JP2003086252A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JP2003086252A JP2003086252A JP2001273218A JP2001273218A JP2003086252A JP 2003086252 A JP2003086252 A JP 2003086252A JP 2001273218 A JP2001273218 A JP 2001273218A JP 2001273218 A JP2001273218 A JP 2001273218A JP 2003086252 A JP2003086252 A JP 2003086252A
- Authority
- JP
- Japan
- Prior art keywords
- lithium secondary
- secondary battery
- electrode plate
- insulator
- battery according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 71
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 239000012212 insulator Substances 0.000 claims abstract description 60
- 239000000463 material Substances 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 14
- 229920000620 organic polymer Polymers 0.000 claims description 14
- 239000011148 porous material Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000292 calcium oxide Substances 0.000 claims description 4
- 235000012255 calcium oxide Nutrition 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 229920005672 polyolefin resin Polymers 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000007774 positive electrode material Substances 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- -1 lithium transition metal Chemical class 0.000 description 8
- 239000011255 nonaqueous electrolyte Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、製造コストが低
減されているとともに、電池性能、特にサイクル特性に
優れたリチウム二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery which has a reduced manufacturing cost and is excellent in battery performance, particularly cycle characteristics.
【0002】[0002]
【従来の技術】 リチウム二次電池は、近年、携帯型の
通信機器やノート型パーソナルコンピュータ等の電子機
器の電源を担う、小型でエネルギー密度の大きな充放電
可能な二次電池として、広く用いられるようになってき
ている。また、国際的な地球環境の保護を背景として省
資源化や省エネルギー化に対する関心が高まる中、リチ
ウム二次電池は、自動車業界において積極的な市場導入
が検討されている電気自動車用のモータ駆動用バッテリ
ー、或いは夜間電力の保存による電力の有効利用手段と
しても期待されており、これらの用途に適する大容量リ
チウム二次電池の実用化が急がれている。2. Description of the Related Art In recent years, a lithium secondary battery has been widely used as a small and chargeable secondary battery having a large energy density, which serves as a power source for electronic devices such as portable communication devices and notebook personal computers. Is starting to appear. In addition, as interest in resource saving and energy saving is increasing against the backdrop of international protection of the global environment, lithium secondary batteries are being used for motor drive of electric vehicles, which are being actively introduced into the market in the automobile industry. It is also expected as a means for effectively using electric power by storing a battery or night electric power, and commercialization of a large-capacity lithium secondary battery suitable for these applications is urgently needed.
【0003】 リチウム二次電池には、一般的にリチウ
ム遷移金属複合酸化物等が正極活物質として、またハー
ドカーボンや黒鉛といった炭素質材料が負極活物質とし
てそれぞれ用いられる。リチウム二次電池の反応電位は
約4.1Vと高いために、電解液として従来のような水
系電解液を用いることができず、このため電解質である
リチウム化合物を有機溶媒に溶解した非水電解液が用い
られる。そして、充電反応は正極活物質中のLi+が、
非水電解液中を通って負極活物質へ移動して捕捉される
ことで起こり、放電時には逆の電池反応が起こる。In a lithium secondary battery, a lithium transition metal composite oxide or the like is generally used as a positive electrode active material, and a carbonaceous material such as hard carbon or graphite is used as a negative electrode active material. Since the reaction potential of the lithium secondary battery is as high as about 4.1 V, it is not possible to use a conventional aqueous electrolyte solution as an electrolyte solution. Therefore, a non-aqueous electrolyte prepared by dissolving a lithium compound, which is an electrolyte, in an organic solvent is used. A liquid is used. Then, the charging reaction causes Li + in the positive electrode active material to
It occurs by passing through the non-aqueous electrolyte to the negative electrode active material and being captured, and the reverse battery reaction occurs during discharge.
【0004】 比較的容量の大きいリチウム二次電池に
おいては、図3に示すような、電極リード5・6(正極
用リード5、負極用リード6)が取り付けられた正負各
電極板2・3(正極板2、負極板3)を、互いに接触し
ないように間にセパレータ4を介しつつ、巻芯13の外
周に捲回してなる捲回型電極体1が好適に用いられる。In a lithium secondary battery having a relatively large capacity, as shown in FIG. 3, positive and negative electrode plates 2 and 3 (electrode leads 5 and 6 (positive electrode lead 5 and negative electrode lead 6) are attached. A wound-type electrode body 1 formed by winding the positive electrode plate 2 and the negative electrode plate 3) around the outer periphery of the winding core 13 with the separator 4 interposed therebetween so as not to contact each other is preferably used.
【0005】 ここで、正・負両電極板間に介在するセ
パレータ4は、ポリオレフィン等の多孔質膜からなる部
材であり、非水電解液を染み込ませることが可能である
とともに、イオン(Li+)の動きは阻害せず、かつ、
正極と負極を絶縁するための機能を有する構成部材であ
る。Here, the separator 4 interposed between the positive electrode plate and the negative electrode plate is a member made of a porous film such as polyolefin, which is capable of impregnating a non-aqueous electrolytic solution and at the same time ion (Li + ) Movement is not hindered, and
It is a constituent member having a function of insulating the positive electrode and the negative electrode.
【0006】[0006]
【発明が解決しようとする課題】 通常、若干ではある
もののセパレータがイオン(Li+)の動きを妨げ、分
極する現象が起こり得る。分極は特に大電流の充放電が
印加された場合には顕著となり易いが、特に充放電が多
数回繰り返された場合には電池にダメージが蓄積し、電
池の充放電サイクル特性(充放電の繰り返しによる電池
容量変化特性を指す。以下、「サイクル特性」とい
う。)が劣化する場合も想定される。Usually, although slightly, a phenomenon in which a separator interferes with the movement of ions (Li + ) and causes polarization can occur. Polarization tends to become remarkable especially when high-current charging / discharging is applied, but damage is accumulated in the battery especially when charging / discharging is repeated many times, and the charging / discharging cycle characteristics of the battery (repeating charging / discharging It is also assumed that the battery capacity change characteristic due to the above (hereinafter referred to as “cycle characteristic”) is deteriorated.
【0007】 一般的に、細孔径が大きいセパレータを
使用すると分極が小さくなるため、サイクル特性が向上
する。そこで、サイクル特性の向上を図るためにセパレ
ータの細孔径を大径化すると、次第にセパレータの形状
が保持され難くなり、独立した一部材として取り扱うこ
と、電極板の間に挟み込むこと等が困難となる。即ち、
セパレータはそれ自体で形状を保持する必要性があるた
めに、セパレータの細孔径を大径化することにより電池
のサイクル特性の向上を図るには限界がある。In general, when a separator having a large pore size is used, the polarization becomes small, so that the cycle characteristics are improved. Therefore, if the pore size of the separator is increased in order to improve the cycle characteristics, the shape of the separator gradually becomes difficult to maintain, and it becomes difficult to handle the separator as an independent member and to sandwich it between the electrode plates. That is,
Since it is necessary for the separator to maintain its shape by itself, there is a limit to improving the cycle characteristics of the battery by increasing the pore size of the separator.
【0008】 電池はその利用目的や使用状況に応じ
て、大電流の充放電が要求される場合がある。例えば車
載用、電力保存用等の比較的容量の大きいリチウム二次
電池に関しては、多数回におよぶ大電流の充放電が長期
間にわたって繰り返されるため、電池のサイクル特性の
劣化抑制や、電池寿命の長寿命化等が重要な課題とな
る。従って、このような不都合が解消され、過酷な使用
条件下であっても長寿命である電池の開発が産業界から
要請されている。A battery may be required to be charged and discharged with a large current depending on the purpose of use and the situation of use. For example, for lithium secondary batteries with a relatively large capacity, such as those used in vehicles and for storage of electric power, charging and discharging of a large current many times are repeated over a long period of time, which suppresses deterioration of the cycle characteristics of the battery and shortens the battery life. Prolonging life is an important issue. Therefore, the industry is demanding the development of a battery that eliminates such inconvenience and has a long life even under severe usage conditions.
【0009】 本発明は、このような従来技術の有する
問題点に鑑みてなされたものであり、その目的とすると
ころは、製造が簡便であるとともに製造コストが低減さ
れ、かつ、サイクル特性に優れたリチウム二次電池を提
供することにある。The present invention has been made in view of the above problems of the prior art, and an object of the present invention is that the manufacturing is simple, the manufacturing cost is reduced, and the cycle characteristics are excellent. To provide a lithium secondary battery.
【0010】[0010]
【課題を解決するための手段】 即ち、本発明によれ
ば、正極板と負極板が絶縁体を介して捲回若しくは積層
してなる電極体を備えたリチウム二次電池であって、該
電極体の少なくとも一方の電極板における他方の電極板
と当接すべき表面上において、該絶縁体が一体的に形成
されていることを特徴とするリチウム二次電池が提供さ
れる。Means for Solving the Problems That is, according to the present invention, there is provided a lithium secondary battery including an electrode body in which a positive electrode plate and a negative electrode plate are wound or laminated with an insulator interposed between the positive electrode plate and the negative electrode plate. Provided is a lithium secondary battery in which the insulator is integrally formed on a surface of at least one electrode plate of the body to be in contact with the other electrode plate.
【0011】 本発明においては、絶縁体が有機高分子
化合物又は無機粉体物であることが、或いは、有機高分
子化合物と無機粉体物との混合物であることが好まし
い。In the present invention, the insulator is preferably an organic polymer compound or an inorganic powder material, or a mixture of an organic polymer compound and an inorganic powder material.
【0012】 また、本発明においては、有機高分子化
合物がポリエチレンオキサイド系樹脂、ポリオレフィン
系樹脂、及びフッ素系樹脂からなる群より選択される少
なくとも一種であることが好ましく、更に、有機高分子
化合物が発泡樹脂であることが好ましい。Further, in the present invention, the organic polymer compound is preferably at least one selected from the group consisting of a polyethylene oxide resin, a polyolefin resin, and a fluorine resin, and further, the organic polymer compound is It is preferably a foamed resin.
【0013】 本発明においては、無機粉体物がアルミ
ナ、ジルコニア、チタニア、マグネシア、及びカルシア
からなる群より選択される少なくとも一種であることが
好ましい。In the present invention, the inorganic powder is preferably at least one selected from the group consisting of alumina, zirconia, titania, magnesia, and calcia.
【0014】 また、本発明においては絶縁体の細孔径
が1μm以上であることが好ましく、10〜100μm
であることが更に好ましい。Further, in the present invention, the pore size of the insulator is preferably 1 μm or more, and 10 to 100 μm.
Is more preferable.
【0015】 本発明のリチウム二次電池は、電池容量
が2Ah以上の大型電池に好適に採用され、また、大電
流の放電が頻繁に行われる電気自動車又はハイブリッド
電気自動車のモータ駆動用電源等として好適に用いられ
る。The lithium secondary battery of the present invention is suitably used for a large battery having a battery capacity of 2 Ah or more, and is also used as a power source for driving a motor of an electric vehicle or a hybrid electric vehicle that frequently discharges a large current. It is preferably used.
【0016】[0016]
【発明の実施の形態】 以下、本発明の実施の形態につ
いて説明するが、本発明は以下の実施の形態に限定され
るものではなく、本発明の趣旨を逸脱しない範囲で、当
業者の通常の知識に基づいて、適宜、設計の変更、改良
等が加えられることが理解されるべきである。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments. It should be understood that design changes, improvements, etc. can be appropriately made based on the knowledge of.
【0017】 本発明は、正極板と負極板が絶縁体を介
して捲回若しくは積層してなる電極体を備えたリチウム
二次電池であり、電極体の少なくとも一方の電極板にお
ける他方の電極板と当接すべき表面上において、絶縁体
が一体的に形成されていることを特徴とするものであ
る。以下、その詳細について説明する。The present invention is a lithium secondary battery including an electrode body in which a positive electrode plate and a negative electrode plate are wound or laminated with an insulator interposed therebetween, and the other electrode plate in at least one electrode plate of the electrode body. The insulator is integrally formed on the surface to be contacted with. The details will be described below.
【0018】 図1は、本発明に係るリチウム二次電池
に用いられる捲回型電極体の一実施態様を示す図面であ
り、(a)は全体の斜視図、(b)は(a)のA部拡大
図である。一方、図3は従来のリチウム二次電池に用い
られる捲回型電極体の一実施態様を示す斜視図である。
図1に示す捲回型電極体においては、正極板2、負極板
3の各表面上であって、他方の電極体と当接する表面上
に電極板一体型絶縁体15が設けられた状態が示されて
いる。これに対して、図3に示す従来の捲回型電極体1
においては、独立した構成部材であるセパレータ4を備
えている。即ち、本発明のリチウム二次電池に用いられ
る電極体においては、従来、電極板とは別に独立した構
成部材として存在していたセパレータがなく、絶縁体が
電極板と一体的に形成されている。FIG. 1 is a view showing an embodiment of a wound electrode body used in a lithium secondary battery according to the present invention, where (a) is a perspective view of the whole and (b) is (a). It is an enlarged view of part A. On the other hand, FIG. 3 is a perspective view showing an embodiment of a wound electrode body used in a conventional lithium secondary battery.
In the wound-type electrode body shown in FIG. 1, a state in which the electrode plate integrated insulator 15 is provided on each surface of the positive electrode plate 2 and the negative electrode plate 3 that is in contact with the other electrode body is It is shown. On the other hand, the conventional wound electrode body 1 shown in FIG.
In Fig. 1, the separator 4 is provided as an independent component. That is, in the electrode body used in the lithium secondary battery of the present invention, there is no separator which has conventionally existed as an independent component separate from the electrode plate, and the insulator is formed integrally with the electrode plate. .
【0019】 従って、本発明のリチウム二次電池につ
いては、従来のリチウム二次電池に用いられているセパ
レータの細孔径に比して絶縁体の細孔径を大径化するこ
とが可能であり、より分極の発生を抑制することができ
る。このため、本発明のリチウム二次電池は、独立した
構成部材であるセパレータを備えた従来のリチウム二次
電池に比してサイクル特性に優れている。Therefore, in the lithium secondary battery of the present invention, it is possible to increase the pore size of the insulator as compared with the pore size of the separator used in the conventional lithium secondary battery. It is possible to further suppress the occurrence of polarization. Therefore, the lithium secondary battery of the present invention is superior in cycle characteristics to the conventional lithium secondary battery including the separator that is an independent component.
【0020】 更に、セパレータはリチウム二次電池の
構成部材の中でも比較的高価な部材の1つであるととも
に、電極板の表面上に絶縁体を形成する方法は、通常の
リチウム二次電池の製造工程に容易に導入することが可
能であるため、セパレータを用いない本発明のリチウム
二次電池は製造コスト面においても配慮がなされてい
る。Further, the separator is one of the relatively expensive members among the constituent members of the lithium secondary battery, and the method of forming the insulator on the surface of the electrode plate is the same as in the production of ordinary lithium secondary batteries. Since it can be easily introduced into the process, the lithium secondary battery of the present invention that does not use a separator is also considered in terms of manufacturing cost.
【0021】 また、本発明のリチウム二次電池におい
ては、電極体を構成する少なくとも一方の電極板の表面
上にのみ絶縁体が形成されていれば、正極板と負極板と
を効果的に絶縁するためには充分であるが、両電極板の
互いに当接する表面上に形成されていてもよい。即ち、
形成される絶縁体の物理的・化学的性質等を考慮して、
絶縁体が形成される面が適宜決定される。Further, in the lithium secondary battery of the present invention, if the insulator is formed only on the surface of at least one of the electrode plates constituting the electrode body, the positive electrode plate and the negative electrode plate are effectively insulated from each other. However, it may be formed on the surfaces of the two electrode plates which are in contact with each other. That is,
Considering the physical and chemical properties of the formed insulator,
The surface on which the insulator is formed is appropriately determined.
【0022】 なお、本発明のリチウム二次電池は、前
述の図1に示す捲回型電極体1が用いられることに限定
されるものではなく、図2に示す積層型電極体7等の型
式を始めとする電極体が用いられていてもよい。即ち、
本発明のリチウム二次電池は、正極板、又は負極板のい
ずれか一方、或いは両方の表面上に電極板一体型の絶縁
体が形成された電極体を備えていれば、電極体の型式に
限定されるものではない。The lithium secondary battery of the present invention is not limited to the use of the wound electrode body 1 shown in FIG. 1 described above, but may be of the type such as the laminated electrode body 7 shown in FIG. And other electrode bodies may be used. That is,
The lithium secondary battery of the present invention has a positive electrode plate, a negative electrode plate, or an electrode body having an electrode body on which an electrode plate-integrated insulator is formed on both surfaces. It is not limited.
【0023】 本発明のリチウム二次電池の正極板又は
負極板、或いは両方の電極板の表面上に形成される絶縁
体は、有機高分子化合物又は無機粉体物であることが好
ましい。これらの材質は両電極板を効果的に絶縁するこ
とが可能であるとともに、電極板と一体化した絶縁体を
容易に形成することができるためである。また、本発明
においては同様の観点により、絶縁体が有機高分子化合
物と無機粉体物との混合物であることも同様に好まし
い。The insulator formed on the surface of the positive electrode plate or the negative electrode plate of the lithium secondary battery of the present invention, or both of the electrode plates is preferably an organic polymer compound or an inorganic powder material. This is because these materials can effectively insulate both electrode plates, and can easily form an insulator integrated with the electrode plates. Further, in the present invention, from the same viewpoint, it is also preferable that the insulator is a mixture of an organic polymer compound and an inorganic powder material.
【0024】 更に、本発明においては前記有機高分子
化合物がポリエチレンオキサイド系樹脂、ポリオレフィ
ン系樹脂、及びフッ素系樹脂からなる群より選択される
少なくとも一種であることが好ましく、また、前記無機
粉体物がアルミナ、ジルコニア、チタニア、マグネシ
ア、及びカルシアからなる群より選択される少なくとも
一種であることが好ましい。これらの材質により形成さ
れる絶縁体の厚みは、任意に調整可能であるとともに、
安価で入手が容易であるためである。また、前述の絶縁
体の厚み調整容易性や入手容易性等の観点からは、有機
高分子化合物が発泡樹脂であることが好ましい。Further, in the present invention, the organic polymer compound is preferably at least one selected from the group consisting of polyethylene oxide resins, polyolefin resins, and fluorine resins, and the inorganic powder material Is preferably at least one selected from the group consisting of alumina, zirconia, titania, magnesia, and calcia. The thickness of the insulator formed of these materials can be adjusted arbitrarily, and
This is because it is cheap and easily available. In addition, from the viewpoint of ease of adjusting the thickness of the above-mentioned insulator and availability, the organic polymer compound is preferably a foamed resin.
【0025】 本発明のリチウム二次電池は、電極板の
表面上において絶縁体が電極板と一体的に形成されてい
ることを特徴とするものであり、その他の材料や電池構
造には何ら制限はない。以下、リチウム二次電池を構成
する主要部材並びにその構造について概説する。The lithium secondary battery of the present invention is characterized in that the insulator is formed integrally with the electrode plate on the surface of the electrode plate, and there are no restrictions on other materials or battery structure. There is no. The main members and structure of the lithium secondary battery will be outlined below.
【0026】 まず、図1に示す捲回型電極体1を例
に、その構成について説明する。正極板2は集電基板の
両面に正極活物質を塗工することによって作製される。
集電基板としては、アルミニウム箔やチタン箔等の正極
電気化学反応に対する耐蝕性が良好である金属箔が用い
られるが、箔以外にパンチングメタル或いはメッシュ
(網)を用いることもできる。また、正極活物質として
は、マンガン酸リチウム(LiMn2O4)やコバルト酸
リチウム(LiCoO2)、ニッケル酸リチウム(Li
NiO2)等のリチウム遷移金属複合酸化物が好適に用
いられるが、本発明においては特にマンガン酸リチウム
が好ましく、他の正極活物質を用いた場合に比して、正
極活物質層の抵抗を小さくすることができる。なお、こ
れらの正極活物質にアセチレンブラック等の炭素微粉末
を導電助剤として加えることが好ましい。First, the structure of the wound electrode body 1 shown in FIG. 1 will be described as an example. The positive electrode plate 2 is manufactured by applying a positive electrode active material on both surfaces of a current collecting substrate.
As the current collector substrate, a metal foil such as an aluminum foil or a titanium foil having good corrosion resistance against a positive electrode electrochemical reaction is used, but a punching metal or a mesh (mesh) may be used instead of the foil. As the positive electrode active material, lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (Li) is used.
Although a lithium transition metal composite oxide such as NiO 2 ) is preferably used, lithium manganate is particularly preferable in the present invention, and the resistance of the positive electrode active material layer is higher than that when other positive electrode active material is used. Can be made smaller. It is preferable to add fine carbon powder such as acetylene black to these positive electrode active materials as a conductive additive.
【0027】 なお、マンガン酸リチウムは、このよう
な化学量論組成(ストイキオメトリー組成)のものに限
定されるものではなく、Mnの一部を1以上の他の元素
で置換した、一般式LiMXMn2-XO4(Mは置換元
素、Xは置換量を表す。)で表されるマンガン酸リチウ
ムも好適に用いられる。このような元素置換を行ったマ
ンガン酸リチウムにおいては、Li/Mn比が0.5超
となる。The lithium manganate is not limited to such a stoichiometric composition (stoichiometric composition), and a general formula in which a part of Mn is replaced with one or more other elements is given. LiM X Mn 2-X O 4 (M is a substituted element, X represents. the amount of substitution) lithium manganate represented by also suitably used. In the lithium manganate that has undergone such element substitution, the Li / Mn ratio exceeds 0.5.
【0028】 置換元素Mとしては、以下、元素記号で
列記するが、Li、Fe、Mn、Ni、Mg、Zn、
B、Al、Co、Cr、Si、Ti、Sn、P、V、S
b、Nb、Ta、Mo、Wを挙げることができ、理論
上、Liは+1価、Fe、Mn、Ni、Mg、Znは+
2価、B、Al、Co、Crは+3価、Si、Ti、S
nは+4価、P、V、Sb、Nb、Taは+5価、M
o、Wは+6価のイオンとなり、LiMn2O4中に固溶
する元素である。但し、Co、Snについては+2価の
場合、Fe、Sb及びTiについては+3価の場合、M
nについては+3価、+4価の場合、Crについては+
4価、+6価の場合もあり得る。The substituting element M is listed below by the element symbols, but Li, Fe, Mn, Ni, Mg, Zn,
B, Al, Co, Cr, Si, Ti, Sn, P, V, S
b, Nb, Ta, Mo, and W can be mentioned, and theoretically, Li has a +1 valence, and Fe, Mn, Ni, Mg, and Zn have +.
Divalent, B, Al, Co, Cr +3, Si, Ti, S
n is +4 valence, P, V, Sb, Nb, Ta is +5 valence, M
o and W are +6 valent ions and are elements that form a solid solution in LiMn 2 O 4 . However, when Co and Sn are +2 valence, and when Fe, Sb and Ti are +3 valence, M
+3 valence for n, +4 valence for Cr, + for Cr
It may be tetravalent or +6.
【0029】 従って、各種の置換元素Mは混合原子価
を有する状態で存在する場合があり、また、酸素の量に
ついては、必ずしもストイキオメトリー組成で表される
ように4であることを必要とせず、結晶構造を維持する
ための範囲内で欠損して、或いは過剰に存在していても
構わない。Therefore, the various substitutional elements M may exist in a state having mixed valences, and the amount of oxygen needs to be 4 as represented by the stoichiometric composition. Alternatively, it may be deficient or excessively present within the range for maintaining the crystal structure.
【0030】 正極活物質の塗工は、正極活物質粉末に
溶剤や結着剤等を添加して作製したスラリー或いはペー
ストを、ロールコータ法等を用いて、集電基板に塗布・
乾燥することで行われ、その後に必要に応じてプレス処
理等が施される。The positive electrode active material is applied by coating a current collector substrate with a slurry or paste prepared by adding a solvent, a binder and the like to positive electrode active material powder using a roll coater method or the like.
It is performed by drying, and thereafter, a pressing process or the like is performed if necessary.
【0031】 負極板3は、正極板2と同様にして作製
することができる。負極板3の集電基板としては、銅箔
若しくはニッケル箔等の負極電気化学反応に対する耐蝕
性が良好な金属箔が好適に用いられる。負極活物質とし
ては、ソフトカーボンやハードカーボンといったアモル
ファス系炭素質材料や人造黒鉛や天然黒鉛等の高黒鉛化
炭素質粉末が用いられる。The negative electrode plate 3 can be manufactured in the same manner as the positive electrode plate 2. As the current collector substrate of the negative electrode plate 3, a metal foil such as a copper foil or a nickel foil having a good corrosion resistance against a negative electrode electrochemical reaction is preferably used. As the negative electrode active material, an amorphous carbonaceous material such as soft carbon or hard carbon, or highly graphitized carbonaceous powder such as artificial graphite or natural graphite is used.
【0032】 本発明のリチウム二次電池は、電極板の
表面上において電極板一体型絶縁体が形成されているも
のである。形成される電極板一体型絶縁体の材質として
は、有機高分子化合物の例としてはポリテトラフルオロ
エチレン(PTFE)、ポリフッ化ビニリデン(PVD
F)、ポリエチレン(PE)等、又はこれらの混合物
が、無機粉体物の例としてはアルミナ、ジルコニア、チ
タニア、マグネシア、カルシア等、又はこれらの混合物
が好適に用いられる。更には、これらの有機高分子化合
物と無機粉体物とを適宜混合することも好ましい。The lithium secondary battery of the present invention has an electrode plate-integrated insulator formed on the surface of the electrode plate. Examples of the material of the formed electrode plate-integrated insulator include organic polymer compounds such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVD).
F), polyethylene (PE) and the like, or a mixture thereof, and alumina, zirconia, titania, magnesia, calcia, etc., or a mixture thereof are preferably used as an example of the inorganic powder material. Furthermore, it is also preferable to appropriately mix these organic polymer compounds and inorganic powders.
【0033】 前述の電極板一体型絶縁体を形成するた
めの材質を、例えば加熱処理等により溶融物とするか、
ディスパージョン、溶液、又はペースト等の調製物を
得、得られた調製物中に、その表面上に電極板一体型絶
縁体を形成すべき電極板を浸漬する、或いは適当な機
器、例えば噴霧器、塗工機等を用いて電極板の表面上に
調製物をスプレー、コート等した後、放置、又は室温〜
適当な加熱条件下において乾燥することによって、電極
板一体型絶縁体を形成することができる。The material for forming the above-mentioned electrode plate-integrated insulator is made into a molten material by, for example, heat treatment,
Dispersion, a solution, or a preparation such as a paste is obtained, and in the obtained preparation, an electrode plate on which an electrode plate-integrated insulator is to be formed is immersed, or a suitable device such as a sprayer, After spraying and coating the preparation on the surface of the electrode plate using a coating machine, etc., leave it at room temperature or
The electrode plate-integrated insulator can be formed by drying under an appropriate heating condition.
【0034】 なお、形成される電極板一体型絶縁体の
厚さは、例えば、前記調製物の濃度や、電極板の浸漬時
間等を変えることによって容易に調節可能である。ま
た、電極板一体型絶縁体の細孔径も、例えば、前記調製
物の濃度や、電極板の浸漬時間等を変えることによって
調節することができる。なお、細孔径の大きさは、従来
用いられているセパレータの細孔径(0.1〜1μm)
よりも大きい細孔径であることが、分極の発生を抑止
し、サイクル特性に優れたリチウム二次電池を提供する
という観点から好ましい。具体的には1μm以上である
ことが好ましく、10〜100μmであることが更に好
ましい。100μm超である場合、極板粒子同士の接触
による短絡の可能性が高くなるために好ましくない。The thickness of the electrode plate-integrated insulator to be formed can be easily adjusted by, for example, changing the concentration of the preparation, the immersion time of the electrode plate, or the like. The pore size of the electrode plate-integrated insulator can also be adjusted by, for example, changing the concentration of the preparation, the immersion time of the electrode plate, or the like. In addition, the size of the pore diameter is the pore diameter (0.1 to 1 μm) of the conventionally used separator.
A pore size larger than that is preferable from the viewpoint of suppressing the occurrence of polarization and providing a lithium secondary battery having excellent cycle characteristics. Specifically, it is preferably 1 μm or more, and more preferably 10 to 100 μm. If it exceeds 100 μm, the possibility of short circuit due to contact between the electrode plate particles increases, which is not preferable.
【0035】 表面上に電極板一体型絶縁体15が形成
された電極板2・3の捲回作業時に、電極板2・3にお
いて電極活物質が塗工されておらず、かつ、電極板一体
型絶縁体15が形成されていない集電基板が露出した部
分に、電極リード5・6がそれぞれ取り付けられる。電
極リード5・6としては、それぞれの電極板2・3の集
電基板と同じ材質からなる箔状のものが好適に用いられ
る。電極リード5・6の電極板2・3への取り付けは、
超音波溶接やスポット溶接等を用いて行うことができ
る。During the winding operation of the electrode plates 2 and 3 having the electrode plate integrated insulator 15 formed on the surface thereof, the electrode active material is not coated on the electrode plates 2 and 3 and the electrode plate 1 and 3 are not coated. The electrode leads 5 and 6 are attached to the exposed portions of the current collecting substrate on which the body-type insulator 15 is not formed. As the electrode leads 5 and 6, foil-shaped ones made of the same material as the current collecting substrates of the electrode plates 2 and 3 are preferably used. To attach the electrode leads 5 and 6 to the electrode plates 2 and 3,
It can be performed using ultrasonic welding or spot welding.
【0036】 次に、本発明のリチウム二次電池に用い
られる非水電解液について説明する。溶媒としては、エ
チレンカーボネート(EC)、ジエチルカーボネート
(DEC)、ジメチルカーボネート(DMC)、プロピ
レンカーボネート(PC)といった炭酸エステル系のも
のや、γ−ブチロラクトン、テトラヒドロフラン、アセ
トニトリル等の単独溶媒若しくは混合溶媒が好適に用い
られる。Next, the non-aqueous electrolyte used in the lithium secondary battery of the present invention will be described. Examples of the solvent include carbonate-based ones such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) and propylene carbonate (PC), and single solvents or mixed solvents such as γ-butyrolactone, tetrahydrofuran and acetonitrile. It is preferably used.
【0037】 電解質としては、六フッ化リン酸リチウ
ム(LiPF6)やホウフッ化リチウム(LiBF4)等
のリチウム錯体フッ素化合物、或いは過塩素酸リチウム
(LiClO4)といったリチウムハロゲン化物が挙げ
られ、1種類若しくは2種類以上を上述した有機溶媒
(混合溶媒)に溶解して用いる。特に、酸化分解が起こ
り難く、非水電解液の導電性の高いLiPF6を用いる
ことが好ましい。Examples of the electrolyte include lithium complex fluoride compounds such as lithium hexafluorophosphate (LiPF 6 ) and lithium borofluoride (LiBF 4 ), or lithium halides such as lithium perchlorate (LiClO 4 ). One kind or two or more kinds are dissolved in the above-mentioned organic solvent (mixed solvent) and used. In particular, it is preferable to use LiPF 6 which does not easily undergo oxidative decomposition and has high conductivity of the non-aqueous electrolyte.
【0038】 リチウム二次電池の組立に当たっては、
まず、電流を外部に取り出すための端子との電極リード
5・6との導通を確保しつつ、作製された捲回型電極体
1を電池ケースに挿入して安定な位置にホールドする。
その後、上述した非水電解液を含浸、及び、電池ケース
を封止することにより、リチウム二次電池を作製するこ
とができる。When assembling the lithium secondary battery,
First, the wound electrode body 1 thus prepared is inserted into the battery case and held at a stable position while ensuring electrical continuity between the terminals for taking out an electric current and the electrode leads 5 and 6.
Then, a lithium secondary battery can be manufactured by impregnating the above-mentioned non-aqueous electrolyte and sealing the battery case.
【0039】 以上、本発明に係るリチウム二次電池に
ついて、主に捲回型電極体を用いた場合を例に挙げ、そ
の実施形態を示しながら説明してきたが、本発明が上記
の実施形態に限定されるものでないことはいうまでもな
い。また、本発明に係るリチウム二次電池は、特に、電
池容量が2Ah以上である大型の電池に好適に採用され
るが、このような容量以下の電池に適用することを妨げ
るものではない。また、本発明のリチウム二次電池は、
大容量、低コスト、高信頼性という特徴を生かし車載用
電池として、さらには、電気自動車又はハイブリッド電
気自動車に用いることが好ましいとともに、高電圧を必
要とされるエンジン起動用としても特に好適に用いるこ
とができる。As described above, the lithium secondary battery according to the present invention has been described with reference to the exemplary embodiment mainly using the wound electrode body. However, the present invention is not limited to the above-described exemplary embodiment. It goes without saying that it is not limited. In addition, the lithium secondary battery according to the present invention is particularly preferably used for a large battery having a battery capacity of 2 Ah or more, but it does not prevent application to a battery having such a capacity or less. Further, the lithium secondary battery of the present invention,
It is preferably used as an in-vehicle battery that takes advantage of the features of large capacity, low cost, and high reliability, and further preferably used for an electric vehicle or a hybrid electric vehicle and for starting an engine that requires a high voltage. be able to.
【0040】[0040]
【実施例】 以下、本発明の具体的な実施結果を説明す
る。
(電極板の作製)LiMn2O4スピネルを正極活物質と
し、これに導電助剤としてアセチレンブラックを外比で
4質量%添加したものに、更に溶剤、バインダを加えて
調製した正極剤スラリーを、厚さ20μmのアルミニウ
ム箔の両面にそれぞれ約100μmの厚みとなるように
塗工して正極板を作製した。また、グラファイト粉末を
負極活物質として、厚さ10μmの銅箔の両面にそれぞ
れ約80μmの厚みとなるように塗工して負極板を作製
した。EXAMPLES The concrete results of the present invention will be described below. (Production of Electrode Plate) A positive electrode agent slurry prepared by adding LiMn 2 O 4 spinel as a positive electrode active material and adding 4% by mass of acetylene black as a conductive additive in an external ratio to the positive electrode active material was further added a solvent and a binder. A positive electrode plate was produced by coating both sides of an aluminum foil having a thickness of 20 μm to a thickness of about 100 μm. Further, graphite powder was applied as a negative electrode active material to both sides of a copper foil having a thickness of 10 μm so as to have a thickness of about 80 μm, to prepare a negative electrode plate.
【0041】(実施例1)濃度10質量%のポリテトラ
フルオロエチレン(PTFE)水性ディスパージョンを
調製した。なお、水性ディスパージョン中のPTFE粒
子は球形であり、その平均粒径は0.3μmであった。
この水性ディスパージョン中に、前述の正極板及び負極
板を浸漬した。次いで、乾燥機にて100℃、12時間
乾燥することにより、膜状の電極板一体型絶縁体を形成
した。なお、形成された電極板一体型絶縁体の膜厚は、
両電極板とも片面で約50μmであり、膜の厚さ方向に
電気抵抗を測定したところ、両極とも200MΩ以上で
あった。Example 1 A polytetrafluoroethylene (PTFE) aqueous dispersion having a concentration of 10% by mass was prepared. The PTFE particles in the aqueous dispersion had a spherical shape, and the average particle diameter was 0.3 μm.
The above-mentioned positive electrode plate and negative electrode plate were immersed in this aqueous dispersion. Then, by drying at 100 ° C. for 12 hours in a dryer, a film-shaped electrode plate integrated insulator was formed. In addition, the film thickness of the formed electrode plate integrated insulator is
Both of the electrode plates had a thickness of about 50 μm on one side, and when the electric resistance was measured in the thickness direction of the film, both electrodes had a resistance of 200 MΩ or more.
【0042】 作製された、電極板一体型絶縁体が形成
された正・負電極板を用いて、図1に示すような捲回型
電極体1を作製した。これを電池ケースに収納及び非水
電解液を充填するとともに電池ケースを封止してリチウ
ム二次電池を作製した。なお、非水電解液は、ECとD
ECの等容量混合溶媒に電解質としてのLiPF6を1
mol/lの濃度となるように溶解して調製した。A wound electrode body 1 as shown in FIG. 1 was produced using the produced positive and negative electrode plates on which the electrode plate integrated insulator was formed. This was housed in a battery case and filled with a non-aqueous electrolyte, and the battery case was sealed to produce a lithium secondary battery. The non-aqueous electrolyte is EC and D
LiPF 6 as electrolyte in 1 volume mixed solvent of EC
It was prepared by dissolving so as to have a concentration of mol / l.
【0043】(実施例2)濃度5質量%のポリフッ化ビ
ニリデン(PVDF)のN−メチル−2−ピロリドン
(NMP)溶液を調製した。この溶液を、前述の正極板
及び負極板にスプレーした。次いで、乾燥機にて120
℃、12時間乾燥することにより、膜状の電極板一体型
絶縁体を形成した。なお、形成された電極板一体型絶縁
体の膜厚は、両電極板とも片面で約50μmであり、膜
の厚さ方向に電気抵抗を測定したところ、両極とも20
0MΩ以上であった。作製された、電極板一体型絶縁体
が形成された正・負電極板を用いて、実施例1の場合と
同様の操作手順により、リチウム二次電池を作製した。Example 2 An N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) having a concentration of 5% by mass was prepared. This solution was sprayed on the positive electrode plate and the negative electrode plate described above. Then, in the dryer 120
By drying at 12 ° C. for 12 hours, a film-shaped electrode plate integrated insulator was formed. The film thickness of the formed electrode plate-integrated insulator was about 50 μm on each side of both electrode plates, and the electric resistance was measured in the thickness direction of the film.
It was 0 MΩ or more. Using the produced positive / negative electrode plate having the electrode plate-integrated insulator formed thereon, a lithium secondary battery was produced by the same operation procedure as in the case of Example 1.
【0044】(実施例3)ポリエチレン(PE)を13
0℃にて溶融し、これを前述の正極板及び負極板にスプ
レーした。次いで、室温まで冷却することにより、膜状
の電極板一体型絶縁体を形成した。なお、形成された電
極板一体型絶縁体の膜厚は、両電極板とも片面で約50
μmであり、膜の厚さ方向に電気抵抗を測定したとこ
ろ、両極とも200MΩ以上であった。作製された、電
極板一体型絶縁体が形成された正・負電極板を用いて、
実施例1の場合と同様の操作手順により、リチウム二次
電池を作製した。Example 3 Polyethylene (PE) was added to 13
It was melted at 0 ° C. and sprayed on the positive electrode plate and the negative electrode plate described above. Then, by cooling to room temperature, a film-shaped electrode plate integrated insulator was formed. The thickness of the formed electrode plate-integrated insulator is about 50 on each side of both electrode plates.
The electric resistance was measured in the thickness direction of the film, and both electrodes were 200 MΩ or more. Using the produced positive and negative electrode plates with the electrode plate integrated insulator formed,
A lithium secondary battery was produced by the same operation procedure as in the case of Example 1.
【0045】(実施例4)濃度10質量%のAl2O3水
性ディスパージョンを調製した。なお、水性ディスパー
ジョン中のAl2O3粒子の平均粒径は10μmであっ
た。この水性ディスパージョン中に前述の正極板及び負
極板を浸漬した。次いで、乾燥機にて100℃、12時
間乾燥することにより、膜状の電極板一体型絶縁体を形
成した。なお、形成された電極板一体型絶縁体の膜厚
は、両電極板とも片面で約50μmであり、膜の厚さ方
向に電気抵抗を測定したところ、両極とも200MΩ以
上であった。作製された、電極板一体型絶縁体が形成さ
れた正・負電極板を用いて、実施例1の場合と同様の操
作手順により、リチウム二次電池を作製した。Example 4 An Al 2 O 3 aqueous dispersion having a concentration of 10% by mass was prepared. The average particle size of Al 2 O 3 particles in the aqueous dispersion was 10 μm. The above-mentioned positive electrode plate and negative electrode plate were immersed in this aqueous dispersion. Then, by drying at 100 ° C. for 12 hours in a dryer, a film-shaped electrode plate integrated insulator was formed. The film thickness of the formed electrode plate-integrated insulator was about 50 μm on both surfaces of both electrode plates, and the electric resistance was measured in the thickness direction of the film, and both electrodes were 200 MΩ or more. Using the produced positive / negative electrode plate having the electrode plate-integrated insulator formed thereon, a lithium secondary battery was produced by the same operation procedure as in Example 1.
【0046】(実施例5)濃度5質量%のポリフッ化ビ
ニリデン(PVDF)のN−メチル−2−ピロリドン
(NMP)溶液を調製し、これに10質量%となるよう
にAl2O3を混合してディスパージョンを調製した。得
られたディスパージョンを用いて、前述の正極板及び負
極板に塗工機を使用してコートした。次いで、乾燥機に
て120℃、12時間乾燥することにより、膜状の電極
板一体型絶縁体を形成した。なお、形成された電極板一
体型絶縁体の膜厚は、両電極板とも片面で約50μmで
あり、膜の厚さ方向に電気抵抗を測定したところ、両極
とも200MΩ以上であった。作製された、電極板一体
型絶縁体が形成された正・負電極板を用いて、実施例1
の場合と同様の操作手順により、リチウム二次電池を作
製した。Example 5 An N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) having a concentration of 5% by mass was prepared, and Al 2 O 3 was mixed with the solution to 10% by mass. Then, a dispersion was prepared. The obtained dispersion was used to coat the positive electrode plate and the negative electrode plate described above using a coater. Then, by drying in a dryer at 120 ° C. for 12 hours, a film-shaped electrode plate integrated insulator was formed. The film thickness of the formed electrode plate-integrated insulator was about 50 μm on both surfaces of both electrode plates, and the electric resistance was measured in the thickness direction of the film, and both electrodes were 200 MΩ or more. Using the produced positive and negative electrode plates on which the electrode plate integrated type insulator was formed, Example 1 was used.
A lithium secondary battery was produced by the same operation procedure as in the above.
【0047】(比較例1)電極板一体型絶縁体を形成し
ない正・負電極板と、絶縁体としてポリオレフィン系セ
パレータ(膜厚(片面):約25μm)とを使用するこ
と以外は、実施例1の場合と同様の操作手順により、リ
チウム二次電池を作製した。(Comparative Example 1) Example 1 except that a positive / negative electrode plate without forming an electrode plate-integrated insulator and a polyolefin separator (film thickness (one side): about 25 μm) were used as the insulator. A lithium secondary battery was produced by the same operation procedure as in the case of 1.
【0048】(サイクル試験)サイクル試験は、図4に
示される充放電サイクルを1サイクルとして、これを繰
り返すことにより行った。即ち、1サイクルは放電深度
50%の充電状態の電池を10C(放電レート)相当の
電流100Aにて9秒間放電した後18秒間休止し、そ
の後70Aで6秒間充電後、続いて18Aで27秒間充
電し、再び50%の充電状態とするパターンに設定し
た。なお、充電の2回目(18A)の電流値を微調整す
ることにより、各サイクルにおける放電深度のずれを最
小限に止めた。また、この耐久試験中の電池容量の変化
を知るために、適宜、0.2Cの電流強さで充電停止電
圧4.1V、放電停止電圧2.5Vとした容量測定を行
い、所定のサイクル数(回)における電池容量を初回の
電池容量で除した値により相対放電容量(%)を求め
た。実施例1〜5、比較例1の電池についてのサイクル
試験の結果を表1、及び図5に示す。(Cycle Test) The cycle test was carried out by repeating the charge / discharge cycle shown in FIG. 4 as one cycle. That is, in one cycle, a battery in a charged state with a discharge depth of 50% was discharged for 9 seconds at a current of 100 A corresponding to 10 C (discharge rate), then paused for 18 seconds, then charged at 70 A for 6 seconds, and then at 18 A for 27 seconds. The battery was charged, and the pattern was set to bring the battery into a 50% charged state again. By finely adjusting the current value of the second charge (18 A), the deviation of the depth of discharge in each cycle was minimized. In addition, in order to know the change in battery capacity during this endurance test, the capacity was measured at a charge stop voltage of 4.1 V and a discharge stop voltage of 2.5 V at a current strength of 0.2 C, and the predetermined number of cycles was determined. The relative discharge capacity (%) was obtained from the value obtained by dividing the battery capacity in (times) by the initial battery capacity. The results of the cycle test on the batteries of Examples 1 to 5 and Comparative Example 1 are shown in Table 1 and FIG.
【0049】[0049]
【表1】 [Table 1]
【0050】(考察)表1、及び図5に示す結果から明
らかなように、本発明に係る実施例1〜5の電池は、2
0000回のサイクル試験経過後において80%以上の
容量保持率を達成し、比較例1の電池に比して極めて良
好なサイクル特性を発揮することが判明した。これは、
従来のリチウム二次電池において用いられているセパレ
ータに代えて、電極板一体型絶縁体としたことにより、
正極板と負極板を隔てる絶縁体の細孔径が大径化された
ためにイオン(Li+)の動きが妨げられることなく、
即ち、分極が小さくなったため、結果としてサイクル寿
命が向上したと考えられる。(Discussion) As is apparent from the results shown in Table 1 and FIG. 5, the batteries of Examples 1 to 5 according to the present invention are 2
It was found that a capacity retention rate of 80% or more was achieved after the 0000 cycle test, and that the cycle performance was extremely good as compared with the battery of Comparative Example 1. this is,
By replacing the separator used in the conventional lithium secondary battery with an electrode plate integrated insulator,
Since the pore size of the insulator separating the positive electrode plate and the negative electrode plate is increased, the movement of ions (Li + ) is not hindered,
That is, it is considered that the cycle life was improved as a result because the polarization was reduced.
【0051】[0051]
【発明の効果】 以上説明したように、本発明のリチウ
ム二次電池は、電極体を構成する電極板の表面上におい
て、所定の絶縁体が一体的に形成されているために、従
来絶縁体として使用されているセパレータに比してその
細孔径を大径化することができ、サイクル特性に優れて
いる。また、独立した構成部材であるセパレータを必要
とせず、かつ、簡単な操作手順によって絶縁体を形成す
ることが可能であるために製造コストの低減がなされた
リチウム二次電池である。As described above, in the lithium secondary battery of the present invention, since the predetermined insulator is integrally formed on the surface of the electrode plate constituting the electrode body, the conventional insulator As compared with the separator used as, the pore size can be increased and the cycle characteristics are excellent. Further, the lithium secondary battery has a reduced manufacturing cost because it does not require a separator which is an independent component and can form an insulator by a simple operation procedure.
【図1】 本発明に係るリチウム二次電池に用いられる
捲回型電極体の一実施態様を示す図面であり、(a)は
全体の斜視図、(b)は(a)のA部拡大図である。1A and 1B are drawings showing an embodiment of a wound electrode body used in a lithium secondary battery according to the present invention, in which FIG. 1A is an overall perspective view, and FIG. 1B is an enlarged view of part A of FIG. It is a figure.
【図2】 本発明に係るリチウム二次電池に用いられる
積層型電極体の一実施態様を示す斜視図である。FIG. 2 is a perspective view showing an embodiment of a laminated electrode body used in the lithium secondary battery according to the present invention.
【図3】 従来のリチウム二次電池に用いられる捲回型
電極体の一実施態様を示す斜視図である。FIG. 3 is a perspective view showing an embodiment of a wound electrode body used in a conventional lithium secondary battery.
【図4】 サイクル試験における充放電パターンを示す
グラフである。FIG. 4 is a graph showing a charge / discharge pattern in a cycle test.
【図5】 サイクル試験の結果を示すグラフである。FIG. 5 is a graph showing the results of a cycle test.
1…捲回型電極体、2…正極板、3…負極板、4…セパ
レータ、5…電極リード、6…電極リード、7…積層型
電極体、8…正極板、9…負極板、10…セパレータ、
11…電極リード、12…電極リード、13…巻芯、1
5…電極板一体型絶縁体。DESCRIPTION OF SYMBOLS 1 ... Wound type electrode body, 2 ... Positive electrode plate, 3 ... Negative electrode plate, 4 ... Separator, 5 ... Electrode lead, 6 ... Electrode lead, 7 ... Laminated electrode body, 8 ... Positive electrode plate, 9 ... Negative electrode plate, 10 … Separator,
11 ... Electrode lead, 12 ... Electrode lead, 13 ... Winding core, 1
5 ... Insulator integrated with electrode plate.
フロントページの続き Fターム(参考) 5H029 AJ05 AJ14 AK03 AL06 AL07 AM03 AM04 AM05 AM07 BJ02 BJ12 BJ13 BJ14 CJ08 CJ22 DJ16 EJ03 EJ12 HJ06 HJ19 5H050 AA07 AA19 BA05 CA08 CA09 CB07 CB08 DA02 DA03 EA01 EA23 FA04 FA17 GA10 GA22 HA06 HA19 Continued front page F term (reference) 5H029 AJ05 AJ14 AK03 AL06 AL07 AM03 AM04 AM05 AM07 BJ02 BJ12 BJ13 BJ14 CJ08 CJ22 DJ16 EJ03 EJ12 HJ06 HJ19 5H050 AA07 AA19 BA05 CA08 CA09 CB07 CB08 DA02 DA03 EA01 EA23 FA04 FA17 GA10 GA22 HA06 HA19
Claims (12)
しくは積層してなる電極体を備えたリチウム二次電池で
あって、 該電極体の少なくとも一方の電極板における他方の電極
板と当接すべき表面上において、該絶縁体が一体的に形
成されていることを特徴とするリチウム二次電池。1. A lithium secondary battery comprising an electrode body in which a positive electrode plate and a negative electrode plate are wound or laminated with an insulator interposed therebetween, wherein at least one of the electrode plates is the other electrode plate. A lithium secondary battery, wherein the insulator is integrally formed on a surface to be contacted with.
体物である請求項1に記載のリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein the insulator is an organic polymer compound or an inorganic powder material.
物との混合物である請求項1に記載のリチウム二次電
池。3. The lithium secondary battery according to claim 1, wherein the insulator is a mixture of an organic polymer compound and an inorganic powder material.
サイド系樹脂、ポリオレフィン系樹脂、及びフッ素系樹
脂からなる群より選択される少なくとも一種である請求
項2又は3に記載のリチウム二次電池。4. The lithium secondary battery according to claim 2, wherein the organic polymer compound is at least one selected from the group consisting of polyethylene oxide resin, polyolefin resin, and fluorine resin.
求項2〜4のいずれか一項に記載のリチウム二次電池。5. The lithium secondary battery according to claim 2, wherein the organic polymer compound is a foamed resin.
チタニア、マグネシア、及びカルシアからなる群より選
択される少なくとも一種である請求項2又は3に記載の
リチウム二次電池。6. The inorganic powder material is alumina, zirconia,
The lithium secondary battery according to claim 2 or 3, which is at least one selected from the group consisting of titania, magnesia, and calcia.
求項1〜6のいずれか一項に記載のリチウム二次電池。7. The lithium secondary battery according to claim 1, wherein the insulator has a pore size of 1 μm or more.
ある請求項1〜6のいずれか一項に記載のリチウム二次
電池。8. The lithium secondary battery according to claim 1, wherein the insulator has a pore size of 10 to 100 μm.
8のいずれか一項に記載のリチウム二次電池。9. A battery having a battery capacity of 2 Ah or more.
8. The lithium secondary battery according to any one of items 8.
れか一項に記載のリチウム二次電池。10. The lithium secondary battery according to claim 1, which is a vehicle-mounted battery.
車に用いられる請求項10に記載のリチウム二次電池。11. The lithium secondary battery according to claim 10, which is used in an electric vehicle or a hybrid electric vehicle.
0又は11に記載のリチウム二次電池。12. The method according to claim 1, which is used for starting an engine.
The lithium secondary battery according to 0 or 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001273218A JP2003086252A (en) | 2001-09-10 | 2001-09-10 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001273218A JP2003086252A (en) | 2001-09-10 | 2001-09-10 | Lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003086252A true JP2003086252A (en) | 2003-03-20 |
Family
ID=19098460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001273218A Pending JP2003086252A (en) | 2001-09-10 | 2001-09-10 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003086252A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005235617A (en) * | 2004-02-20 | 2005-09-02 | Matsushita Electric Ind Co Ltd | Lithium ion battery |
JP2015533453A (en) * | 2012-11-02 | 2015-11-24 | アーケマ・インコーポレイテッド | Integrated electrode separator assembly for lithium ion batteries |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04329266A (en) * | 1991-04-30 | 1992-11-18 | Sanyo Electric Co Ltd | Alkaline storage battery |
WO1998038688A1 (en) * | 1997-02-28 | 1998-09-03 | Asahi Kasei Kogyo Kabushiki Kaisha | Nonaqueous secondary battery and method for manufacturing the same |
JPH10241657A (en) * | 1997-02-28 | 1998-09-11 | Asahi Chem Ind Co Ltd | Battery |
JPH11144706A (en) * | 1997-11-13 | 1999-05-28 | Toray Ind Inc | Battery electrode and battery using the same |
JPH11154534A (en) * | 1997-11-19 | 1999-06-08 | Asahi Chem Ind Co Ltd | Lithium ion secondary battery element |
JP2000048639A (en) * | 1998-07-29 | 2000-02-18 | Asahi Chem Ind Co Ltd | Composite structure gel electrolyte sheet laminated body |
WO2001059856A1 (en) * | 2000-02-09 | 2001-08-16 | Ngk Insulators, Ltd. | Lithium secondary cell and method for producing the same |
-
2001
- 2001-09-10 JP JP2001273218A patent/JP2003086252A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04329266A (en) * | 1991-04-30 | 1992-11-18 | Sanyo Electric Co Ltd | Alkaline storage battery |
WO1998038688A1 (en) * | 1997-02-28 | 1998-09-03 | Asahi Kasei Kogyo Kabushiki Kaisha | Nonaqueous secondary battery and method for manufacturing the same |
JPH10241657A (en) * | 1997-02-28 | 1998-09-11 | Asahi Chem Ind Co Ltd | Battery |
JPH11144706A (en) * | 1997-11-13 | 1999-05-28 | Toray Ind Inc | Battery electrode and battery using the same |
JPH11154534A (en) * | 1997-11-19 | 1999-06-08 | Asahi Chem Ind Co Ltd | Lithium ion secondary battery element |
JP2000048639A (en) * | 1998-07-29 | 2000-02-18 | Asahi Chem Ind Co Ltd | Composite structure gel electrolyte sheet laminated body |
WO2001059856A1 (en) * | 2000-02-09 | 2001-08-16 | Ngk Insulators, Ltd. | Lithium secondary cell and method for producing the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005235617A (en) * | 2004-02-20 | 2005-09-02 | Matsushita Electric Ind Co Ltd | Lithium ion battery |
JP2015533453A (en) * | 2012-11-02 | 2015-11-24 | アーケマ・インコーポレイテッド | Integrated electrode separator assembly for lithium ion batteries |
US20150340676A1 (en) * | 2012-11-02 | 2015-11-26 | Arkema Inc. | Integrated electrode separator assemblies for lithium ion batteries |
JP2020038837A (en) * | 2012-11-02 | 2020-03-12 | アーケマ・インコーポレイテッド | Method of forming integrated electrode separator assembly for lithium ion battery |
AU2018201337B2 (en) * | 2012-11-02 | 2020-04-09 | Arkema Inc. | Integrated electrode separator assemblies for lithium ion batteries |
EP2920831B1 (en) * | 2012-11-02 | 2020-06-24 | Arkema, Inc. | Integrated electrode separator assemblies for lithium ion batteries |
US11133562B2 (en) | 2012-11-02 | 2021-09-28 | Arkema Inc. | Integrated electrode separator assemblies for lithium ion batteries |
JP2022000862A (en) * | 2012-11-02 | 2022-01-04 | アーケマ・インコーポレイテッド | Method of forming integrated electrode separator assembly for lithium ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4213687B2 (en) | Nonaqueous electrolyte battery and battery pack | |
US6800397B2 (en) | Non-aqueous electrolyte secondary battery and process for the preparation thereof | |
KR100981473B1 (en) | Nonaqueous Electrolyte Batteries and Battery Packs | |
TWI458154B (en) | Lithium secondary battery | |
JP4337875B2 (en) | Positive electrode mixture, non-aqueous electrolyte secondary battery, and manufacturing method thereof | |
EP3070767B1 (en) | Electrode, nonaqueous electrolyte battery, and battery pack | |
US10199689B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4204231B2 (en) | Lithium secondary battery | |
EP3451437B1 (en) | Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device | |
KR20170107368A (en) | Non-aqueous electrolyte battery, battery pack and vehicle | |
WO2020017580A1 (en) | Power storage element | |
JP2005285545A (en) | Lithium secondary battery | |
JP3968772B2 (en) | Non-aqueous electrolyte battery | |
JPH11120993A (en) | Nonaqueous electrolyte secondary battery | |
JP5234373B2 (en) | Lithium ion secondary battery | |
JP2014207238A (en) | Nonaqueous electrolyte battery and battery pack | |
JP2002305035A (en) | Lithium secondary battery | |
JP2001118600A (en) | Lithium secondary battery | |
CN111656593A (en) | Non-aqueous electrolyte secondary battery, electrolytic solution, and method for producing non-aqueous electrolyte secondary battery | |
JP2003123836A (en) | Lithium secondary battery | |
JP2000260469A (en) | Lithium secondary battery | |
JP2001223031A (en) | Lithium secondary battery | |
CN117174496A (en) | Electrolyte additives for capacitor auxiliary batteries | |
JP2005116321A (en) | Lithium secondary battery and its low-temperature characteristic evaluation method | |
JP2003086252A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080930 |