JP2003089727A - Method for producing thermoplastic resin foam and thermoplastic resin foam - Google Patents
Method for producing thermoplastic resin foam and thermoplastic resin foamInfo
- Publication number
- JP2003089727A JP2003089727A JP2001283560A JP2001283560A JP2003089727A JP 2003089727 A JP2003089727 A JP 2003089727A JP 2001283560 A JP2001283560 A JP 2001283560A JP 2001283560 A JP2001283560 A JP 2001283560A JP 2003089727 A JP2003089727 A JP 2003089727A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- inert gas
- resin foam
- temperature
- supercritical fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005992 thermoplastic resin Polymers 0.000 title claims abstract description 129
- 239000006260 foam Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000011261 inert gas Substances 0.000 claims abstract description 54
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 239000012530 fluid Substances 0.000 claims abstract description 26
- 230000009477 glass transition Effects 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims abstract description 14
- 238000002844 melting Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 17
- 229920001955 polyphenylene ether Polymers 0.000 claims description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 239000004743 Polypropylene Substances 0.000 claims description 7
- -1 polypropylene Polymers 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 239000004793 Polystyrene Substances 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 229920002223 polystyrene Polymers 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 229920010524 Syndiotactic polystyrene Polymers 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 238000005470 impregnation Methods 0.000 abstract description 26
- 230000000052 comparative effect Effects 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 238000005187 foaming Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 229920003355 Novatec® Polymers 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010097 foam moulding Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920002020 Microcellular plastic Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
(57)【要約】
【課題】 熱可塑性樹脂に不活性ガス又はその超臨界流
体を含浸させることにより微細気泡が形成された熱可塑
性樹脂発泡体を製造するに当たり、不活性ガス又はその
超臨界流体の含浸に要する時間を短縮し、生産性を高め
る。
【解決手段】 熱可塑性樹脂に不活性ガス又はその超臨
界流体を高圧、加熱条件下で含浸させた後、圧力を解放
することにより微細気泡を有する熱可塑性樹脂発泡体を
製造するに当たり、前記加熱条件を、該熱可塑性樹脂の
ガラス転移温度又は融点よりも低い温度であって、該不
活性ガス又はその超臨界流体が含浸された熱可塑性樹脂
のガラス転移温度又は融点よりも高い温度とする。PROBLEM TO BE SOLVED: To produce a thermoplastic resin foam in which fine bubbles are formed by impregnating a thermoplastic resin with an inert gas or a supercritical fluid thereof, to produce an inert gas or a supercritical fluid thereof. To reduce the time required for impregnation and increase productivity. SOLUTION: An inert gas or a supercritical fluid thereof is impregnated in a thermoplastic resin under a high pressure and a heating condition, and then the pressure is released to produce a thermoplastic resin foam having fine cells by releasing the pressure. The condition is a temperature lower than the glass transition temperature or the melting point of the thermoplastic resin and higher than the glass transition temperature or the melting point of the thermoplastic resin impregnated with the inert gas or its supercritical fluid.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、微細気泡が形成さ
れた熱可塑性樹脂発泡体の製造方法及び熱可塑性樹脂発
泡体に関する。TECHNICAL FIELD The present invention relates to a method for producing a thermoplastic resin foam in which fine cells are formed, and a thermoplastic resin foam.
【0002】[0002]
【従来の技術】熱可塑性樹脂発泡体は、重量低減、断熱
特性の向上、或いは防音性の付与を目的として、各種構
造材料に用いられる。この熱可塑性樹脂発泡体にあって
は、軽量化や機能性の向上の面からは、発泡倍率を高
め、比重の小さい発泡体とすることが望まれるが、発泡
倍率の増加に伴って発泡体の強度は低下するため、工業
的用途においては、強度の面から発泡倍率に制約を受け
ていた。2. Description of the Related Art Thermoplastic resin foams are used in various structural materials for the purpose of reducing weight, improving heat insulating properties, or imparting soundproofing properties. In terms of weight reduction and improvement of functionality, it is desirable to increase the expansion ratio of the thermoplastic resin foam to make it a foam having a small specific gravity, but as the expansion ratio increases, the foam expands. Since the strength of No. 1 decreases, the expansion ratio was restricted from the viewpoint of strength in industrial applications.
【0003】これに対して、発泡体の気泡を極微細化す
ることにより、発泡倍率の増加に伴う強度低下の抑制な
いしは強度の向上を図る技術が提案されている。例え
ば、Shimbo et al., Polymer Engineering Science, 3
5, 1387 (1995)には、3.5〜9.5μm径の発泡気泡
を形成することにより、剛性がやや向上することが記載
されている。この技術は、マイクロセルラープラスチッ
クと呼ばれ、USP4,473,665(1984), USP5,158,986(1992)
にその詳細が記載されている。この方法は、具体的に
は、高圧容器内で熱可塑性樹脂に高圧下で窒素や二酸
化炭素など不活性ガスを高圧もしくは超臨界状態で含浸
させ、次いでガスを含浸させた熱可塑性樹脂を高圧容
器より取り出し、オイルバス等で熱可塑性樹脂のガラス
転移温度Tg以上の温度まで昇温し、核生成を誘発し
て気泡成長させることにより微細気泡の発泡体を得るも
のである。On the other hand, there has been proposed a technique for suppressing the decrease in strength or increasing the strength as the expansion ratio increases by making the bubbles of the foam extremely fine. For example, Shimbo et al., Polymer Engineering Science, 3
5, 1387 (1995) describes that rigidity is slightly improved by forming foamed bubbles having a diameter of 3.5 to 9.5 μm. This technology is called Microcellular Plastics, USP4,473,665 (1984), USP5,158,986 (1992)
The details are described in. In this method, specifically, a thermoplastic resin is impregnated in a high-pressure container under high pressure with an inert gas such as nitrogen or carbon dioxide at a high pressure or in a supercritical state, and then the thermoplastic resin impregnated with the gas is injected into the high-pressure container. Further, it is taken out and heated to a temperature not lower than the glass transition temperature Tg of the thermoplastic resin in an oil bath or the like to induce nucleation to cause bubble growth to obtain a fine bubble foam.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、この手
法は、ガス含浸に費やす時間が膨大で、通常24〜48
時間の長時間に亘って高圧ガス下で保持した後発泡させ
るため、生産効率が著しく悪く、工業化には適していな
い。However, in this method, the time spent for gas impregnation is enormous, and it is usually 24 to 48.
Since it is foamed after being kept under high pressure gas for a long time, the production efficiency is remarkably poor and it is not suitable for industrialization.
【0005】なお、熱可塑性樹脂に不活性ガスを含浸さ
せることによりガラス転移温度Tg又は融点Tmが低下
することは良く知られている。例えば、特開平11−2
63858号公報には、ポリフェニレンエーテル(PP
E)に超臨界二酸化炭素を含浸させてガラス転移温度T
gを変化させることにより、低温成形性を実現させる方
法が開示されている。また、Handa et al., Journal of
Polymer Science: Part B: Polymer Physics, 32, 254
9(1994)には、高圧セルによる示差走査熱量計(DS
C)測定により、PPEのTgが、61.2atmのC
O2を含浸させることにより、31.6℃低下すること
を確認したことが報告されている。It is well known that the glass transition temperature Tg or the melting point Tm is lowered by impregnating a thermoplastic resin with an inert gas. For example, Japanese Patent Laid-Open No. 11-2
No. 63858 discloses polyphenylene ether (PP
E) is impregnated with supercritical carbon dioxide to obtain a glass transition temperature T
A method of realizing low temperature moldability by changing g is disclosed. Also, Handa et al., Journal of
Polymer Science: Part B: Polymer Physics, 32, 254
9 (1994), a differential scanning calorimeter (DS
C) TPE of PPE is 61.2 atm by measurement.
It has been reported that it was confirmed that the temperature was lowered by 31.6 ° C. by impregnating with O 2 .
【0006】しかしながら、不活性ガスによるTg又は
Tmの変化と発泡成形を結びつけた技術は、従来提案さ
れておらず、また示唆すらなされていない。[0006] However, a technique which links the change of Tg or Tm caused by an inert gas with foam molding has not been proposed or even suggested.
【0007】本発明は、上記従来の問題点を解決し、熱
可塑性樹脂に不活性ガス又はその超臨界流体を含浸させ
ることにより微細気泡が形成された熱可塑性樹脂発泡体
を製造する方法であって、不活性ガス又はその超臨界流
体の含浸に要する時間が短く、工業的な生産性を十分に
確保し得る熱可塑性樹脂発泡体の製造方法と、このよう
な方法で製造された熱可塑性樹脂発泡体を提供すること
を目的とする。The present invention is a method for solving the above conventional problems and producing a thermoplastic resin foam in which fine cells are formed by impregnating a thermoplastic resin with an inert gas or its supercritical fluid. And a method for producing a thermoplastic resin foam, which requires a short time for impregnation with an inert gas or a supercritical fluid thereof and can sufficiently secure industrial productivity, and a thermoplastic resin produced by such a method. It is intended to provide a foam.
【0008】[0008]
【課題を解決するための手段】本発明の非晶性熱可塑性
樹脂発泡体の製造方法は、非晶性熱可塑性樹脂に不活性
ガス又はその超臨界流体を高圧、加熱条件下で含浸させ
た後、圧力を解放することにより微細気泡を有する熱可
塑性樹脂発泡体を製造する方法であって、前記加熱条件
を、該非晶性熱可塑性樹脂のガラス転移温度よりも低い
温度であって、該不活性ガス又はその超臨界流体が含浸
された非晶性熱可塑性樹脂のガラス転移温度よりも高い
温度とすることを特徴とする。According to the method for producing an amorphous thermoplastic resin foam of the present invention, an amorphous thermoplastic resin is impregnated with an inert gas or a supercritical fluid thereof under high pressure and heating conditions. Then, a method for producing a thermoplastic resin foam having fine cells by releasing pressure, wherein the heating condition is a temperature lower than the glass transition temperature of the amorphous thermoplastic resin, The temperature is higher than the glass transition temperature of the amorphous thermoplastic resin impregnated with the active gas or its supercritical fluid.
【0009】本発明の結晶性熱可塑性樹脂発泡体の製造
方法は、結晶性熱可塑性樹脂に不活性ガス又はその超臨
界流体を高圧、加熱条件下で含浸させた後、圧力を解放
することにより微細気泡を有する熱可塑性樹脂発泡体を
製造する方法であって、前記加熱条件を、該結晶性熱可
塑性樹脂の融点よりも低い温度でかつ該不活性ガス又は
その超臨界流体が含浸された結晶性熱可塑性樹脂の融点
よりも高い温度とすることを特徴とする。The method for producing a crystalline thermoplastic resin foam of the present invention comprises the steps of impregnating a crystalline thermoplastic resin with an inert gas or its supercritical fluid under high pressure and heating conditions, and then releasing the pressure. A method for producing a thermoplastic resin foam having fine cells, wherein the heating condition is a temperature lower than the melting point of the crystalline thermoplastic resin and a crystal impregnated with the inert gas or a supercritical fluid thereof. The temperature is higher than the melting point of the thermoplastic resin.
【0010】即ち、本発明者らは、熱可塑性樹脂への不
活性ガス又はその超臨界流体の含浸に要する時間を、工
業的に価値があるほど十分に短い時間として、十分に小
さい微細気泡が形成された熱可塑性樹脂発泡体を製造す
る方法について検討した結果、不活性ガスの含浸の有無
による熱可塑性樹脂のTgもしくはTmの変化を利用
し、含浸前の熱可塑性樹脂のTg又はTmよりも低く、
かつ含浸後の熱可塑性樹脂のTg又はTmよりも高い温
度に保持することにより、従来法に比べて飛躍的に短い
含浸時間で非常に微細な気泡を有する発泡体を製造する
ことができることを見出し、本発明を完成させた。That is, the inventors of the present invention have determined that the time required for impregnating an inert gas or its supercritical fluid into a thermoplastic resin is a sufficiently short time to have industrial value, and that sufficiently small fine bubbles are formed. As a result of examining the method for producing the formed thermoplastic resin foam, the change in Tg or Tm of the thermoplastic resin depending on the presence or absence of impregnation with an inert gas is utilized, and the Tg or Tm of the thermoplastic resin before the impregnation is Low,
It was also found that by maintaining the temperature higher than the Tg or Tm of the thermoplastic resin after impregnation, it is possible to produce a foam having extremely fine cells with a significantly shorter impregnation time than the conventional method. The present invention has been completed.
【0011】不活性ガスの含浸により、Tg又はTmは
含浸前に比べて低下する。この低下の度合は、不活性ガ
スの含浸濃度が大きい程大きい。このため、本発明の加
熱条件で保持することにより、分子鎖の運動性の高い状
態、即ちガス拡散係数の高い状態で不活性ガスが熱可塑
性樹脂発泡体中に含浸することとなり、含浸時の高圧下
での保持時間を飛躍的に短くすることができる。The impregnation with the inert gas lowers Tg or Tm as compared with that before the impregnation. The degree of this decrease is greater as the impregnation concentration of the inert gas is higher. Therefore, by holding under the heating conditions of the present invention, the inert gas is impregnated in the thermoplastic resin foam in a state where the mobility of the molecular chains is high, that is, a state where the gas diffusion coefficient is high, and The holding time under high pressure can be dramatically shortened.
【0012】この含浸操作後、急激に圧力を解放して急
減圧することにより発泡体を得るが、この発泡工程にお
いては、不活性ガスを含浸した熱可塑性樹脂のTg又は
Tmは上昇し、保持温度を超えるため、気泡成長が抑制
され、微細気泡が形成される。即ち、圧力解放による発
泡工程では、熱可塑性樹脂中に含浸された不活性ガスが
急激に放出されることで熱可塑性樹脂中の不活性ガス濃
度が急激に低下し、これに伴いTg又はTmは上昇す
る。この結果、当該保持温度では、分子鎖の運動が束縛
されることとなり、気泡成長が抑制された状態で固定さ
れることにより、微細気泡を有する熱可塑性樹脂発泡体
を得ることができる。After this impregnation operation, the pressure is rapidly released and the pressure is rapidly reduced to obtain a foam. In this foaming step, the Tg or Tm of the thermoplastic resin impregnated with the inert gas rises and is retained. Since the temperature is exceeded, bubble growth is suppressed and fine bubbles are formed. That is, in the foaming step by releasing the pressure, the inert gas impregnated in the thermoplastic resin is rapidly released, so that the concentration of the inert gas in the thermoplastic resin is rapidly reduced, and accordingly, Tg or Tm is To rise. As a result, at the holding temperature, the movement of the molecular chain is restrained, and the thermoplastic resin foam having fine cells can be obtained by being fixed in the state where the cell growth is suppressed.
【0013】本発明の方法では、高圧下で熱可塑性樹脂
に不活性ガス又はその超臨界流体を含浸させることによ
り、非晶性熱可塑性樹脂の場合にはそのガラス転移温度
を、含浸前の熱可塑性樹脂のガラス転移温度よりも10
〜250℃低下させ、その後圧力を解放して発泡させる
ことにより不活性ガス濃度を低下させ、圧力解放後のガ
ラス転移温度を圧力解放前のガラス転移温度よりも10
〜250℃上昇させることにより、気泡の成長を抑制し
て微細気泡を形成させることが好ましい。In the method of the present invention, a thermoplastic resin is impregnated with an inert gas or a supercritical fluid thereof under a high pressure so that the glass transition temperature of the amorphous thermoplastic resin is set to the temperature before impregnation. 10 than the glass transition temperature of the plastic resin
The temperature is lowered by ˜250 ° C., and then the pressure is released to cause foaming to reduce the concentration of the inert gas, and the glass transition temperature after the pressure release is 10% lower than the glass transition temperature before the pressure release.
It is preferable to increase the temperature by ˜250 ° C. to suppress the growth of bubbles and form fine bubbles.
【0014】また、結晶性熱可塑性樹脂を用いる場合に
は、高圧下で熱可塑性樹脂に不活性ガス又はその超臨界
流体を含浸させることにより、その融点を、含浸前の熱
可塑性樹脂の融点よりも0〜50℃、好ましくは0.5
〜50℃低下させ、その後圧力を解放して発泡させるこ
とにより不活性ガス濃度を低下させ、圧力解放後の融点
を圧力解放前の融点よりも0〜50℃、好ましくは0.
5〜50℃上昇させることにより、気泡の成長を抑制し
て微細気泡を形成させることが好ましい。When a crystalline thermoplastic resin is used, the melting point of the crystalline thermoplastic resin is set higher than that of the thermoplastic resin before the impregnation by impregnating the thermoplastic resin with an inert gas or its supercritical fluid under high pressure. Is also 0 to 50 ° C, preferably 0.5
˜50 ° C., then pressure is released to foam to reduce the concentration of the inert gas, and the melting point after pressure release is 0 to 50 ° C., preferably 0.
It is preferable to increase the temperature by 5 to 50 ° C. to suppress the growth of bubbles and form fine bubbles.
【0015】本発明において、好適な非晶性熱可塑性樹
脂としてはポリスチレン、シンジオタクチックポリスチ
レン、ポリフェニレンエーテル、ポリフェニレンエーテ
ルとポリスチレンのポリマーアロイ、ポリメチルメタク
リレート、ポリカーボネート、又はノルボルネン系樹脂
が挙げられる。また、好適な結晶性熱可塑性樹脂として
は、ポリプロピレン又はポリエチレンが挙げられる。In the present invention, suitable amorphous thermoplastic resins include polystyrene, syndiotactic polystyrene, polyphenylene ether, polymer alloys of polyphenylene ether and polystyrene, polymethylmethacrylate, polycarbonate, or norbornene resins. Moreover, polypropylene or polyethylene is mentioned as a suitable crystalline thermoplastic resin.
【0016】また、本発明において、不活性ガスとして
は窒素及び/又は二酸化炭素が好適に用いられる。In the present invention, nitrogen and / or carbon dioxide is preferably used as the inert gas.
【0017】このような本発明の方法により、平均気泡
直径が0.01〜10μmの範囲にあり、気泡数密度が
109〜1015個/cm3の熱可塑性樹脂発泡体を製
造することが好ましい。By such a method of the present invention, a thermoplastic resin foam having an average cell diameter of 0.01 to 10 μm and a cell number density of 10 9 to 10 15 cells / cm 3 can be produced. preferable.
【0018】本発明の熱可塑性樹脂発泡体は、このよう
な本発明の熱可塑性樹脂発泡体の製造方法により製造さ
れたものであり、微細気泡を有するため、発泡倍率が高
くても、十分な強度を有する高機能性熱可塑性樹脂発泡
体である。The thermoplastic resin foam of the present invention is produced by such a method for producing a thermoplastic resin foam of the present invention, and since it has fine cells, it is sufficient even if the expansion ratio is high. It is a highly functional thermoplastic resin foam having strength.
【0019】[0019]
【発明の実施の形態】以下に本発明の実施の形態を、本
発明の熱可塑性樹脂発泡体の製造方法に従って詳細に説
明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail according to the method for producing a thermoplastic resin foam of the present invention.
【0020】本発明の方法では、具体的には、次の手順
で熱可塑性樹脂発泡体を製造する。
バルブ付きの圧力容器に固体の熱可塑性樹脂を仕込
む。
固体の熱可塑性樹脂を入れた圧力容器を、外部熱源
を用いて所定の温度まで加熱する。
この加熱温度は、熱可塑性樹脂が非晶性熱可塑性樹脂で
ある場合には、用いた非晶性熱可塑性樹脂のTg(以下
「Tg(max)」と称す。)よりも低く、かつ、下記
の工程で非晶性熱可塑性樹脂に不活性ガスが十分に含
浸された状態における不活性ガス含浸非晶性熱可塑性樹
脂のTgよりも高い温度とし、熱可塑性樹脂が結晶性熱
可塑性樹脂である場合には、用いた結晶性熱可塑性樹脂
のTm(以下「Tm(max)」と称す。)よりも低
く、かつ下記の工程で結晶性熱可塑性樹脂に不活性ガ
スが十分に含浸された状態における不活性ガス含浸結晶
性熱可塑性樹脂のTmよりも高い温度とする。以下、高
圧条件で不活性ガスが熱可塑性樹脂に十分に含浸された
状態を飽和含浸状態と称し、この飽和含浸状態の不活性
ガス含浸熱可塑性樹脂のTgをTg(min)と称し、
同TmをTm(min)と称す。In the method of the present invention, specifically, a thermoplastic resin foam is manufactured by the following procedure. Charge a solid thermoplastic resin into a pressure vessel with a valve. A pressure vessel containing a solid thermoplastic resin is heated to a predetermined temperature using an external heat source. When the thermoplastic resin is an amorphous thermoplastic resin, this heating temperature is lower than the Tg of the amorphous thermoplastic resin used (hereinafter referred to as "Tg (max)"), and The temperature is higher than Tg of the inert gas-impregnated amorphous thermoplastic resin in the state where the amorphous thermoplastic resin is sufficiently impregnated with the inert gas in the step of, and the thermoplastic resin is a crystalline thermoplastic resin. In this case, it is lower than the Tm (hereinafter referred to as “Tm (max)”) of the crystalline thermoplastic resin used, and the crystalline thermoplastic resin is sufficiently impregnated with the inert gas in the following steps. The temperature is higher than the Tm of the inert gas-impregnated crystalline thermoplastic resin in. Hereinafter, a state in which the thermoplastic resin is sufficiently impregnated with an inert gas under high pressure conditions is referred to as a saturated impregnation state, and Tg of the inert gas-impregnated thermoplastic resin in the saturated impregnation state is referred to as Tg (min),
The same Tm is referred to as Tm (min).
【0021】この加熱温度は、上記範囲においても低過
ぎると、ガス拡散性の向上による不活性ガスの含浸時間
の短縮効果を十分に得ることができず、高過ぎると下記
の発泡工程における気泡成長の抑制効果を十分に得る
ことができない。従って、加熱温度は製造する熱可塑性
樹脂発泡体の平均気泡直径や気泡数密度、飽和含浸状態
の不活性ガス含浸濃度等によっても異なるが、本発明で
は、不活性ガスを含浸させることにより、非晶性熱可塑
性樹脂の場合は、Tg(min)をTg(max)より
10〜250℃、好ましくは50〜250℃低下させ、
この加熱温度をTg(max)より10〜250℃、好
ましくは50〜250℃低く、Tg(min)よりも0
〜250℃、好ましくは0〜200℃高い温度とするこ
とが好ましい。If the heating temperature is too low in the above range, the effect of shortening the impregnation time of the inert gas due to the improvement of gas diffusibility cannot be sufficiently obtained, and if it is too high, bubble growth in the following foaming step. It is not possible to obtain a sufficient suppression effect. Therefore, the heating temperature varies depending on the average cell diameter and cell number density of the thermoplastic resin foam to be produced, the impregnation concentration of the inert gas in the saturated impregnation state, etc., but in the present invention, by impregnating the inert gas, In the case of a crystalline thermoplastic resin, Tg (min) is lowered from Tg (max) by 10 to 250 ° C., preferably 50 to 250 ° C.,
This heating temperature is lower than Tg (max) by 10 to 250 ° C., preferably 50 to 250 ° C., and lower than Tg (min).
It is preferable to set the temperature at ˜250 ° C., preferably 0˜200 ° C. higher.
【0022】結晶性熱可塑性樹脂の場合は、Tm(mi
n)をTm(max)より0〜50℃、好ましくは0.
5〜50℃、より好ましくは10〜50℃低下させ、こ
の加熱温度をTm(max)より0〜50℃、好ましく
は0.5〜50℃より好ましくは10〜50℃低く、T
m(min)よりも0〜50℃、好ましくは0.5〜4
0℃高い温度とすることが好ましい。In the case of a crystalline thermoplastic resin, Tm (mi
n) from Tm (max) to 0 to 50 ° C, preferably 0.
5 to 50 ° C., more preferably 10 to 50 ° C., and the heating temperature is 0 to 50 ° C., preferably 0.5 to 50 ° C., more preferably 10 to 50 ° C. lower than Tm (max).
0 to 50 ° C., preferably 0.5 to 4 than m (min)
It is preferable that the temperature is 0 ° C. higher.
【0023】 上記の温度で加熱しながら、同時に
圧力容器内に不活性ガスを仕込む。この不活性ガスとし
ては、窒素、二酸化炭素又はこれらの混合ガスを用いる
ことができる。不活性ガスは、多くの場合、加熱加圧下
においては超臨界流体として熱可塑性樹脂に含浸され
る。
圧力容器、熱可塑性樹脂及び不活性ガスを熱源温度
と平衡させる。
不活性ガスが十分熱可塑性樹脂に溶解するような最
終圧力を達成するため、更に不活性ガスを加えることに
より圧力容器中の圧力を調整する。
この圧力は、用いる熱可塑性樹脂や目的とする熱可塑性
樹脂発泡体の平均気泡直径や気泡数密度によっても異な
るが、前述の如く、Tg(min)又はTm(min)
をそれぞれTg(max)又はTm(max)よりも0
〜250℃、好ましくは0〜250℃低下させるために
は、13〜30MPa、特に15〜30MPaとするこ
とが好ましい。While heating at the above temperature, an inert gas is charged into the pressure vessel at the same time. As this inert gas, nitrogen, carbon dioxide, or a mixed gas thereof can be used. The inert gas is often impregnated into the thermoplastic resin as a supercritical fluid under heating and pressurization. Equilibrate the pressure vessel, thermoplastic and inert gas with the heat source temperature. The pressure in the pressure vessel is adjusted by adding more inert gas in order to reach the final pressure at which the inert gas is sufficiently dissolved in the thermoplastic. This pressure varies depending on the thermoplastic resin used and the average cell diameter or cell number density of the desired thermoplastic resin foam, but as described above, Tg (min) or Tm (min)
Is 0 than Tg (max) or Tm (max), respectively.
In order to lower the temperature by ˜250 ° C., preferably by 0˜250 ° C., the pressure is preferably 13˜30 MPa, particularly 15˜30 MPa.
【0024】 所定時間上記加熱温度及び圧力で保持
する。
この保持時間、即ち、含浸時間は、加熱、加圧条件によ
っても異なるが、本発明では、上記加熱条件で加熱する
ことにより、この保持時間を従来に比べて飛躍的に短縮
することができ、一般的には1〜12時間、好ましくは
2〜10時間の保持時間で十分な発泡倍率の熱可塑性樹
脂発泡体を製造することができる。The heating temperature and pressure are maintained for a predetermined time. This holding time, that is, the impregnation time varies depending on the heating and pressurizing conditions, but in the present invention, by heating under the above heating conditions, this holding time can be dramatically shortened compared to the conventional case. Generally, a holding time of 1 to 12 hours, preferably 2 to 10 hours can produce a thermoplastic resin foam having a sufficient expansion ratio.
【0025】 圧力容器のバルブを全開放して、急速
に圧力容器内の圧力を解放する。
これにより、微細気泡を有する熱可塑性樹脂発泡体が得
られる。なお、圧力解放後の降温は気泡の成長を抑制す
るため、液化ガスや水を用いてできるだけ速い条件で行
うのが好ましい。The valve in the pressure vessel is fully opened to rapidly release the pressure in the pressure vessel. As a result, a thermoplastic resin foam having fine cells is obtained. It should be noted that the temperature lowering after the pressure release is preferably carried out using liquefied gas or water as quickly as possible in order to suppress the growth of bubbles.
【0026】このような本発明の熱可塑性樹脂発泡体の
製造方法に適用される熱可塑性樹脂としては特に制限は
ないが、ポリスチレン、シンジオタクチックポリスチレ
ン、ポリフェニレンエーテル、ポリフェニレンエーテル
とポリスチレンのポリマーアロイ、ポリメチルメタクリ
レート、ポリカーボネート、ノルボルネン系樹脂等の非
晶性熱可塑性樹脂、ポリプロピレン、ポリエチレン等の
結晶性熱可塑性樹脂が好適な熱可塑性樹脂として例示さ
れる。これらの熱可塑性樹脂は、原料中に1種を単独で
含んでいても良く、2種以上を混合して含んでいても良
い。The thermoplastic resin applied to the method for producing a thermoplastic resin foam of the present invention is not particularly limited, but polystyrene, syndiotactic polystyrene, polyphenylene ether, a polymer alloy of polyphenylene ether and polystyrene, Amorphous thermoplastic resins such as polymethylmethacrylate, polycarbonate and norbornene resins, and crystalline thermoplastic resins such as polypropylene and polyethylene are exemplified as suitable thermoplastic resins. One of these thermoplastic resins may be contained alone in the raw material, or two or more thereof may be mixed and contained.
【0027】また、これらの熱可塑性樹脂には、通常の
熱可塑性樹脂の発泡成形に用いられる添加剤、例えば着
色剤、熱安定剤、離型剤、防腐剤、紫外線吸収剤、可塑
剤、難燃剤、導電性付与剤、帯電防止剤等の1種又は2
種以上を含んでいても良い。In addition, these thermoplastic resins include additives used for foam molding of ordinary thermoplastic resins, such as colorants, heat stabilizers, release agents, preservatives, ultraviolet absorbers, plasticizers, hardeners, and additives. 1 type or 2 types of flame retardant, conductivity imparting agent, antistatic agent, etc.
It may contain more than one seed.
【0028】このような本発明方法で製造される熱可塑
性樹脂発泡体の平均気泡直径は0.01〜10μmで、
気泡数密度は109〜1015個/cm3であることが
好ましい。平均気泡直径が0.01μm未満の熱可塑性
樹脂発泡体を製造することは、本発明による発泡工程に
おける気泡成長の抑制効果を十分に発揮させても困難で
あり、また、平均気泡直径10μmを超える熱可塑性樹
脂発泡体では、微細気泡による高強度化を十分に図るこ
とができない。また、好適な気泡数密度は、平均気泡直
径によっても異なるが、109個/cm3未満では、発
泡体としての十分な気孔率を確保し得ず、1015個/
cm3を超えると強度が損なわれる傾向があるため、1
09〜1015個/cm3であることが好ましい。The thermoplastic resin foam produced by the method of the present invention has an average cell diameter of 0.01 to 10 μm.
The bubble number density is preferably 10 9 to 10 15 cells / cm 3 . It is difficult to produce a thermoplastic resin foam having an average cell diameter of less than 0.01 μm, even if the effect of suppressing cell growth in the foaming step according to the present invention is sufficiently exerted, and the average cell diameter exceeds 10 μm. In the thermoplastic resin foam, it is not possible to sufficiently increase the strength by the fine bubbles. Further, a suitable cell number density varies depending on the average cell diameter, but if it is less than 10 9 cells / cm 3 , a sufficient porosity as a foam cannot be secured, and 10 15 cells / cm 3 cannot be ensured.
If it exceeds 3 cm 3 , the strength tends to be impaired, so 1
It is preferably from 0 9 to 10 15 pieces / cm 3 .
【0029】このような本発明の方法で製造される本発
明の熱可塑性樹脂発泡体は、各種軽量構造材料、或いは
担体等として有用であり、特に、平均気泡直径が0.0
1〜1μm程度の超微細気泡を有する熱可塑性樹脂発泡
体は、その超微細気泡を利用した分離膜、浄化材、光反
射材等としての用途も期待される。The thermoplastic resin foam of the present invention produced by the method of the present invention as described above is useful as various lightweight structural materials, carriers, etc., and particularly has an average cell diameter of 0.0.
The thermoplastic resin foam having ultrafine bubbles of about 1 to 1 μm is expected to be used as a separation membrane, a purifying material, a light reflecting material, etc. using the ultrafine bubbles.
【0030】[0030]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明は、その要旨を超えない
限り、以下の実施例により、何ら制限を受けるものでは
ない。EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist.
【0031】なお、以下の実施例及び比較例において、
Tg又はTmの測定、発泡体の平均気泡直径又は気泡数
密度の測定は下記の方法により行った。In the following examples and comparative examples,
The measurement of Tg or Tm and the measurement of the average cell diameter or the cell number density of the foam were performed by the following methods.
【0032】[Tg又はTmの測定]不活性ガスの含浸
によるガラス転移温度Tg又は融点Tmの低下は、高圧
セルを配備したDSCを用いて測定した。即ち、まず、
不活性ガスの入ったボンベを加圧ポンプを介して高圧セ
ルに連結させ、次いでその高圧セル内に熱可塑性樹脂を
仕込み、不活性ガス雰囲気高圧下で一定時間保持した
後、セルを密封し、この試料入りセルをDSCに仕込ん
だ。DSCとしては、Parkin−Elmer社製D
SC「Pyris1」を用い、約5mgの試料を10℃
/分で昇温した。Tgは最初のベースラインから次のベ
ースラインへ移る際の変曲点で定義し、Tmはベースラ
インと吸熱ピークの立ち上がりラインとの交点と定義し
た。[Measurement of Tg or Tm] The decrease in glass transition temperature Tg or melting point Tm due to impregnation with an inert gas was measured using a DSC equipped with a high pressure cell. That is, first
A cylinder containing an inert gas is connected to a high-pressure cell via a pressure pump, then a thermoplastic resin is charged in the high-pressure cell, and the cell is hermetically sealed after maintaining the inert gas atmosphere under high pressure for a certain period of time, This sample-containing cell was placed in a DSC. As DSC, D manufactured by Parkin-Elmer
Using SC "Pyris1", a sample of about 5mg is 10 ℃
The temperature was raised at a rate of / minute. Tg was defined as the inflection point when moving from the first baseline to the next baseline, and Tm was defined as the intersection of the baseline and the rising line of the endothermic peak.
【0033】Tg又はTmの予想値は、複数の測定値か
ら線形外挿して求めた。The expected value of Tg or Tm was obtained by linear extrapolation from a plurality of measured values.
【0034】[平均気泡直径と気泡数密度の測定]平均
気泡直径と気泡数密度は、走査型電子顕微鏡(SEM)
で発泡体試料を写真撮影した後、画像処理ソフトで統計
処理して求めた。即ち、(株)日立製作所製走査型電子
顕微鏡「S−2400」で撮影した発泡体断面のSEM
写真をデジタルスキャナーでコンピューター内に読み込
んだ後、画像解析ソフト(三谷商事(株)製 Win R
OOF)で統計処理し、発泡体断面の気泡直径の平均値
Dを求めた。また、次式より気泡数密度Nを求めた。
N=(n/A)3/2/(1−4/3π(D/2)3・
(n/A)3/2)
式中、Nは気泡数密度[個/cm3]、Aは統計処理領
域の面積、nはA中の気泡個数、Dは平均気泡直径であ
る。[Measurement of Average Bubble Diameter and Bubble Number Density] The average bubble diameter and bubble number density are measured by a scanning electron microscope (SEM).
The foam sample was photographed and then statistically processed with image processing software. That is, a SEM of a foam cross section taken by a scanning electron microscope "S-2400" manufactured by Hitachi, Ltd.
After reading the photos into the computer with a digital scanner, image analysis software (Win R manufactured by Mitani Corporation)
Statistical processing was carried out by OOF), and the average value D of the cell diameters of the foam cross section was obtained. Further, the bubble number density N was obtained from the following equation. N = (n / A) 3/2 / (1-4 / 3π (D / 2) 3 ·
(N / A) 3/2 ) In the formula, N is the number density of bubbles [number / cm 3 ], A is the area of the statistical processing region, n is the number of bubbles in A, and D is the average bubble diameter.
【0035】実施例1〜4、比較例1〜3
光学部品に用いられるノルボルネン系樹脂であるZEO
NEX(日本ゼオン社製)を圧力容器に仕込み、外部電
源を用いて表2に示す温度に加熱した。その後、加熱温
度を保持した状態で圧力容器内に不活性ガスとしてCO
2を仕込み、表2に示す圧力に2時間保持した。その
後、圧力容器のバルブを全開放して急激に容器内の圧力
を解放した。なお、圧力解放時の温度は加圧時の温度と
同温度とした。Examples 1 to 4 and Comparative Examples 1 to 3 ZEO which is a norbornene resin used for optical parts.
NEX (manufactured by Zeon Corporation) was placed in a pressure vessel and heated to a temperature shown in Table 2 using an external power source. After that, while maintaining the heating temperature, CO 2 was supplied as an inert gas in the pressure vessel.
2 was charged and the pressure shown in Table 2 was maintained for 2 hours. Then, the valve of the pressure vessel was fully opened to suddenly release the pressure in the vessel. The temperature at the time of pressure release was the same as the temperature at pressurization.
【0036】得られた熱可塑性樹脂発泡体の平均気泡直
径、気泡数密度を調べ、結果を表2に示した。The average cell diameter and cell number density of the obtained thermoplastic resin foam were examined, and the results are shown in Table 2.
【0037】なお、用いたZEONEXの各CO2含浸
条件でのTgの変化は表1に示す通りである。Table 1 shows changes in Tg of each ZEONEX used under various CO 2 impregnation conditions.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【表2】 [Table 2]
【0040】表2より明らかなように、ZEONEXの
Tg143.0℃とCO2含浸状態のZEONEXのT
g61.8℃との間の加熱温度条件とした実施例1〜4
では、微細気泡の発泡体が得られる。これに対して、Z
EONEXのTg143.0℃よりも高い温度で加熱し
た比較例1,2では、発泡工程において、気泡成長が抑
制されないため、微細気泡を形成することができない。
一方、CO2含浸状態のZEONEXのTg61.8℃
よりも低い温度で加熱した比較例3では、CO 2の含浸
が十分でなく、かつCO2含浸ZEONEXのTgより
十分低いため未発泡となる。As is clear from Table 2, the ZEONEX
Tg 143.0 ° C and COTwoZEONEX T in impregnated state
Examples 1 to 4 in which the heating temperature condition was between 61.8 ° C.
Then, a foam having fine cells is obtained. On the other hand, Z
Heat at a temperature higher than EONEX's Tg of 143.0 ° C.
In Comparative Examples 1 and 2, bubble growth was suppressed in the foaming process.
Since it is not controlled, fine bubbles cannot be formed.
On the other hand, COTwoZEONEX Tg in impregnated state 61.8 ° C
In Comparative Example 3 heated at a temperature lower than TwoImpregnation
Is not sufficient and COTwoFrom Tg of impregnated ZEONEX
It is unfoamed because it is low enough.
【0041】実施例5〜7、比較例4
光学部品に用いられるノルボルネン系樹脂であるART
ON(JSR社製)を用い、表4に示す加熱条件及び加
圧条件としたこと以外は実施例1と同様にして熱可塑性
樹脂発泡体を製造し、得られた熱可塑性樹脂発泡体の平
均気泡直径、気泡数密度を調べ、結果を表4に示した。Examples 5 to 7 and Comparative Example 4 ART which is a norbornene resin used for optical parts.
ON (manufactured by JSR) was used to produce a thermoplastic resin foam in the same manner as in Example 1 except that the heating conditions and pressurizing conditions shown in Table 4 were used, and the average of the obtained thermoplastic resin foams was obtained. The bubble diameter and bubble number density were examined, and the results are shown in Table 4.
【0042】なお、用いたARTONの各CO2含浸条
件でのTgの変化は表3に示す通りである。Table 3 shows the change in Tg under each CO 2 impregnation condition of the used ARTON.
【0043】[0043]
【表3】 [Table 3]
【0044】[0044]
【表4】 [Table 4]
【0045】表4より明らかなように、ARTONのT
g167.0℃とCO2含浸状態のARTONのTg−
37.1℃との間の加熱温度条件とした実施例5〜7で
は、微細気泡の発泡体が得られる。これに対して、AR
TONのTg167.0℃よりも高い温度で加熱した比
較例4では、発泡工程において気泡成長が抑制されない
ため、微細気泡を形成することができない。As is clear from Table 4, ARTON T
g of 167.0 ° C. and Tg of ARTON impregnated with CO 2 −
In Examples 5 to 7 in which the heating temperature condition was between 37.1 ° C, fine cell foams were obtained. On the other hand, AR
In Comparative Example 4 which was heated at a temperature higher than Tg of 167.0 ° C. of TON, the bubble growth was not suppressed in the foaming step, and therefore, fine bubbles could not be formed.
【0046】実施例8
電子部品等に用いられるポリフェニレンエーテル(PP
E)(三菱化学(株)によるモデル重合サンプル)を用
い、表6に示す加熱条件及び加圧条件としたこと以外は
実施例1と同様にして熱可塑性樹脂発泡体を製造し、得
られた熱可塑性樹脂発泡体の平均気泡直径、気泡数密度
を調べ、結果を表6に示した。Example 8 Polyphenylene ether (PP) used for electronic parts and the like
E) (model polymerization sample by Mitsubishi Kagaku Co., Ltd.) was used to obtain a thermoplastic resin foam in the same manner as in Example 1 except that the heating conditions and pressurizing conditions shown in Table 6 were used. The average cell diameter and cell number density of the thermoplastic resin foam were examined, and the results are shown in Table 6.
【0047】なお、用いたポリフェニレンエーテル(P
PE)の各CO2含浸条件でのTgの変化は表5に示す
通りである。The polyphenylene ether (P
The change of Tg under each CO 2 impregnation condition of PE) is as shown in Table 5.
【0048】[0048]
【表5】 [Table 5]
【0049】[0049]
【表6】 [Table 6]
【0050】表6より明らかなように、ポリフェニレン
エーテル(PPE)のTg216.0℃とCO2含浸状
態のポリフェニレンエーテル(PPE)のTg145.
3℃との間の加熱温度条件とした実施例8では、微細気
泡の発泡体が得られる。As is clear from Table 6, the Tg of the polyphenylene ether (PPE) was 216.0 ° C. and the Tg of the polyphenylene ether (PPE) impregnated with CO 2 was 145.
In Example 8 in which the heating temperature condition was between 3 ° C., a foam having fine cells was obtained.
【0051】実施例9、比較例5
家電、自動車部品、又はフィルムなど多種多様な製品に
用いられる汎用樹脂ポリプロピレン(PP)であるノバ
テックMA3(日本ポリケム社製)を用い、表8に示す
加熱条件及び加圧条件としたこと以外は実施例1と同様
にして熱可塑性樹脂発泡体を製造し、得られた熱可塑性
樹脂発泡体の平均気泡直径、気泡数密度を調べ、結果を
表8に示した。Example 9, Comparative Example 5 Using Novatec MA3 (manufactured by Japan Polychem), which is a general-purpose resin polypropylene (PP) used in various products such as home electric appliances, automobile parts, and films, the heating conditions shown in Table 8 were used. Further, a thermoplastic resin foam was produced in the same manner as in Example 1 except that the pressurizing condition was used, and the average cell diameter and the cell number density of the obtained thermoplastic resin foam were examined, and the results are shown in Table 8. It was
【0052】なお、用いたノバテックMA3の各CO2
含浸条件でのTmの変化は表7に示す通りである。Each CO 2 of Novatec MA3 used
The change in Tm under the impregnation condition is as shown in Table 7.
【0053】[0053]
【表7】 [Table 7]
【0054】[0054]
【表8】 [Table 8]
【0055】表8より明らかなように、ノバテックMA
3のTm164.0℃とCO2含浸状態のノバテックM
A3のTm150℃との間の加熱温度条件とした実施例
9では、微細気泡の発泡体が得られる。これに対して、
ノバテックMA3のTm164.0℃よりも高い温度で
加熱した比較例5では、発泡工程において気泡成長が抑
制されないため、微細気泡を形成することができない。As is clear from Table 8, Novatec MA
3 with Tm of 164.0 ° C and CO 2 impregnated Novatec M
In Example 9 in which the heating temperature was between A3 and Tm of 150 ° C., a foam having fine cells was obtained. On the contrary,
In Comparative Example 5 heated at a temperature higher than Tm164.0 ° C. of Novatec MA3, the bubble growth is not suppressed in the foaming step, so that the fine bubbles cannot be formed.
【0056】[0056]
【発明の効果】以上詳述した通り、本発明によれば、熱
可塑性樹脂に不活性ガス又はその超臨界流体を含浸させ
ることにより微細気泡が形成された熱可塑性樹脂発泡体
を製造する方法において、不活性ガス又はその超臨界流
体の含浸に要する時間を短縮することができる。このた
め、微細気泡を有し、従って、発泡倍率が高くかつ高強
度な高機能性熱可塑性樹脂発泡体を高い生産性にて製造
することにより、安価に提供することが可能となる。As described in detail above, according to the present invention, in a method for producing a thermoplastic resin foam in which fine cells are formed by impregnating a thermoplastic resin with an inert gas or a supercritical fluid thereof. The time required for impregnation with the inert gas or its supercritical fluid can be shortened. For this reason, it is possible to provide a highly functional thermoplastic resin foam having fine cells with a high expansion ratio and high strength with high productivity, so that it can be provided at low cost.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA17 AA23 AA24 AA32 AA54 AA70 AA76 AB02 AB03 BA32 BA33 CA21 CC03X CC04X CC10X CC34Y DA02 DA03 DA43 DA59 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4F074 AA17 AA23 AA24 AA32 AA54 AA70 AA76 AB02 AB03 BA32 BA33 CA21 CC03X CC04X CC10X CC34Y DA02 DA03 DA43 DA59
Claims (9)
の超臨界流体を高圧、加熱条件下で含浸させた後、圧力
を解放することにより微細気泡を有する熱可塑性樹脂発
泡体を製造する方法であって、 前記加熱条件を、該非晶性熱可塑性樹脂のガラス転移温
度よりも低い温度であって、該不活性ガス又はその超臨
界流体が含浸された非晶性熱可塑性樹脂のガラス転移温
度よりも高い温度とすることを特徴とする熱可塑性樹脂
発泡体の製造方法。1. A thermoplastic resin foam having fine cells is produced by impregnating an amorphous thermoplastic resin with an inert gas or a supercritical fluid thereof under high pressure and heating conditions, and then releasing the pressure. A method, wherein the heating condition is a temperature lower than the glass transition temperature of the amorphous thermoplastic resin, and the glass transition of the amorphous thermoplastic resin impregnated with the inert gas or a supercritical fluid thereof. A method for producing a thermoplastic resin foam, which is characterized in that the temperature is higher than the temperature.
に不活性ガス又はその超臨界流体を含浸させることによ
り、該不活性ガス又はその超臨界流体が含浸された非晶
性熱可塑性樹脂のガラス転移温度を、該非晶性熱可塑性
樹脂のガラス転移温度よりも10〜250℃低下させ、
その後圧力を解放することにより該不活性ガス又はその
超臨界流体が含浸された非晶性熱可塑性樹脂のガラス転
移温度を圧力解放前のガラス転移温度よりも10〜25
0℃上昇させることを特徴とする熱可塑性樹脂発泡体の
製造方法。2. The amorphous thermoplastic resin according to claim 1, wherein the amorphous thermoplastic resin is impregnated with an inert gas or its supercritical fluid to impregnate the inert gas or its supercritical fluid. Glass transition temperature of 10 to 250 ° C. lower than the glass transition temperature of the amorphous thermoplastic resin,
Thereafter, the pressure is released so that the glass transition temperature of the amorphous thermoplastic resin impregnated with the inert gas or the supercritical fluid thereof is 10 to 25 than the glass transition temperature before the pressure release.
A method for producing a thermoplastic resin foam, which comprises raising the temperature by 0 ° C.
塑性樹脂が、ポリスチレン、シンジオタクチックポリス
チレン、ポリフェニレンエーテル、ポリフェニレンエー
テルとポリスチレンのポリマーアロイ、ポリメチルメタ
クリレート、ポリカーボネート、又はノルボルネン系樹
脂であることを特徴とする熱可塑性樹脂発泡体の製造方
法。3. The amorphous thermoplastic resin according to claim 1 or 2, wherein the amorphous thermoplastic resin is polystyrene, syndiotactic polystyrene, polyphenylene ether, a polymer alloy of polyphenylene ether and polystyrene, polymethylmethacrylate, polycarbonate, or norbornene resin. A method for producing a thermoplastic resin foam, comprising:
の超臨界流体を高圧、加熱条件下で含浸させた後、圧力
を解放することにより微細気泡を有する熱可塑性樹脂発
泡体を製造する方法であって、 前記加熱条件を、該結晶性熱可塑性樹脂の融点よりも低
い温度でかつ該不活性ガス又はその超臨界流体が含浸さ
れた結晶性熱可塑性樹脂の融点よりも高い温度とするこ
とを特徴とする熱可塑性樹脂発泡体の製造方法。4. A method for producing a thermoplastic resin foam having fine cells by impregnating a crystalline thermoplastic resin with an inert gas or a supercritical fluid thereof under high pressure and heating conditions, and then releasing the pressure. The heating condition is a temperature lower than the melting point of the crystalline thermoplastic resin and a temperature higher than the melting point of the crystalline thermoplastic resin impregnated with the inert gas or the supercritical fluid thereof. A method for producing a thermoplastic resin foam, comprising:
に不活性ガス又はその超臨界流体を含浸させることによ
り、該不活性ガス又はその超臨界流体が含浸された結晶
性熱可塑性樹脂の融点を、該結晶性熱可塑性樹脂の融点
よりも0〜50℃低下させ、その後圧力を解放すること
により該不活性ガス又はその超臨界流体が含浸された結
晶性熱可塑性樹脂の融点を圧力解放前の融点よりも0〜
50℃上昇させることを特徴とする熱可塑性樹脂発泡体
の製造方法。5. The melting point of a crystalline thermoplastic resin impregnated with an inert gas or a supercritical fluid thereof according to claim 4, wherein the crystalline thermoplastic resin is impregnated with an inert gas or a supercritical fluid thereof. By 0 to 50 ° C. lower than the melting point of the crystalline thermoplastic resin, and then releasing the pressure to release the melting point of the crystalline thermoplastic resin impregnated with the inert gas or its supercritical fluid before pressure release. 0 than the melting point of
A method for producing a thermoplastic resin foam, which comprises raising the temperature by 50 ° C.
塑性樹脂が、ポリプロピレン又はポリエチレンであるこ
とを特徴とする熱可塑性樹脂発泡体の製造方法。6. The method for producing a thermoplastic resin foam according to claim 1, wherein the crystalline thermoplastic resin is polypropylene or polyethylene.
て、前記不活性ガスが窒素及び/又は二酸化炭素である
ことを特徴とする熱可塑性樹脂発泡体の製造方法。7. The method for producing a thermoplastic resin foam according to claim 1, wherein the inert gas is nitrogen and / or carbon dioxide.
て、平均気泡直径が0.01〜10μmの範囲にあり、
気泡数密度が109〜1015個/cm3の熱可塑性樹
脂発泡体を製造することを特徴とする熱可塑性樹脂発泡
体の製造方法。8. The average bubble diameter according to claim 1, which is in the range of 0.01 to 10 μm,
A method for producing a thermoplastic resin foam, which comprises producing a thermoplastic resin foam having a cell number density of 10 9 to 10 15 cells / cm 3 .
の方法により製造された熱可塑性樹脂発泡体。9. A thermoplastic resin foam produced by the method according to any one of claims 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001283560A JP2003089727A (en) | 2001-09-18 | 2001-09-18 | Method for producing thermoplastic resin foam and thermoplastic resin foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001283560A JP2003089727A (en) | 2001-09-18 | 2001-09-18 | Method for producing thermoplastic resin foam and thermoplastic resin foam |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003089727A true JP2003089727A (en) | 2003-03-28 |
JP2003089727A5 JP2003089727A5 (en) | 2007-01-25 |
Family
ID=19107032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001283560A Pending JP2003089727A (en) | 2001-09-18 | 2001-09-18 | Method for producing thermoplastic resin foam and thermoplastic resin foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003089727A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003076501A1 (en) * | 2002-03-08 | 2003-09-18 | Idemitsu Petrochemical Co., Ltd. | Resin molding for optical base |
JP2011030800A (en) * | 2009-07-31 | 2011-02-17 | Kyoraku Co Ltd | Fire extinguisher and method of manufacturing the same |
KR101132446B1 (en) | 2005-07-13 | 2012-03-30 | 코오롱인더스트리 주식회사 | Reflection sheet |
KR101132503B1 (en) | 2005-09-14 | 2012-04-02 | 코오롱인더스트리 주식회사 | Reflection sheet |
JP2012140630A (en) * | 2012-03-08 | 2012-07-26 | Mitsubishi Plastics Inc | Method for manufacturing foam, and foam |
KR101229145B1 (en) * | 2006-04-24 | 2013-02-01 | 코오롱인더스트리 주식회사 | Reflective Sheet |
JP2014129446A (en) * | 2012-12-28 | 2014-07-10 | Sekisui Chem Co Ltd | Method for producing thermoplastic resin foam |
US8779017B2 (en) | 2008-11-14 | 2014-07-15 | Mitsui Chemicals, Inc. | Foam and production method of the same |
-
2001
- 2001-09-18 JP JP2001283560A patent/JP2003089727A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003076501A1 (en) * | 2002-03-08 | 2003-09-18 | Idemitsu Petrochemical Co., Ltd. | Resin molding for optical base |
KR101132446B1 (en) | 2005-07-13 | 2012-03-30 | 코오롱인더스트리 주식회사 | Reflection sheet |
KR101132503B1 (en) | 2005-09-14 | 2012-04-02 | 코오롱인더스트리 주식회사 | Reflection sheet |
KR101229145B1 (en) * | 2006-04-24 | 2013-02-01 | 코오롱인더스트리 주식회사 | Reflective Sheet |
US8779017B2 (en) | 2008-11-14 | 2014-07-15 | Mitsui Chemicals, Inc. | Foam and production method of the same |
JP2011030800A (en) * | 2009-07-31 | 2011-02-17 | Kyoraku Co Ltd | Fire extinguisher and method of manufacturing the same |
JP2012140630A (en) * | 2012-03-08 | 2012-07-26 | Mitsubishi Plastics Inc | Method for manufacturing foam, and foam |
JP2014129446A (en) * | 2012-12-28 | 2014-07-10 | Sekisui Chem Co Ltd | Method for producing thermoplastic resin foam |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5670102A (en) | Method of making thermoplastic foamed articles using supercritical fluid | |
Kumar et al. | A process for making microcellular thermoplastic parts | |
US6232354B1 (en) | Microcellular polymer foams and method for their production | |
Sun et al. | Preparation, characterization, and mechanical properties of some microcellular polysulfone foams | |
US5369135A (en) | Controlled microcellular foams of crystalline amorphous polymers | |
EP2217644B1 (en) | Process for making fluoropolymer foams with the use of blowing agents | |
US5358675A (en) | Controlling heterogeneous nucleation and growth of foams | |
JP2011005868A (en) | Method for manufacturing in-mold foamed molding of polypropylene-based resin | |
JP3207219B2 (en) | Low-expanded particles of polyolefin resin and method for producing the same | |
JP2003089727A (en) | Method for producing thermoplastic resin foam and thermoplastic resin foam | |
CN108586791B (en) | A kind of foam material with gradient cell structure and preparation method thereof | |
JP2020049922A (en) | Manufacturing method of sheet molding | |
CN1621437A (en) | Method for producing supercritical CO#-[2] foamed universal polypropylene resin | |
EP3608354B1 (en) | Fiber-reinforced composite using a core material | |
JP4157399B2 (en) | Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded foam in polypropylene resin mold | |
JP3560238B2 (en) | Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded molded article in polypropylene resin mold | |
JP5943826B2 (en) | Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles | |
JP4035989B2 (en) | Light-transmitting synthetic resin foam | |
JP4128850B2 (en) | Method for producing in-mold foam molded product of polypropylene resin expanded particles | |
JP2003313353A (en) | Expanded polypropylene resin particle | |
JP2003089727A5 (en) | Method for producing thermoplastic resin foam | |
JP2019183140A (en) | Method for producing modified polylactic resin | |
JP4987463B2 (en) | Method for producing foamed thermoplastic resin | |
JP2019183097A (en) | Polylactic resin foam | |
JP3459447B2 (en) | Method for producing polyethersulfone resin foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061130 |