に、作製された印刷積層体を所定の大き
さに(2.4mm×2.0mm×1.3mm)に切断し
てから脱バインダを行った後、900℃の温度条件下で
同時に焼成を行った。尚、ここでは、900℃で焼成を
行うものとするが、一般には焼成温度をおおよそ850
〜930℃の範囲で行えば良い。又、ここでは、一つの
積層体素子の大きさを2.4mm×2.0mm×1.3
mmとしたが、これ以外の大きさにしても良く、その場
合にはコイル状内部導体4の大きさを調整すれば良い。Further, after the produced printed laminate is cut into a predetermined size (2.4 mm × 2.0 mm × 1.3 mm) and binder is removed, it is simultaneously subjected to a temperature condition of 900 ° C. Firing was performed. In addition, here, it is assumed that the firing is performed at 900 ° C., but generally, the firing temperature is about 850.
It may be carried out in the range of ˜930 ° C. Further, here, the size of one laminated body element is 2.4 mm × 2.0 mm × 1.3.
Although the size is set to mm, other sizes may be used, and in that case, the size of the coil-shaped inner conductor 4 may be adjusted.
【0028】最後に、焼成した積層体に対してその外側
面に対し、導体パターン61,65の内部導体層による
コイル状内部導体4のリードが露出している部分を含む
ようにAgを主成分とする導電性ペーストを塗布し、約
600℃で焼き付けを行うことで外部電極2を形成した
後、外部電極2上にNi及びSnのメッキを行って積層
型インダクタを完成させた。尚、ここでは外部電極2を
形成するための材料としてAgを主成分とする導電性ペ
ーストを用いるものとするが、これ以外にもカーボンや
Cu,Ni等を主成分とした導電性ペーストを用いても
良い。Finally, Ag is a main component so that the lead of the coil-shaped inner conductor 4 formed by the inner conductor layers of the conductor patterns 61 and 65 is exposed on the outer surface of the fired laminate. After forming the external electrode 2 by applying the conductive paste described above and baking at about 600 ° C., the external electrode 2 was plated with Ni and Sn to complete the laminated inductor. Although a conductive paste containing Ag as a main component is used as a material for forming the external electrode 2 here, a conductive paste containing carbon, Cu, Ni, or the like as a main component is also used. May be.
【0029】(実施例2)本発明の実施例2に係る積層
型インダクタの場合も、基本構成上において、磁性体内
にコイル状内部導体(内部電極)を埋設した積層体の両
端部に外部電極を配備して構成される点は従来通りであ
るが、ここでは積層体形成段階で内部導体層の材料に3
00〜400℃の温度範囲で熱収縮率が10%以上とな
り、更に800〜900℃の温度範囲で熱収縮率の差が
磁性体層との間で20%以上となる他形態に係る材料を
用いる。(Embodiment 2) Also in the case of the laminated inductor according to Embodiment 2 of the present invention, the external electrodes are provided at both ends of the laminated body in which the coil-shaped internal conductor (internal electrode) is embedded in the magnetic body in the basic structure. Is the same as before, but here the material for the inner conductor layer is 3
A material according to another embodiment having a heat shrinkage of 10% or more in the temperature range of 00 to 400 ° C., and a difference of the heat shrinkage of 20% or more with the magnetic layer in the temperature range of 800 to 900 ° C. To use.
【0030】具体的には、磁性体層を形成するための磁
性粉末としてNi−Zn−Cu系フェライト粉末を用意
し、このフェライト粉末をバインダ及び溶剤とにより配
合して得られる配合物を三本ロールで混練して磁性体用
ペーストを作製した。又、内部導体層の導体パターンの
形成に用いる粉末として、Ag粉末をバインダ及び溶剤
と配合して得られる配合物を三本ロールで混練して内部
導体用ペーストを作製した。Specifically, three Ni-Zn-Cu ferrite powders are prepared as magnetic powders for forming the magnetic layer, and the ferrite powders are mixed with a binder and a solvent to obtain three compounds. The mixture was kneaded with a roll to prepare a magnetic paste. Further, as a powder used for forming the conductor pattern of the internal conductor layer, a mixture obtained by mixing Ag powder with a binder and a solvent was kneaded with a three-roll to prepare an internal conductor paste.
【0031】図2は、ここでの実施例2に係る積層型イ
ンダクタの製造に用いられる磁性体材料(磁性体用ペー
スト)及び内部導体材料(内部導体用ペースト)の温度
℃に対する収縮率%を測定した結果の熱収縮率特性を示
したものである。但し、この熱収縮率特性では、磁性体
用ペーストに関するものが熱収縮率曲線CM 2,内部導
体用ペーストに関するものが熱収縮率曲線CP 2となっ
ている。FIG. 2 shows the shrinkage percentage (%) of the magnetic material (paste for magnetic material) and the internal conductor material (paste for internal conductor) used for manufacturing the laminated inductor according to the second embodiment, with respect to the temperature ° C. It shows the heat shrinkage rate characteristics of the measurement results. However, in this heat shrinkage rate characteristic, the heat shrinkage rate curve C M 2 is for the magnetic paste, and the heat shrinkage rate curve C P 2 is for the internal conductor paste.
【0032】図2では、磁性体用ペーストの熱収縮率曲
線CM 2の場合、先の実施例1に係る熱収縮率曲線CM
1の場合と同様に800℃を越えても収縮率がほぼ0%
となっているのに対し、内部導体用ペーストの熱収縮率
曲線CP 2の場合には300℃付近で収縮が開始して4
00℃までに10%以上収縮する上、更に900℃での
収縮率が熱収縮率曲線CM 2との対比で20%以上の差
が生じている様子を示している。[0032] In Figure 2, if the heat shrinkage curve C M 2 of the magnetic paste, heat shrinkage according to Example 1 above curve C M
Similar to the case of 1, the shrinkage rate is almost 0% even if it exceeds 800 ° C.
On the other hand, in the case of the thermal contraction rate curve C P 2 of the internal conductor paste, the contraction starts around 300 ° C. and 4
In addition to shrinking by 10% or more by 00 ° C., the shrinkage ratio at 900 ° C. shows a difference of 20% or more in comparison with the heat shrinkage ratio curve C M 2.
【0033】即ち、実施例2では、磁性体用ペーストに
熱収縮率曲線CM 2を用いると共に、内部導体用ペース
トに熱収縮率曲線CP 2を用いる以外は先の実施例1で
説明した場合と全く同じ製造手順に従い、外観上同様な
構成の積層型インダクタを完成させた。That is, in Example 2, the heat shrinkage rate curve C M 2 was used for the magnetic paste and the heat shrinkage rate curve C P 2 was used for the internal conductor paste. By following the exact same manufacturing procedure as in the above case, a laminated inductor having a similar appearance was completed.
【0034】(比較例)比較例に係る積層型インダクタ
の場合も、基本構成上において、磁性体内にコイル状内
部導体(内部電極)を埋設した積層体の両端部に外部電
極を配備して構成される点は従来通りであるが、ここで
は積層体形成段階で内部導体層の材料に300〜400
℃の温度範囲で熱収縮率が6%程度であり、更に900
℃での熱収縮率が磁性体層との間で10%程度の差しか
生じない別形態に係る材料を用いる。(Comparative Example) Also in the case of the laminated inductor according to the comparative example, in the basic structure, the external electrodes are provided at both ends of the laminated body in which the coiled internal conductor (internal electrode) is embedded in the magnetic body. However, in this case, the material of the inner conductor layer is 300 to 400 at the step of forming the laminated body.
In the temperature range of ℃, the heat shrinkage is about 6%.
A material according to another form is used, which has a heat shrinkage ratio at 0 ° C. of about 10% with respect to the magnetic layer.
【0035】具体的には、ここでも磁性体層を形成する
ための磁性粉末としてNi−Zn−Cu系フェライト粉
末を用意し、このフェライト粉末をバインダ及び溶剤と
により配合して得られる配合物を三本ロールで混練して
磁性体用ペーストを作製した。又、内部導体層の導体パ
ターンの形成に用いる粉末として、Ag粉末をバインダ
及び溶剤と配合して得られる配合物を三本ロールで混練
して内部導体用ペーストを作製した。More specifically, here, a Ni-Zn-Cu ferrite powder is prepared as the magnetic powder for forming the magnetic layer, and the ferrite powder is mixed with a binder and a solvent to obtain a mixture. A three-roll mill was kneaded to produce a magnetic paste. Further, as a powder used for forming the conductor pattern of the internal conductor layer, a mixture obtained by mixing Ag powder with a binder and a solvent was kneaded with a three-roll to prepare an internal conductor paste.
【0036】図3は、ここでの比較例に係る積層型イン
ダクタの製造に用いられる磁性体材料(磁性体用ペース
ト)及び内部導体材料(内部導体用ペースト)の温度℃
に対する収縮率%を測定した結果の熱収縮率特性を示し
たものである。但し、この熱収縮率特性では、磁性体用
ペーストに関するものが熱収縮率曲線CM 3,内部導体
用ペーストに関するものが熱収縮率曲線CP 3となって
いる。FIG. 3 shows the temperature in degrees Celsius of the magnetic material (paste for magnetic material) and the internal conductor material (paste for internal conductor) used in the manufacture of the laminated inductor according to the comparative example.
3 shows the heat shrinkage rate characteristics of the result of measuring the shrinkage rate% with respect to. However, in this heat shrinkage rate characteristic, the heat shrinkage rate curve C M 3 for the magnetic paste and the heat shrinkage rate curve C P 3 for the internal conductor paste.
【0037】図3では、磁性体用ペーストの熱収縮率曲
線CM 3の場合、先の実施例2に係る熱収縮率曲線CM
2の場合と同じ収縮率特性を示しているが、内部導体用
ペーストの熱収縮率曲線CP 3の場合には300℃付近
で収縮が開始して400℃までに6%程度しか収縮しな
い上、更に900℃での収縮率が熱収縮率曲線CM 3と
の対比で10%程度の差が生じる状態となっている様子
を示している。[0037] In Figure 3, when the heat shrinkage curve C M 3 of the magnetic paste, heat shrinkage according to Example 2 above curve C M
2 shows the same shrinkage rate characteristics as in the case of No. 2, but in the case of the heat shrinkage rate curve C P 3 of the internal conductor paste, shrinkage starts at around 300 ° C. and shrinks only about 6% by 400 ° C. Furthermore, it shows that the shrinkage at 900 ° C. is in a state where there is a difference of about 10% in comparison with the heat shrinkage curve C M 3.
【0038】即ち、比較例では、磁性体用ペーストに熱
収縮率曲線CM 3を用いると共に、内部導体用ペースト
に熱収縮率曲線CP 3を用いる以外は先の実施例1,2
の場合と全く同じ製造手順に従い、外観上ほぼ同様な構
成の積層型インダクタを完成させた。That is, in the comparative example, the heat shrinkage rate curve C M 3 is used for the magnetic paste and the heat shrinkage rate curve C P 3 is used for the internal conductor paste.
By following the same manufacturing procedure as in the case of 1., a laminated inductor having substantially the same appearance was completed.
【0039】そこで、以上のようにして作製された各積
層型インダクタの焼結後の積層体における製造状態の細
部を構造的に観察したところ、図4〜図6に示されるよ
うな結果が得られた。即ち、ここで図4は、図1に示し
た熱収縮率特性の材料を用いて作製される実施例1に係
る積層型インダクタ1′の細部構造を概略的に説明する
ために示した焼結後の積層体の長手方向における端面に
平行な面での断面図並びにその部分拡大図である。又、
図5は、図2に示した熱収縮率特性の材料を用いて作製
される実施例2に係る積層型インダクタ1″の細部構造
を概略的に説明するために示した焼結後の積層体の長手
方向における端面に平行な面での断面図並びにその部分
拡大図である。更に、図6は図3に示した熱収縮率特性
の材料を用いて作製される比較例に係る積層型インダク
タ1の細部構造を概略的に説明するために示した焼結後
の積層体の長手方向における端面に平行な面での断面図
並びにその部分拡大図である。Therefore, when the details of the manufacturing state of the laminated body after sintering of each laminated inductor manufactured as described above are structurally observed, the results shown in FIGS. 4 to 6 are obtained. Was given. That is, here, FIG. 4 is a sintering process for schematically explaining the detailed structure of the multilayer inductor 1'according to the first embodiment, which is manufactured using the material having the heat shrinkage ratio characteristic shown in FIG. It is sectional drawing in the surface parallel to the end surface in the longitudinal direction of a subsequent laminated body, and its partially expanded view. or,
FIG. 5 is a laminated body after sintering, which is shown to schematically explain the detailed structure of the laminated inductor 1 ″ according to the second embodiment, which is manufactured using the material having the heat shrinkage ratio characteristic shown in FIG. 6 is a cross-sectional view and a partially enlarged view of a plane parallel to an end face in the longitudinal direction of Fig. 6. Further, Fig. 6 is a laminated inductor according to a comparative example, which is manufactured using the material having the heat shrinkage rate characteristic shown in Fig. 3. FIG. 2 is a cross-sectional view and a partially enlarged view of a laminated body after sintering shown for schematically explaining the detailed structure of No. 1 in a plane parallel to an end face in the longitudinal direction.
【0040】各図を比較すれば、図6に示す積層型イン
ダクタ1の場合、焼結後の積層体にあっての内部構造
は、領域Eの拡大図から明らかであるように、焼結する
ための一体化焼成時に熱負荷が与えられても内部導体1
2が余り熱収縮しないために内部導体12に対して磁性
体14が殆ど密着した構造となっているのに対し、図4
に示す積層型インダクタ1′の場合、領域Eの拡大図か
ら明らかであるように、一体化焼成時に熱負荷が与えら
れることで内部導体12′が熱収縮して磁性体14及び
内部導体12′の間に隙間13が形成され、図5に示す
積層型インダクタ1″の場合においても、領域Eの拡大
図から明らかであるように、同様に一体化焼成時に熱負
荷が与えられることで内部導体12″が熱収縮して磁性
体14及び内部導体12″の間に隙間13′が形成され
る構造となっていることが判る。Comparing the figures, in the case of the laminated inductor 1 shown in FIG. 6, the internal structure of the laminated body after sintering is sintered, as is apparent from the enlarged view of the region E. Even if a heat load is applied during the integrated firing for
2 has a structure in which the magnetic body 14 is almost in close contact with the inner conductor 12 because the material 2 does not shrink so much as shown in FIG.
In the case of the laminated inductor 1'shown in Fig. 6, as is apparent from the enlarged view of the region E, the inner conductor 12 'is thermally contracted by the heat load applied during the integrated firing, so that the magnetic body 14 and the inner conductor 12' are contracted. In the case of the laminated inductor 1 ″ shown in FIG. 5, a gap 13 is formed between the inner conductors, and as is apparent from the enlarged view of the region E, a heat load is similarly applied during the integrated firing, so that the inner conductor is It can be seen that 12 ″ is thermally contracted to form a gap 13 ′ between the magnetic body 14 and the inner conductor 12 ″.
【0041】更に、上述したようにして作製された各積
層型インダクタについて、YHP製インピーダンスアナ
ライザHP4191Aを用いてL値及びQ値とそのばら
つきとを評価すると共に、その後に温度条件40℃で9
〜95%RHの耐湿槽に各積層型インダクタを1000
時間保持して再度耐湿試験でのL値,Q値の変化率を測
定したところ、表1に示すような結果となった。Further, with respect to each of the laminated inductors manufactured as described above, the L value and the Q value and their variations were evaluated using an impedance analyzer HP4191A manufactured by YHP, and thereafter, the temperature was 40 ° C. for 9 hours.
~ 1000% of each laminated inductor in a humidity resistant tank of 95% RH
When the rate of change of L value and Q value in the moisture resistance test was measured again while maintaining the time, the results shown in Table 1 were obtained.
【0042】[0042]
【表1】 [Table 1]
【0043】表1からは、実施例1,実施例2に係る積
層型インダクタ1′,1″は、比較例に係る積層型イン
ダクタ1よりもL値,Q値が相対比で20%以上も上昇
しており、これらのL値,Q値のばらつきも比較例の場
合に比べて全て約半分以下まで低減しており、耐湿試験
後のL値,Q値の変化率も比較例の場合よりずっと変化
が少なくなっていることが判る。From Table 1, it can be seen that the laminated inductors 1'and 1 "of Examples 1 and 2 have L and Q values of 20% or more in relative ratio to the laminated inductor 1 of the comparative example. As compared with the case of the comparative example, the variations of the L value and the Q value are all reduced to about half or less, and the rate of change of the L value and the Q value after the moisture resistance test is also smaller than that of the case of the comparative example. It can be seen that the change has been much less.
【0044】従って、隙間13,13′が形成された実
施例1,実施例2に係る積層型インダクタ1′,1″
は、焼結後の冷却過程で内部導体12′,12″から磁
性体14への残留応力の影響が回避されて本来の磁気特
性が維持される構造となり、磁気特性の劣化によるL値
及びQ値の低下を防止できると共に、それらの値のばら
つきを抑制できる高い耐湿性を有するものとなる。Therefore, the laminated inductors 1 ', 1 "according to the first and second embodiments in which the gaps 13, 13' are formed.
Has a structure in which the effect of residual stress from the inner conductors 12 ', 12 "on the magnetic body 14 is avoided in the cooling process after sintering and the original magnetic characteristics are maintained. It is possible to prevent the decrease of the value and to have the high moisture resistance capable of suppressing the variation of the values.
【0045】尚、上述した実施例1,実施例2に係る積
層型インダクタ1′,1″では、積層体形成段階で内部
導体層の材料に300〜400℃の温度範囲で熱収縮率
が10%以上となるものを用いることにより、焼成段階
で一体化焼成により導体パターン(内部導体12′,1
2″)の周囲に0.1μm〜5μmの範囲の厚さで不連
続に隙間13,13′が形成するものとしたが、冒頭の
技術的概要で説明したように積層体形成段階で第2の磁
性体層として予め内部導体層の導体パターン(この場
合、熱収縮しない内部導体とする)に当接される箇所の
近傍が非接触となるように不連続に凹状に肉薄化されて
形成されたものを用いることで積層体における導体パタ
ーンの周囲に0.1μm〜5μmの範囲の厚さで隙間1
3,13′を不連続に形成するようにしても、同等な効
果が得られる。In the laminated inductors 1'and 1 "according to the first and second embodiments described above, the material of the internal conductor layer has a heat shrinkage rate of 10 in the temperature range of 300 to 400 ° C. in the laminated body forming step. %, The conductor pattern (internal conductors 12 ', 1
2 ″), the gaps 13 and 13 ′ are formed discontinuously with a thickness in the range of 0.1 μm to 5 μm. However, as described in the technical outline at the beginning, the second gap is formed in the second step. The magnetic material layer is formed as a discontinuous concave thinning so that the vicinity of a portion abutted with the conductor pattern of the inner conductor layer (in this case, the inner conductor that does not contract heat) becomes non-contact. 1 to 5 μm with a thickness in the range of 0.1 μm to 5 μm around the conductor pattern in the laminated body.
Even if 3,3 'are formed discontinuously, the same effect can be obtained.
【0046】[0046]
【発明の効果】以上に述べた通り、本発明によれば、積
層型インダクタの積層体における磁性体層及び内部導体
層の間に隙間を形成することにより、焼結後の冷却過程
で内部導体から磁性体への残留応力の影響が回避されて
本来の磁気特性が維持される構造としているので、この
結果として磁気特性の劣化によるL値及びQ値の低下が
防止されると共に、それらの値のばらつきを抑制できる
高い耐湿性を有する積層型インダクタを製造できるよう
になる。As described above, according to the present invention, by forming a gap between the magnetic layer and the internal conductor layer in the laminated body of the laminated inductor, the internal conductor is cooled during the sintering process. The structure is such that the influence of residual stress on the magnetic material is avoided and the original magnetic characteristics are maintained, and as a result, the L value and Q value are prevented from lowering due to the deterioration of the magnetic characteristics, and at the same time, those values are prevented. It becomes possible to manufacture a laminated inductor having high moisture resistance capable of suppressing the variation of
【図1】本発明の実施例1に係る積層型インダクタの製
造に用いられる磁性体材料及び内部導体材料の温度に対
する収縮率を測定した結果の熱収縮率特性を示したもの
である。FIG. 1 is a graph showing the heat shrinkage rate characteristics as a result of measuring the shrinkage rates with respect to temperature of a magnetic material and an internal conductor material used for manufacturing a laminated inductor according to Example 1 of the present invention.
【図2】本発明の実施例2に係る積層型インダクタの製
造に用いられる磁性体材料及び内部導体材料の温度に対
する収縮率を測定した結果の熱収縮率特性を示したもの
である。FIG. 2 shows heat shrinkage ratio characteristics as a result of measuring shrinkage ratios with respect to temperature of a magnetic material and an internal conductor material used for manufacturing a laminated inductor according to Example 2 of the present invention.
【図3】比較例に係る積層型インダクタの製造に用いら
れる磁性体材料及び内部導体材料の温度に対する収縮率
を測定した結果の熱収縮率特性を示したものである。FIG. 3 is a graph showing heat shrinkage ratio characteristics as a result of measuring shrinkage ratios with respect to temperature of a magnetic material and an internal conductor material used for manufacturing a laminated inductor according to a comparative example.
【図4】図1に示した熱収縮率特性の材料を用いて作製
される実施例1に係る積層型インダクタの細部構造を概
略的に説明するために示した焼結後の積層体の長手方向
における端面に平行な面での断面図並びにその部分拡大
図である。FIG. 4 is a length of a laminated body after sintering shown for schematically explaining a detailed structure of a laminated inductor according to an example 1 manufactured by using a material having a heat shrinkage ratio characteristic shown in FIG. FIG. 3 is a cross-sectional view taken along a plane parallel to the end face in the direction and a partially enlarged view thereof.
【図5】図2に示した熱収縮率特性の材料を用いて作製
される実施例2に係る積層型インダクタの細部構造を概
略的に説明するために示した焼結後の積層体の長手方向
における端面に平行な面での断面図並びにその部分拡大
図である。5 is a longitudinal view of a laminated body after sintering shown for schematically explaining a detailed structure of a laminated inductor according to an example 2 manufactured by using a material having a heat shrinkage ratio characteristic shown in FIG. FIG. 3 is a cross-sectional view taken along a plane parallel to the end face in the direction and a partially enlarged view thereof.
【図6】図3に示した熱収縮率特性の材料を用いて作製
される比較例に係る積層型インダクタの細部構造を概略
的に説明するために示した焼結後の積層体の長手方向に
おける端面に平行な面での断面図並びにその部分拡大図
である。FIG. 6 is a longitudinal direction of a laminated body after sintering shown for schematically explaining a detailed structure of a laminated inductor according to a comparative example manufactured by using the material having the heat shrinkage ratio characteristic shown in FIG. FIG. 3 is a cross-sectional view taken along a plane parallel to the end face in FIG.
【図7】従来の積層型インダクタの基本構成を説明する
ために示したもので、(a)は分解斜視図に関するも
の,(b)は外観斜視図に関するもの,(c)は内部の
導体パターンを透視抽出して示した概略斜視図に関する
ものである。7A and 7B are shown for explaining the basic structure of a conventional multilayer inductor, FIG. 7A is an exploded perspective view, FIG. 7B is an external perspective view, and FIG. 7C is an internal conductor pattern. FIG. 3 is a perspective view showing a perspective view of FIG.
1,1′,1″,10 積層型インダクタ 2 外部電極 3 磁性体部 4 コイル状内部導体(内部電極) 5 グリーンシート 12,12′,12″ 内部導体 13,13′ 隙間 14 磁性体 61〜65 導体パターン 71〜74 磁性体シート 711,721,731,741 貫通窓 1,1 ', 1 ", 10 Multilayer inductor 2 external electrodes 3 Magnetic part 4 Coil-shaped internal conductor (internal electrode) 5 green sheets 12,12 ', 12 "inner conductor 13,13 'gap 14 Magnetic material 61-65 conductor pattern 71-74 Magnetic sheet 711, 721, 731, 741 Through window
Claims (6)
部導体となる所定の導体パターンを有する内部導体層及
び所定の位置に貫通窓が設けられた磁性体から成る第2
の磁性体層を交互に積層介在させて成ると共に、焼結に
より該貫通窓を通して該導体パターン同士が導通可能と
なり、且つ積層方向と垂直な外側面に該導体パターンの
一部が露出されるように一体化焼成されて成る積層体に
おける該外側面に露出された該導体パターンの一部に対
して外部電極を接続配備して構成される積層型インダク
タにおいて、前記導体パターンの周囲には、所定の範囲
の厚さで不連続に隙間が形成されたことを特徴とする積
層型インダクタ。1. An internal conductor layer having a predetermined conductor pattern to be an internal conductor between a first magnetic body layer made of a magnetic body and a second magnetic body having a through window provided at a predetermined position.
Magnetic layers are alternately laminated, and the conductor patterns can be electrically connected to each other through the through window by sintering, and a part of the conductor pattern is exposed on the outer surface perpendicular to the laminating direction. In a laminated inductor constituted by connecting and arranging an external electrode to a part of the conductor pattern exposed on the outer surface of the laminated body integrally fired in a laminated body, a predetermined pattern is provided around the conductor pattern. A laminated inductor, wherein a gap is formed discontinuously with a thickness in the range.
て、前記所定の範囲は0.1〜5μmであることを特徴
とする積層型インダクタ。2. The multilayer inductor according to claim 1, wherein the predetermined range is 0.1 to 5 μm.
において、前記隙間は前記第2の磁性体層又は前記内部
導体層の何れか一方に形成されたことを特徴とする積層
型インダクタ。3. The multilayer inductor according to claim 1, wherein the gap is formed in either the second magnetic layer or the internal conductor layer.
る磁性体層形成段階と、前記第1の磁性体層間に内部導
体となる所定の導体パターンを有する内部導体層及び所
定の位置に貫通窓を配設するように磁性体から成る第2
の磁性体層を交互に積層介在させ、焼結により該貫通窓
を通して該導体パターン同士が導通され、且つ積層方向
と垂直な外側面に該導体パターンの一部が露出されるよ
うに積層体を形成する積層体形成段階と、前記積層体を
前記焼結可能な温度で一体化焼成する焼成段階と、前記
積層体の前記外側面に露出された前記導体パターンの一
部に対して外部電極を接続配備して積層型インダクタを
得る外部電極形成段階とを有する積層型インダクタの製
造方法において、前記積層体形成段階では、前記内部導
体層の材料に300〜400℃の温度範囲で熱収縮率が
10%以上となるものを用い、前記焼成段階では、前記
一体化焼成により前記導体パターンの周囲に0.1μm
〜5μmの範囲の厚さで不連続に隙間を形成することを
特徴とする積層型インダクタの製造方法。4. A magnetic body layer forming step of forming a first magnetic body layer made of a magnetic body, an internal conductor layer having a predetermined conductor pattern to be an internal conductor between the first magnetic body layers, and a predetermined position. A second member made of a magnetic material so that a through window is provided in the second
The magnetic layers are alternately laminated, and the laminated body is formed by sintering so that the conductor patterns are electrically connected to each other through the through window and a part of the conductor pattern is exposed on an outer surface perpendicular to the laminating direction. A step of forming a laminated body to be formed, a step of integrally firing the laminated body at a temperature at which the laminated body can be sintered, and an external electrode for a part of the conductor pattern exposed on the outer surface of the laminated body. In the method of manufacturing a laminated inductor, the method comprising: connecting and deploying to form an external electrode to obtain a laminated inductor, wherein in the laminated body forming step, the material of the internal conductor layer has a heat shrinkage ratio in a temperature range of 300 to 400 ° C. 10% or more is used, and in the firing step, 0.1 μm is formed around the conductor pattern by the integrated firing.
A method for manufacturing a laminated inductor, characterized in that gaps are formed discontinuously with a thickness in the range of ˜5 μm.
方法において、前記積層体形成段階で用いる前記内部導
体層の材料は、800〜900℃の温度範囲で熱収縮率
の差が前記第2の磁性体層との間で20%以上となるこ
とを特徴とする積層型インダクタの製造方法。5. The method of manufacturing a laminated inductor according to claim 4, wherein the material of the internal conductor layer used in the step of forming the laminated body has a difference in thermal contraction rate in a temperature range of 800 to 900 ° C. 20% or more between the magnetic layer and the magnetic layer.
る磁性体層形成段階と、前記第1の磁性体層間に内部導
体となる所定の導体パターンを有する内部導体層及び所
定の位置に貫通窓を配設するように磁性体から成る第2
の磁性体層を交互に積層介在させ、焼結により該貫通窓
を通して該導体パターン同士が導通され、且つ積層方向
と垂直な外側面に該導体パターンの一部が露出されるよ
うに積層体を形成する積層体形成段階と、前記積層体を
前記焼結可能な温度で一体化焼成する焼成段階と、前記
積層体の前記外側面に露出された前記導体パターンの一
部に対して外部電極を接続配備して積層型インダクタを
得る外部電極形成段階とを有する積層型インダクタの製
造方法において、前記積層体形成段階では、前記第2の
磁性体層として予め前記内部導体層の前記導体パターン
に当接される箇所の近傍が非接触となるように不連続に
凹状に肉薄化されて形成されたものを用いることで前記
積層体における前記導体パターンの周囲に0.1μm〜
5μmの範囲の厚さで隙間を不連続に形成することを特
徴とする積層型インダクタの製造方法。6. A magnetic material layer forming step of forming a first magnetic material layer made of a magnetic material, an internal conductor layer having a predetermined conductor pattern to be an internal conductor between the first magnetic material layers, and a predetermined position. A second member made of a magnetic material so that a through window is provided in the second
The magnetic layers are alternately laminated, and the laminated body is formed by sintering so that the conductor patterns are electrically connected to each other through the through window and a part of the conductor pattern is exposed on an outer surface perpendicular to the laminating direction. A step of forming a laminated body to be formed, a step of integrally firing the laminated body at a temperature at which the laminated body can be sintered, and an external electrode for a part of the conductor pattern exposed on the outer surface of the laminated body. In the method of manufacturing a laminated inductor, the external electrode forming step of connecting and deploying to obtain a laminated inductor, wherein the forming of the laminated body corresponds to the conductor pattern of the internal conductor layer in advance as the second magnetic layer. 0.1 μm to the periphery of the conductor pattern in the laminate is used by using a material that is formed by thinly forming a concave shape in a discontinuous manner so that the vicinity of the contacted portion becomes non-contact.
A method of manufacturing a laminated inductor, characterized in that a gap is formed discontinuously with a thickness in a range of 5 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295732A JP2003100516A (en) | 2001-09-27 | 2001-09-27 | Laminated inductor and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295732A JP2003100516A (en) | 2001-09-27 | 2001-09-27 | Laminated inductor and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003100516A true JP2003100516A (en) | 2003-04-04 |
Family
ID=19117110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001295732A Pending JP2003100516A (en) | 2001-09-27 | 2001-09-27 | Laminated inductor and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003100516A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005159301A (en) * | 2003-10-31 | 2005-06-16 | Murata Mfg Co Ltd | Ceramic electronic component and manufacturing method thereof |
JP2007027353A (en) * | 2005-07-15 | 2007-02-01 | Toko Inc | Manufacturing method of multilayer electronic component |
KR20150080738A (en) * | 2014-01-02 | 2015-07-10 | 삼성전기주식회사 | Method for manufacturing laminated inductor |
KR20150139268A (en) * | 2014-06-03 | 2015-12-11 | 삼성전기주식회사 | Method for manufacturing laminated inductor |
JP2021174784A (en) * | 2020-04-17 | 2021-11-01 | 株式会社村田製作所 | Coil component and manufacturing method thereof |
-
2001
- 2001-09-27 JP JP2001295732A patent/JP2003100516A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005159301A (en) * | 2003-10-31 | 2005-06-16 | Murata Mfg Co Ltd | Ceramic electronic component and manufacturing method thereof |
JP2007027353A (en) * | 2005-07-15 | 2007-02-01 | Toko Inc | Manufacturing method of multilayer electronic component |
KR20150080738A (en) * | 2014-01-02 | 2015-07-10 | 삼성전기주식회사 | Method for manufacturing laminated inductor |
KR20150139268A (en) * | 2014-06-03 | 2015-12-11 | 삼성전기주식회사 | Method for manufacturing laminated inductor |
JP2021174784A (en) * | 2020-04-17 | 2021-11-01 | 株式会社村田製作所 | Coil component and manufacturing method thereof |
JP7173083B2 (en) | 2020-04-17 | 2022-11-16 | 株式会社村田製作所 | Coil component and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3582454B2 (en) | Multilayer coil component and method of manufacturing the same | |
CN102683015B (en) | Multilayer ceramic capacitor and manufacture method thereof | |
JP3551876B2 (en) | Manufacturing method of multilayer ceramic electronic component | |
KR101994722B1 (en) | Multilayered electronic component | |
US20080246579A1 (en) | Laminated coil component and method for manufacturing the same | |
WO2009087928A1 (en) | Open magnetic circuit stacked coil component and process for producing the open magnetic circuit stacked coil component | |
US6238779B1 (en) | Laminated electric part | |
JP2002093623A (en) | Multilayer inductor | |
JPH11265823A (en) | Laminated inductor and manufacture of the same | |
JP3680758B2 (en) | Manufacturing method of multilayer ceramic electronic component | |
JPH11273950A (en) | Multilayer chip coil components | |
JP2001217126A (en) | Multilayer inductor | |
JP2003100516A (en) | Laminated inductor and its manufacturing method | |
JPH1197256A (en) | Laminated chip inductor | |
JPH11219821A (en) | Integrated inductor and manufacture of the same | |
KR20130134868A (en) | Multilayer type inductor | |
JP2000091152A (en) | Stacked electronic part, and its manufacture | |
JP3669404B2 (en) | Manufacturing method of multilayer ceramic substrate | |
JP2002164215A (en) | Laminated ceramic electronic component and its manufacturing method | |
JP2001307937A (en) | Method of manufacturing laminated ceramic electronic part | |
JPH0115159Y2 (en) | ||
JP5245645B2 (en) | Manufacturing method of laminated coil component | |
JP2004006760A (en) | Electronic component | |
JP2003109820A (en) | Laminated inductor and its manufacturing method | |
JPS6346566B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050523 |
|
RD03 | Notification of appointment of power of attorney |
Effective date: 20060811 Free format text: JAPANESE INTERMEDIATE CODE: A7423 |