JP2003090646A - Heat exchanger for air conditioner - Google Patents
Heat exchanger for air conditionerInfo
- Publication number
- JP2003090646A JP2003090646A JP2001287208A JP2001287208A JP2003090646A JP 2003090646 A JP2003090646 A JP 2003090646A JP 2001287208 A JP2001287208 A JP 2001287208A JP 2001287208 A JP2001287208 A JP 2001287208A JP 2003090646 A JP2003090646 A JP 2003090646A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- air conditioner
- inflow pipe
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 130
- 230000005484 gravity Effects 0.000 claims abstract description 16
- 238000003860 storage Methods 0.000 claims abstract description 16
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 239000001294 propane Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical group F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 27
- 230000000694 effects Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000009434 installation Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 238000005219 brazing Methods 0.000 description 2
- 238000007791 dehumidification Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011555 saturated liquid Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
- F25B41/42—Arrangements for diverging or converging flows, e.g. branch lines or junctions
- F25B41/45—Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】
【課題】乾き度の高い気液2相の冷媒を対象とするとき
でも、冷媒を均等に分配して複数のパスに均一に流すこ
とのできる空気調和機用熱交換器を提供する。
【解決手段】冷媒分配器6の流入管1の内面の円周方向
に溝部2を配列するとともに、流入管1の軸方向の一部
に断面積が他の部分より大きな冷媒貯留部3を形成す
る。管壁を流れる液状冷媒9aは、冷媒貯留部3内に一
旦溜まった後に重力より大きな自身の表面張力のもとに
全溝部2内を流れるため、流出管4aおよび4b内への
冷媒9aの分配を均等に行うことが可能となる。
(57) Abstract: A heat exchanger for an air conditioner that can distribute a refrigerant evenly and flow evenly through a plurality of paths even when a two-phase gas-liquid refrigerant having a high degree of dryness is targeted. I will provide a. SOLUTION: A groove 2 is arranged in a circumferential direction on an inner surface of an inflow pipe 1 of a refrigerant distributor 6, and a refrigerant storage section 3 having a larger sectional area than another part is formed in a part of the inflow pipe 1 in an axial direction. I do. The liquid refrigerant 9a flowing through the pipe wall once flows through the entire groove 2 under its own surface tension greater than the gravity after temporarily accumulating in the refrigerant reservoir 3, so that the refrigerant 9a is distributed to the outflow pipes 4a and 4b. Can be performed evenly.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気調和機用熱交
換器に関し、特に、乾き度の高い気液2相の冷媒を対象
とするときでも、冷媒を均等に分配して複数のパスに均
一に流すことのできる空気調和機用熱交換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for an air conditioner, and in particular, even when a gas-liquid two-phase refrigerant having a high degree of dryness is targeted, the refrigerant is evenly distributed to a plurality of paths. The present invention relates to a heat exchanger for an air conditioner that allows uniform flow.
【0002】[0002]
【従来の技術】図10に、一般に知られている空気調和
機の冷凍サイクルを示す。冷暖房兼用タイプの空気調和
機においては、圧縮機21の運転によって高温高圧のガ
スとされた冷媒は、まず、流れ方向を切り替える四方弁
22を介して凝縮熱交換器23の入口のA点に流れる。2. Description of the Related Art FIG. 10 shows a refrigeration cycle of a generally known air conditioner. In the air conditioner for both cooling and heating, the refrigerant made into a high-temperature and high-pressure gas by the operation of the compressor 21 first flows to the point A at the inlet of the condensation heat exchanger 23 via the four-way valve 22 that switches the flow direction. .
【0003】図11は、図10に使用されるクロスフィ
ンチューブ式熱交換器の一般的な構成を示したもので、
一定間隔で並設された複数のフィン24に蛇行状の伝熱
管25を貫通させた構成を有する。冷媒は、伝熱管25
内を流れ、フィン24を通過する間に空気とのあいだで
熱交換が行われる。FIG. 11 shows a general structure of the cross fin tube type heat exchanger used in FIG.
It has a configuration in which a meandering heat transfer tube 25 is penetrated through a plurality of fins 24 arranged in parallel at regular intervals. The refrigerant is the heat transfer tube 25.
Heat is exchanged with the air as it flows through and through the fins 24.
【0004】図10において、以上の構成を有する凝縮
熱交換器23内を流れ、高圧のままで空気との熱交換に
よって放熱した冷媒は、次に、熱交換器23による凝縮
作用によって液化され、過冷却状態(飽和液温より低温
状態)となってB点に流出し、引き続き、電動式弁等の
膨張部26によって等エンタルピ膨張をされた後、低温
低圧下のガス液混在の気液二相流となって蒸発熱交換器
27の入口C点に流れる。In FIG. 10, the refrigerant that has flowed through the condensing heat exchanger 23 having the above structure and has radiated heat by exchanging heat with air under high pressure is liquefied by the condensing action of the heat exchanger 23. It becomes a supercooled state (a temperature lower than the saturated liquid temperature), flows out to the point B, and is subsequently subjected to isenthalpic expansion by the expansion section 26 such as an electrically operated valve, and then the gas-liquid mixture of gas liquid mixed under low temperature and low pressure is used. It becomes a phase flow and flows to the inlet C point of the evaporation heat exchanger 27.
【0005】蒸発熱交換器27に送り込まれた冷媒は、
空気を冷却するために空気からの吸熱作用によって蒸発
し、乾き度〔=ガス質量流量/(ガス質量流量+液質量
流量)〕を増しながら熱交換器27の内部を流れ、中間
のD点および出口E点を経て圧縮機21に戻る。The refrigerant sent to the evaporative heat exchanger 27 is
In order to cool the air, it evaporates by the endothermic action from the air and flows inside the heat exchanger 27 while increasing the dryness [= gas mass flow rate / (gas mass flow rate + liquid mass flow rate)], and at the intermediate point D and It returns to the compressor 21 via the exit point E.
【0006】この閉ループにおいては、熱交換器27内
での流動抵抗による損失が熱交換性能を低下させるよう
に作用するため、複数のパス28と29あるいは30と
31等の組み合わせによる並列分岐の構成を採用するの
が普通であり、このため、C点およびD点には、冷媒を
分流させるための冷媒分配器32が取り付けられる。In this closed loop, the loss due to the flow resistance in the heat exchanger 27 acts so as to reduce the heat exchange performance, so that a parallel branch configuration is formed by combining a plurality of paths 28 and 29 or 30 and 31. Is normally adopted, and therefore, at points C and D, a refrigerant distributor 32 for dividing the refrigerant is attached.
【0007】しかし、以上のサイクル構成によると、分
流の場には、数十倍の密度差を有する液状冷媒とガス状
冷媒とが混在するため、冷媒配管内での気液の自由界面
の発生とそれによる流動の不安定化が生じやすく、この
ため、冷媒分配器32の設置角度に生産上の個体差等に
よるばらつきが存在すると、液冷媒の受ける重力の差に
よって、たとえば、30と31間に液状冷媒量が充分な
パスと枯渇するパスとが発生するようになり、枯渇部分
以降の熱交換を低めて空気調和機としての機能を低下さ
せるようになる。However, according to the above cycle configuration, since the liquid refrigerant and the gaseous refrigerant having a density difference of several tens of times are mixed in the split flow field, a free interface of gas and liquid is generated in the refrigerant pipe. When the installation angle of the refrigerant distributor 32 is varied due to individual differences in production or the like, the difference in gravity received by the liquid refrigerant causes, for example, between 30 and 31. Thus, a path with a sufficient amount of liquid refrigerant and a path with exhaustion will occur, and the heat exchange after the exhaustion portion will be reduced to lower the function as an air conditioner.
【0008】また、サイクルドライ方式、即ち、室内熱
交換器となる蒸発熱交換器の一部を凝縮熱交換器として
働かせるとともに、それぞれの出口空気を混合すること
によって室内機の吹出温度を下げないようにした高快適
性の再熱除湿方式を採用する場合には、蒸発熱交換器2
7の途中に冷媒分配器32を設ける形となるため、冷媒
の乾き度がさらに高くなり、冷媒の分配はより一層難し
いものとなる。[0008] Further, in the cycle dry system, that is, a part of the evaporative heat exchanger serving as an indoor heat exchanger is made to function as a condensing heat exchanger, and the respective outlet air is mixed so that the blowout temperature of the indoor unit is not lowered. When adopting the high comfort reheat dehumidification method as described above, the evaporative heat exchanger 2
Since the refrigerant distributor 32 is provided in the middle of step 7, the dryness of the refrigerant is further increased, and the distribution of the refrigerant becomes more difficult.
【0009】図12は、図10のサイクル構成をモリエ
ル線図上に表したものである。破線がフロン系冷媒によ
る一般的な空気調和機用冷凍サイクルを示し、反時計回
りの動作をする。図中のA〜Eは、図10のA〜Eに相
当する。この図において冷媒分配上問題となるのは、C
点よりE点までの低温および低圧の蒸発熱交換器の部分
である。FIG. 12 shows the cycle configuration of FIG. 10 on the Mollier diagram. A broken line shows a general refrigeration cycle for an air conditioner using a chlorofluorocarbon refrigerant, which operates counterclockwise. A to E in the figure correspond to A to E in FIG. In this figure, the problem in refrigerant distribution is C
It is a part of the low-temperature and low-pressure evaporation heat exchanger from the point to the point E.
【0010】等エンタルピ膨張後の冷媒は、C点より蒸
発熱交換器内に流入する。このC点近くでの乾き度は、
飽和液線(乾き度x=0)があるように比較的小さくな
り、一般の空気調和機の場合でx=0.2前後のレベル
となる。また、この点においては、冷媒の液量が多いた
め、冷媒液に旋回成分を与えるなどして重力よりも大き
な力を発生させ、これによって冷媒分配の改善を図るこ
とが理論上可能となる。After the isenthalpic expansion, the refrigerant flows into the evaporative heat exchanger from point C. The dryness near this C point is
There is a saturated liquid line (dryness x = 0), which is relatively small, and the level is around x = 0.2 in the case of a general air conditioner. Further, at this point, since the amount of the refrigerant is large, it is theoretically possible to generate a force larger than gravity by giving a swirling component to the refrigerant liquid, thereby improving the refrigerant distribution.
【0011】冷媒液に旋回成分を与える具体的手段とし
ては、たとえば、特開平5−18638号、特開平6−
317364号、特開平7−12429号、特開200
0−105026号あるいは特開2000−27488
5号等の方策を挙げることができ、これらには、熱交換
器に組み込まれる冷媒分配器の分岐部前後の管内面に螺
旋状の溝を設け、この溝で冷媒の流れに旋回力を与える
ことによって冷媒の偏流を抑制することが示されてい
る。Specific means for giving a swirling component to the refrigerant liquid include, for example, Japanese Patent Laid-Open Nos. 5-18638 and 6-
317364, JP-A-7-12429, JP-A-200
0-105026 or JP 2000-27488.
Measures such as No. 5 can be mentioned. These are provided with spiral grooves on the inner surface of the pipe before and after the branch portion of the refrigerant distributor incorporated in the heat exchanger, and the groove gives a swirling force to the flow of the refrigerant. It has been shown that this suppresses the uneven flow of the refrigerant.
【0012】また、特開平8−68575号によれば、
これには、分配器の内部に小径管の束を螺旋状に形成す
ることによって冷媒の旋回を発生させ、これによる攪拌
作用によって冷媒の偏流をなくすようにした冷媒分配器
を組み込んだ空気調和機用熱交換器が示されており、以
上に述べた各号の熱交換器は、それぞれに、相応の偏流
防止効果を有するものとして説明されている。According to Japanese Patent Laid-Open No. 8-68575,
An air conditioner incorporating a refrigerant distributor in which a bundle of small-diameter tubes is spirally formed inside the distributor to cause the refrigerant to swirl and the non-uniform flow of the refrigerant is eliminated by the stirring action by this A heat exchanger for use is shown, and each of the above-mentioned heat exchangers is described as having a corresponding drift prevention effect.
【0013】[0013]
【発明が解決しようとする課題】しかし、従来のこれら
の空気調和機用熱交換器によると、分岐パスを蒸発熱交
換器の途中に設ける構成に適用するとき、冷媒乾き度が
特に高い条件となるために、液状冷媒が極少となって旋
回流を発生させにくい問題を有している。However, according to these conventional heat exchangers for air conditioners, when the branch path is provided in the middle of the evaporative heat exchanger, the condition that the dryness of the refrigerant is particularly high is Therefore, there is a problem that the liquid refrigerant becomes extremely small and swirl flow is difficult to be generated.
【0014】たとえば、空気調和機で多用されているR
410A冷媒を例にとると、蒸発圧力1300kPa、
蒸発温度16℃、および乾き度0.65程度の分岐位置
におけるこのものの状態は、ガス状物が管断面の93%
を占める一方、液状物が僅か7%でしかない気液2相と
なるため、これに旋回力を与えるには著しい困難を伴う
こととなる。For example, R, which is often used in air conditioners
Taking the 410A refrigerant as an example, the evaporation pressure is 1300 kPa,
At the branching position where the evaporation temperature is 16 ° C and the dryness is about 0.65, the state of the gas is 93% of the cross section of the pipe.
On the other hand, since the liquid substance is a gas-liquid two-phase containing only 7%, it is extremely difficult to give a swirling force to this.
【0015】従って、本発明の目的は、乾き度の高い気
液2相の冷媒を対象とするときでも、冷媒を均等に分配
して複数のパスに均一に流すことのできる空気調和機用
熱交換器を提供することにある。Therefore, an object of the present invention is to provide a heat for an air conditioner capable of evenly distributing the refrigerant and allowing it to flow evenly through a plurality of paths even when a gas-liquid two-phase refrigerant having a high degree of dryness is targeted. To provide an exchange.
【0016】[0016]
【課題を解決するための手段】本発明は、上記の目的を
達成するため、冷媒の流入管と、前記流入管より分岐さ
れて前記冷媒を流出させる複数の流出管より構成される
冷媒分配器を備えた空気調和機用熱交換器において、前
記流入管は、複数の溝部を内面の円周方向に配列してい
るとともに、軸方向の一部に断面積が他の部分より大き
な冷媒貯留部を有することを特徴とする空気調和機用熱
交換器を提供するものである。In order to achieve the above-mentioned object, the present invention provides a refrigerant distributor comprising a refrigerant inflow pipe and a plurality of outflow pipes branched from the inflow pipe and outflowing the refrigerant. In the heat exchanger for an air conditioner, the inflow pipe has a plurality of groove portions arranged in the circumferential direction of the inner surface, and a refrigerant storage portion having a cross-sectional area in a part of the axial direction larger than other parts. The present invention provides a heat exchanger for an air conditioner, which comprises:
【0017】本発明において、冷媒の均等分配をより高
度に行わせるためには、組み込まれる冷媒分配器におけ
る流入管の構成条件を、使用する冷媒の種類に応じてそ
れぞれ下記に示される(1)式および(2)式のように
設定することが好ましい。In the present invention, in order to achieve even distribution of the refrigerant to a higher degree, the constituent conditions of the inflow pipe in the built-in refrigerant distributor are shown below according to the type of the refrigerant used (1). It is preferable to set as in the formula and the formula (2).
【0018】即ち、冷媒としてフロン系のものを使用す
るときには、流入管の軸方向の重力方向に対する角度を
θ、溝部の両側の凸部によって形成される流入管の最小
内径をDmin、および溝部の最大幅をWmaxとしたとき、
下記式(1)式の関係を成立させていることが好まし
く、一方、冷媒が炭酸ガスやプロパンガスのような自然
系冷媒のときには、下記(2)式の関係を成立させてい
ることが好ましい。That is, when a CFC refrigerant is used as the refrigerant, the angle of the inflow pipe with respect to the gravity direction in the axial direction is θ, the minimum inner diameter of the inflow pipe formed by the convex portions on both sides of the groove is D min , and the groove is Let W max be the maximum width of
It is preferable that the relation of the following formula (1) is established, while it is preferable that the relation of the following formula (2) is established when the refrigerant is a natural refrigerant such as carbon dioxide gas or propane gas. .
【数3】 [Equation 3]
【数4】 [Equation 4]
【0019】流入管の内面の円周方向に配列される溝部
の断面形状としては、台形、三角形、四角形あるいは半
円形のいずれかであることが好ましく、上記式(1)式
および(2)式におけるWmaxは、たとえば、溝部が断
面三角形であれば、その開口端部の内幅がこれに相当す
ることになる。The cross-sectional shape of the grooves arranged in the circumferential direction of the inner surface of the inflow pipe is preferably trapezoidal, triangular, quadrangular or semicircular, and the above formulas (1) and (2) are used. For example, if the groove has a triangular cross section, the inner width of the opening end corresponds to W max in.
【0020】[0020]
【発明の実施の形態】次に、本発明による空気調和機用
熱交換器の実施の形態を説明する。図1は、熱交換器に
組み込まれる冷媒分配器の構成を示したもので、1は気
液2相の冷媒が矢印F方向より流入する流入管、2はそ
の内面に形成された複数の溝部、3は流入管1の基部側
の一部に形成された冷媒貯留部を示し、他の部分より大
きな断面積が与えられている。BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a heat exchanger for an air conditioner according to the present invention will be described. FIG. 1 shows the configuration of a refrigerant distributor incorporated in a heat exchanger, where 1 is an inflow pipe through which a gas-liquid two-phase refrigerant flows in the direction of arrow F, and 2 is a plurality of groove portions formed on the inner surface thereof. Reference numeral 3 denotes a refrigerant storage portion formed in a part of the inflow pipe 1 on the base side, and has a larger cross-sectional area than other portions.
【0021】4aおよび4bは、流入管1の先端に設け
られ、流入管1側より送られる冷媒を分配して流出させ
る複数の流出管、5は流入管1と流出管4aおよび4b
を一体化させた部分に設けられたロウ付けによる結合部
を示す。なお、図中の角度θは、以上の構成の冷媒分配
器6の、熱交換器内での重力に対する設置角度を意味す
る。4a and 4b are provided at the tip of the inflow pipe 1, and a plurality of outflow pipes 5 for distributing and sending out the refrigerant sent from the inflow pipe 1 side, and 5 are inflow pipe 1 and outflow pipes 4a and 4b.
The joint part by the brazing provided in the integrated part is shown. The angle θ in the figure means the installation angle of the refrigerant distributor 6 having the above-mentioned configuration with respect to gravity in the heat exchanger.
【0022】図2の(a)は、流入管1の軸方向におけ
る断面形状を示したもので、複数の溝部2を内面の円周
方向全面に配列した構成を有する。Dminは、溝部2の
構成要素として溝部2の両側に位置している凸部2aに
よって形成される流入管1の最小内径を示す。FIG. 2A shows a sectional shape of the inflow pipe 1 in the axial direction, and has a structure in which a plurality of groove portions 2 are arranged on the entire inner surface in the circumferential direction. D min indicates the minimum inner diameter of the inflow pipe 1 formed by the convex portions 2 a located on both sides of the groove 2 as a component of the groove 2.
【0023】図2の(b)は、図2の(a)のH部の水
平展開図を示し、溝部2は、台形に形成されており、W
maxは、この台形形状における最大幅を示す。図3は、
流入管1の一部を展開して示したもので、溝部2には、
流入管1の軸方向に対して角度βが与えられている。FIG. 2B is a horizontal development view of the portion H of FIG. 2A, in which the groove 2 is trapezoidal and W
max indicates the maximum width in this trapezoidal shape. Figure 3
A part of the inflow pipe 1 is expanded and shown, and the groove 2 has
An angle β is given to the axial direction of the inflow pipe 1.
【0024】図4は、空気調和機の熱交換器内におい
て、配管7にエルボ8を介して接合された冷媒分配器6
の設置状態を示したものである。このような構成におい
ては、熱交換器(図示せず)の途中で乾き度が高められ
た気液2相冷媒中の液状冷媒9aは、その性質上、環状
流となって管壁面に流れるようになり、一方、ガス状冷
媒9bは、同じくその性質上、中央部を高速で流れるよ
うになる。FIG. 4 shows a refrigerant distributor 6 joined to a pipe 7 via an elbow 8 in a heat exchanger of an air conditioner.
The installation state of is shown. In such a configuration, the liquid refrigerant 9a in the gas-liquid two-phase refrigerant whose dryness is increased in the middle of the heat exchanger (not shown) is, by its nature, flown into the pipe wall surface as an annular flow. On the other hand, the gaseous refrigerant 9b also flows at high speed in the central portion due to its nature.
【0025】この場合、通常の流れにおいては、前流部
にエルボ8等の曲がり部が存在すると、液状冷媒9aの
厚さが不均一化した偏流となるのが普通であり、このた
め、均一な流れの維持が困難となって分配器が本来有す
べき均等分配の機能が失われることとなるが、本実施の
形態の場合には、断面積大の冷媒貯留部3が存在するた
め、液状冷媒9aは、一旦、この貯留部3内に溜まり、
その後で円周方向に配置された溝部2内に流入すること
となる。In this case, in the normal flow, if there is a curved portion such as the elbow 8 in the front flow portion, it is common that the liquid refrigerant 9a has a non-uniform thickness, so that a uniform flow is obtained. It becomes difficult to maintain such a smooth flow, and the function of uniform distribution originally possessed by the distributor is lost. However, in the case of the present embodiment, since the refrigerant storage part 3 having a large cross-sectional area exists, The liquid refrigerant 9a once collects in the storage section 3,
After that, it flows into the groove portions 2 arranged in the circumferential direction.
【0026】そして、貯留部3より溝部2内への液状冷
媒9aの流入とその後の流れは、重力よりも大きな冷媒
9a自身の表面張力のもとに流入管1の円周方向におい
て均等に行われることとなり、従って、たとえ、設置角
度θに生産上のばらつきが内在していたとしても、この
間の冷媒流が重力の影響を受けることはなく、安定かつ
均等な状態での冷媒分配が行われるようになる。流出管
4aおよび4bからは、等量の気液2相の冷媒9が排出
されることとなる。The inflow and the subsequent flow of the liquid refrigerant 9a from the storage portion 3 into the groove portion 2 are evenly performed in the circumferential direction of the inflow pipe 1 under the surface tension of the refrigerant 9a itself which is larger than gravity. Therefore, even if there is a production variation in the installation angle θ, the refrigerant flow during this period is not affected by gravity, and stable and uniform refrigerant distribution is performed. Like An equal amount of gas-liquid two-phase refrigerant 9 is discharged from the outflow pipes 4a and 4b.
【0027】冷媒9aの表面張力と重力の関係より溝部
2の寸法を決定するときに有効となる指標として、無次
元数であるボンド数を挙げることができる。下記(3)
式は、図1の設置角度θと図2の最小内径Dminおよび
最大幅Wmaxを織り込んで、ボンド数Boを求めるため
の数式であり、重力加速度をg、液密度をρ1、ガス密
度をρvおよび液状冷媒9aの表面張力をσとしたとき
の関係式である。The bond number, which is a dimensionless number, can be cited as an index that is effective when determining the size of the groove 2 from the relationship between the surface tension of the refrigerant 9a and the gravity. Below (3)
The formula is a formula for obtaining the bond number Bo by weaving the installation angle θ of FIG. 1 and the minimum inner diameter D min and the maximum width W max of FIG. 2, and the gravity acceleration is g, the liquid density is ρ1, and the gas density is It is a relational expression when (rho) v and the surface tension of the liquid refrigerant 9a are set to (sigma).
【数5】 [Equation 5]
【0028】この式において、ボンド数Boが1よりも
小さな範囲が重力の作用よりも表面張力の作用のほうが
大きな状態であり、これによって重力の方向に対する設
置角度θと溝部2の寸法の関係を定めることができる。In this equation, the effect of surface tension is larger than the effect of gravity in the range where the bond number Bo is less than 1, and this shows the relationship between the installation angle θ and the dimension of the groove 2 with respect to the direction of gravity. Can be set.
【0029】図5は、上記(3)式に物性値を代入して算
出した最小内径Dmin(単位:mm)と溝部2における
最大幅Wmax(単位:mm)の積の逆数を横軸とし、許
容される設置角度θを縦軸としたときの関係図である。
図には、空気調和機において多用されているフロン系の
冷媒R410Aのほか、R407C、R134a、R2
2およびR32と、自然系冷媒である炭酸ガスとプロパ
ンガスの適用結果を示す。FIG. 5 shows the reciprocal of the product of the minimum inner diameter D min (unit: mm) and the maximum width W max (unit: mm) in the groove portion 2 calculated by substituting the physical property values into the above equation (3). Is a relational diagram when the allowable installation angle θ is taken as the vertical axis.
In the figure, in addition to the CFC-based refrigerant R410A that is often used in air conditioners, R407C, R134a, and R2.
2 and R32, and the application results of carbon dioxide gas and propane gas that are natural refrigerants are shown.
【0030】なお、各冷媒とも、空気調和機としての蒸
発条件の最低温度と考えられる−20℃における物性値
を使用して計算した。従って、これより高温の条件下と
なる場合には、グラフに表される線の勾配は表示されて
いるものよりも緩やかとなる。It should be noted that each refrigerant was calculated using the physical property value at -20 ° C which is considered to be the lowest temperature of the evaporation condition as an air conditioner. Therefore, when the temperature is higher than this, the slope of the line shown in the graph becomes gentler than that displayed.
【0031】角度θは、下記(4)式より求め、係数C
をR410Aの場合が80、R32の場合が91、およ
びプロパンガスの場合が166にそれぞれ設定するとと
もに、図示における線の右側を本発明の範囲内とした。
即ち、図5によれば、フロン系の冷媒においてはR3
2、自然系の冷媒においてはプロパンガスがそれぞれの
冷媒系の代表となり得、従って、これらの下側のゾーン
が本発明の範囲となる。この図5には、前述した(1)
式および(2)式の成立する意味が示されている。The angle θ is obtained by the following equation (4), and the coefficient C
Was set to 80 in the case of R410A, 91 in the case of R32, and 166 in the case of propane gas, and the right side of the line in the drawing was within the scope of the present invention.
That is, according to FIG.
2. In natural refrigerants, propane gas can be representative of each refrigerant system, and thus their lower zone is within the scope of the invention. In FIG. 5, the above-mentioned (1)
The meanings of the expressions and (2) are shown.
【数6】 [Equation 6]
【0032】図6は、本発明の空気調和機用熱交換器に
おいて、冷媒分配器6の流入管1に冷媒貯留部3が存在
することによる効果を、実験により証明したものであ
る。冷媒分配器6の流入管1の入口側にエルボ8を設
け、冷媒の循環量を62kg/hに設定するとともに、
分配器6の入口での乾き度を0.65に設定したとき
の、一方の流出管4aの側における冷媒量の適正量から
の偏差を示したものである。FIG. 6 shows, by experiments, the effect of the presence of the refrigerant reservoir 3 in the inflow pipe 1 of the refrigerant distributor 6 in the heat exchanger for an air conditioner of the present invention. An elbow 8 is provided on the inlet side of the inflow pipe 1 of the refrigerant distributor 6, and the circulation rate of the refrigerant is set to 62 kg / h.
It shows the deviation from the proper amount of the refrigerant amount on the one outflow pipe 4a side when the dryness at the inlet of the distributor 6 is set to 0.65.
【0033】図において、左側に示されたデータは、流
入管1に冷媒貯留部3が形成されていない冷媒分配器を
組み込んだ場合、一方、右側のデータは、冷媒貯留部3
の断面積が他の部分の2倍に構成された冷媒分配器を組
み込んだときのもので、これによれば、前者が適正分配
量に対して10%の偏差を示しているのに比べ、後者の
それは僅かに2%でしかなく、冷媒貯留部3の存在価値
が顕著に現れている。In the figure, the data shown on the left side shows the case where a refrigerant distributor in which the refrigerant storage part 3 is not formed is incorporated in the inflow pipe 1, while the data on the right side shows the refrigerant storage part 3.
When a refrigerant distributor having a cross-sectional area of 2 times that of the other parts is incorporated, this shows that the former shows a deviation of 10% from the proper distribution amount. The latter is only 2%, and the existence value of the refrigerant storage portion 3 is remarkably exhibited.
【0034】なお、本発明における冷媒の均等配分の効
果が従来の旋回力付与に基づくものでないことは、図3
の角度βを0〜8°の範囲内において適宜設定した例
と、20°に設定した例を対比することによって確認さ
れている。It should be noted that the effect of the even distribution of the refrigerant in the present invention is not based on the conventional application of the turning force.
It has been confirmed by comparing an example in which the angle β is appropriately set within the range of 0 to 8 ° with an example in which the angle β is set to 20 °.
【0035】即ち、旋回の起きにくい0〜8°の数例に
おいて充分な効果が得られている一方、旋回力付与に充
分となる角度20°の場合も効果はこれらと同レベルで
あり、従って、このことより、本発明の効果が旋回力に
よらないことは明白である。角度βに制約のないことは
いうまでもない。That is, the sufficient effect is obtained in several cases of 0 to 8 ° where turning is difficult to occur, while the effect is at the same level when the angle is 20 °, which is sufficient to impart the turning force. From this, it is clear that the effect of the present invention does not depend on the turning force. It goes without saying that there is no restriction on the angle β.
【0036】なお、溝部2の形成個所としては、図4の
ように冷媒貯留部3を除いた流入管1の全長とする以外
に、たとえば、これを一部形成としたり、あるいは冷媒
貯留部3を含む全長とするなど、冷媒貯留部3を形成す
ることによる上述した効果が発揚される限り、構成およ
び形式を問わない。It should be noted that the groove portion 2 may be formed at a portion other than the entire length of the inflow pipe 1 excluding the refrigerant storage portion 3 as shown in FIG. The configuration and the form are not limited as long as the above-described effect by forming the refrigerant storage portion 3 is achieved, such as the total length including
【0037】図7は、本発明の他の実施の形態を示した
もので、溝部2の形状例を示す。(a)は、溝部2を四
角形に形成した例、(b)は、三角形に形成した例、そ
して(c)は、半円状に形成した例を示す。いずれも溝
部2において最も大きな幅が本発明にいう最大幅Wmax
となり、溝部2の両側に位置する凸部2aによって流入
管1の最小内径Dminが定められる。FIG. 7 shows another embodiment of the present invention, showing an example of the shape of the groove 2. (A) shows an example in which the groove portion 2 is formed in a quadrangle, (b) shows an example in which it is formed in a triangle, and (c) shows an example in which it is formed in a semicircular shape. In each case, the largest width in the groove portion 2 is the maximum width W max according to the present invention.
Therefore, the minimum inner diameter D min of the inflow pipe 1 is determined by the convex portions 2a located on both sides of the groove portion 2.
【0038】図8は、本発明における冷媒分配器6の流
入管1と流出管4aおよび4bの結合状態を示したもの
で、(a)は、冷媒が溝部2より流出管4a、4bに流
れやすくなるように流入管1と流出管4a、4bの端部
同士を接触させ、相互間隙をL=0となるように一体化
させた例であり、一方、(b)は、流入管1と流出管4
aおよび4bの間に間隙Lが形成された例である。FIG. 8 shows a connection state of the inflow pipe 1 and the outflow pipes 4a and 4b of the refrigerant distributor 6 in the present invention. In FIG. 8A, the refrigerant flows from the groove portion 2 to the outflow pipes 4a and 4b. This is an example in which the end portions of the inflow pipe 1 and the outflow pipes 4a and 4b are brought into contact with each other so as to be easy, and are integrated so that the mutual gap is L = 0. On the other hand, FIG. Outflow pipe 4
In this example, a gap L is formed between a and 4b.
【0039】後者の例は、結合部5を形成するためのロ
ウ付け作業において管端部同士の接触が精度上難しい場
合に生起しやすい構成であるが、流入管1と流出管4a
および4bの間で冷媒の流通が行われる限り支障はな
く、許される構成である。The latter example is a structure that tends to occur when the ends of the pipes are difficult to contact with each other due to the precision in the brazing work for forming the joint 5, but the inflow pipe 1 and the outflow pipe 4a.
As long as the refrigerant is circulated between 4 and 4b, there is no problem and the configuration is allowed.
【0040】図9は、本発明の熱交換器を配管の途中に
組み込んだ空気調和機におけるパス配管の概略を示した
もので、上部熱交換器10、下部熱交換器11および横
流ファン12の組み合わせにより構成されている。FIG. 9 shows an outline of the path piping in the air conditioner in which the heat exchanger of the present invention is incorporated in the middle of the piping. The upper heat exchanger 10, the lower heat exchanger 11 and the cross flow fan 12 are shown in FIG. It is composed of a combination.
【0041】冷房運転時の冷媒は、冷媒分配器13によ
り分岐されて上部熱交換器10内を流れ、その後、1つ
にまとまってサイクルドライ弁(除湿膨張弁)14を通
過した後、2パスとなって下部熱交換器11内を流れ
る。なお、サイクルドライ弁14は、通常の冷房運転の
ときに全開にされ、除湿運転時に絞られる。During the cooling operation, the refrigerant is branched by the refrigerant distributor 13 and flows in the upper heat exchanger 10. After that, the refrigerant collectively passes through the cycle dry valve (dehumidification expansion valve) 14 and then passes through two paths. And flows in the lower heat exchanger 11. The cycle dry valve 14 is fully opened during the normal cooling operation and throttled during the dehumidifying operation.
【0042】6は図1〜図3に示される冷媒分配器であ
り、その流出管4aおよび4bには、下部熱交換器11
内の2つのパス15および16が接続されている。冷媒
分配器6に流入する冷媒は、当該分配器6の流入管1が
有する冷媒貯留部3を経た後、流入管1の円周方向に配
列された全溝部2内に流れ、その後、自身の表面張力に
より重力の影響を抑制しながら2つの流出管4aおよび
4b内に均等に流れ、パス15および16に流出する。Reference numeral 6 denotes the refrigerant distributor shown in FIGS. 1 to 3, and the lower heat exchanger 11 is provided in the outflow pipes 4a and 4b thereof.
The two paths 15 and 16 in are connected. The refrigerant flowing into the refrigerant distributor 6 passes through the refrigerant storage portion 3 of the inflow pipe 1 of the distributor 6 and then flows into all the groove portions 2 arranged in the circumferential direction of the inflow pipe 1, and thereafter, The surface tension evenly flows into the two outflow pipes 4a and 4b while suppressing the influence of gravity, and flows out to the paths 15 and 16.
【0043】この結果、下部熱交換器11は、パス15
および16における均等な冷媒流を保証されることにな
り、所定の機能を発揚することとなる。従って、熱交換
器製造時のばらつき等による冷媒分配器6の設置角度θ
に変位が内在していたとしても、その影響が現れること
はなく、常に良好な状態のもとでの空気調和機の運転が
可能となる。As a result, the lower heat exchanger 11 passes through the path 15
An even refrigerant flow in and 16 will be ensured and a given function will be launched. Therefore, the installation angle θ of the refrigerant distributor 6 due to variations in manufacturing the heat exchanger
Even if there is a displacement in the air conditioner, the influence does not appear, and the air conditioner can always be operated in a good condition.
【0044】なお、以上の図1〜図9においては、流出
管4aおよび4bを上方に配置し、冷媒の流れが重力方
向に対して上昇流となる構成例について述べたが、流出
管4aおよび4bを下向きに配置した下降流の構成とす
る場合にも、同様の効果が得られることはいうまでもな
い。In FIGS. 1 to 9 described above, a configuration example in which the outflow pipes 4a and 4b are arranged above and the flow of the refrigerant is an upward flow with respect to the gravity direction has been described. It is needless to say that the same effect can be obtained also in the case of the downward flow configuration in which 4b is arranged downward.
【0045】[0045]
【発明の効果】以上説明したように、本発明による空気
調和機用熱交換器によれば、組み込まれる冷媒分配器の
流入管内面の円周方向に複数の溝部を形成するととも
に、流入管の軸方向の一部に断面積が他の部分より大き
な冷媒貯留部を形成した構成とするため、流入管に流入
した冷媒は、一旦、この冷媒貯留部内に溜まった後、重
力の影響を受けることなく管円周方向の全溝部内に均等
に流入するため、複数の流出管に対する冷媒分配を均等
に行うことが可能となる。As described above, according to the heat exchanger for an air conditioner of the present invention, a plurality of grooves are formed in the circumferential direction of the inner surface of the inflow pipe of the incorporated refrigerant distributor, and the inflow pipe is Since the refrigerant storage part having a larger cross-sectional area than the other part is formed in a part of the axial direction, the refrigerant flowing into the inflow pipe may be temporarily stored in the refrigerant storage part and then be affected by gravity. Instead, the refrigerant uniformly flows into all the groove portions in the circumferential direction of the pipe, so that it is possible to uniformly distribute the refrigerant to the plurality of outflow pipes.
【0046】そして、以上のメカニズムに基づく冷媒の
分配は、冷媒の乾き度の高低に関係なく行われるもので
あり、従って、常に安定した機能を有する空気調和機用
熱交換器を提供することができる。The distribution of the refrigerant based on the above mechanism is performed regardless of the degree of dryness of the refrigerant, and therefore, it is possible to provide a heat exchanger for an air conditioner which always has a stable function. it can.
【図1】本発明による空気調和機用熱交換器の実施の形
態における冷媒分配器の構成を示す説明図。FIG. 1 is an explanatory diagram showing a configuration of a refrigerant distributor in an embodiment of a heat exchanger for an air conditioner according to the present invention.
【図2】図1に示された冷媒分配器の断面構造を示す説
明図であり、(a)は図1のG−G断面図、(b)は
(a)のH部の水平展開図を示す。2A and 2B are explanatory views showing a sectional structure of the refrigerant distributor shown in FIG. 1, in which FIG. 2A is a sectional view taken along line GG in FIG. 1, and FIG. 2B is a horizontal development view of a portion H in FIG. Indicates.
【図3】図1に示された流入管の内面構成を示す展開
図。FIG. 3 is a development view showing an inner surface configuration of the inflow pipe shown in FIG. 1.
【図4】図1に示された冷媒分配器の取付構造を示す説
明図。FIG. 4 is an explanatory view showing a mounting structure of the refrigerant distributor shown in FIG. 1.
【図5】図1に示された冷媒分配器において、流入管の
最小内径と流入管内面に形成された溝部における最大幅
の積の逆数と、設置角度との関係を示す説明図。5 is an explanatory diagram showing a relationship between an installation angle and a reciprocal of a product of a minimum inner diameter of an inflow pipe and a maximum width of a groove formed on an inner surface of the inflow pipe in the refrigerant distributor shown in FIG.
【図6】本発明による空気調和機用熱交換器において、
冷媒貯留部の効果を示す説明図。FIG. 6 shows a heat exchanger for an air conditioner according to the present invention,
Explanatory drawing which shows the effect of a refrigerant | coolant storage part.
【図7】本発明による空気調和機用熱交換器の他の実施
の形態を示す説明図であり、(a)〜(c)は、冷媒分
配器の流入管内面に形成される溝部の構成例を示す。FIG. 7 is an explanatory view showing another embodiment of the heat exchanger for an air conditioner according to the present invention, in which (a) to (c) show the configuration of a groove portion formed on the inner surface of the inflow pipe of the refrigerant distributor. Here is an example:
【図8】本発明における冷媒分配器の流入管と流出管の
関係例を示す説明図。FIG. 8 is an explanatory diagram showing an example of a relationship between an inflow pipe and an outflow pipe of the refrigerant distributor according to the present invention.
【図9】本発明による熱交換器を組み込んだ空気調和機
におけるパス配管例の概略を示す説明図。FIG. 9 is an explanatory diagram showing an outline of an example of path piping in an air conditioner incorporating a heat exchanger according to the present invention.
【図10】空気調和機の冷凍サイクルを示す説明図。FIG. 10 is an explanatory diagram showing a refrigeration cycle of the air conditioner.
【図11】クロスフィンチューブ式熱交換器の構成例を
示す説明図。FIG. 11 is an explanatory diagram showing a configuration example of a cross fin tube type heat exchanger.
【図12】図10のサイクル構成をモリエル線図上に表
した説明図。12 is an explanatory diagram showing the cycle configuration of FIG. 10 on a Mollier diagram.
1 流入管 2 溝部 2a 凸部 3 冷媒貯留部 4a、4b 流出管 5 結合部 6、13 冷媒分配器 8 エルボ 9 冷媒(気液2相) 9a 液状冷媒 9b ガス状冷媒 10 上部熱交換器 11 下部熱交換器 12 横流ファン 14 サイクルドライ弁 15、16 パス 1 inflow pipe 2 groove 2a convex part 3 Refrigerant reservoir 4a, 4b Outflow pipe 5 connection 6,13 Refrigerant distributor 8 Elbow 9 Refrigerant (gas-liquid two-phase) 9a Liquid refrigerant 9b Gaseous refrigerant 10 Upper heat exchanger 11 Lower heat exchanger 12 Cross-flow fans 14 cycle dry valve 15, 16 passes
フロントページの続き (72)発明者 鈴木 善夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 (72)発明者 法福 守 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 (72)発明者 乾 謙一 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 (72)発明者 佐々木 重幸 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内Continued front page (72) Inventor Yoshio Suzuki Hitachi, 1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Electric Cable Co., Ltd. (72) Inventor Hobomori Hitachi, 1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Electric Cable Co., Ltd. (72) Inventor Kenichi Inui Hitachi, 1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Electric Cable Co., Ltd. (72) Inventor Shigeyuki Sasaki 502 Kintatemachi, Tsuchiura City, Ibaraki Japan Tate Seisakusho Mechanical Research Center
Claims (4)
て前記冷媒を流出させる複数の流出管より構成される冷
媒分配器を備えた空気調和機用熱交換器において、 前記流入管は、複数の溝部を内面の円周方向に配列して
いるとともに、軸方向の一部に断面積が他の部分より大
きな冷媒貯留部を有することを特徴とする空気調和機用
熱交換器。1. A heat exchanger for an air conditioner, comprising: a refrigerant distributor comprising a refrigerant inflow pipe and a plurality of outflow pipes branched from the inflow pipe to let out the refrigerant. A heat exchanger for an air conditioner, wherein a plurality of groove portions are arranged in a circumferential direction of an inner surface, and a refrigerant storage portion having a larger cross-sectional area than the other portion is provided in a part of the axial direction.
する角度をθ、前記溝部の両側の凸部によって形成され
る最小内径をDmin、および前記溝部における最大幅を
Wmaxとしたとき、前記冷媒がフロン系のときに下記
(1)式の関係を成立させていることを特徴とする請求
項1項記載の空気調和機用熱交換器。 【数1】 2. When the angle of the inflow pipe with respect to the direction of gravity in the axial direction is θ, the minimum inner diameter formed by the convex portions on both sides of the groove is D min , and the maximum width in the groove is W max. The heat exchanger for an air conditioner according to claim 1, wherein the relationship of the following formula (1) is established when the refrigerant is a chlorofluorocarbon type. [Equation 1]
する角度をθ、前記溝部の両側の凸部によって形成され
る最小内径をDmin、および前記溝部における最大幅を
Wmaxとしたとき、前記冷媒が炭酸ガス、プロパンガス
等の自然系冷媒のときに下記(2)式の関係を成立させ
ていることを特徴とする請求項1項記載の空気調和機用
熱交換器。 【数2】 3. The inflow pipe, wherein an angle of the axial direction with respect to the gravity direction is θ, a minimum inner diameter formed by convex portions on both sides of the groove is D min , and a maximum width in the groove is W max. The heat exchanger for an air conditioner according to claim 1, characterized in that when the refrigerant is a natural refrigerant such as carbon dioxide gas or propane gas, the following equation (2) is satisfied. [Equation 2]
形、四角形あるいは半円形に形成されていることを特徴
とする請求項1項記載の空気調和機用熱交換器。4. The heat exchanger for an air conditioner according to claim 1, wherein the cross section of the groove is trapezoidal, triangular, quadrangular or semicircular.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001287208A JP2003090646A (en) | 2001-09-20 | 2001-09-20 | Heat exchanger for air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001287208A JP2003090646A (en) | 2001-09-20 | 2001-09-20 | Heat exchanger for air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003090646A true JP2003090646A (en) | 2003-03-28 |
Family
ID=19110054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001287208A Pending JP2003090646A (en) | 2001-09-20 | 2001-09-20 | Heat exchanger for air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003090646A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1895250A1 (en) * | 2006-08-21 | 2008-03-05 | Mitsubishi Electric Corporation | Refrigerant distribution device |
CN101182965B (en) * | 2006-11-14 | 2010-06-02 | 日立空调·家用电器株式会社 | Refrigerant distributor and air conditioner with refrigerant distributor |
EP2264384A1 (en) * | 2009-06-02 | 2010-12-22 | Johnson Controls Technology Company | A refrigerant distribution device for refrigeration system |
EP4001799A1 (en) * | 2020-11-19 | 2022-05-25 | Thermokey S.p.A. | Device for distributing a fluid for a heat exchanger, preferably an evaporator |
-
2001
- 2001-09-20 JP JP2001287208A patent/JP2003090646A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1895250A1 (en) * | 2006-08-21 | 2008-03-05 | Mitsubishi Electric Corporation | Refrigerant distribution device |
CN101182965B (en) * | 2006-11-14 | 2010-06-02 | 日立空调·家用电器株式会社 | Refrigerant distributor and air conditioner with refrigerant distributor |
EP2264384A1 (en) * | 2009-06-02 | 2010-12-22 | Johnson Controls Technology Company | A refrigerant distribution device for refrigeration system |
EP4001799A1 (en) * | 2020-11-19 | 2022-05-25 | Thermokey S.p.A. | Device for distributing a fluid for a heat exchanger, preferably an evaporator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2979926B2 (en) | Air conditioner | |
WO2007017969A1 (en) | Air conditioner and method of producing air conditioner | |
JP2009222366A (en) | Refrigerant distributor | |
JP6704361B2 (en) | Air conditioner | |
JP3480392B2 (en) | Refrigerant distributor and refrigeration cycle device using the same | |
JP4659779B2 (en) | Heat exchanger and air conditioner equipped with the heat exchanger | |
JP2006003022A (en) | Refrigerating unit and intermediate pressure receiver | |
JP5646257B2 (en) | Refrigeration cycle equipment | |
JP4785670B2 (en) | Air conditioner indoor unit | |
JP2003090646A (en) | Heat exchanger for air conditioner | |
JP7118247B2 (en) | air conditioner | |
JP2013134024A (en) | Refrigeration cycle device | |
JP5127578B2 (en) | Refrigeration cycle equipment | |
JP2003014337A (en) | Heat exchanger for air conditioner | |
JP7414845B2 (en) | Refrigeration cycle equipment | |
JPH06194003A (en) | Air conditioner | |
KR20000031340A (en) | Indoor heat exchanger | |
JP2004116809A (en) | Refrigerant distributor of heat exchanger for air conditioner | |
KR100882525B1 (en) | High Pressure Refrigerant System with Multi-pipe Heat Exchanger Type Hot Water Heat Exchanger | |
JP2003090645A (en) | Heat exchanger for air conditioner | |
JP7154427B2 (en) | heat exchangers and air conditioners | |
JP2011191047A (en) | Heat exchanger for air conditioner | |
JP6904487B2 (en) | Heat exchanger | |
WO2020178930A1 (en) | Air conditioning apparatus, refrigeration machine, and distributor | |
JPWO2018134975A1 (en) | Heat exchanger, refrigeration cycle apparatus, and method of manufacturing heat exchanger |