JP2003077512A - Operating method for methanol direct supply type fuel cell - Google Patents
Operating method for methanol direct supply type fuel cellInfo
- Publication number
- JP2003077512A JP2003077512A JP2001269072A JP2001269072A JP2003077512A JP 2003077512 A JP2003077512 A JP 2003077512A JP 2001269072 A JP2001269072 A JP 2001269072A JP 2001269072 A JP2001269072 A JP 2001269072A JP 2003077512 A JP2003077512 A JP 2003077512A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- negative electrode
- fuel cell
- positive electrode
- exchange membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 120
- 239000000446 fuel Substances 0.000 title claims abstract description 68
- 238000011017 operating method Methods 0.000 title abstract description 7
- 238000010248 power generation Methods 0.000 claims abstract description 27
- 239000012528 membrane Substances 0.000 claims abstract description 12
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims abstract description 11
- 239000003014 ion exchange membrane Substances 0.000 claims abstract description 11
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 17
- 230000001590 oxidative effect Effects 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000725 suspension Substances 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 abstract description 11
- 239000000243 solution Substances 0.000 abstract description 11
- 239000003054 catalyst Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料であるメタノ
ール水溶液を負極で直接供給しながら発電を行うメタノ
ール直接型燃料電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct methanol fuel cell for generating power while directly supplying an aqueous methanol solution as a fuel at a negative electrode.
【0002】[0002]
【従来の技術】燃料電池はイオンの通路を形成する電解
質の両端にそれぞれ負極、正極と称される1対の電極を
備えたものを基本構造とし、燃料あるいは酸化ガスを流
通させるためのチャンネルが形成されたセパレータで挟
持することで1つのセルが形成される。2. Description of the Related Art A fuel cell has a basic structure in which a pair of electrodes called a negative electrode and a positive electrode are provided at both ends of an electrolyte forming an ion passage, and a channel for passing a fuel or an oxidizing gas is provided. One cell is formed by sandwiching it with the formed separator.
【0003】従来、燃料電池としては固体電解質型、溶
融炭酸塩型、リン酸型などが知られているが、特に近年
は電解質にパーフルオロカーボンスルホン酸系の膜を使
用した燃料電池(固体高分子型燃料電池)が、常温動作
が可能で高い出力密度が得られることから、次世代の自
動車の動力源や家庭用コージェネレーションシステム等
の小型小容量電源として最も適していると考えられ、盛
んに研究開発が行われている。Conventionally, as a fuel cell, a solid electrolyte type, a molten carbonate type, a phosphoric acid type and the like are known, but in recent years, in particular, a fuel cell using a perfluorocarbon sulfonic acid type membrane as an electrolyte (solid polymer) Type fuel cell), which can operate at room temperature and can obtain high output density, is considered to be most suitable as a small power source for next-generation automobiles and household cogeneration systems. Research and development is being conducted.
【0004】この固体高分子型燃料電池は燃料に水素を
用いたものが主流である。しかし、純水素を燃料に用い
る場合は高圧ボンベや液化水素ボンベ、水素貯蔵合金等
により貯蔵することになるが、いずれの場合も安全性や
コスト、エネルギー密度の問題から実用化には問題が残
る。一方、メタノールやガソリンを貯蔵しそれらを改質
して水素を取り出す場合は、改質器が必要となるため装
置が複雑になる上、高温での反応に対する安全性の問題
や触媒寿命、始動時間の短縮など、やはり実用化には解
決すべき問題が多い。This solid polymer electrolyte fuel cell mainly uses hydrogen as a fuel. However, when pure hydrogen is used as a fuel, it will be stored in a high-pressure cylinder, a liquefied hydrogen cylinder, a hydrogen storage alloy, etc., but in any case, there are problems in practical application due to safety, cost, and energy density problems. . On the other hand, when methanol and gasoline are stored and reformed to take out hydrogen, a reformer is required, which complicates the equipment, and also poses safety issues for reactions at high temperatures, catalyst life, and startup time. There are still many problems to be solved for practical use, such as shortening
【0005】そこで簡便な装置で発電が行え、取り扱い
が容易で重量的にも体積的にもエネルギー密度が高いメ
タノールを燃料とし、直接的に負極で電気化学的に酸化
して電流を取り出すメタノール直接型燃料電池が注目さ
れてきた。Therefore, methanol can be used to generate electricity with a simple device, which is easy to handle and has a high energy density in terms of weight and volume. Type fuel cells have received attention.
【0006】[0006]
【発明が解決しようとする課題】メタノール直接型燃料
電池は上記のような利点を持つ反面、水素を燃料に用い
る場合と比較して出力密度が低いため、電源として同じ
出力を得るためには電極面積を大きくする必要があり、
特に燃料電池が実用化されるために最も大きな課題とさ
れるコストの面で大きく不利である。よって現在、メタ
ノール直接型燃料電池においては、出力密度の向上が第
一の課題となっている。本発明の目的は、メタノール直
接型燃料電池において、より高い出力密度が得られる運
転方法を提供することである。While the direct methanol fuel cell has the above advantages, it has a lower output density than the case where hydrogen is used as a fuel, and therefore the electrode is required to obtain the same output as a power source. Need to increase the area,
In particular, it is a great disadvantage in terms of cost, which is the biggest problem for practical use of fuel cells. Therefore, at present, in the direct methanol fuel cell, improvement of the output density is the first issue. An object of the present invention is to provide an operating method capable of obtaining a higher power density in a direct methanol fuel cell.
【0007】[0007]
【課題を解決するための手段】本発明者らは鋭意研究す
ることにより、メタノール直接型燃料電池で発電を行う
際に、より高い出力密度が得られる運転方法を見出し、
本発明に到達した。即ち本発明は、(1)電解質にパー
フルオロカーボンスルホン酸系イオン交換膜を用い、該
交換膜の両側に負極と正極が配されたセルを備え、燃料
のメタノール水溶液を負極に供給し、酸化ガスを正極に
供給することによって発電を行う燃料電池において、発
電開始の際に、負極へのメタノール水溶液の供給を先に
開始し、その後、正極への酸化ガス供給を開始すること
を特徴とするメタノール直接型燃料電池の運転方法、
(2)電解質にパーフルオロカーボンスルホン酸系イオ
ン交換膜を用い、該交換膜の両側に負極と正極が配され
たセルを備え、燃料のメタノール水溶液を負極に供給
し、酸化ガスを正極に供給することによって発電を行う
燃料電池において、メタノール水溶液を燃料に用いる発
電の前に一時的に水素を燃料に用いて発電を行うことを
特徴とするメタノール直接型燃料電池の運転方法、
(3)電解質にパーフルオロカーボンスルホン酸系イオ
ン交換膜を用い、該交換膜の両側に負極と正極が配され
たセルを備え、燃料のメタノール水溶液を負極に供給
し、酸化ガスを正極に供給することによって発電を行う
燃料電池において、発電運転の一時休止中に負極流路内
に燃料または水を存在させることを特徴とするメタノー
ル直接型燃料電池の運転方法、に関するものである。Means for Solving the Problems The inventors of the present invention have made earnest studies and found an operating method capable of obtaining a higher output density when power is generated by a direct methanol fuel cell,
The present invention has been reached. That is, the present invention includes (1) a cell in which a perfluorocarbon sulfonic acid-based ion exchange membrane is used as an electrolyte, and a negative electrode and a positive electrode are arranged on both sides of the exchange membrane. In a fuel cell for generating power by supplying to the positive electrode, at the start of power generation, the methanol aqueous solution is first supplied to the negative electrode, and then the oxidizing gas supply to the positive electrode is started. Direct fuel cell operating method,
(2) A cell in which a perfluorocarbon sulfonic acid ion exchange membrane is used as an electrolyte and a negative electrode and a positive electrode are arranged on both sides of the exchange membrane, an aqueous methanol solution of fuel is supplied to the negative electrode, and an oxidizing gas is supplied to the positive electrode. In a fuel cell that generates electric power by means of the above, a method for operating a direct methanol fuel cell, characterized in that power is temporarily generated using hydrogen as a fuel before power generation using an aqueous methanol solution as a fuel,
(3) A cell in which a perfluorocarbon sulfonic acid ion exchange membrane is used as an electrolyte and a negative electrode and a positive electrode are arranged on both sides of the exchange membrane, a methanol aqueous solution of fuel is supplied to the negative electrode, and an oxidizing gas is supplied to the positive electrode. In particular, the present invention relates to a method for operating a direct methanol fuel cell, characterized in that fuel or water is allowed to exist in the negative electrode passage during a temporary suspension of power generation operation.
【0008】[0008]
【発明の実施の形態】本発明で用いる燃料電池は、電解
質にパーフルオロカーボンスルホン酸系のイオン交換膜
を用いた、メタノール直接型用途の固体高分子型燃料電
池である。該燃料電池は該イオン交換膜の両側に負極と
正極が配されたセルを備え、燃料のメタノール水溶液を
負極に供給し、酸化ガスを正極に供給して発電を行う。
酸化ガスは負極で生成したH+を酸化するための酸素を
供給できるものであれば特に制限はないが、分子状酸素
を含むものが好ましく、空気を用いることが経済的に有
利である。この時、負極では、以下の反応が進行する。
CH3OH + H2O → CO2 + 6H+ + 6e-
負極で生成したH+はイオン交換膜中を移動して正極に到
達し、正極に供給される酸素と以下のように反応する。
O2 + 4H+ + 4e- → 2H2O
また、イオン交換膜は、負極に供給されるメタノール水
溶液中のH2Oによって保湿され、イオン導伝性が保持さ
れる。BEST MODE FOR CARRYING OUT THE INVENTION The fuel cell used in the present invention is a polymer electrolyte fuel cell for direct methanol use, which uses a perfluorocarbon sulfonic acid type ion exchange membrane as an electrolyte. The fuel cell includes cells in which a negative electrode and a positive electrode are arranged on both sides of the ion exchange membrane, and a methanol aqueous solution of fuel is supplied to the negative electrode and an oxidizing gas is supplied to the positive electrode to generate power.
The oxidizing gas is not particularly limited as long as it can supply oxygen for oxidizing H + generated in the negative electrode, but a gas containing molecular oxygen is preferable and it is economically advantageous to use air. At this time, the following reactions proceed in the negative electrode. CH 3 OH + H 2 O → CO 2 + 6H + + 6e - H + generated at the negative electrode reaches the positive electrode by moving the ion exchange membrane, reacts as follows with the oxygen supplied to the cathode. O 2 + 4H + + 4e - → 2H 2 O The ion exchange membrane is moisturized by of H 2 O in methanol aqueous solution supplied to the negative electrode, ion conductivity is maintained.
【0009】本発明の第1の実施形態では、本燃料電池
にて発電を開始する際(起動時)のメタノール水溶液と酸
化ガスの供給を開始する順について、負極へのメタノー
ル水溶液の供給を先に開始する。この場合、逆の順で供
給を開始した場合よりも2倍程度の出力密度が得られ
る。この際、燃料の供給開始から酸化ガスの供給開始ま
での時間差が数分程度でも充分な効果が得られるが、望
ましくは10分以上とった方が高い効果が得られる。In the first embodiment of the present invention, in the order of starting the supply of the aqueous methanol solution and the oxidizing gas at the time of starting power generation (at the time of starting) in the present fuel cell, the aqueous methanol solution is supplied to the negative electrode first. To start. In this case, a power density about twice that obtained when the supply is started in the reverse order is obtained. At this time, a sufficient effect can be obtained even if the time difference from the start of the supply of the fuel to the start of the supply of the oxidizing gas is about several minutes, but it is desirable that the time difference is 10 minutes or more to obtain the higher effect.
【0010】本発明の第2の実施形態では、発電開始
(起動)に際し、一定時間水素を燃料に用いて発電を行
い(水素発電処理)、その後メタノール水溶液を燃料に用
いて発電を行う。この場合の出力密度は、水素発電処理
を行わない場合よりも20〜50%程度高くなる。尚、水素
発電を行う際は、水素型固体高分子型燃料電池の場合と
同じく、水素(負極)、酸化ガス(正極)ともに加湿を行う
必要がある。水素発電処理に要する時間は10分以上、望
ましくは1時間以上行った方がより高い効果が得られ
る。また水素発電中は、より多くの電流を取り出す運転
が望ましい。In the second embodiment of the present invention, when power generation is started (started), hydrogen is used as a fuel for a certain period of time to generate power (hydrogen power generation process), and then an aqueous methanol solution is used as fuel to generate power. The power density in this case is about 20 to 50% higher than that in the case where the hydrogen power generation process is not performed. When hydrogen power generation is performed, it is necessary to humidify both hydrogen (negative electrode) and oxidizing gas (positive electrode), as in the case of hydrogen-type polymer electrolyte fuel cells. The time required for the hydrogen power generation treatment is 10 minutes or longer, and more preferably 1 hour or longer is more effective. Further, during hydrogen power generation, it is desirable to operate so as to extract more current.
【0011】本発明の第3の実施形態では、発電運転を
一時的に休止させる場合に、負極流路内に燃料であるメ
タノール水溶液または水を存在させ、湿潤な状態に保つ
とよく、満液状態にするとより好ましい。この場合、燃
料または水は流通状態でも静止状態でもよい。こうする
ことにより、その後再起動した際の出力密度が、休止中
に負極流路内を乾いた状態で保存した場合よりも高くな
る。尚、正極への酸化ガスは発電休止中には流通させな
い方が好ましい。In the third embodiment of the present invention, when the power generation operation is temporarily stopped, it is advisable to allow a methanol aqueous solution or water, which is a fuel, to exist in the negative electrode flow path and keep it in a wet state. It is more preferable to put it in a state. In this case, the fuel or water may be in a flowing state or a stationary state. By doing so, the power density at the time of restart is higher than that in the case where the inside of the negative electrode flow channel is stored in a dry state during rest. In addition, it is preferable that the oxidizing gas for the positive electrode is not allowed to flow while the power generation is stopped.
【0012】[0012]
【実施例】以下に実施例により本発明を具体的に説明す
る。但し、本発明はこれらの実施例に制限されない。EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples.
【0013】・燃料電池セル作製手順
電解質となる高分子膜にはパーフルオロカーボンスルホ
ン酸膜NafionTM-117(DuPont社製)を選択し、過酸化水素
水および希硫酸中で煮沸洗浄して使用した。電極はカー
ボンペーパーをテトラフルオロエチレン水溶液で撥水処
理した後、カーボン、アルコール、テトラフルオロエチ
レン水溶液を一定の比で混合したスラリーをスプレー塗
布し乾燥させることによりガス拡散層を形成し、その上
に触媒とNafion(パーフルオロカーボンスルホン酸)溶
液を一定の比で混合した触媒インクをドクターブレード
法で塗布し乾燥して作成した。触媒は両極とも白金系触
媒を使用した。このようにして作製した正極、負極電極
を電解質膜のそれぞれの面に用いて圧着することにより
膜電極接合体を作製した。Fuel cell production procedure: A perfluorocarbon sulfonic acid membrane Nafion ™ -117 (manufactured by DuPont) was selected as the polymer membrane used as the electrolyte, and it was used after boiling and washing in hydrogen peroxide solution and dilute sulfuric acid. . The electrode is treated by water repellent treatment of carbon paper with an aqueous solution of tetrafluoroethylene, and then a slurry in which carbon, alcohol, and an aqueous solution of tetrafluoroethylene are mixed at a fixed ratio is spray-coated and dried to form a gas diffusion layer, on which It was prepared by applying a catalyst ink prepared by mixing a catalyst and a Nafion (perfluorocarbon sulfonic acid) solution at a constant ratio by the doctor blade method and drying. The catalyst used was a platinum-based catalyst for both electrodes. The positive electrode and the negative electrode thus produced were used on the respective surfaces of the electrolyte membrane and pressure-bonded to produce a membrane electrode assembly.
【0014】・発電条件
以下の実施例、比較例においては上記操作にて得られた
膜電極接合体を用いて燃料電池を作製し、正極には酸化
ガスとして空気を、負極にはメタノール水溶液を供給し
て発電し、一定電圧での放電時の電流密度を調べた。試
験条件を以下に示す。
電池温度:80℃
正極空気:乾燥空気、4ml・min-1・cm-2
負極燃料:メタノール水溶液、0.02 ml・min-1・cm-2 Power generation conditions In the following examples and comparative examples, fuel cells were prepared using the membrane electrode assembly obtained by the above operation, air was used as the oxidizing gas for the positive electrode, and aqueous methanol solution was used for the negative electrode. It was supplied to generate power, and the current density during discharge at a constant voltage was examined. The test conditions are shown below. Battery temperature: 80 ° C Positive air: Dry air, 4 ml ・ min -1・ cm -2 Negative electrode fuel: Methanol aqueous solution, 0.02 ml ・ min -1・ cm -2
【0015】実施例1
前述の燃料電池を用いて発電を開始する際(起動時)
に、まず負極へのメタノール水溶液の供給を開始し、20
分後に正極への空気の供給を開始した。その後、開放電
圧が安定してから負荷を与え、発電を開始した。このと
き得られた電流密度は100mA/cm2であった。Example 1 When starting power generation using the above-mentioned fuel cell (at start-up)
First, start supplying the aqueous methanol solution to the negative electrode, and
After a few minutes, the supply of air to the positive electrode was started. After that, after the open circuit voltage became stable, a load was applied to start power generation. The current density obtained at this time was 100 mA / cm 2 .
【0016】比較例1
実施例1において、燃料と空気の供給開始順序を逆に
し、空気の供給を先に開始して同様の操作を行い、発電
を開始した場合の電流密度は40mA/cm2であった。COMPARATIVE EXAMPLE 1 In Example 1, the order of starting fuel and air supply was reversed, the air supply was started first, and the same operation was performed to start power generation, and the current density was 40 mA / cm 2. Met.
【0017】本発明の第1の実施形態を行うことによ
り、電流密度は2倍以上に向上した。By carrying out the first embodiment of the present invention, the current density is more than doubled.
【0018】実施例2
作製した燃料電池に対し、まず水素を燃料に用いた発電
処理(水素発電処理)を行った後にメタノール水溶液及
び空気を同時に供給開始し、前述の条件にて発電を行っ
た。この場合の得られる電流密度は80mA/cm2となった。
水素発電処理の条件を以下に示す。
電池温度:50℃
正極空気および負極水素:8 ml・min-1・cm-2、加湿量は8
0℃の飽和水蒸気圧
放電電圧:400mV
放電時間:1時間Example 2 The produced fuel cell was first subjected to a power generation process using hydrogen as a fuel (hydrogen power generation process), and then an aqueous methanol solution and air were simultaneously supplied to generate power under the above conditions. . The current density obtained in this case was 80 mA / cm 2 .
The conditions for hydrogen power generation treatment are shown below. Battery temperature: 50 ℃ Positive air and negative hydrogen: 8 ml ・ min -1・ cm -2 , humidification amount is 8
Saturated water vapor pressure discharge voltage at 0 ℃: 400 mV Discharge time: 1 hour
【0019】比較例2
実施例2において、水素発電処理を行わずにメタノール
水溶液を燃料に用いて発電を行った。この場合の得られ
る電流密度は50mA/cm2であった。Comparative Example 2 In Example 2, power generation was performed using a methanol aqueous solution as a fuel without performing hydrogen power generation treatment. The current density obtained in this case was 50 mA / cm 2 .
【0020】本発明の第2の実施形態を行うことによ
り、1.6倍の電流密度向上効果が見られた。By carrying out the second embodiment of the present invention, the effect of improving the current density by 1.6 times was observed.
【0021】実施例3
実施例1に記載の電流密度100mA/cm2が得られた条件で
発電を行った後、電池に与えていた負荷を開放して発電
を停止し、燃料および空気の供給を停止し、セルを室温
まで降温させた状態で一晩保存した。この際、負極流路
内に燃料を満たしたまま保存した。その後に再び発電を
行った際の電流密度は100mA/cm2であった。Example 3 After power generation was performed under the conditions where the current density of 100 mA / cm 2 described in Example 1 was obtained, the load applied to the cell was released to stop the power generation and supply of fuel and air. Was stopped, and the cell was stored overnight while being cooled to room temperature. At this time, the anode flow channel was stored while being filled with fuel. After that, when the power was generated again, the current density was 100 mA / cm 2 .
【0022】比較例3
実施例3において、負極流路内を乾燥空気で置換し燃料
を除いた状態で保存した。この場合は、後に再び発電を
行った際の電流密度は70mA/cm2であった。Comparative Example 3 In Example 3, the inside of the negative electrode flow path was replaced with dry air and the fuel was removed and stored. In this case, the current density when the power was generated again later was 70 mA / cm 2 .
【0023】本発明の第3の実施形態を行うことによ
り、一時休止後に再び発電を行った際の出力密度の低下
を防止し、繰り返して高い電流密度を得ることができ
た。By carrying out the third embodiment of the present invention, it is possible to prevent a decrease in output density when power is generated again after the suspension, and it is possible to repeatedly obtain a high current density.
【0024】[0024]
【発明の効果】以上の実施例からも明らかなように、本
発明の運転方法を実施することによりメタノール直接型
燃料電池の出力を高くすることができる。よって本発明
の産業への貢献度は大きいといえる。As is apparent from the above embodiments, the output of the direct methanol fuel cell can be increased by implementing the operating method of the present invention. Therefore, it can be said that the contribution of the present invention to the industry is great.
Claims (4)
系イオン交換膜を用い、該交換膜の両側に負極と正極が
配されたセルを備え、燃料のメタノール水溶液を負極に
供給し、酸化ガスを正極に供給することによって発電を
行う燃料電池において、発電開始の際に、負極へのメタ
ノール水溶液の供給を先に開始し、その後、正極への酸
化ガス供給を開始することを特徴とするメタノール直接
型燃料電池の運転方法。1. A perfluorocarbon sulfonic acid ion exchange membrane is used as an electrolyte, and a cell having a negative electrode and a positive electrode on both sides of the exchange membrane is provided, an aqueous methanol solution of fuel is supplied to the negative electrode, and an oxidizing gas is supplied to the positive electrode. In a fuel cell that generates electricity by supplying, a methanol direct type fuel characterized by starting supply of an aqueous methanol solution to a negative electrode first and then starting to supply an oxidizing gas to a positive electrode when starting power generation. How to operate the battery.
系イオン交換膜を用い、該交換膜の両側に負極と正極が
配されたセルを備え、燃料のメタノール水溶液を負極に
供給し、酸化ガスを正極に供給することによって発電を
行う燃料電池において、メタノール水溶液を燃料に用い
る発電の前に一時的に水素を燃料に用いて発電を行うこ
とを特徴とするメタノール直接型燃料電池の運転方法。2. A cell comprising a perfluorocarbon sulfonic acid type ion exchange membrane as an electrolyte and a negative electrode and a positive electrode arranged on both sides of the exchange membrane, an aqueous methanol solution of fuel is supplied to the negative electrode, and an oxidizing gas is supplied to the positive electrode. A method for operating a direct methanol fuel cell, characterized in that, in a fuel cell that generates electric power by supplying it, hydrogen is temporarily used as a fuel to generate electric power before power generation using an aqueous methanol solution as a fuel.
系イオン交換膜を用い、該交換膜の両側に負極と正極が
配されたセルを備え、燃料のメタノール水溶液を負極に
供給し、酸化ガスを正極に供給することによって発電を
行う燃料電池において、発電運転の一時休止中に負極流
路内に燃料または水を存在させることを特徴とするメタ
ノール直接型燃料電池の運転方法。3. A perfluorocarbon sulfonic acid ion exchange membrane is used as an electrolyte, and a cell having a negative electrode and a positive electrode on both sides of the exchange membrane is provided, an aqueous methanol solution of fuel is supplied to the negative electrode, and an oxidizing gas is supplied to the positive electrode. A method for operating a direct methanol fuel cell, characterized in that, in a fuel cell that generates electric power by supplying the fuel, a fuel or water is allowed to exist in the negative electrode passage during a temporary suspension of the power generation operation.
しておく請求項3記載のメタノール直接型燃料電池の運
転方法。4. The method for operating a direct methanol fuel cell according to claim 3, wherein the anode flow path is filled with fuel or water during rest.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001269072A JP2003077512A (en) | 2001-09-05 | 2001-09-05 | Operating method for methanol direct supply type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001269072A JP2003077512A (en) | 2001-09-05 | 2001-09-05 | Operating method for methanol direct supply type fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003077512A true JP2003077512A (en) | 2003-03-14 |
Family
ID=19094952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001269072A Pending JP2003077512A (en) | 2001-09-05 | 2001-09-05 | Operating method for methanol direct supply type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003077512A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203355A (en) * | 2003-12-17 | 2005-07-28 | Matsushita Electric Ind Co Ltd | Fuel cell system and power generation method in fuel cell system |
WO2006046400A1 (en) * | 2004-10-29 | 2006-05-04 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method |
WO2007010834A1 (en) | 2005-07-21 | 2007-01-25 | Nec Corporation | Fuel cell and method for operating fuel cell |
US20110236779A1 (en) * | 2008-10-17 | 2011-09-29 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6113574A (en) * | 1984-06-28 | 1986-01-21 | Shin Kobe Electric Mach Co Ltd | liquid fuel cell |
JPH06188008A (en) * | 1992-04-01 | 1994-07-08 | Toshiba Corp | Fuel battery |
JPH09120830A (en) * | 1995-10-25 | 1997-05-06 | Fuji Electric Co Ltd | Starting method of fuel cell power generator |
WO2000065677A1 (en) * | 1999-04-26 | 2000-11-02 | Siemens Aktiengesellschaft | Operating concept for direct methanol fuel cells |
-
2001
- 2001-09-05 JP JP2001269072A patent/JP2003077512A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6113574A (en) * | 1984-06-28 | 1986-01-21 | Shin Kobe Electric Mach Co Ltd | liquid fuel cell |
JPH06188008A (en) * | 1992-04-01 | 1994-07-08 | Toshiba Corp | Fuel battery |
JPH09120830A (en) * | 1995-10-25 | 1997-05-06 | Fuji Electric Co Ltd | Starting method of fuel cell power generator |
WO2000065677A1 (en) * | 1999-04-26 | 2000-11-02 | Siemens Aktiengesellschaft | Operating concept for direct methanol fuel cells |
JP2002543567A (en) * | 1999-04-26 | 2002-12-17 | シーメンス アクチエンゲゼルシヤフト | Operation method of direct methanol fuel cell |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203355A (en) * | 2003-12-17 | 2005-07-28 | Matsushita Electric Ind Co Ltd | Fuel cell system and power generation method in fuel cell system |
WO2006046400A1 (en) * | 2004-10-29 | 2006-05-04 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method |
US20100330447A1 (en) * | 2004-10-29 | 2010-12-30 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method |
WO2007010834A1 (en) | 2005-07-21 | 2007-01-25 | Nec Corporation | Fuel cell and method for operating fuel cell |
US20110236779A1 (en) * | 2008-10-17 | 2011-09-29 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
US8945788B2 (en) * | 2008-10-17 | 2015-02-03 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004206885A (en) | Fuel cell | |
TW200937718A (en) | Method of operating fuel cell with high power and high power fuel cell system | |
KR101147917B1 (en) | Method for producing hydrogen and hydrogen-producing apparatus used therefor | |
CN101414688A (en) | Activation method for fuel battery | |
JP2004171802A (en) | Fuel cell system | |
WO2007004714A1 (en) | Hydrogen production apparatus | |
KR20070097473A (en) | Fuel Cell Generator | |
JP5310730B2 (en) | Fuel cell | |
JP2003077512A (en) | Operating method for methanol direct supply type fuel cell | |
Pham et al. | A review of 2019 fuel cell technologies: modelling and controlling | |
JP4407308B2 (en) | Method for producing catalyst electrode for direct methanol fuel cell, method for producing membrane electrode assembly for direct methanol fuel cell, and method for producing direct methanol fuel cell | |
JP2005158298A (en) | Operation method of fuel cell power generation system and fuel cell power generation system | |
JP4958058B2 (en) | Fuel cell power generator | |
KR20070112978A (en) | How to improve durability of fuel cell electrode and fuel cell electrode | |
JP4823583B2 (en) | Polymer membrane / electrode assembly for fuel cell and fuel cell including the same | |
JP3818313B2 (en) | Submarine | |
KR20070013278A (en) | Submarine | |
JP4947338B2 (en) | Stand-alone hydrogen production system | |
CN101414689A (en) | Activation method for fuel battery | |
JP2011040339A (en) | Operating method for fuel cell | |
JPH05275101A (en) | Solid polyelectrolytic type fuel cell system | |
JP4419353B2 (en) | Operation method of polymer electrolyte fuel cell | |
JP3818312B2 (en) | Electric car | |
JPS6097555A (en) | Operation of fuel cell | |
JP4863099B2 (en) | Stack type fuel cell power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120105 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120508 |