JP2003077166A - Optical recording / reproducing device - Google Patents
Optical recording / reproducing deviceInfo
- Publication number
- JP2003077166A JP2003077166A JP2001261867A JP2001261867A JP2003077166A JP 2003077166 A JP2003077166 A JP 2003077166A JP 2001261867 A JP2001261867 A JP 2001261867A JP 2001261867 A JP2001261867 A JP 2001261867A JP 2003077166 A JP2003077166 A JP 2003077166A
- Authority
- JP
- Japan
- Prior art keywords
- light
- lens
- optical recording
- recording medium
- reproducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Abstract
(57)【要約】
【課題】 SIL底面の媒体表面からの浮上量を一定に
保ち、記録信号を安定に再生することを可能とした近接
場光記録再生装置を提供する。
【解決手段】 近接場光記録媒体に入射する前に、入射
するレーザー光の瞳面内に異なる偏光分布をもたせて記
録媒体に照射し、得られる再生光を偏光分布に従って分
離することにより、SIL底部での全反射領域の光とそ
れ以外の光を分離し、全反射領域の光を浮上量制御に、
それ以外の光を記録データの読み出しに使用する。
(57) [Problem] To provide a near-field optical recording / reproducing apparatus capable of stably reproducing a recording signal while keeping a floating amount of a SIL bottom surface from a medium surface constant. SOLUTION: Before incident on a near-field optical recording medium, the recording medium is irradiated with a different polarization distribution in a pupil plane of the incident laser light, and the obtained reproduction light is separated according to the polarization distribution, thereby achieving SIL. The light in the total reflection area at the bottom is separated from the other light, and the light in the total reflection area is used to control the flying height.
The other light is used for reading recorded data.
Description
【0001】[0001]
【発明の属する技術分野】本発明は記録再生可能な光記
録媒体、特に、レーザービームにより記録層の光学特性
あるいは磁気特性を変化させ、情報の記録、再生及び消
去を行なう浮上型近接場光記録再生光学レンズを装備し
た近接場光記録再生装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recordable / reproducible optical recording medium, and more particularly to a floating near-field optical recording for recording, reproducing and erasing information by changing the optical characteristic or magnetic characteristic of a recording layer by a laser beam. The present invention relates to a near-field optical recording / reproducing device equipped with a reproducing optical lens.
【0002】[0002]
【従来の技術】光記録媒体は大容量・高密度記録が可能
な可搬型記録媒体であり、近年のマルチメディア化に伴
なうコンピュータの大容量ファイルや動画を記録する書
き換え型メディアとして需要が急増しつつある。2. Description of the Related Art Optical recording media are portable recording media capable of high-capacity and high-density recording, and are in high demand as rewritable media for recording large-capacity files and moving images of computers accompanying the recent development of multimedia. It is increasing rapidly.
【0003】光記録媒体は一般にプラスチック等の透明
な円盤状の基板に記録層を含む多層膜を形成し、レーザ
ーを照射して記録、消去を行い、レーザーの反射光で再
生する。An optical recording medium is generally formed by forming a multilayer film including a recording layer on a transparent disk-shaped substrate such as plastic, irradiating a laser for recording and erasing, and reproducing by reflected light of the laser.
【0004】記録再生のためのレーザーは従来、基板を
通して記録膜に照射されていた。最近、光学ヘッドを記
録膜に近付けて記録再生する、いわゆる、近接場光記録
が高密度化の手段として注目されている(Appl.P
hys.Lett.68,p.141(1996))。
この記録方法ではSolid ImmersionLe
ns(以下SILと略す)ヘッドを使用しレーザービー
ムスポットサイズを縮小することにより、光源のレーザ
ー波長(λ)によって決まる従来の記録限界(〜λ/2
NA:NAは対物レンズの開口数)より短いマークでの
再生が可能であり、超高記録密度の記録再生が実現でき
る。この近接場光記録では光学ヘッドを記録媒体に近付
ける必要があるために(〜100nm)、従来の光磁気
記録媒体のように基板を通して記録膜にレーザービーム
を照射するのではなく、基板を通さずに直接記録膜にレ
ーザービームを照射する方法を用いる。この際、記録膜
とSILヘッドを近付けるために浮上式のスライダーヘ
ッドを利用することが多い。A laser for recording / reproducing has hitherto been applied to a recording film through a substrate. Recently, so-called near-field optical recording, in which an optical head is brought close to a recording film to perform recording and reproduction, has attracted attention as a means for increasing the recording density (Appl. P.
hys. Lett. 68, p. 141 (1996)).
This recording method uses Solid Immersion Le
By using a ns (hereinafter abbreviated as SIL) head to reduce the laser beam spot size, the conventional recording limit (~ λ / 2) determined by the laser wavelength (λ) of the light source is used.
NA: NA can be reproduced with a mark shorter than the numerical aperture of the objective lens, and recording / reproduction with an ultrahigh recording density can be realized. In this near-field optical recording, since the optical head needs to be close to the recording medium (up to 100 nm), the recording film is not irradiated with the laser beam through the substrate as in the conventional magneto-optical recording medium, but is not passed through the substrate. A method of directly irradiating the recording film with a laser beam is used. At this time, a flying slider head is often used to bring the recording film and the SIL head close to each other.
【0005】浮上式のスライダーヘッドとは媒体を移動
させ、媒体とエアーベアリングスライダによって起こる
気体の流れによってスライダーヘッドに浮力を発生させ
ヘッドを光記録媒体表面に追随させるものである。The flying type slider head is for moving a medium and for generating a buoyancy force on the slider head by the flow of gas generated by the medium and the air bearing slider to cause the head to follow the surface of the optical recording medium.
【0006】浮上式のスライダーヘッドを用いることに
より記録層とSILの距離を〜100nmとすることが
可能となったが、光記録媒体の基板等は完全に平面では
なく数十〜数百μm程度の部分的な凹凸等が存在する。
スライダーヘッドは通常数mm程度の形状でありエアー
スライダー部分も同様である。このためこの大きさ以下
の形状の凹凸には追従することが不可能である。Although the distance between the recording layer and the SIL can be set to -100 nm by using the floating slider head, the substrate of the optical recording medium is not completely flat and is several tens to several hundreds of μm. There are partial irregularities and the like.
The slider head usually has a shape of about several mm, and the air slider portion has the same shape. For this reason, it is impossible to follow irregularities having a size less than this size.
【0007】この様な状況下において、浮上式スライダ
ーヘッドの浮上量の制御は記録媒体の移動速度を制御す
ることにおいて可能となるが、一般的な光記録媒体は円
盤状となっておりこれを回転することによりスライダー
ヘッドを浮上させているため、浮上量を精密に制御する
ための回転数の精密な制御は困難であった。また、樹脂
を用いて基板を成形する際にスタンパの形状や成形条件
の違いによりディスクの形状を完全な平面とすることは
困難であり、微視的にはスライダーの大きさ以下の凹凸
が存在し、巨視的には回転した時に面振れ等の問題を生
じさせる凹凸が存在する。前者の凹凸に対しては物理的
にスライダーの浮上量の制御は不可能であり、より小さ
いスライダーの設計が必要である。後者に対してはエア
ーベアリングによる浮上量の追従速度を向上させるスラ
イダー形状の開発が必要であるが、いまだ開発がなされ
ていない。Under such circumstances, the flying height of the flying slider head can be controlled by controlling the moving speed of the recording medium, but a general optical recording medium has a disk shape. Since the slider head is levitated by rotating, it is difficult to precisely control the number of revolutions for precisely controlling the flying height. In addition, when molding a substrate using resin, it is difficult to make the disk shape a perfect flat surface due to the difference in stamper shape and molding conditions, and microscopically there are irregularities that are smaller than the slider size. However, macroscopically, there is unevenness that causes problems such as surface wobbling when rotated. For the former unevenness, it is physically impossible to control the flying height of the slider, and it is necessary to design a smaller slider. For the latter, it is necessary to develop a slider shape that improves the follow-up speed of the flying height by the air bearing, but it has not been developed yet.
【0008】レンズ底部の光結合部位と記録媒体との空
隙の制御を積極的に行う技術が提案されている(Par
t of the Internal Symposi
umon Optical Memory and O
ptical DataStorage 1999、
p.9)。このレンズ底部の光結合部位と記録媒体との
空隙制御方式は、レンズ底面と接する物質(空気)によ
って決定されるレンズ底面への入射角の全反射条件を満
たす領域の近接場理論による光の記録媒体への結合条件
を利用する。全反射条件を満たす領域の光がレンズ底面
と記録媒体が近づく(〜100nm)に従い、レンズ底
部での反射が減少し、記録媒体に光が伝搬した場合の反
射光量に近づく。この全反射条件を満たす領域は円の外
側のリング形状になり、このリング部の反射光量をモニ
ターすることにより空隙の制御が可能となる。しかし、
再生光の中心部をマスクすることにより、再生光の外周
リング領域を検出するため、トラッキング及びデータの
読み込みは不可能であり記録再生双方を行うシステムに
は適していない。A technique for actively controlling the gap between the optical coupling portion at the bottom of the lens and the recording medium has been proposed (Par).
to of the Internal Symposi
umon Optical Memory and O
optical Data Storage 1999,
p. 9). The method of controlling the air gap between the optical coupling part on the bottom of the lens and the recording medium is based on the near-field theory for recording light in a region that satisfies the condition of total reflection of the angle of incidence on the bottom of the lens, which is determined by the substance (air) in contact with the bottom of the lens. Utilizes the binding condition to the medium. As the light in the region satisfying the condition of total reflection approaches the bottom surface of the lens and the recording medium (up to 100 nm), the reflection at the bottom of the lens decreases and approaches the amount of reflected light when the light propagates to the recording medium. The area satisfying this total reflection condition has a ring shape outside the circle, and the air gap can be controlled by monitoring the amount of reflected light from this ring portion. But,
Since the outer ring region of the reproduction light is detected by masking the central portion of the reproduction light, tracking and data reading are impossible, and it is not suitable for a system for both recording and reproduction.
【0009】[0009]
【発明が解決しようとする課題】本発明の目的は、SI
Lの浮上量制御を可能とし、更に記録再生可能な光記録
再生装置を提供することにある。The object of the present invention is to provide an SI
It is an object of the present invention to provide an optical recording / reproducing device that enables the flying height of L to be controlled and can perform recording / reproducing.
【0010】[0010]
【課題を解決するための手段】本発明者は上述のような
現状に鑑み、鋭意検討を重ねた結果、本発明を完成する
に至った。SUMMARY OF THE INVENTION The present inventor has completed the present invention as a result of intensive studies in view of the above-mentioned current situation.
【0011】SIL内部での媒体への入射角度のうちレ
ンズ屈折率とレンズに接する物質(空気)とで決定され
るレンズ底部での全反射領域の光は、近接場光として扱
われ、SILの記録媒体からの距離つまり浮上量が高く
なるにつれ記録媒体に伝搬する量が指数関数的に減少す
る。この近接場光と通常に入射する光が記録媒体に入射
することにより実効的な開口数NAが一般の対物レンズ
による収束スポット半径を超え高NAが実現可能とな
る。The light in the total reflection area at the bottom of the lens, which is determined by the refractive index of the lens and the substance (air) in contact with the lens among the incident angles to the medium inside the SIL, is treated as near-field light, and The amount of propagation to the recording medium decreases exponentially as the distance from the recording medium, that is, the flying height increases. When the near-field light and the normally incident light are incident on the recording medium, the effective numerical aperture NA exceeds the convergent spot radius of a general objective lens, and a high NA can be realized.
【0012】特に近接場光として記録媒体に伝搬する光
は通常SIL底面と記録媒体表面の空隙距離により決ま
り、SIL球面から入射した光は、この距離が300n
m以上の充分に大きい場合は近接場光で記録媒体に伝搬
せずにSIL底部で反射される。In particular, the light propagating to the recording medium as near-field light is usually determined by the gap distance between the SIL bottom surface and the recording medium surface, and the light incident from the SIL spherical surface has a distance of 300 n.
If it is sufficiently larger than m, the near-field light does not propagate to the recording medium and is reflected at the bottom of the SIL.
【0013】本発明はSILに入射する前にその光ビー
ム内に偏光状態の分布を作ることにより、SIL底面へ
の入射角度のうちレンズ屈折率とレンズに接する物質
(空気)とで決定されるレンズ底部での全反射領域の光
と、全反射条件による制限がなく記録媒体に伝搬する光
とを分離して再生することを可能とする光記録再生装置
である。According to the present invention, the distribution of the polarization state is created in the light beam before entering the SIL, so that the refractive index of the lens and the substance (air) in contact with the lens among the incident angles to the SIL bottom surface are determined. The optical recording / reproducing apparatus is capable of separately reproducing the light in the total reflection area at the lens bottom and the light propagating to the recording medium without being restricted by the total reflection condition.
【0014】すなわち本発明は、レーザーからSILへ
入射する間に、光スポット断面の各微小領域の光がSI
L底部での全反射領域の光と、それ以外の光を予め割り
出し、各領域の光に対し複屈折の異なる2種類の光透過
性物質、あるいは境界をもたずに連続的に変化する光透
過性物質を通過させることにより光ビームスポットの断
面に偏光状態の分布を作る。偏光状態の分布を持った光
は記録媒体から反射され記録再生装置内の再生光学系に
導入される。光ビームスポットは、その断面内において
複屈折により位相差分布が生じ、再生光学系の導入前に
偏光分離素子を挿入することにより、予め与えた偏光分
布に従って光を分離することが可能となり、SIL内部
での媒体への入射角度のうちレンズ屈折率とレンズに接
する物質(空気)とで決定されるレンズ底部での全反射
領域の光は、SIL底部と記録媒体との間の距離を検出
する用途に用い、それ以外は記録データの読み出しに使
用することが可能となる。That is, according to the present invention, the light in each minute region of the light spot cross section is SI during the incidence from the laser to the SIL.
Light of the total reflection area at the bottom of L and light other than that are pre-determined, and two kinds of light transmissive substances having different birefringence with respect to the light of each area, or light that continuously changes without a boundary A distribution of polarization states is created in the cross section of the light beam spot by passing the transparent material. The light having the polarization state distribution is reflected from the recording medium and introduced into the reproducing optical system in the recording / reproducing apparatus. The light beam spot has a phase difference distribution due to birefringence in its cross section, and by inserting a polarization separation element before the introduction of the reproduction optical system, it becomes possible to separate the light according to the polarization distribution given in advance, and the SIL The light in the total reflection area at the lens bottom, which is determined by the lens refractive index and the substance (air) in contact with the lens among the incident angles to the medium inside, detects the distance between the SIL bottom and the recording medium. It is possible to use it for the purpose and read the recorded data other than the above.
【0015】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.
【0016】光源としてコヒーレント光であるレーザー
ダイオードLDを用いこれから出射される光をビーム整
形素子・コリメート素子等を通過した後、ビームエクス
パンダーやビームスプリッター等を経て、記録媒体に出
射する以前に面内方向に複屈折を有する媒質、例えば液
晶あるいは結晶方位を面内方向に分布を持たせた複屈折
結晶等を用いレーザービーム面内に偏光状態の分布を生
じさせる。A laser diode LD, which is coherent light, is used as a light source, and the light emitted from the laser diode LD passes through a beam shaping element, a collimating element, and the like, and then passes through a beam expander, a beam splitter, and the like, before being emitted to a recording medium. A medium having birefringence in the inward direction, for example, a liquid crystal or a birefringent crystal having a crystal orientation distributed in the in-plane direction is used to generate a polarization state distribution in the laser beam plane.
【0017】浮上量(以下SIL底部の光結合部位と記
録媒体との空隙距離を示す)が100nm程度であれば
本来レンズ底面で全反射する高入射角部分の光は薄膜中
に一部分伝搬するが300nm程度となるとほとんど伝
搬せずレンズ底面で反射されて記録媒体に伝搬すること
ができず、ビームスポットサイズが大きくなってしま
う。図1にSIL球面部の各微小領域における光線の軌
跡を模式的に示す。対物レンズ1から入射した光はSI
L2の材質で決定される屈折率と記録媒体3との間に存
在する媒質の屈折率により定まる全反射条件から臨界入
射角θ1が決定され、この角度以上の入射角においては
浮上量上昇に伴いレンズ底面から直接反射される光が指
数関数にしたがって増加する。When the flying height (hereinafter, the air gap between the optical coupling portion at the bottom of the SIL and the recording medium) is about 100 nm, the light at the high incident angle portion, which is originally totally reflected on the bottom surface of the lens, partially propagates in the thin film. If it becomes about 300 nm, it hardly propagates and is reflected on the bottom surface of the lens and cannot propagate to the recording medium, so that the beam spot size becomes large. FIG. 1 schematically shows the loci of light rays in each minute area of the SIL spherical surface portion. The light incident from the objective lens 1 is SI
The critical incident angle θ1 is determined from the total reflection condition that is determined by the refractive index determined by the material of L2 and the refractive index of the medium existing between the recording medium 3 and the incident angle above this angle increases the flying height. The light reflected directly from the bottom surface of the lens increases according to an exponential function.
【0018】浮上量が十分高い状態で図1の斜線部で示
すSIL底面からの反射光すなわち再生光瞳面のリング
状の部分に対応する入射光のビームスポット断面に位置
する光に対して偏光状態を変化させておけば再生光学系
手前に設置する偏光分離素子(偏光ビームスプリッター
等)により臨界角θ1以上の光と、信号読み出しにおい
て最も強度が大きい領域の光を分離することができ、再
生信号を無駄なく使用することが可能である。In a state where the flying height is sufficiently high, the light reflected from the bottom surface of the SIL shown by the hatched portion in FIG. 1, that is, the light located in the beam spot cross section of the incident light corresponding to the ring-shaped portion of the reproduction light pupil plane is polarized. If the state is changed, it is possible to separate the light with a critical angle θ1 or more and the light in the area with the highest intensity in signal readout by the polarization separation element (polarization beam splitter etc.) installed in front of the reproduction optical system. It is possible to use the signal without waste.
【0019】そこで記録媒体に入射する前に、臨界角θ
1で分割できる領域の光に対して各90度、−90度の
位相差を複屈折素子により予め加える、これにより臨界
角θ1で分割された領域の光はそれぞれ右回り、左回り
円偏光となり記録媒体に入射される。Therefore, before entering the recording medium, the critical angle θ
The phase difference of 90 degrees and -90 degrees is added in advance to the light in the area that can be divided by 1, by the birefringent element, so that the light in the area divided by the critical angle θ1 becomes clockwise and counterclockwise circularly polarized light, respectively. It is incident on the recording medium.
【0020】記録媒体から反射された光はSILに戻り
ビームスプリッターにより再生光学系に導かれる。レー
ザー光軸から分離するためのビームスプリッターの後且
つサーボコントロール再生光学系及び記録信号再生光学
系に入射する前に、1/4波長板を挿入することによ
り、すべての再生光が90度位相差を加算され、入射偏
光分布を保持した状態で偏光面がそれぞれ90、0度と
なる。偏光ビームスプリッターにより各偏光分布成分が
分割される。The light reflected from the recording medium returns to the SIL and is guided to the reproducing optical system by the beam splitter. By inserting a quarter-wave plate after the beam splitter for separating from the laser optical axis and before entering the servo control reproduction optical system and the recording signal reproduction optical system, all reproduction light has a 90-degree phase difference. Are added, and the polarization planes are 90 degrees and 0 degrees, respectively, with the incident polarization distribution maintained. The polarization beam splitter splits each polarization distribution component.
【0021】臨界角θ1で二つに分割された光は、サー
ボコントロールあるいはプリフォーマット読み出し用の
ディテクターや光磁気再生信号検出用の光学系へ出力さ
れる。The light split into two at the critical angle θ1 is output to a detector for servo control or preformat reading or an optical system for detecting a magneto-optical reproduction signal.
【0022】ここで入射偏光分布を作成する素子として
は複屈折素子の進相軸を90度ずらした結晶を分布にあ
わせてカットしそれを接着したものや、液晶素子の電極
パターンを必要とする偏光分布に沿って加工したもの等
が考えられる。また図1における入射角θに対する光
に、連続的な位相差分布を作製する場合には単一平板の
複屈折素子にレンズ等を介し、収束光を入射し偏光分布
を作成することが可能である。またファラデーセルなど
を応用しても良い。Here, as an element for creating an incident polarized light distribution, a birefringent element having a fast axis shifted by 90 ° is cut in accordance with the distribution and is adhered, or an electrode pattern of a liquid crystal element is required. Those processed according to the polarization distribution may be considered. Further, in the case of producing a continuous phase difference distribution for the light with respect to the incident angle θ in FIG. 1, it is possible to make a convergent light incident on a single flat plate birefringent element through a lens or the like to create a polarization distribution. is there. Further, a Faraday cell or the like may be applied.
【0023】また偏光分布はその用途により自由に選択
することが可能であり、入射偏光を直線偏光とし領域ご
とにその角度を変える、あるいは任意の位相差を領域ご
とに持たせることでも良く、最終的に用途に応じて使い
わけて設計すれば良い。The polarization distribution can be freely selected depending on the application, and the incident polarization may be linearly polarized and the angle thereof may be changed for each region, or an arbitrary phase difference may be given for each region. It may be designed by properly using it according to the purpose.
【0024】臨界角θ1以上の入射角をもつリング状の
光を、光電変換器であるディテクターにより得られる電
圧値により、浮上量に換算することが可能である。この
電圧値をSILとスライダーの接続部位に設置し、相対
位置を変位させる機構を有する素子、例えば圧電素子あ
るいはヒーター電極に挟み込まれた熱膨張素子等、に対
してコントロールを行うことにより記録媒体表面形状等
により変動する浮上量を一定に制御することが可能であ
る。Ring-shaped light having an incident angle equal to or greater than the critical angle θ1 can be converted into a flying height by a voltage value obtained by a detector which is a photoelectric converter. By setting this voltage value at the connection portion between the SIL and the slider and controlling the element having a mechanism for displacing the relative position, for example, a piezoelectric element or a thermal expansion element sandwiched between heater electrodes, the surface of the recording medium is controlled. It is possible to control the flying height that fluctuates depending on the shape and the like to be constant.
【0025】[0025]
【実施例】(実施例1)レーザー波長351nmの原盤
露光装置を用いトラックピッチ0.5μmの案内溝を有
するスタンパーを作成し、このスタンパを用いて射出成
形法により直径130mmのPC樹脂基板を作成した。
この基板を用いて図2に示すような構造の薄膜を作成し
た。この基板4上に膜厚50nmのCu膜からなる反射
層5をDCスパッタ法で形成した。この上に保磁力10
kOeのTbFeCoからなる記録層6を20nm、そ
れぞれDCスパッタ法により形成した。さらにその上
に、SiNからなる誘電体層7をArとN2の混合雰囲
気中でSiターゲットを使用した反応性DCスパッタ法
で50nm、ダイヤモンドライクカーボン(DLC)か
らなる固体潤滑層8をArとCH4の混合雰囲気中でC
ターゲットを使用した反応性RFスパッタ法で15nm
形成した。DLC層を形成した後、パーフルオロポリエ
ーテル系潤滑層9を1nm塗布して光磁気記録媒体を作
製した。EXAMPLES Example 1 A stamper having guide grooves with a track pitch of 0.5 μm was prepared using a master exposure device with a laser wavelength of 351 nm, and a PC resin substrate having a diameter of 130 mm was prepared by injection molding using this stamper. did.
Using this substrate, a thin film having the structure shown in FIG. 2 was created. A reflective layer 5 made of a Cu film having a film thickness of 50 nm was formed on the substrate 4 by a DC sputtering method. Coercive force 10 on this
A recording layer 6 made of kOe TbFeCo was formed to a thickness of 20 nm by DC sputtering. Further thereon, a dielectric layer 7 made of SiN is 50 nm by a reactive DC sputtering method using a Si target in a mixed atmosphere of Ar and N 2 , and a solid lubricating layer 8 made of diamond-like carbon (DLC) is formed by Ar. C in a mixed atmosphere of CH 4
15 nm by reactive RF sputtering method using a target
Formed. After forming the DLC layer, the perfluoropolyether lubricating layer 9 was applied to 1 nm to manufacture a magneto-optical recording medium.
【0026】本発明における光記録再生装置を図3に示
す。記録再生装置は使用レーザーに波長635nmの半
導体レーザーを用い、ビーム整形プリズム12直後のレ
ーザービームの直径を10mmとし、その偏光は直線偏
光とした。偏光分布を作成する素子としては1/4波長
板13を図4に示す用にA〜Eの5つの領域をそれぞれ
A、B,C,Dを1つのグループとし、このグループと
Eの間で進相軸と遅相軸を逆転、つまり進相軸を90度
回転させたものをオプティカルコンタクトを利用して作
成した。このとき図4のFが入射直線偏光軸を示し、
A,B,C,Dのグループの進相軸をGとし、領域Eの
進相軸をHとした。このようにして作成した1/4波長
板に直線偏光を入射して、図5中のようなレーザービー
ムの瞳面内での偏光分布領域を得た。図5中A〜Eは、
図4の1/4波長板を通過した後の光の偏光分布領域を
示し、領域A、B、C、Dは右回り円偏光、領域Eは左
回り円偏光となる。この光をビームスプリッター14、
対物レンズ16、SIL17を介して記録媒体18に入
射した。この時領域AとCを結んだ線分が案内溝に平行
になるようにした。FIG. 3 shows an optical recording / reproducing apparatus according to the present invention. The recording / reproducing apparatus used a semiconductor laser having a wavelength of 635 nm as the laser used, the diameter of the laser beam immediately after the beam shaping prism 12 was 10 mm, and its polarization was linear polarization. As an element for creating a polarization distribution, a quarter wave plate 13 is used as shown in FIG. 4, and five areas A to E are grouped into groups A, B, C and D, respectively. The fast axis and the slow axis were reversed, that is, the fast axis was rotated by 90 degrees, and it was created using optical contact. At this time, F of FIG. 4 shows the incident linear polarization axis,
The fast axis of the groups A, B, C, and D is G, and the fast axis of the region E is H. Linearly polarized light was made incident on the quarter-wave plate thus created to obtain a polarization distribution region in the pupil plane of the laser beam as shown in FIG. A to E in FIG. 5 are
4 shows polarization distribution regions of light after passing through the quarter-wave plate of FIG. 4, regions A, B, C, and D are right-hand circularly polarized light, and a region E is left-hand circularly polarized light. This light is reflected by the beam splitter 14,
The light enters the recording medium 18 through the objective lens 16 and the SIL 17. At this time, the line segment connecting the areas A and C was made parallel to the guide groove.
【0027】光ディスクから戻った光は再び対物レンズ
を通りビームスプリッター14により再生光学系に導か
れる。ここでビームスプリッター19により光磁気再生
光学系およびフォーカス/トラッキングサーボ信号及び
凹凸情報再生光学系に分割した。The light returning from the optical disk passes through the objective lens again and is guided to the reproducing optical system by the beam splitter 14. Here, the beam splitter 19 splits into a magneto-optical reproducing optical system and a focus / tracking servo signal and uneven information reproducing optical system.
【0028】各光学系において1/4波長板20の進相
軸を領域Aと同じ向きに設定する。領域A、B、C、D
を通過した光は90度位相差が加算され、整形プリズム
出射後の偏光面から都合90度の偏光面の回転が生じ
る。また領域Eを通過した光は90度位相差が減算され
入射偏光と同じ直線偏光に変換される。ここでフォーカ
ス/トラッキングコントロール及び凹凸情報読み取り光
学系においてはビームスプリッター26にて領域A、
B、C、Dと領域Eの光成分とを分割できるように配置
し、また光磁気信号検出光学系にはE領域、トラッキン
グ検出光学系とエンボス情報検出系にはA、B、C、D
領域を4分割ディテクターに導入しこの光量のA、C領
域の総和を浮上量制御として用い、4分割ディテクター
のAとCの差信号をエンボス情報再生に利用し、D、B
の差信号をトラッキング状態検出に用いた。また光磁気
再生光学系においては偏光ビームスプリッター18は各
領域の直線偏光の軸に対し45度となるように配置し
た。In each optical system, the fast axis of the quarter-wave plate 20 is set in the same direction as the area A. Area A, B, C, D
The light passing through is added with the phase difference of 90 degrees, and the polarization plane is rotated by 90 degrees from the polarization plane after exiting the shaping prism. Further, the light passing through the region E is converted into the linearly polarized light which is the same as the incident polarized light by subtracting the 90 ° phase difference. Here, in the focus / tracking control and the concave / convex information reading optical system, the beam splitter 26 causes the area A,
B, C, and D are arranged so that the light components of the area E can be divided, and the E area is used for the magneto-optical signal detection optical system, and A, B, C, D are used for the tracking detection optical system and the emboss information detection system.
The area is introduced into a 4-division detector, and the sum of the A and C areas of this light quantity is used for flying height control, and the difference signal between A and C of the 4-division detector is used for embossed information reproduction, and D, B
The difference signal of was used for tracking state detection. Further, in the magneto-optical reproducing optical system, the polarization beam splitter 18 is arranged at 45 degrees with respect to the axis of linearly polarized light in each region.
【0029】浮上式光記録再生ヘッドでは、図6に示す
様に記録媒体の移動により浮力を発生させるスライダー
37に、光学レンズであるSILレンズ38が、光学レ
ンズ支持部材39によって保持されている。この光学レ
ンズ支持部材39はSILレンズをスライダーに保持す
るとともに、スライダーとSILとの相対的な位置を変
化させる機能を有している。In the floating optical recording / reproducing head, as shown in FIG. 6, a SIL lens 38 as an optical lens is held by an optical lens support member 39 on a slider 37 which generates a buoyancy force by moving the recording medium. The optical lens support member 39 has a function of holding the SIL lens on the slider and changing the relative position between the slider and the SIL.
【0030】光学レンズ支持部材としては圧電素子を用
い浮上量検出信号が一定となるように圧電素子に印加す
る電圧をディスク回転スピンドルの同期信号に対して同
一場所(ディスク一周の内の同一角度位置の微小領域)
に対して300mVとし、浮上量が約100nmとなる
ようにした。A piezoelectric element is used as the optical lens supporting member, and the voltage applied to the piezoelectric element so that the flying height detection signal becomes constant is set at the same position (at the same angular position within one round of the disk) with respect to the synchronizing signal of the disk rotating spindle. Micro area)
To 300 mV, and the flying height was set to about 100 nm.
【0031】線速度10m/sにて圧電素子の制御回路
における電圧を変化させた時の浮上量検出信号である再
生光強度の電圧値及びSILと記録薄膜との距離である
浮上量(nm)を図7に示す。この図7において再生光
強度の電圧値が900mVになるように圧電素子の制御
回路における電圧値を制御した。The voltage value of the reproducing light intensity, which is a flying height detection signal when the voltage in the control circuit of the piezoelectric element is changed at a linear velocity of 10 m / s, and the flying height (nm) which is the distance between the SIL and the recording thin film. Is shown in FIG. In FIG. 7, the voltage value in the control circuit of the piezoelectric element was controlled so that the voltage value of the reproducing light intensity was 900 mV.
【0032】上記のような浮上量の制御を行った状態に
おいて、マーク長1μmの信号をトラッキングをかけた
上、一周記録を行い再生を行った。In the state in which the flying height was controlled as described above, a signal having a mark length of 1 μm was tracked, and one round recording was performed for reproduction.
【0033】この時マーク長1μmの再生信号振幅値の
変動が非常に小さく2%の値を得た。At this time, the fluctuation of the reproduction signal amplitude value with the mark length of 1 μm was very small, and a value of 2% was obtained.
【0034】(比較例1)実施例同様の記録再生装置、
記録媒体及び記録条件において浮上量制御回路を停止さ
せて信号の再生を行った結果、1μmのマーク長信号の
変動は15%であった。(Comparative Example 1) A recording / reproducing apparatus similar to the embodiment,
When the flying height control circuit was stopped under the recording medium and the recording conditions to reproduce the signal, the fluctuation of the mark length signal of 1 μm was 15%.
【0035】本発明により再生信号の変動が少なく安定
した記録再生特性が得られることが分かる。It can be seen that according to the present invention, stable recording / reproducing characteristics can be obtained with little fluctuation of the reproduced signal.
【0036】[0036]
【発明の効果】光記録媒体入射以前に入射光の瞳面内方
向に偏光分布を持たせ、且つその偏光分布をを持つ光を
レンズを用いて記録媒体の微小領域に光を収束させる光
記録再生装置において、近接場により記録媒体に伝搬す
る領域とそうでない領域の光に予め偏光分布を持たせる
ことにより、近接場における光の伝搬特性であるレンズ
と記録媒体の浮上量と再生強度変化を電圧検出し、浮上
スライダーとSILの光結合部位を相対的に変位させる
素子の制御に用いることにより記録媒体の形状等による
浮上量の変動を低減することが可能となる。EFFECT OF THE INVENTION Optical recording in which incident light has a polarization distribution in the in-plane direction of the incident light before entering the optical recording medium, and the light having the polarization distribution is converged to a minute area of the recording medium by using a lens. In the reproducing device, by pre-assigning a polarization distribution to light in a region propagating to the recording medium by the near field and in a region not propagating in the recording medium, variation of the flying height and the reproducing intensity of the lens and the recording medium, which are the light propagation characteristics in the near field, By detecting the voltage and using it to control the element that relatively displaces the optical coupling portion of the flying slider and the SIL, it is possible to reduce the fluctuation of the flying height due to the shape of the recording medium and the like.
【図1】対物レンズ及びSIL内での光線の模式図であ
るFIG. 1 is a schematic diagram of light rays in an objective lens and SIL.
【図2】実施例1で示した光磁気記録媒体の部分断面図
である。FIG. 2 is a partial cross-sectional view of the magneto-optical recording medium shown in Example 1.
【図3】実施例1で使用した再生光学系を示す図であ
る。3 is a diagram showing a reproducing optical system used in Example 1. FIG.
【図4】偏光分布作成素子の分布領域と初期直線偏光
軸、1/4波長板進相軸との関係を示す図である。FIG. 4 is a diagram showing a relationship between a distribution region of a polarization distribution creating element, an initial linear polarization axis, and a ¼ wavelength plate fast axis.
【図5】偏光分布作成素子により得られた偏光分布を示
す図である。FIG. 5 is a diagram showing a polarization distribution obtained by a polarization distribution creation element.
【図6】実施例1で用いた浮上型光ヘッドを示す模式図
である。(a)平面図、(b)C・C側面図、(c)D
・D線断面図、(d)光学レンズ支持部材及びその周辺
を示す断面拡大図FIG. 6 is a schematic view showing a flying type optical head used in Example 1. (A) Plan view, (b) CC side view, (c) D
・ D line cross-sectional view, (d) cross-sectional enlarged view showing the optical lens support member and its periphery
【図7】圧電素子制御電圧に対する浮上量と再生光強度
との関係の一例を示す図である。FIG. 7 is a diagram showing an example of a relationship between a flying height and a reproducing light intensity with respect to a piezoelectric element control voltage.
1 対物レンズ 2 SIL 3 記録媒体表面 4 基板 5 反射膜 6 記録薄膜 7 誘電体保護膜 8 固体潤滑層 9 液体潤滑層 10 レーザーダイオード 11 コリメータレンズ 12 ビーム整形プリズム 13 偏光分布作成素子 14 ビームスプリッター 15 ビーム立ち上げミラー 16 対物レンズ 17 SIL 18 記録媒体 19 ビームスプリッター 20 1/4波長板 21 偏光ビームスプリッター 22 対物レンズ 23 光検出器 24 対物レンズ 25 光検出器 26 1/4波長板 27 偏光ビームスプリッター 28 対物レンズ 29 光検出器 30 対物レンズ 31 光検出器 32〜36 各ポイントでの偏光分布状態 37 浮上スライダー 38 SIL 39 浮上量制御素子 40 電極 41 圧電素子 1 Objective lens 2 SIL 3 Recording medium surface 4 substrates 5 Reflective film 6 Recording thin film 7 Dielectric protective film 8 Solid lubrication layer 9 Liquid lubrication layer 10 Laser diode 11 Collimator lens 12 Beam shaping prism 13 Polarization distribution creation element 14 Beam splitter 15 beam rising mirror 16 Objective lens 17 SIL 18 recording media 19 Beam splitter 20 1/4 wave plate 21 Polarizing beam splitter 22 Objective lens 23 Photodetector 24 Objective lens 25 photo detector 26 1/4 wave plate 27 Polarizing beam splitter 28 Objective lens 29 Photodetector 30 objective lens 31 Photodetector 32-36 Polarization distribution state at each point 37 Ascending slider 38 SIL 39 Flying height control element 40 electrodes 41 Piezoelectric element
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5D090 AA01 BB10 DD03 FF05 FF11 5D118 AA14 BA01 BB06 CC06 CC07 CC12 CD02 DC02 EA08 EA11 5D119 AA11 AA22 AA28 BA01 BB05 CA06 EA03 EC32 JA30 JA43 MA06 5D789 AA11 AA22 AA28 BA01 BB05 CA06 CA21 CA22 CA23 EA03 EC32 JA30 JA43 MA06 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 5D090 AA01 BB10 DD03 FF05 FF11 5D118 AA14 BA01 BB06 CC06 CC07 CC12 CD02 DC02 EA08 EA11 5D119 AA11 AA22 AA28 BA01 BB05 CA06 EA03 EC32 JA30 JA43 MA06 5D789 AA11 AA22 AA28 BA01 BB05 CA06 CA21 CA22 CA23 EA03 EC32 JA30 JA43 MA06
Claims (5)
し、光記録媒体の微小領域に照射させる光記録再生装置
において、前記コヒーレントな光が、前記レンズを通過
する前に、その光の進行方向に対して垂直な面で観測さ
れる光スポット断面(以下、瞳面と言う)内に偏光状態
の分布を有することを特徴とする光記録再生装置。1. In an optical recording / reproducing apparatus for focusing coherent light by using a lens and irradiating it to a minute area of an optical recording medium, before the coherent light passes through the lens, the traveling direction of the light. An optical recording / reproducing device having a polarization state distribution in a light spot cross section (hereinafter referred to as a pupil plane) observed in a plane perpendicular to the plane.
楕円の中心からの距離に応じて偏光状態が定まる分布で
あることを特徴とする請求項1記載の光記録再生装置。2. The optical recording / reproducing apparatus according to claim 1, wherein the polarization state distribution is a distribution in which the polarization state is determined according to the distance from the center of the ellipse of the pupil plane of the light spot.
を通る直線に対して垂直な面で切り取った形状を有する
ものであることを特徴とする請求項1又は請求項2記載
の光記録再生装置。3. The optical recording / reproducing according to claim 1 or 2, wherein the lens has a shape obtained by cutting a spherical lens by a plane perpendicular to a straight line passing through the center of the lens. apparatus.
に対して垂直な面で切り取った形状を有するレンズの平
面部分を記録媒体に対向させ、且つレンズ直下の記録媒
体に近接場光を用いて光を結合させることを特徴とする
請求項3記載の光記録再生装置。4. A spherical lens is cut along a plane perpendicular to a straight line passing through the center of the lens so that a plane portion of the lens faces a recording medium, and near-field light is used for the recording medium directly below the lens. 4. The optical recording / reproducing apparatus according to claim 3, wherein the light is coupled by light.
平面部分に入射した時の、レンズ平面部分への入射角
が、レンズに接する物質の屈折率とレンズの屈折率によ
り決定される全反射条件をとる角度を境界として、その
角度より大きな入射角の光と、その角度より小さな入射
角の光とが、瞳面内で異なる偏光状態を有することを特
徴とする請求項4記載の光記録再生装置。5. A total reflection condition in which an angle of incidence on a flat surface portion of a lens when the light enters the flat surface portion of the lens from a portion having a spherical surface of the lens is determined by a refractive index of a substance in contact with the lens and a refractive index of the lens. 5. The optical recording / reproducing according to claim 4, wherein the light having an incident angle larger than that angle and the light having an incident angle smaller than that angle have different polarization states in the pupil plane, with the angle taking as a boundary being a boundary. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001261867A JP2003077166A (en) | 2001-08-30 | 2001-08-30 | Optical recording / reproducing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001261867A JP2003077166A (en) | 2001-08-30 | 2001-08-30 | Optical recording / reproducing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003077166A true JP2003077166A (en) | 2003-03-14 |
Family
ID=19088848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001261867A Pending JP2003077166A (en) | 2001-08-30 | 2001-08-30 | Optical recording / reproducing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003077166A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008114406A1 (en) * | 2007-03-20 | 2008-09-25 | Pioneer Corporation | Optical pickup, and reproducer |
WO2010106283A1 (en) | 2009-03-17 | 2010-09-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | High resolution read head for an optical disk |
-
2001
- 2001-08-30 JP JP2001261867A patent/JP2003077166A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008114406A1 (en) * | 2007-03-20 | 2008-09-25 | Pioneer Corporation | Optical pickup, and reproducer |
WO2010106283A1 (en) | 2009-03-17 | 2010-09-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | High resolution read head for an optical disk |
FR2943450A1 (en) * | 2009-03-17 | 2010-09-24 | Commissariat Energie Atomique | HIGH RESOLUTION READING HEAD FOR OPTICAL DISK |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7414947B2 (en) | Optical pickup device, recording and reproducing apparatus and gap detection method | |
EP1724771A1 (en) | Optical recording and reproducing apparatus, optical head, optical recording and reproducing method and skew detection method | |
US6365061B1 (en) | Multibeam laser servowriting of magnetic data storage media | |
US20070171778A1 (en) | Optical recording/reproducing apparatus, optical pickup, and tracking error detecting method | |
CN1322503C (en) | Optical recording medium, recording/reproducing apparatus, storage apparatus, and recording/reproducing method | |
JPS5982646A (en) | Optomagnetic storage device | |
US6934244B2 (en) | Optical recording medium and stamper for manufacturing the same | |
TWI249741B (en) | Optical record playing medium, mother disk for manufacturing of optical record playing medium and optical record playing device, optical record regeneration medium, original disk for manufacturing of optical record regeneration medium | |
JP2003077166A (en) | Optical recording / reproducing device | |
JPS58100248A (en) | Optical information recording medium | |
US6349085B1 (en) | High density recording medium with pit width to track pitch ratio in the range of 0.4 to 0.55 for push-pull tracking servo control | |
JPH09212928A (en) | Magneto-optical recording medium and optical information detection device | |
CN100440342C (en) | Optical recording and reproducing apparatus, method, optical head and skew detection method | |
JP2781180B2 (en) | Optical tape device | |
TW550551B (en) | Magnetic scanning system | |
JP3971832B2 (en) | Optical disk and optical disk device | |
JP2002032941A (en) | Head position adjusting method and recording / reproducing apparatus | |
JP2003077137A (en) | Optical recording and reproducing device | |
JP4135150B2 (en) | Optical information recording / reproducing apparatus | |
JP2002117549A (en) | Optical recording/reproducing device | |
JP2006012336A (en) | Disk-like recording medium and disk device | |
JP2003067940A (en) | Near-field optical recording disk and near-field optical recording / reproducing device | |
JPH02246031A (en) | optical disk | |
JP2000339769A (en) | Information recording medium and information recording and reproducing device | |
JP2004139735A (en) | Magneto-optical recording medium |