[go: up one dir, main page]

JP2003075106A - Position detection device - Google Patents

Position detection device

Info

Publication number
JP2003075106A
JP2003075106A JP2001263941A JP2001263941A JP2003075106A JP 2003075106 A JP2003075106 A JP 2003075106A JP 2001263941 A JP2001263941 A JP 2001263941A JP 2001263941 A JP2001263941 A JP 2001263941A JP 2003075106 A JP2003075106 A JP 2003075106A
Authority
JP
Japan
Prior art keywords
detection
coil
impedance
coils
linear position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001263941A
Other languages
Japanese (ja)
Other versions
JP4810021B2 (en
Inventor
Tadatoshi Goto
忠敏 後藤
Akio Yamamoto
明男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001263941A priority Critical patent/JP4810021B2/en
Publication of JP2003075106A publication Critical patent/JP2003075106A/en
Application granted granted Critical
Publication of JP4810021B2 publication Critical patent/JP4810021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a position detection device having a highly-accurate, small- sized and simple structure, excellent in compensation performance of a temperature characteristic. SOLUTION: This device includes first and second detection coils A, B excited by an alternating-current signal, and a magnetic response member 12 arranged so as to bring about different impedance changes to each detection coil corresponding to the position which is a detection object. A position detection signal corresponding to the position which is the detection object is generated by operating the ratio of a detection signal level corresponding to the impedance of each detection coil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、交流信号で励磁
される検出コイルのインピーダンス変化を利用して位置
検出を行う位置検出装置に関し、特に、温度特性の補償
性能に優れていて、比較的長い直線位置検出可能範囲に
対して検出コイルの配置・サイズをかなり小さくでき
る、コンパクトな構成の直線位置検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device for detecting a position by utilizing a change in impedance of a detecting coil excited by an AC signal, and more particularly, it has excellent temperature characteristic compensation performance and is relatively long. The present invention relates to a linear position detecting device having a compact structure in which the arrangement and size of detection coils can be made considerably smaller than the linear position detectable range.

【0002】[0002]

【従来の技術】従来より知られた誘導型直線位置検出装
置としては差動トランスがある。差動トランスは、1つ
の1次巻線を1相で励磁し、差動接続された2つの2次
巻線の各配置位置において検出対象位置に連動する鉄心
コアの直線位置に応じて差動的に変化するリラクタンス
を生ぜしめ、その結果として得られる1相の誘導出力交
流信号の電圧振幅レベルが鉄心コアの直線位置を示すよ
うにしたものである。この差動トランスにおいては、誘
導電圧が差動的に変化するように設けられた2つの2次
巻線が設けられた範囲において、該誘導電圧値が対直線
位置に関して直線性を示す範囲でしか、直線位置を検出
することができないものであり、検出可能範囲の長さ
は、通常、配置されたコイルの全長よりも短い。従っ
て、長尺の長さ検出には全く適していない。すなわち、
検出可能範囲を拡張するには巻線長とコア長を長くする
しかなく、自ずと限度があると共に、装置の大型化をも
たらす。また、誘導出力信号の電圧振幅レベルは、鉄心
コアの直線位置のみならず、温度変化等の周辺環境の影
響を受けやすいので、精度に難点がある。特に、可動鉄
心コアの鉄損更にはコイル巻心コアの鉄損など検出装置
に存在する鉄等の金属の磁気的特性の温度特性が考慮さ
れておらず、これらの鉄損が未補償であることによる検
出精度低下を来していた。
2. Description of the Related Art A conventionally known inductive linear position detecting device is a differential transformer. The differential transformer excites one primary winding in one phase and differentially operates according to the linear position of the iron core that interlocks with the detection target position at each position of the two differentially connected secondary windings. The reluctance that changes with time is generated, and the voltage amplitude level of the resulting one-phase inductive output AC signal indicates the linear position of the iron core. In this differential transformer, in the range in which the two secondary windings are provided so that the induced voltage changes differentially, the induced voltage value is only in a range showing linearity with respect to the linear position. Since the linear position cannot be detected, the length of the detectable range is usually shorter than the total length of the arranged coil. Therefore, it is completely unsuitable for long length detection. That is,
To extend the detectable range, there is no choice but to lengthen the winding length and the core length, which naturally has a limit and causes an increase in the size of the device. In addition, the voltage amplitude level of the induction output signal is susceptible to not only the linear position of the iron core but also the surrounding environment such as temperature change, so that there is a problem in accuracy. In particular, the temperature characteristics of the magnetic characteristics of the metal such as iron existing in the detection device such as the iron loss of the movable iron core and the iron loss of the coil winding core are not considered, and these iron losses are not compensated. Due to this, the detection accuracy was lowered.

【0003】これに対して、検出対象直線位置に相関す
る電気的位相角を持つ交流信号を出力するようにした位
相シフトタイプの誘導型直線位置検出装置も知られてい
る。例えば、特開昭49−107758号、特開昭53
−106065号、特開昭55−13891号、実公平
1−25286号などに示されたものがある。この種の
従来知られた位相タイプの誘導型直線位置検出装置にお
いては、検出対象位置に連動する可動鉄心コアの直線変
位方向に関して互いにずらして配置された例えば2つの
1次巻線を互いに電気的位相のずれた2相の交流信号
(例えばsin ωtとcos ωt)でそれぞれ励磁し、各1
次巻線による2次側誘導信号を合成して1つの2次出力
信号を生成するようにしている。励磁用の交流信号に対
するこの2次出力信号における電気的位相ずれが、検出
対象位置に連動する鉄心コアの直線位置を示している。
また、実公平1−25286号に示されたものにおいて
は、複数の鉄心コアを所定ピッチで断続的に繰り返し設
け、1次及び2次巻線が設けられた範囲よりも広い範囲
にわたる直線位置検出を可能にしている。しかし、これ
らのタイプのものも、所定の検出範囲の1サイクルの長
さに対応して、複数のコイルを分散配置しなければなら
ないため、コイルの配置長さつまりサイズは、検出範囲
の1サイクルの長さと同等としなければならず、コンパ
クトな構成とすることはできない。また、この場合も、
可動鉄心コアの鉄損更にはコイル巻心コアの鉄損など検
出装置に存在する鉄等の金属の磁気的特性の温度特性が
考慮されておらず、これらの鉄損が未補償であることに
よる検出精度低下を来していた。
On the other hand, there is also known a phase shift type inductive linear position detecting device which outputs an AC signal having an electrical phase angle which correlates with a linear position to be detected. For example, JP-A-49-107758 and JP-A-53.
-106065, JP-A-55-13891, JP-B-1-25286, and the like. In this type of conventionally known phase type inductive linear position detecting device, for example, two primary windings that are displaced from each other in the linear displacement direction of the movable iron core that interlocks with the detection target position are electrically connected to each other. Two-phase AC signals with different phases (for example, sin ωt and cos ωt) are excited respectively, and each is
The secondary side induction signal from the secondary winding is combined to generate one secondary output signal. The electrical phase shift in this secondary output signal with respect to the excitation AC signal indicates the linear position of the core core that is interlocked with the detection target position.
Further, in Japanese Utility Model Publication No. 1-25286, a plurality of iron cores are intermittently and repeatedly provided at a predetermined pitch to detect a linear position over a range wider than a range in which primary and secondary windings are provided. Is possible. However, even with these types, a plurality of coils must be dispersed and arranged in correspondence with the length of one cycle of the predetermined detection range, so the arrangement length, that is, the size of the coil is one cycle of the detection range. The length must be equal to the length, and a compact structure cannot be achieved. Also in this case,
The temperature characteristics of the magnetic characteristics of the metal such as iron existing in the detector, such as the iron loss of the movable iron core and the iron loss of the coil winding core, are not taken into consideration, and these iron losses are not compensated. The detection accuracy was declining.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、温度特性の補償性能に優れた、精
度のよい位置検出装置を提供しようとするものであり、
また、小型かつシンプルな構造を持つと共に、広い範囲
にわたって直線位置検出が可能な、温度特性の補償性能
に優れた、精度のよい直線位置検出装置を提供しようと
するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to provide a highly accurate position detection device having excellent temperature characteristic compensation performance.
Another object of the present invention is to provide a highly accurate linear position detecting device having a small size and a simple structure, capable of detecting a linear position over a wide range, and having excellent temperature characteristic compensation performance.

【0005】[0005]

【課題を解決するための手段】本発明に係る位置検出装
置は、交流信号で励磁される第1及び第2の検出コイル
と、検出対象たる位置に応じて前記各検出コイルに対し
て異なるインピーダンス変化をもたらすように配置され
た磁気応答部材とを含む検出部と、前記各検出コイルの
インピーダンスに応じた検出信号レベルの比を演算する
ことで、前記検出対象たる直線位置に応じた位置検出信
号を生成する演算手段とを備えることを特徴とする。
A position detecting device according to the present invention includes first and second detection coils excited by an AC signal, and different impedances for the respective detection coils depending on a position to be detected. A position detection signal corresponding to the linear position as the detection target by calculating a ratio of a detection unit including a magnetically responsive member arranged so as to cause a change and a detection signal level according to the impedance of each detection coil. And a calculation means for generating.

【0006】検出コイルのインピーダンスにおいて、可
動鉄心コアの鉄損更にはコイル巻心コアの鉄損など検出
装置に存在する鉄等の金属の磁気的特性の温度特性に基
づく誤差は、係数としての成分を持つ。そこで、検出対
象たる位置xに応じた第1の検出コイルの出力レベルを
A(x)、第2の検出コイルの出力レベルをB(x)と
し、可動鉄心コアの鉄損更にはコイル巻心コアの鉄損な
ど検出装置に存在する鉄等の金属の磁気的特性の温度特
性に基づく誤差係数をγとすると、実際の第1の検出コ
イルの出力レベルはγA(x)、第2の検出コイルの出
力レベルはγB(x)と表すことができる。各検出コイ
ルのインピーダンスに応じた検出信号レベルの比は、
「γA(x)/γB(x)」又は「γB(x)/γA
(x)」であり、比をとることによって誤差係数eが相
殺され、「A(x)/B(x)」又は「B(x)/A
(x)」という位置検出信号が生成される。A(x)≠
B(x)であるから、「A(x)/B(x)」又は「B
(x)/A(x)」は、検出対象たる直線位置xに応じ
た値を示す。検出対象範囲の全長に対して、第1の検出
コイルと第2の検出コイルの配置は、特定の配置に制限
されないので、第1の検出コイルと第2の検出コイルを
比較的近付けて配置しても差し支えない。よって、検出
対象範囲の長さに比べて第1及び第2の検出コイルから
なるコイルアセンブリをコンパクトに配置することがで
き、小型かつシンプルな構造でありながら長い範囲にわ
たる直線位置検出が可能である。
In the impedance of the detecting coil, the error due to the temperature characteristic of the magnetic characteristic of the metal such as iron existing in the detecting device, such as the iron loss of the movable iron core and the iron loss of the coil winding core, is a component as a coefficient. have. Therefore, the output level of the first detection coil is set to A (x) and the output level of the second detection coil is set to B (x) according to the position x to be detected, and the iron loss of the movable iron core and further the coil core are set. When the error coefficient based on the temperature characteristic of the magnetic characteristic of the metal such as iron existing in the detection device such as iron loss of the core is γ, the actual output level of the first detection coil is γA (x), and the second detection coil is The output level of the coil can be expressed as γB (x). The ratio of the detection signal level according to the impedance of each detection coil is
"ΓA (x) / γB (x)" or "γB (x) / γA
(X) ”, the error coefficient e is canceled by taking the ratio, and“ A (x) / B (x) ”or“ B (x) / A
A position detection signal "(x)" is generated. A (x) ≠
Since it is B (x), "A (x) / B (x)" or "B
“(X) / A (x)” indicates a value corresponding to the linear position x that is the detection target. Since the arrangement of the first detection coil and the second detection coil is not limited to a specific arrangement with respect to the entire length of the detection target range, the first detection coil and the second detection coil are arranged relatively close to each other. It doesn't matter. Therefore, the coil assembly including the first and second detection coils can be compactly arranged as compared with the length of the detection target range, and linear position detection over a long range is possible with a small and simple structure. .

【0007】[0007]

【発明の実施の形態】以下、添付図面を参照してこの発
明の実施の形態を詳細に説明しよう。図1は本発明の一
実施例に係る直線位置検出装置の軸方向断面図である。
検出ヘッド10は、第1の検出コイルAと第2の検出コ
イルBを含み、必須ではないが好ましい実施例として補
助コイルC及びDを更に含む。検出ヘッド10において
各コイルの円筒空間内を貫通してロッド11が設けられ
る。ロッド11に対して検出ヘッド10が相対的に直線
変位する。例えば、図示しない座席シートのスライド量
を検出する目的で使用されるような場合、ロッド11が
所定配置で固定され、検出ヘッド10が座席シートのス
ライドに伴って所定の範囲で直線変位する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is an axial sectional view of a linear position detecting device according to an embodiment of the present invention.
The detection head 10 includes a first detection coil A and a second detection coil B, and further includes auxiliary coils C and D as a preferred but not essential embodiment. In the detection head 10, a rod 11 is provided so as to penetrate through the cylindrical space of each coil. The detection head 10 is linearly displaced relative to the rod 11. For example, when it is used for the purpose of detecting the slide amount of a seat (not shown), the rod 11 is fixed in a predetermined arrangement, and the detection head 10 is linearly displaced within a predetermined range as the seat is slid.

【0008】ロッド11においては、検出対象たる直線
位置に応じて各検出コイルA,Bに対して異なるインピ
ーダンス変化をもたらすように配置された磁気応答部材
12が設けられている。磁気応答部材12は、鉄のよう
な磁性体又は銅のような反磁性体からなり、例えば径方
向断面積が長さ方向つまり軸方向に沿って漸次に変化す
る細長の円錐のような形状(軸方向断面が図示のような
三角形のもの)からなる。ロッド11の外周はプラスチ
ックのような磁気非応答性(非磁性及び非反磁性)のパ
イプ11aで構成され、該パイプ11a内に細長の円錐
形状の磁気応答部材12が挿入され適宜手段を介して固
定されている。
The rod 11 is provided with a magnetic responsive member 12 which is arranged so as to cause different impedance changes to the respective detection coils A and B according to the linear position to be detected. The magnetically responsive member 12 is made of a magnetic material such as iron or a diamagnetic material such as copper, and has a shape such as an elongated cone whose radial cross section gradually changes in the longitudinal direction, that is, the axial direction ( The axial cross section has a triangular shape as shown). The outer circumference of the rod 11 is composed of a magnetic non-responsive (non-magnetic and non-diamagnetic) pipe 11a such as plastic, and an elongated conical magnetic responsive member 12 is inserted into the pipe 11a and appropriate means are used. It is fixed.

【0009】磁気応答部材12が鉄のような磁性体から
なるものとすると、径方向断面積が最大の箇所が検出コ
イルA,Bに対応している場合、該検出コイルA,Bの
インピーダンスが最大となり、径方向断面積が最小の箇
所が検出コイルA,Bに対応している場合、該検出コイ
ルA,Bのインピーダンスが最小となる。図示のよう
に、検出コイルAとBの配置は、軸方向つまり直線変位
方向に関して幾分ずらされているので、各検出コイル
A,Bと磁気応答部材12との対応関係は検出対象直線
位置xに応じて幾分異なるインピーダンス変化をもたら
すようになっている。図2は、検出対象直線位置xに応
じた各検出コイルA,Bのインピーダンス変化の一例を
示したものである。本実施例では各検出コイルA,Bの
物理的及び電気的特性(巻数その他)は等しいものとす
るが、本発明の実施にあたってはそれに限定されるもの
ではなく、磁気応答部材12の構成に応じて適宜設計変
更してもよい。
Assuming that the magnetically responsive member 12 is made of a magnetic material such as iron, the impedances of the detection coils A and B are the same when the location having the largest radial cross-sectional area corresponds to the detection coils A and B. When the location where the radial cross-sectional area is maximum and the radial cross-sectional area is minimum corresponds to the detection coils A and B, the impedance of the detection coils A and B is minimum. As shown in the figure, since the arrangement of the detection coils A and B is slightly shifted in the axial direction, that is, the linear displacement direction, the correspondence relationship between the detection coils A and B and the magnetic response member 12 is the detection target linear position x. To produce a somewhat different impedance change. FIG. 2 shows an example of impedance changes of the detection coils A and B according to the detection target linear position x. In the present embodiment, the detection coils A and B are assumed to have the same physical and electrical characteristics (the number of turns and the like), but the present invention is not limited to this, and it depends on the configuration of the magnetically responsive member 12. The design may be changed accordingly.

【0010】補助コイルC,Dは、検出コイルA,Bの
温度ドリフト特性(純抵抗分の温度ドリフト特性)を補
償するものであり、検出対象直線位置xつまり磁気応答
部材12の変位には応答しないように、磁性体又は反磁
性体からなるシールド材13によって磁気的にシールド
されている。これによって、図2に示すように、補助コ
イルC,Dのインピーダンスは、検出対象直線位置xつ
まり磁気応答部材12の変位に応じて変化せず、一定に
保たれる。本実施例では各補助コイルC,Dの物理的及
び電気的特性(巻数その他)は各検出コイルA,Bのそ
れと同等とするが、本発明の実施にあたってはそれに限
らない。
The auxiliary coils C and D compensate the temperature drift characteristics (temperature drift characteristics of pure resistance) of the detection coils A and B, and respond to the detection target linear position x, that is, the displacement of the magnetic response member 12. In order not to do so, it is magnetically shielded by the shield material 13 made of a magnetic material or a diamagnetic material. As a result, as shown in FIG. 2, the impedances of the auxiliary coils C and D do not change according to the detection target linear position x, that is, the displacement of the magnetic response member 12, and are kept constant. In the present embodiment, the physical and electrical characteristics (number of turns and the like) of the auxiliary coils C and D are the same as those of the detection coils A and B, but the present invention is not limited to this.

【0011】図3(a)は、検出コイルA,Bと補助コ
イルC,Dの結線例を示す図である。検出コイルAに対
して補助コイルCが逆相直列接続(差動接続)され、検
出コイルBに対して補助コイルDが逆相直列接続(差動
接続)され、適宜の交流源14が印加される。温度ドリ
フトによるコイルのインピーダンス変化は、検出コイル
A,Bと補助コイルC,Dとでは同じように顕れるの
で、この差動接続によって、温度ドリフトによって検出
コイルA,Bに生じる不所望のインピーダンス変化(純
抵抗分のインピーダンス変化)が打ち消される若しくは
減少される。
FIG. 3A is a diagram showing an example of connection between the detection coils A and B and the auxiliary coils C and D. The auxiliary coil C is connected to the detection coil A in anti-phase series connection (differential connection), the auxiliary coil D is connected to the detection coil B in anti-phase series connection (differential connection), and an appropriate AC source 14 is applied. It Since the impedance change of the coil due to the temperature drift appears in the detection coils A and B and the auxiliary coils C and D in the same manner, an undesired impedance change (detection coils A and B caused by the temperature drift due to the temperature drift ( The change in impedance of the pure resistance component is canceled or reduced.

【0012】検出対象直線位置xに応じて検出コイルA
から得られる出力電圧をVa(x)で表わし、検出コイ
ルBから得られる出力電圧をVb(x)で表わす。図3
(b)は、検出コイルA,Bの出力電圧Va(x),V
b(x)を処理する回路の構成例を示す。検出コイル
A,Bの出力電圧Va(x),Vb(x)は整流回路1
5で直流電圧に変換され、更にアナログ/デジタル変換
器16でデジタル値に変換される。検出コイルA,Bの
出力電圧Va(x),Vb(x)に対応するデジタル値
a(x),b(x)の比が演算手段17で演算される。
The detection coil A according to the linear position x to be detected
Is represented by Va (x), and the output voltage obtained from the detection coil B is represented by Vb (x). Figure 3
(B) is the output voltage Va (x), V of the detection coils A, B
The structural example of the circuit which processes b (x) is shown. The output voltages Va (x) and Vb (x) of the detection coils A and B are the rectifier circuit 1
It is converted into a DC voltage in 5, and further converted into a digital value in the analog / digital converter 16. The calculation means 17 calculates the ratio of the digital values a (x) and b (x) corresponding to the output voltages Va (x) and Vb (x) of the detection coils A and B.

【0013】検出コイルA,Bの磁気回路には、主に、
磁気応答部材12と検出ヘッド10の鉄心コア10aな
どが存在し、これらの磁気応答性金属の磁気的特性が温
度ドリフト特性(鉄損若しくは銅損)を有し、温度変化
に応じて不所望のインピーダンス変化をもたらす。これ
らの鉄損若しくは銅損によるインピーダンス変化は、検
出コイルA,Bの出力電圧Va(x),Vb(x)にお
いて、係数成分γとして現われる。すなわち、検出コイ
ルA,Bの出力電圧Va(x),Vb(x)に対応する
デジタル値a(x),b(x)は、鉄損若しくは銅損に
よるインピーダンス変化の係数成分γを考慮すると下記
のように表わせる。なお、A(x)とB(x)は、鉄損
若しくは銅損によるインピーダンス変化を除去した、検
出対象位置xに対応するインピーダンスに応じた値であ
る。 a(x)=γA(x) b(x)=γB(x)
The magnetic circuits of the detection coils A and B are mainly composed of
The magnetic responsive member 12 and the iron core 10a of the detection head 10 are present, and the magnetic characteristics of these magnetically responsive metals have temperature drift characteristics (iron loss or copper loss), which are undesired according to temperature changes. It causes impedance change. The change in impedance due to these iron loss or copper loss appears as a coefficient component γ in the output voltages Va (x) and Vb (x) of the detection coils A and B. That is, regarding the digital values a (x) and b (x) corresponding to the output voltages Va (x) and Vb (x) of the detection coils A and B, considering the coefficient component γ of the impedance change due to iron loss or copper loss. It can be expressed as follows. Note that A (x) and B (x) are values corresponding to the impedance corresponding to the detection target position x from which the impedance change due to the iron loss or the copper loss is removed. a (x) = γA (x) b (x) = γB (x)

【0014】従って、演算手段17で両検出値a
(x),b(x)の比を演算することにより、 a(x)/b(x)=γA(x)/γB(x)=A
(x)/B(x) となり、鉄損若しくは銅損によるインピーダンス変化成
分γを除去することができる。比の演算における分子・
分母は次のように上記とは反対であってもよい。 b(x)/a(x)=γB(x)/γA(x)=B
(x)/A(x) 比の演算結果「A(x)/B(x)」(又はB(x)/
A(x))は、検出対象位置xに相関するため、これを
そのまま位置検出データとして使用してよい。すなわ
ち、検出対象直線位置xに応じて各検出コイルA,Bに
対して異なるインピーダンス変化をもたらすように磁気
応答部材12が配置されるが故に、A(x)≠B(x)
であり、比の演算結果は、位置xを示すデータとして使
用できる。このようにして、検出コイルA,Bの磁気回
路に存在する磁気応答性金属の温度ドリフト特性(鉄損
若しくは銅損)を補償することができ、検出精度を向上
させることができる。
Therefore, the calculating means 17 detects both detected values a.
By calculating the ratio of (x) and b (x), a (x) / b (x) = γA (x) / γB (x) = A
(X) / B (x), and the impedance change component γ due to iron loss or copper loss can be removed. Numerator in ratio calculation
The denominator may be the opposite of the above, as follows. b (x) / a (x) = γB (x) / γA (x) = B
(X) / A (x) Ratio calculation result “A (x) / B (x)” (or B (x) /
Since A (x) is correlated with the detection target position x, it may be used as it is as position detection data. That is, A (x) ≠ B (x) because the magnetic response member 12 is arranged so as to cause different impedance changes for the respective detection coils A and B according to the detection target linear position x.
The calculation result of the ratio can be used as data indicating the position x. In this way, the temperature drift characteristic (iron loss or copper loss) of the magnetically responsive metal present in the magnetic circuit of the detection coils A and B can be compensated, and the detection accuracy can be improved.

【0015】検出ヘッド10の構成及び磁気応答部材1
2の構成は、上記実施例に限定されることなく、種々に
変形してよい。図4はその一例を示し、(a)に概略側
面図にて示すように、検出ヘッド10における各コイル
A,B,C,Dの一端が、所定間隔のギャップをあけて
ロッド11の側面に対向している。図4の(b)に概略
平面図にて示すように、ロッド11の側面には、検出ヘ
ッド10の各コイルの一端に対向する面積が長さ方向つ
まり軸方向に沿って漸次に変化する細長の三角形のよう
な形状からなる磁気応答部材12が配置されている。ロ
ッド11は、少なくとも磁気応答部材12を配置した面
がフラットであることが好ましいが、それに限らず円柱
形状等であってもよい。図4の場合、各検出コイルA,
Bの一端に対向する、ロッド11の表面の磁気応答部材
12の面積が検出対象位置xに応じて変化し、検出対象
位置xに応じたインピーダンス変化が各検出コイルA,
Bに生じる。
Structure of the detection head 10 and the magnetic response member 1
The configuration of No. 2 is not limited to the above embodiment, but may be variously modified. FIG. 4 shows an example thereof, and as shown in the schematic side view of FIG. 4A, one end of each coil A, B, C, D in the detection head 10 is provided on the side surface of the rod 11 with a gap of a predetermined interval. Facing each other. As shown in the schematic plan view of FIG. 4B, the side surface of the rod 11 has an elongated shape in which the area facing one end of each coil of the detection head 10 gradually changes in the longitudinal direction, that is, the axial direction. A magnetically responsive member 12 having a triangular shape is arranged. It is preferable that at least the surface of the rod 11 on which the magnetically responsive member 12 is arranged is flat, but the rod 11 is not limited to this and may have a cylindrical shape or the like. In the case of FIG. 4, each detection coil A,
The area of the magnetically responsive member 12 on the surface of the rod 11 facing one end of B changes according to the detection target position x, and the impedance change according to the detection target position x causes the detection coils A,
B occurs.

【0016】図5は、別の例を示し、検出ヘッド10に
おける各コイルA,B,C,Dの一端が、ギャップをあ
けてロッド11の側面に対向しており、このギャップの
距離が検出対象位置xに応じて変化する。例えば、ロッ
ド11の表面において、検出ヘッド10の各検出コイル
A,Bの一端に対向して配置される磁気応答部材12の
高さが、検出対象位置xに応じて変化するように構成さ
れている。これにより、各検出コイルA,Bの一端とそ
れに対向するロッド11の表面の磁気応答部材12との
間のギャップ距離が検出対象位置xに応じて変化し、検
出対象位置xに応じたインピーダンス変化が各検出コイ
ルA,Bに生じる。
FIG. 5 shows another example. One end of each coil A, B, C, D in the detection head 10 faces the side surface of the rod 11 with a gap, and the distance of this gap is detected. It changes according to the target position x. For example, on the surface of the rod 11, the height of the magnetically responsive member 12 arranged facing one end of each of the detection coils A and B of the detection head 10 is configured to change according to the detection target position x. There is. As a result, the gap distance between one end of each of the detection coils A and B and the magnetically responsive member 12 on the surface of the rod 11 facing it changes according to the detection target position x, and the impedance change according to the detection target position x. Occurs in each of the detection coils A and B.

【0017】検出コイルA,Bの磁気回路に存在する磁
気応答性金属の温度ドリフト特性(鉄損若しくは銅損)
を補償するという観点のみに立てば、上記の各実施例に
おいて、補助コイルC,Dを省略してもよい。また、上
記実施例では、検出対象たる直線位置xに応じて前記各
検出コイルA,Bに対して異なるインピーダンス変化を
もたらすように配置された磁気応答部材12は、1個の
みであるが、これに限らず、各検出コイルA,B毎に個
別に磁気応答部材12を設けてもよい。例えば、2本の
ロッド11の夫々に磁気応答部材12を設け、各ロッド
に対応して夫々検出コイルA,B及び必要に応じて補助
コイルC,Dを設ければよい。また、上記実施例では、
デジタル値a(x),b(x)に関して比の演算を行う
ようにしているが、これに限らず、アナログ値に関する
比の演算をアナログ演算手段で行うようにしてもよい。
また、演算手段17は、単体の演算回路に限らず、CP
U等マイクロコンピュータの演算機能を利用したもので
あってもよい。更に、本発明は、直線位置検出装置に限
らず、回転位置検出装置にも適用可能である。
Temperature drift characteristics (iron loss or copper loss) of the magnetically responsive metal present in the magnetic circuit of the detection coils A and B.
The auxiliary coils C and D may be omitted in each of the above embodiments from the viewpoint of compensating for the above. Further, in the above embodiment, there is only one magnetic response member 12 arranged so as to cause different impedance changes to the respective detection coils A and B according to the linear position x to be detected. However, the magnetic response member 12 may be separately provided for each of the detection coils A and B. For example, the magnetic response member 12 may be provided on each of the two rods 11, and the detection coils A and B and the auxiliary coils C and D, respectively, may be provided corresponding to each rod. Further, in the above embodiment,
Although the ratio is calculated with respect to the digital values a (x) and b (x), the invention is not limited to this, and the ratio with respect to the analog value may be calculated by the analog calculating means.
Further, the calculation means 17 is not limited to a single calculation circuit, but a CP
It is also possible to use a computing function of a microcomputer such as U. Further, the present invention is applicable not only to the linear position detecting device but also to the rotational position detecting device.

【0018】[0018]

【発明の効果】以上の通り、本発明によれば、検出コイ
ルの磁気回路に存在する磁気応答性金属の温度ドリフト
特性(鉄損若しくは銅損)を補償することができ、検出
精度を向上させた位置検出装置を提供することができ
る。また、検出コイルの配置・構成が小型かつシンプル
でありながら、広い(長い)範囲にわたって直線位置検
出が可能であり、温度特性の補償性能に優れた精度のよ
い直線位置検出装置を提供することができる。
As described above, according to the present invention, the temperature drift characteristic (iron loss or copper loss) of the magnetically responsive metal present in the magnetic circuit of the detection coil can be compensated, and the detection accuracy can be improved. It is possible to provide a position detecting device. Further, it is possible to provide a highly accurate linear position detection device which is capable of linear position detection over a wide (long) range even though the arrangement and configuration of the detection coil is small and simple, and which has excellent temperature characteristic compensation performance. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る直線位置検出装置の
軸方向断面図。
FIG. 1 is an axial sectional view of a linear position detecting device according to an embodiment of the present invention.

【図2】 同実施例における各コイルのインピーダンス
変化の一例を示すグラフ。
FIG. 2 is a graph showing an example of impedance change of each coil in the example.

【図3】 同実施例における各コイルの結線例を示す
図、及びコイル出力を処理する回路例を示すブロック
図。
FIG. 3 is a diagram showing an example of connection of each coil in the embodiment and a block diagram showing an example of a circuit for processing a coil output.

【図4】 本発明に係る直線位置検出装置の別の実施例
を示す概略側面図及び平面図。
FIG. 4 is a schematic side view and a plan view showing another embodiment of the linear position detecting device according to the present invention.

【図5】 本発明に係る直線位置検出装置の更に別の実
施例を示す概略側面図。
FIG. 5 is a schematic side view showing still another embodiment of the linear position detecting device according to the present invention.

【符号の説明】[Explanation of symbols]

10 検出ヘッド 11 ロッド 12 磁気応答部材 A,B 検出コイル C,D 補助コイル 17 演算手段 10 Detection head 11 rod 12 Magnetic response member A, B detection coil C, D auxiliary coil 17 Computing means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 交流信号で励磁される第1及び第2の検
出コイルと、検出対象たる位置に応じて前記各検出コイ
ルに対して異なるインピーダンス変化をもたらすように
配置された磁気応答部材とを含む検出部と、 前記各検出コイルのインピーダンスに応じた検出信号レ
ベルの比を演算することで、前記検出対象たる位置に応
じた位置検出信号を生成する演算手段とを備える位置検
出装置。
1. A first and second detection coil excited by an AC signal, and a magnetic responsive member arranged so as to cause different impedance changes to each detection coil depending on a position to be detected. A position detection device comprising: a detection unit that includes the detection unit; and a calculation unit that calculates a ratio of detection signal levels according to the impedance of each of the detection coils to generate a position detection signal according to the position to be detected.
【請求項2】 前記磁気応答部材は、第1及び第2の検
出コイルに対向する面積又はギャップが検出対象たる位
置に応じて変化するものであり、所定の検出範囲の1サ
イクルの長さに対応して該面積又はギャップが暫時変化
する形状からなり、前記第1及び第2の検出コイルの配
置のずれは、前記1サイクルの長さよりも短いことを特
徴とする請求項1に記載の位置検出装置。
2. The magnetically responsive member is such that the area or gap facing the first and second detection coils changes according to the position to be detected, and has a length of one cycle within a predetermined detection range. The position according to claim 1, wherein the area or the gap has a shape corresponding to a temporary change, and the displacement of the arrangement of the first and second detection coils is shorter than the length of the one cycle. Detection device.
【請求項3】 前記検出部は、前記第1の検出コイルに
対して差動接続された第1の補助コイルと、前記第2の
検出コイルに対して差動接続された第2の補助コイルと
を更に含み、前第1の検出コイルのインピーダンスと前
記第1の補助コイルのインピーダンスの差動値に対応す
る第1の検出信号を出力し、前記第2の検出コイルのイ
ンピーダンスと前記第2の補助コイルのインピーダンス
の差動値に対応する第2の検出信号を出力し、 前記演算手段は、前記第1の検出信号と第2の検出信号
のレベルの比を演算することを特徴とする請求項1又は
2に記載の位置検出装置。
3. The detection unit includes a first auxiliary coil differentially connected to the first detection coil and a second auxiliary coil differentially connected to the second detection coil. Further comprising: outputting a first detection signal corresponding to a differential value of the impedance of the front first detection coil and the impedance of the first auxiliary coil, and outputting the impedance of the second detection coil and the second detection coil. A second detection signal corresponding to the differential value of the impedance of the auxiliary coil is output, and the calculation means calculates the ratio of the levels of the first detection signal and the second detection signal. The position detection device according to claim 1.
JP2001263941A 2001-08-31 2001-08-31 Position detection device Expired - Fee Related JP4810021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263941A JP4810021B2 (en) 2001-08-31 2001-08-31 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001263941A JP4810021B2 (en) 2001-08-31 2001-08-31 Position detection device

Publications (2)

Publication Number Publication Date
JP2003075106A true JP2003075106A (en) 2003-03-12
JP4810021B2 JP4810021B2 (en) 2011-11-09

Family

ID=19090620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263941A Expired - Fee Related JP4810021B2 (en) 2001-08-31 2001-08-31 Position detection device

Country Status (1)

Country Link
JP (1) JP4810021B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227005A (en) * 2005-02-17 2006-08-31 Agilent Technol Inc Position encoding using impedance comparison
JP2009036783A (en) * 2008-11-07 2009-02-19 Amitec:Kk Cylinder position detector
JP2011017578A (en) * 2009-07-08 2011-01-27 Ono Sokki Co Ltd Torque sensor
JP2011503558A (en) * 2007-11-09 2011-01-27 フォクト エレクトロニック コンポーネント ゲーエムベーハー Position encoder with plastic elements
JP2014190711A (en) * 2013-03-26 2014-10-06 Smc Corp Displacement sensor
JP2019015657A (en) * 2017-07-10 2019-01-31 三木 篤子 Position detection device
WO2019142780A1 (en) * 2018-01-16 2019-07-25 三木 篤子 Position detection device

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49107758A (en) * 1973-02-17 1974-10-14
JPS5330349U (en) * 1976-08-21 1978-03-15
JPS53106065A (en) * 1977-01-12 1978-09-14 Pneumo Corp Displacementtphase transformer
JPS5513891A (en) * 1978-05-22 1980-01-31 Pneumo Corp Displacementt phase converter
JPS6425286A (en) * 1987-07-21 1989-01-27 Casio Computer Co Ltd Image forming device
EP0338966A2 (en) * 1988-01-22 1989-10-25 Data Instruments Inc. Position compensation winding for displacement transducer
JPH026236U (en) * 1988-06-24 1990-01-16
JPH0269710U (en) * 1988-11-12 1990-05-28
JPH02156113A (en) * 1988-12-08 1990-06-15 Nippon Data Instr Kk Linear displacement detector
JPH03170011A (en) * 1989-11-29 1991-07-23 Okuma Mach Works Ltd Error detecting method by position detector and position detector with automatic error correcting function
JPH043311U (en) * 1990-04-20 1992-01-13
JPH0559305U (en) * 1992-01-21 1993-08-06 ティーディーケイ株式会社 Magnetic detection device
JPH05280914A (en) * 1992-03-31 1993-10-29 Isuzu Motors Ltd Detection sensor of amount of displacement
JPH0646305U (en) * 1992-11-26 1994-06-24 住友電気工業株式会社 Stroke detector
JPH07159107A (en) * 1993-12-06 1995-06-23 Sensor Technol Kk Magnetic type stroke detecting sensor
JPH07239242A (en) * 1994-02-25 1995-09-12 Nippon Soken Inc Rotational angle detecting device
JPH07243804A (en) * 1994-03-01 1995-09-19 Japan Servo Co Ltd Noncontact potentiometer
JP2000337808A (en) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Sensor
JP2001235307A (en) * 1999-03-15 2001-08-31 Tadatoshi Goto Rotary type position detecting apparatus
JP2002528710A (en) * 1998-10-26 2002-09-03 マーポス、ソチエタ、ペル、アツィオーニ Linear inductive transducer

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49107758A (en) * 1973-02-17 1974-10-14
JPS5330349U (en) * 1976-08-21 1978-03-15
JPS53106065A (en) * 1977-01-12 1978-09-14 Pneumo Corp Displacementtphase transformer
JPS5513891A (en) * 1978-05-22 1980-01-31 Pneumo Corp Displacementt phase converter
JPS6425286A (en) * 1987-07-21 1989-01-27 Casio Computer Co Ltd Image forming device
EP0338966A2 (en) * 1988-01-22 1989-10-25 Data Instruments Inc. Position compensation winding for displacement transducer
JPH026236U (en) * 1988-06-24 1990-01-16
JPH0269710U (en) * 1988-11-12 1990-05-28
JPH02156113A (en) * 1988-12-08 1990-06-15 Nippon Data Instr Kk Linear displacement detector
JPH03170011A (en) * 1989-11-29 1991-07-23 Okuma Mach Works Ltd Error detecting method by position detector and position detector with automatic error correcting function
JPH043311U (en) * 1990-04-20 1992-01-13
JPH0559305U (en) * 1992-01-21 1993-08-06 ティーディーケイ株式会社 Magnetic detection device
JPH05280914A (en) * 1992-03-31 1993-10-29 Isuzu Motors Ltd Detection sensor of amount of displacement
JPH0646305U (en) * 1992-11-26 1994-06-24 住友電気工業株式会社 Stroke detector
JPH07159107A (en) * 1993-12-06 1995-06-23 Sensor Technol Kk Magnetic type stroke detecting sensor
JPH07239242A (en) * 1994-02-25 1995-09-12 Nippon Soken Inc Rotational angle detecting device
JPH07243804A (en) * 1994-03-01 1995-09-19 Japan Servo Co Ltd Noncontact potentiometer
JP2002528710A (en) * 1998-10-26 2002-09-03 マーポス、ソチエタ、ペル、アツィオーニ Linear inductive transducer
JP2001235307A (en) * 1999-03-15 2001-08-31 Tadatoshi Goto Rotary type position detecting apparatus
JP2000337808A (en) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227005A (en) * 2005-02-17 2006-08-31 Agilent Technol Inc Position encoding using impedance comparison
JP2011503558A (en) * 2007-11-09 2011-01-27 フォクト エレクトロニック コンポーネント ゲーエムベーハー Position encoder with plastic elements
US8629676B2 (en) 2007-11-09 2014-01-14 SUMIDA Components & Modules GmbH Position encoder comprising a plastic element
JP2009036783A (en) * 2008-11-07 2009-02-19 Amitec:Kk Cylinder position detector
JP2011017578A (en) * 2009-07-08 2011-01-27 Ono Sokki Co Ltd Torque sensor
JP2014190711A (en) * 2013-03-26 2014-10-06 Smc Corp Displacement sensor
JP2019015657A (en) * 2017-07-10 2019-01-31 三木 篤子 Position detection device
WO2019142780A1 (en) * 2018-01-16 2019-07-25 三木 篤子 Position detection device
KR20200104900A (en) 2018-01-16 2020-09-04 미키 아츠코 Position detection device

Also Published As

Publication number Publication date
JP4810021B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP3445362B2 (en) AC current sensor
US5629619A (en) Noncontact distance-measuring system having at least one coil and method of noncontact distance measuring operating either on the basis of eddy currents or by inductance
KR100654790B1 (en) Stroke sensor
JP2002039793A (en) Induction-type length measuring system
JP5016165B2 (en) Relative rotational position detector
JP4390347B2 (en) Position detection device
JP5804318B2 (en) Current sensor
JP2003532884A (en) Inductive measuring transducer
JP4810021B2 (en) Position detection device
JP2001174206A (en) Cylinder position detector
EP1875172A2 (en) Eddy-current sensor and magnetic bearing device
JP2003004407A (en) Displacement measuring device
CN111948438B (en) Low-cost current sensor
US20140002069A1 (en) Eddy current probe
US9170086B1 (en) Inductive position sensor
JP4688268B2 (en) Pressure gauge
US9151639B2 (en) Two-dimensional inductive position sensing system
JPH037765Y2 (en)
JP4115036B2 (en) Liquid level detector
US6094995A (en) Torque sensor using power measurement
JP4573417B2 (en) Load sensor
JP3749955B2 (en) Inductive two-dimensional position detector
JP4682913B2 (en) Position sensor
JPS61292014A (en) position detector
JPH0743105A (en) Position detector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101230

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4810021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees