JP2003077489A - Structure of electrochemical reaction substrate - Google Patents
Structure of electrochemical reaction substrateInfo
- Publication number
- JP2003077489A JP2003077489A JP2001256664A JP2001256664A JP2003077489A JP 2003077489 A JP2003077489 A JP 2003077489A JP 2001256664 A JP2001256664 A JP 2001256664A JP 2001256664 A JP2001256664 A JP 2001256664A JP 2003077489 A JP2003077489 A JP 2003077489A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrolyte
- plate material
- electrochemical reaction
- reaction substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】 (修正有)
【課題】 電気化学反応板材の構造の提供。
【解決手段】 板材の一面に、熱圧、リソグラフィー、
エッチング及び射出成形その他の方式により、適当な深
さ幅比を有する複数のトレンチを形成し、さらに光学機
器、レーザーパンチング或いはエッチングの方式で、板
材上に適当な寸法の貫通孔3を形成し、電解質をこの貫
通孔及び板材表面に形成し、該電解質層上4に多孔性導
電材料層6と触媒材料層7を順に形成し、その板材表面
積を増加し、電解質の接触面積を増加し、並びに該電解
質層上或いは該二層式板材間に選択性隔離層5を形成
し、燃料の電解質透過の問題を現象して機能を高め、体
積が小さく、高機能を有する電気化学反応基板とした。
(57) [Summary] (Modified) [Problem] To provide a structure of an electrochemical reaction plate. SOLUTION: One side of a plate material is subjected to hot pressure, lithography,
A plurality of trenches having an appropriate depth-to-width ratio are formed by etching and injection molding or other methods, and further, through holes 3 of appropriate dimensions are formed on the plate material by optical equipment, laser punching or etching, An electrolyte is formed on the through hole and the surface of the plate material, a porous conductive material layer 6 and a catalyst material layer 7 are sequentially formed on the electrolyte layer 4, the surface area of the plate material is increased, the contact area of the electrolyte is increased, and A selective isolation layer 5 was formed on the electrolyte layer or between the two-layer plates to reduce the volume of the electrochemical reaction substrate having a high performance by reducing the problem of fuel permeation of the electrolyte.
Description
【0001】[0001]
【発明の属する技術分野】本発明は電気化学反応基板の
構造に係り、特に基板表面積と電解質の接触総表面積が
増加されて、高機能の電気化学反応基板とされ、並びに
その電池体積を微小化する、電気化学反応基板の構造に
関する。本発明の電気化学反応基板の構造は、燃料電
池、電気化学反応器、検出器の方面に応用され、特に現
在の科学技術で希望されるエネルギー資源の最も効率的
な運用を達成する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an electrochemical reaction substrate, and more particularly, the surface area of the substrate and the total contact surface area of the electrolyte are increased to provide a highly functional electrochemical reaction substrate, and its battery volume is miniaturized. The structure of the electrochemical reaction substrate. INDUSTRIAL APPLICABILITY The structure of the electrochemical reaction substrate of the present invention is applied to fuel cells, electrochemical reactors, and detectors, and particularly achieves the most efficient operation of energy resources desired in the present science and technology.
【0002】[0002]
【従来の技術】燃料電池の運用方面にあって、燃料電池
は発電効率が高くほぼ無汚染であり、その発電効率は一
般の発電機の2倍にも達し、ゆえにハイテクノロジー製
品中によく運用され、例えば、携帯電話(cellul
ar phone)、ノートパソコン、GPS(glo
bal position system)、ページ
ャ、PDA(personal digital as
sistant)に運用されている。これらの製品は高
機能多用途を要求するだけでなく、軽薄短小の要求も有
している。燃料電池は、水素ガス(水素液体分子、例え
ばアルコール類)と酸素ガスを原料とし、それらに高温
下で化学反応を発生させ電気エネルギーを発生する原理
の装置であり、ゆえに燃料電池の化学反応基板構造はそ
の電池の機能と電池体積に極めて大きな影響を有する。2. Description of the Related Art In terms of the operation of fuel cells, fuel cells have high power generation efficiency and almost no pollution, and their power generation efficiency is twice as high as that of general power generators. For example, a cell phone (cellul)
ar phone), laptop computer, GPS (glo
bal position system, pager, PDA (personal digital ass)
It is being operated by "sistant". These products not only require high functionality and versatility, but also light, thin, short and small requirements. A fuel cell is a device based on the principle that hydrogen gas (hydrogen liquid molecules such as alcohols) and oxygen gas are used as raw materials, and a chemical reaction is generated at these temperatures to generate electric energy. Therefore, a chemical reaction substrate of the fuel cell is used. The structure has a tremendous effect on the function and battery volume of the battery.
【0003】図1は周知の伝統的な電池構造であり、周
知の構造は電解質層4の両側に直接順に多孔性導電材料
層6と触媒材料層7が形成され、並びに板材の存在がな
く、触媒材料層7が電池の上部と底部に形成され、触媒
材料層7上に二つの対向する多孔性導電材料層6が設け
られ、電解質4が上下の対向する多孔性導電材料層6間
に充填され、もし多層堆積の方式によりこの伝統的な電
池の機能を増加する場合には、必然的にその電池構造体
積を増大することになった。FIG. 1 shows a well-known traditional battery structure, in which a porous conductive material layer 6 and a catalyst material layer 7 are directly formed on both sides of an electrolyte layer 4 in order, and there is no plate material. A catalyst material layer 7 is formed on the top and bottom of the battery, two opposing porous conductive material layers 6 are provided on the catalyst material layer 7, and an electrolyte 4 is filled between the upper and lower opposing porous conductive material layers 6. However, if the function of this traditional battery is increased by the method of multi-layer deposition, the structure volume of the battery is inevitably increased.
【0004】[0004]
【発明が解決しようとする課題】本発明の主要な目的
は、上述の欠点を解決し、上述の欠点の存在をなくすこ
とにあり、即ち本発明は電気化学反応基板の構造を提供
し、それは基板の一面に、適当な深さ幅比のトレンチを
形成することによりその表面積を増加した構造であるも
のとする。The main object of the present invention is to solve the above-mentioned drawbacks and to eliminate the existence of the above-mentioned drawbacks, ie the invention provides a structure of an electrochemical reaction substrate, which is It is assumed that the surface area is increased by forming a trench having an appropriate depth-width ratio on one surface of the substrate.
【0005】本発明の次の目的は、一種の電気化学反応
基板の構造を提供することにあり、それは、基板上に適
当な大きさの貫通孔が設けられ、電解質がこの貫通孔及
びこの基板の表面に形成され、電解質の接触面積と構造
強度を増加した構造であるものとする。Another object of the present invention is to provide a kind of structure of an electrochemical reaction substrate, in which a through hole having an appropriate size is provided on the substrate, and an electrolyte is provided in the through hole and the substrate. It is assumed that the structure is formed on the surface of, and the contact area of the electrolyte and the structural strength are increased.
【0006】本発明のもう一つの目的は、一種の電気化
学反応基板の構造を提供することにあり、それは基板の
電解質の接触面積を増加することによりその機能を高
め、ゆえに電池体積を微小化すると共に高機能を有する
ようにした構造であるものとする。Another object of the present invention is to provide a kind of structure of an electrochemical reaction substrate, which enhances its function by increasing the contact area of the electrolyte of the substrate, and hence miniaturizes the battery volume. In addition, the structure is designed to have high functionality.
【0007】本発明のさらに一つの目的は、一種の電気
化学反応基板の構造を提供することにあり、それは、一
つの電解質層上或いは一つの二層式板材間に一つの選択
性隔離層を形成し、燃料の電解質間透過の問題を解決し
て機能を高めた構造であるものとする。It is a further object of the present invention to provide a structure of an electrochemical reaction substrate, which comprises one selective isolation layer on one electrolyte layer or between two bilayer plates. The structure is formed to solve the problem of fuel permeation between electrolytes and to enhance the function.
【0008】[0008]
【課題を解決するための手段】請求項1の発明は、板材
と、該板材の一面に形成され且つ適当な幅深さ比を有す
る複数のトレンチと、該板材に形成され適当な寸法を有
して該板材を貫通する複数の貫通孔と、該板材の表面及
び貫通孔内に形成された電解質層と、該電解質層の表面
に形成された選択性隔離層と、該選択性隔離層の表面に
形成された多孔性導電材料層と、該多孔性導電材料層の
表面に形成された触媒材料層と、で構成された電気化学
反応基板の構造としている。請求項2の発明は、対向す
る二つの板材間に一つの選択性隔離層を形成してなる二
層式板材と、該二層式板材の一面に形成され且つ適当な
幅深さ比を有する複数のトレンチと、該二層式板材に形
成され適当な寸法を有して該二層式板材を貫通する複数
の貫通孔と、該二層式板材の表面及び貫通孔内に形成さ
れた電解質層と、該電解質層の表面に形成された多孔性
導電材料層と、該多孔性導電材料層の表面に形成された
触媒材料層と、で構成された電気化学反応基板の構造と
している。According to a first aspect of the present invention, there is provided a plate material, a plurality of trenches formed on one surface of the plate material and having an appropriate width-depth ratio, and having appropriate dimensions formed in the plate material. A plurality of through holes penetrating the plate material, an electrolyte layer formed on the surface of the plate material and the through holes, a selective isolation layer formed on the surface of the electrolyte layer, and the selective isolation layer. The structure of the electrochemical reaction substrate includes a porous conductive material layer formed on the surface and a catalyst material layer formed on the surface of the porous conductive material layer. The invention according to claim 2 has a two-layer type plate material in which one selective isolation layer is formed between two facing plate materials, and has an appropriate width-depth ratio formed on one surface of the two-layer type plate material. A plurality of trenches, a plurality of through holes formed in the two-layer plate material and having an appropriate size and penetrating the two-layer plate material, and an electrolyte formed in the surface of the two-layer plate material and in the through hole A layer, a porous conductive material layer formed on the surface of the electrolyte layer, and a catalyst material layer formed on the surface of the porous conductive material layer have an electrochemical reaction substrate structure.
【0009】[0009]
【発明の実施の形態】本発明は一種の高機能電気化学反
応基板の構造を提供し、それは、板材の一面に、熱圧、
リソグラフィー、エッチング及び射出成形その他の方式
により、適当な深さ幅比を有する複数のトレンチを形成
し、さらに光学機器、レーザーパンチング或いはエッチ
ングの方式で、板材上に適当な寸法の貫通孔を形成し、
電解質をこの貫通孔及び板材表面に形成し、該電解質層
上に多孔性導電材料層と触媒材料層を順に形成し、その
板材表面積を増加し、電解質の接触面積を増加し、並び
に該電解質層上或いは該二層式板材間に選択性隔離層を
形成し、燃料の電解質透過の問題を減少して機能を高
め、体積が小さく、高機能を有する電気化学反応基板と
した構造である。BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a kind of high-performance electrochemical reaction substrate structure, which is formed by hot pressing,
Lithography, etching, injection molding, and other methods are used to form a plurality of trenches having an appropriate depth-width ratio, and then optical devices, laser punching, or etching are used to form through-holes of appropriate dimensions on the plate material. ,
An electrolyte is formed on the through holes and the surface of the plate material, a porous conductive material layer and a catalyst material layer are sequentially formed on the electrolyte layer, the surface area of the plate material is increased, the contact area of the electrolyte is increased, and the electrolyte layer is formed. This is a structure in which a selective isolation layer is formed on the upper or the two-layer type plate material to reduce the problem of fuel permeation into the electrolyte to enhance the function, have a small volume, and have a high-performance electrochemical reaction substrate.
【0010】[0010]
【実施例】本発明の第1実施形態:図2から図7は本発
明の高機能電気化学反応基板の第1実施例の構造製造フ
ロー表示断面図である。図2に示されるように、それは
厚さが10〜1000μmの板材1を具え、該板材1
は、高分子、シリコンウエハー或いは金属酸化物より選
択される。図3に示されるように、該板材1の一面に熱
圧、エッチング、ホトリソグラフィー、射出成形の方式
で、複数の、適当な深さ幅比のトレンチが形成される。
そして光学機器或いはレーザーパンチング、エッチング
の方式で板材1に孔の大きさが1〜100μmの垂直の
貫通孔3が形成され、貫通孔3が垂直の板材1を貫通
し、その構造は図4に示されるとおりである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment of the Present Invention: FIGS. 2 to 7 are sectional views showing the structure manufacturing flow of the first embodiment of the high-performance electrochemical reaction substrate of the present invention. As shown in FIG. 2, it comprises a plate 1 having a thickness of 10 to 1000 μm.
Are selected from polymers, silicon wafers or metal oxides. As shown in FIG. 3, a plurality of trenches having an appropriate depth-width ratio are formed on one surface of the plate material 1 by hot pressing, etching, photolithography, and injection molding.
Then, a vertical through hole 3 having a hole size of 1 to 100 μm is formed in the plate material 1 by an optical device or a method of laser punching and etching, and the through hole 3 penetrates the vertical plate material 1, and its structure is shown in FIG. As shown.
【0011】図5に示されるように、電解質層4を、含
浸、塗布方式でこの貫通孔3と板材1の表面に形成し、
この貫通孔3の構造は、電解質層4と板材1の接触面積
と構造強度を増大し、該電解質層の材料は、高分子と固
体電解質(solid electrolyte)より
選択される。図6に示されるように、電解質層4にスク
リーン印刷、CVD、スプレー、ディップコーティン
グ、スピンコーティング、無電気めっき(electr
oless plating)、スパッタの方式によ
り、選択性隔離層5を電解質層上に形成し、燃料が該選
択性隔離層5を通過しない特性により、燃料の電解質透
過の問題を減少する。該選択性隔離層5は分子隔離層或
いはイオン隔離層とされ、その厚さは100〜300μ
mとされる。選択性隔離層5の上に、さらにCVD、ス
クリーン印刷、スパッタ、スプレー、ディップコーティ
ング、スピンコーティング、無電気めっきの方式で、厚
さが10〜500μmの多孔性導電材料層6が形成さ
れ、該多孔性導電材料層6は石墨、金、白金、パラジウ
ム、ホウ素含有ダイヤモンド、耐火金属、導電性耐火金
属複合物より選択される。図7に示されるように、多孔
性導電材料層6上に、スパッタ、CVD、無電気めっき
の方式で触媒材料層7が形成され、該触媒材料層7は貴
金属、貴金属合金、貴金属複合物の材質より選択され、
その厚さは5〜1000Åとされ、以上の工程により高
表面積を有する高機能電気化学反応基板が形成される。As shown in FIG. 5, an electrolyte layer 4 is formed on the surface of the through hole 3 and the plate material 1 by an impregnation and coating method,
The structure of the through hole 3 increases the contact area and structural strength between the electrolyte layer 4 and the plate material 1, and the material of the electrolyte layer is selected from a polymer and a solid electrolyte. As shown in FIG. 6, the electrolyte layer 4 is screen-printed, CVD, sprayed, dip-coated, spin-coated, or electroless-plated.
The selective isolation layer 5 is formed on the electrolyte layer by the method of sol plating or sputtering, and the property that the fuel does not pass through the selective isolation layer 5 reduces the problem of fuel permeation into the electrolyte. The selective isolation layer 5 is a molecular isolation layer or an ion isolation layer and has a thickness of 100 to 300 μm.
m. A porous conductive material layer 6 having a thickness of 10 to 500 μm is further formed on the selective isolation layer 5 by a method such as CVD, screen printing, sputtering, spraying, dip coating, spin coating, and electroless plating. The porous conductive material layer 6 is selected from graphite, gold, platinum, palladium, diamond containing boron, refractory metal, and conductive refractory metal composite. As shown in FIG. 7, a catalyst material layer 7 is formed on the porous conductive material layer 6 by sputtering, CVD, or electroless plating, and the catalyst material layer 7 is made of a noble metal, a noble metal alloy, or a noble metal composite. Selected from material,
The thickness is set to 5 to 1000Å, and a highly functional electrochemical reaction substrate having a high surface area is formed by the above steps.
【0012】本発明の第2実施形態:図8から図12
は、本発明の高機能電気化学反応基板の第2実施例の構
造の製造フロー表示断面図である。図8に示されるよう
に、厚さ10〜1000μmの二層式板材2の対向する
二つの板材間に、スクリーン印刷、CVD、スプレー、
スパッタ、ディップコーティング、スピンコーティン
グ、無電気めっきの方式で、選択性隔離層5が形成さ
れ、燃料が該選択性隔離層5を通過しない特性を利用
し、燃料の電解質透過の問題を減少する。該選択性隔離
層5は、分子隔離層或いはイオン隔離層とされ、その厚
さは100〜300μmとされる。該二層式板材2の一
面に、熱圧、リソグラフィー、射出成形、エッチング等
の方式により、複数の、適当な深さ幅比のトレンチを該
二層式板材2上に形成し、その二層式板材2は、高分
子、シリコンウエハー或いは金属酸化物等の材質より選
択する。図9に示されるように、光学機器或いはレーザ
ーパンチング、エッチング等の方式で該二層式板材2に
孔径寸法が1〜100μmの垂直の貫通孔3を形成し、
該貫通孔33が二層式板材2を垂直に貫通する。Second Embodiment of the Invention: FIGS. 8 to 12
FIG. 8 is a sectional view showing the manufacturing flow of the structure of the second embodiment of the high-performance electrochemical reaction substrate of the present invention. As shown in FIG. 8, screen printing, CVD, spraying, between two opposing plate materials of the two-layer plate material 2 having a thickness of 10 to 1000 μm,
The selective isolation layer 5 is formed by a method such as sputtering, dip coating, spin coating, and electroless plating, and the characteristic that the fuel does not pass through the selective isolation layer 5 is used to reduce the problem of fuel electrolyte permeation. The selective isolation layer 5 is a molecular isolation layer or an ion isolation layer, and has a thickness of 100 to 300 μm. A plurality of trenches having an appropriate depth width ratio are formed on the one surface of the two-layer plate material 2 by a method such as hot pressing, lithography, injection molding, and etching, and the two layers are formed. The formula plate material 2 is selected from materials such as polymers, silicon wafers and metal oxides. As shown in FIG. 9, a vertical through hole 3 having a hole diameter of 1 to 100 μm is formed in the two-layer plate material 2 by a method such as an optical device or laser punching or etching.
The through hole 33 vertically penetrates the two-layer plate material 2.
【0013】図10に示されるように、電解質を、含
浸、コーティングの方式でこの貫通孔3に形成し、電解
質層4を該二層式板材2の表面に形成する。該電解質層
4は高分子及び固体電解質より選択する。図11に示さ
れるように、CVD、スクリーン印刷、スパッタ、スプ
レー、ディップコーティング、スピンコーティング、無
電気めっきの方式で、厚さが10〜500μmの多孔性
導電材料層6が電解質層4の上に形成され、該多孔性導
電材料層6は、石墨、金、白金、パラジウム、ホウ素含
有ダイヤモンド、耐火金属、導電性耐火金属複合物より
選択される。最後に、多孔性導電材料層6の上に、スパ
ッタ、CVD、無電気めっきの方式で触媒材料層7が形
成され、該触媒材料層7は貴金属、貴金属合金、貴金属
複合物の材質より選択され、その厚さは5〜1000Å
とされ、以上の工程により体積が小さく高表面積を有す
る高機能電気化学反応基板が形成される。As shown in FIG. 10, an electrolyte is formed in the through holes 3 by the method of impregnation and coating, and an electrolyte layer 4 is formed on the surface of the two-layer plate material 2. The electrolyte layer 4 is selected from a polymer and a solid electrolyte. As shown in FIG. 11, a porous conductive material layer 6 having a thickness of 10 to 500 μm is formed on the electrolyte layer 4 by the methods of CVD, screen printing, sputtering, spraying, dip coating, spin coating and electroless plating. The formed porous conductive material layer 6 is selected from graphite, gold, platinum, palladium, boron-containing diamond, refractory metal, and conductive refractory metal composite. Finally, a catalyst material layer 7 is formed on the porous conductive material layer 6 by a method such as sputtering, CVD or electroless plating, and the catalyst material layer 7 is selected from the materials of noble metal, noble metal alloy and noble metal composite. , Its thickness is 5 ~ 1000Å
According to the above steps, a highly functional electrochemical reaction substrate having a small volume and a high surface area is formed.
【0014】以上の実施例は本発明を説明するためのも
のであり、本発明の実施範囲を限定するわけではなく、
本発明に基づきなしうる細部の修飾或いは改変は、いず
れも本発明の請求範囲に属するものとする。The above examples are for explaining the present invention, and do not limit the scope of the present invention.
Any modification or alteration of detail that can be made based on the present invention shall fall within the scope of the present invention.
【0015】[0015]
【発明の効果】本発明は一種の電気化学反応基板の構造
を提供し、それは、板材の一面に、熱圧、リソグラフィ
ー、エッチング及び射出成形その他の方式により、適当
な深さ幅比を有する複数のトレンチを形成し、さらに光
学機器、レーザーパンチング或いはエッチングの方式
で、板材上に適当な寸法の貫通孔を形成し、電解質をこ
の貫通孔及び板材表面に形成し、該電解質層上に多孔性
導電材料層と触媒材料層を順に形成し、板材表面積を増
加し、電解質の接触面積を増加し、並びに該電解質層上
或いは該二層式板材間に選択性隔離層を形成し、燃料の
電解質透過の問題を現象して機能を高め、体積が小さ
く、高機能を有する電気化学反応基板とした。The present invention provides a kind of structure of an electrochemical reaction substrate, which has a plurality of suitable depth-width ratios on one surface of a plate material by hot pressing, lithography, etching and injection molding. A trench is formed, and then a through hole having an appropriate size is formed on the plate material by an optical device, laser punching or etching method, an electrolyte is formed on the through hole and the plate material surface, and a porous layer is formed on the electrolyte layer. The conductive material layer and the catalyst material layer are sequentially formed to increase the surface area of the plate material, increase the contact area of the electrolyte, and form the selective isolation layer on the electrolyte layer or between the two-layer type plate materials, and the fuel electrolyte The electrochemical reaction substrate has a high function by enhancing the function by the phenomenon of permeation, and has a high function.
【図1】周知の燃料電池の断面図である。FIG. 1 is a cross-sectional view of a known fuel cell.
【図2】本発明の高機能電気化学反応基板の第1実施例
の製造フロー表示断面図である。FIG. 2 is a sectional view showing the manufacturing flow of the first embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図3】本発明の高機能電気化学反応基板の第1実施例
の製造フロー表示断面図である。FIG. 3 is a sectional view showing the manufacturing flow of the first embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図4】本発明の高機能電気化学反応基板の第1実施例
の製造フロー表示断面図である。FIG. 4 is a sectional view showing the manufacturing flow of the first embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図5】本発明の高機能電気化学反応基板の第1実施例
の製造フロー表示断面図である。FIG. 5 is a sectional view showing the manufacturing flow of the first embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図6】本発明の高機能電気化学反応基板の第1実施例
の製造フロー表示断面図である。FIG. 6 is a sectional view showing the manufacturing flow of the first embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図7】本発明の高機能電気化学反応基板の第1実施例
の製造フロー表示断面図である。FIG. 7 is a sectional view showing the manufacturing flow of the first embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図8】本発明の高機能電気化学反応基板の第2実施例
の製造フロー表示断面図である。FIG. 8 is a sectional view showing the manufacturing flow of the second embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図9】本発明の高機能電気化学反応基板の第2実施例
の製造フロー表示断面図である。FIG. 9 is a sectional view showing the manufacturing flow of the second embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図10】本発明の高機能電気化学反応基板の第2実施
例の製造フロー表示断面図である。FIG. 10 is a manufacturing flow display sectional view of a second embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図11】本発明の高機能電気化学反応基板の第2実施
例の製造フロー表示断面図である。FIG. 11 is a sectional view showing the manufacturing flow of the second embodiment of the high-performance electrochemical reaction substrate of the present invention.
【図12】本発明の高機能電気化学反応基板の第2実施
例の製造フロー表示断面図である。FIG. 12 is a manufacturing flow display sectional view of a second embodiment of the high-performance electrochemical reaction substrate of the present invention.
1 板材 2 二層式板材 3 貫通孔 4 電解質層 5 選択性隔離層 6 多孔性導電材料層 7 触媒材料層 1 plate material 2 two-layer board 3 through holes 4 Electrolyte layer 5 Selective isolation layer 6 Porous conductive material layer 7 Catalyst material layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 羅 烈熹 台湾台北市仁愛路4段112巷25號6樓 Fターム(参考) 4K011 AA11 AA13 CA03 CA06 5H018 AA02 AS01 BB05 BB07 CC06 DD08 EE03 EE05 EE06 5H026 AA02 BB02 BB04 CC01 CC03 CX04 EE02 EE05 EE06 HH03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Luo 6th floor, 112th street, 4th floor, Renai Road, Taipei City, Taiwan F-term (reference) 4K011 AA11 AA13 CA03 CA06 5H018 AA02 AS01 BB05 BB07 CC06 DD08 EE03 EE05 EE06 5H026 AA02 BB02 BB04 CC01 CC03 CX04 EE02 EE05 EE06 HH03
Claims (2)
数のトレンチと、 該板材に形成され適当な寸法を有して該板材を貫通する
複数の貫通孔と、 該板材の表面及び貫通孔内に形成された電解質層と、 該電解質層の表面に形成された選択性隔離層と、 該選択性隔離層の表面に形成された多孔性導電材料層
と、 該多孔性導電材料層の表面に形成された触媒材料層と、 で構成された電気化学反応基板の構造。1. A plate member, a plurality of trenches formed on one surface of the plate member and having an appropriate width-depth ratio, and a plurality of through holes formed in the plate member and having appropriate dimensions and penetrating the plate member. An electrolyte layer formed on the surface of the plate material and in the through holes, a selective isolation layer formed on the surface of the electrolyte layer, and a porous conductive material layer formed on the surface of the selective isolation layer. , A structure of an electrochemical reaction substrate composed of a catalyst material layer formed on the surface of the porous conductive material layer.
離層を形成してなる二層式板材と、 該二層式板材の一面に形成され且つ適当な幅深さ比を有
する複数のトレンチと、 該二層式板材に形成され適当な寸法を有して該二層式板
材を貫通する複数の貫通孔と、 該二層式板材の表面及び貫通孔内に形成された電解質層
と、 該電解質層の表面に形成された多孔性導電材料層と、 該多孔性導電材料層の表面に形成された触媒材料層と、 で構成された電気化学反応基板の構造。2. A two-layer type plate material in which one selective isolation layer is formed between two facing plate materials, and a plurality of two-layer type plate materials formed on one surface and having an appropriate width-depth ratio. A trench, a plurality of through holes formed in the two-layer plate material and having appropriate dimensions and penetrating the two-layer plate material, and an electrolyte layer formed on the surface of the two-layer plate material and in the through-holes A structure of an electrochemical reaction substrate comprising a porous conductive material layer formed on the surface of the electrolyte layer, and a catalyst material layer formed on the surface of the porous conductive material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001256664A JP2003077489A (en) | 2001-08-27 | 2001-08-27 | Structure of electrochemical reaction substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001256664A JP2003077489A (en) | 2001-08-27 | 2001-08-27 | Structure of electrochemical reaction substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003077489A true JP2003077489A (en) | 2003-03-14 |
Family
ID=19084448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001256664A Pending JP2003077489A (en) | 2001-08-27 | 2001-08-27 | Structure of electrochemical reaction substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003077489A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100947A3 (en) * | 2006-02-28 | 2009-09-11 | Motorola, Inc. | Integrated micro fuel cell apparatus |
CN114094123A (en) * | 2021-11-17 | 2022-02-25 | 合肥国轩高科动力能源有限公司 | Anode/electrolyte half cell, anode-supported solid oxide fuel cell and method for manufacturing the same |
-
2001
- 2001-08-27 JP JP2001256664A patent/JP2003077489A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100947A3 (en) * | 2006-02-28 | 2009-09-11 | Motorola, Inc. | Integrated micro fuel cell apparatus |
CN114094123A (en) * | 2021-11-17 | 2022-02-25 | 合肥国轩高科动力能源有限公司 | Anode/electrolyte half cell, anode-supported solid oxide fuel cell and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4971780B2 (en) | Fuel cell and manufacturing method thereof | |
TWI243505B (en) | Method of manufacturing a flat panel direct methanol fuel cell | |
Déctor et al. | Formic acid microfluidic fuel cell evaluation in different oxidant conditions | |
KR20070089941A (en) | Dual Electrolytic Membrane Microchannel Fuel Cell | |
JP2005509242A (en) | Membrane electrode assembly and integrated circuit for planar substrate based fuel cell | |
Zhang et al. | Development of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology | |
US8486163B2 (en) | Micro reforming reactor for fuel cell and method of preparing the same | |
US20130032269A1 (en) | Method for making fuel cell membrane electrode assembly | |
TW200410441A (en) | A fuel cell, an operation method of the same and a portable information device that have the same | |
CN100358177C (en) | Apparatus of high power density fuel cell layer with micro structured components | |
US6869711B2 (en) | Highly efficient electrochemical reaction device | |
EP2519989A1 (en) | Performance enhancing layers for fuel cells | |
JP2003077489A (en) | Structure of electrochemical reaction substrate | |
Moore et al. | Microfabricated fuel cells with thin-film silicon dioxide proton exchange membranes | |
CN1960048A (en) | Structure of low temperature solid oxide fuel cell supported by porous metal | |
CN100539280C (en) | Fundamental components of fuel cells that limit the passage of methanol through the electrolyte | |
US20130196244A1 (en) | Fuel cell and fuel cell module | |
CN1947294A (en) | Electrolyte layer for fuel cell, fuel cell, and method of manufacturing electrolyte layer for fuel cell | |
US9196908B2 (en) | Fuel cell | |
TW518796B (en) | High performance electrochemical reaction substrate | |
CN215049815U (en) | Double-layer composite anticorrosive coating | |
JP4438569B2 (en) | Reactor | |
GB2505693A (en) | A proton exchange membrane fuel cell with open pore cellular foam | |
Li et al. | Binder‐Free Electrodes with High Energy Density and Excellent Flexibility Enabled by Hierarchical Configuration for Wearable Lithium Ion Batteries | |
Choi | Three-Dimensional Modeling and Numerical Analysis for PEM Fuel Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20031222 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20031226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040324 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070111 |