JP2003071480A - Water purification method and apparatus - Google Patents
Water purification method and apparatusInfo
- Publication number
- JP2003071480A JP2003071480A JP2001266297A JP2001266297A JP2003071480A JP 2003071480 A JP2003071480 A JP 2003071480A JP 2001266297 A JP2001266297 A JP 2001266297A JP 2001266297 A JP2001266297 A JP 2001266297A JP 2003071480 A JP2003071480 A JP 2003071480A
- Authority
- JP
- Japan
- Prior art keywords
- water
- carrier
- volume
- mixture
- porous ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000000746 purification Methods 0.000 title claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 95
- 239000000919 ceramic Substances 0.000 claims abstract description 65
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000001301 oxygen Substances 0.000 claims abstract description 41
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 41
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 239000007789 gas Substances 0.000 claims abstract description 32
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 30
- 244000005700 microbiome Species 0.000 claims abstract description 27
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 14
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 238000010304 firing Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 7
- 239000004927 clay Substances 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 239000004575 stone Substances 0.000 claims description 7
- 239000008187 granular material Substances 0.000 claims description 3
- 239000010802 sludge Substances 0.000 abstract description 17
- 238000002309 gasification Methods 0.000 abstract 1
- 230000007774 longterm Effects 0.000 abstract 1
- 238000004065 wastewater treatment Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 17
- 239000002351 wastewater Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 7
- 230000000813 microbial effect Effects 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 238000005273 aeration Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000010865 sewage Substances 0.000 description 5
- 241000282898 Sus scrofa Species 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 238000011001 backwashing Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000002054 inoculum Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 2
- 239000003830 anthracite Substances 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000010840 domestic wastewater Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000009422 growth inhibiting effect Effects 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 101100009643 Papaver somniferum CODM gene Proteins 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000005446 dissolved organic matter Substances 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
- Accessories For Mixers (AREA)
Abstract
(57)【要約】
【課題】 この発明は、微生物を用いて水を浄化する担
体が動く流動床法において、連続高負荷運転中に余剰汚
泥の発生量を格段に少なくすると共に、長期かつ安定し
た排水処理性能を維持することを目的としたものであ
る。
【解決手段】 この発明は、SiO2とAl2O3を主
成分として持つ多孔性セラミックスを粒状化したもの
と、粒状の炭素分を混合したものを微生物の担体として
用い、酸素を含む気体供給下又は気体を供給せずに、前
記担体を流動させる状態で浄化すべき水と担体とを接触
させることを特徴とした水の浄化方法と、SiO2とA
l2O3を主成分として持つ多孔性セラミックスを粒状
化したものと、粒状の炭素分を混合したものが担体とし
て充填された流動床処理塔中に、浄化すべき水を上向流
で流す為の水の供給手段と、酸素を含む気体の供給手段
とを設置したことを特徴とする水の浄化装置によってそ
の目的を達成した。
PROBLEM TO BE SOLVED: To provide a fluidized bed method in which a carrier for purifying water using microorganisms in which a carrier is moved has a significantly reduced amount of excess sludge during continuous high-load operation, and has a long-term and stable The purpose is to maintain the improved wastewater treatment performance. SOLUTION: This invention uses a granulated porous ceramic having SiO 2 and Al 2 O 3 as main components and a mixture of a granular carbon component as a carrier for microorganisms, and supplies oxygen-containing gas. without supplying lower or gas, and purification method of the water comprising contacting the water and the carrier to be purified in a state for flowing the carrier, SiO 2 and a
The water to be purified is flowed upward in a fluidized bed treatment tower filled with a carrier obtained by granulating a porous ceramic having l 2 O 3 as a main component and a mixture of granular carbon components as a carrier. The object is achieved by a water purifying apparatus characterized by providing a water supply means for supplying water and a gas supply means containing oxygen.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、産業廃水、生活
廃水、その他有機物を含んだ廃水ならびにそれらの廃水
の処理液中のBOD、COD等を高い効率で、かつ高度
に処理することを目的とした水の浄化方法及び装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims to treat industrial wastewater, domestic wastewater, wastewater containing other organic substances, and BOD, COD, etc. in the treatment liquid of those wastewater with high efficiency and high level. The present invention relates to a method and a device for purifying fresh water.
【0002】[0002]
【従来の技術】従来各種産業廃水、家庭などから発生す
る生活廃水を浄化する方法については、種々の方法が検
討、実施されてきた。即ち、濾過・沈澱・吸着などの物
理的処理法、オゾン、過酸化水素、紫外線光等を用いた
酸化分解などの物理化学処理法、活性汚泥法・生物膜処
理法などの生物処理法などである。これらの方法の中で
も特に生物処理法が、他の方法に比べて低コストである
こと、小規模から大規模まで適用できること等の理由に
より最も普及している。2. Description of the Related Art Conventionally, various methods have been studied and implemented as a method for purifying various industrial wastewater and domestic wastewater generated from households. That is, physical treatment methods such as filtration, precipitation and adsorption, physicochemical treatment methods such as oxidative decomposition using ozone, hydrogen peroxide, and ultraviolet light, biological treatment methods such as activated sludge method and biofilm treatment method, etc. is there. Among these methods, the biological treatment method is most prevalent because of its low cost compared to other methods and its applicability from small scale to large scale.
【0003】生物処理法の中で生物膜処理法は、活性汚
泥法に比べて(1)高負荷運転が可能であること、
(2)処理済みの水質が優れていること、(3)低BO
D廃水(例えば50ppm以下)の処理が可能であるこ
と、などの利点を持つため、近年適用例が増加してい
る。Among the biological treatment methods, the biofilm treatment method is (1) capable of high-load operation as compared with the activated sludge method,
(2) Excellent quality of treated water, (3) Low BO
In recent years, the number of applications is increasing because it has the advantage of being able to treat D wastewater (for example, 50 ppm or less).
【0004】生物膜処理法には、微生物が付着する担体
が動かない固定床法と、担体が動く流動床法、三相流動
層法などがある。高負荷運転では、固定床法は閉塞し易
いのに比べて、担体が動く流動床法等が閉塞しにくく有
利であることが知られている。流動床法では、粒状の生
物膜担体を処理塔に充填し水の上向流で担体を流動させ
る。また三相流動層法では、粒状の生物膜担体を処理槽
に入れて底面から散気することにより担体を流動させ
る。The biofilm treatment method includes a fixed bed method in which the carrier to which microorganisms adhere does not move, a fluidized bed method in which the carrier moves, and a three-phase fluidized bed method. It is known that in a high-load operation, the fixed bed method is likely to be clogged, whereas the fluidized bed method or the like in which a carrier moves is less likely to be clogged, which is advantageous. In the fluidized bed method, a granular biofilm carrier is packed in a treatment tower and the carrier is fluidized by an upward flow of water. In the three-phase fluidized bed method, a granular biofilm carrier is put in a treatment tank and air is diffused from the bottom surface to fluidize the carrier.
【0005】生物膜処理に用いられる担体としては、板
状、粒状、ひも状等の種々の形状のものが知られ、材質
としてはアンスラサイト、砂、セラミックス、プラスチ
ック、活性炭等種々のものが知られている。また複数の
種類の担体を併用する方法も知られている。例えば多孔
性セラミックスと活性炭を併用する方法は、特開昭62
−11596に開示されているが、この発明は多孔性セ
ラミックスと活性炭を固定床として使用するものであ
る。Carriers used for biofilm treatment are known to have various shapes such as plate-like, granular and string-like, and various known materials such as anthracite, sand, ceramics, plastic and activated carbon. Has been. Also known is a method of using a plurality of types of carriers in combination. For example, a method of using porous ceramics and activated carbon in combination is disclosed in JP-A-62-62.
No. 11596, the present invention uses porous ceramics and activated carbon as a fixed bed.
【0006】[0006]
【発明が解決しようとする課題】生物膜処理では、廃水
中の汚濁成分が微生物によって吸着・分解されて、汚濁
成分が微生物汚泥に転換される結果、通常微生物濃度が
増大する。微生物濃度を適正値に維持するため余分な微
生物は余剰汚泥として排出される。生物膜処理の場合、
担体に付着した微生物が汚濁成分を処理する結果、生物
膜が肥大する。肥大した生物膜は逆洗等により剥離され
て余剰汚泥として排出される。発生した余剰汚泥の処分
費は生物膜処理におけるランニングコストアップ要因と
なっていた。In biofilm treatment, pollutants in wastewater are adsorbed and decomposed by microorganisms, and the pollutants are converted into microbial sludge. As a result, the concentration of microorganisms usually increases. Excessive microorganisms are discharged as excess sludge in order to maintain the concentration of microorganisms at an appropriate value. In the case of biofilm treatment,
As a result of the microorganisms attached to the carrier treating the pollutant components, the biofilm becomes enlarged. The enlarged biofilm is peeled off by backwashing and discharged as excess sludge. The disposal cost of the surplus sludge that was generated was a factor that increased the running cost in biofilm treatment.
【0007】また、生物膜が成長し肥大していくこと
は、従来の生物膜処理では必然的なことであるが、その
ことによる種々の問題点が指摘されている。例えば流動
床法においては、固定床法よりは生物膜が剥離しやすい
ものの、生物膜の肥大が起こり、生物膜の肥大で浮きや
すくなった担体の流出、複数の担体が付着して大きな固
まりを作って流動性が低下することによる処理性能の低
下、更に生物膜による閉塞などの問題があった。また逆
洗や発生した余剰汚泥の分離という操作が必要であるこ
とも、維持管理を煩雑にし、装置を複雑にする要因とな
っていた。Further, the growth and enlargement of the biofilm is inevitable in the conventional biofilm treatment, but various problems have been pointed out. For example, in the fluidized bed method, although the biofilm is more easily peeled off than in the fixed bed method, the biofilm swells, and the outflow of the carrier that is easily floated due to the swelling of the biofilm and a plurality of carriers attached to form a large mass. There was a problem that the processing performance was lowered due to the deterioration of the fluidity after the preparation, and the blocking by the biofilm. In addition, operations such as backwashing and separation of generated excess sludge are required, which is a factor that complicates maintenance and complicates the device.
【0008】更に流動床法は効率が高い処理方法ではあ
るが、生物処理に必要な酸素の供給源は通常水中の溶存
酸素であり、高負荷処理になるほど処理速度が制限され
ると考えられる。Further, although the fluidized bed method is a highly efficient treatment method, the source of oxygen required for biological treatment is usually dissolved oxygen in water, and it is considered that the treatment rate is restricted as the load becomes higher.
【0009】[0009]
【課題を解決するための手段】この発明は、前記問題点
に鑑みこれを改善するものであって、この発明の生物膜
処理法において微生物の発生が抑制された状態で、生物
膜の肥大、大量の余剰汚泥の発生などの問題を起こさず
に廃水を高い効率で浄化する方法を見いだして完成した
のである。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems and is intended to improve it. In the biofilm treatment method of the present invention, the generation of microorganisms is suppressed, and the biofilm is enlarged. It was completed by finding a method for highly efficient purification of wastewater without causing problems such as the generation of a large amount of excess sludge.
【0010】即ち方法の発明は、SiO2とAl2O3
を主成分として持つ多孔性セラミックスを粒状化したも
のと、粒状の炭素分を混合したものを微生物の担体とし
て用い、担体を流動させる状態で浄化すべき水と担体の
微生物とを接触させることを特徴とした水の浄化方法で
あり、多孔性セラミックスとして10体積%〜80体積
%、炭素分として20体積%〜90体積%を用いること
を特徴としたものである。また担体を酸素を含む気体の
微細気泡の供給下で流動させることを特徴としたもので
あり、酸素を含む気体は、空気と空気より高い濃度の酸
素を含む気体とし、その微細気泡の供給下で、担体を流
動させることを特徴としたものであり、多孔性セラミッ
クスの担体は、粘土、珪石又は水酸化アルミニウムから
選んだ二種以上のものに気孔形成材料を添加して焼成す
ることにより成形することを特徴としたものである。That is, the invention of the method is SiO 2 and Al 2 O 3
Granular porous ceramics containing as a main component and a mixture of granular carbon content are used as a carrier for microorganisms, and water to be purified and the microorganisms in the carrier are brought into contact with each other in a state in which the carrier is fluidized. The water purification method is characterized by using 10% by volume to 80% by volume as the porous ceramics and 20% by volume to 90% by volume as the carbon content. In addition, the carrier is made to flow under the supply of fine bubbles of a gas containing oxygen, and the gas containing oxygen is a gas containing air and a concentration of oxygen higher than that of air, and is supplied under the supply of the fine bubbles. The porous ceramic carrier is formed by adding a pore-forming material to two or more kinds selected from clay, silica stone or aluminum hydroxide and firing the mixture. It is characterized by doing.
【0011】次に装置の発明は、SiO2とAl2O3
を主成分として持つ多孔性セラミックスを粒状化したも
のと、粒状の炭素分を混合したものが担体として充填さ
れた流動床処理塔中に、浄化すべき水を上向流で流す為
の水の供給手段とを設置したことを特徴とする水の浄化
装置である。また多孔性セラミックスとして10体積%
〜80体積%、炭素分として20体積%〜90体積%を
用いたものであり、酸素を含む気体の微細気泡の供給手
段を設置したものである。Next, in the invention of the device, SiO 2 and Al 2 O 3 are used.
In a fluidized bed treatment tower filled with granular carbon and a mixture of granular carbon as a carrier, water for purifying water to be purified is supplied in an upward flow. A water purifier characterized by having a supply means installed. 10% by volume as porous ceramics
˜80% by volume and 20% by volume to 90% by volume as carbon content, and a means for supplying fine bubbles of a gas containing oxygen is installed.
【0012】更に酸素を含む気体は、空気または空気よ
り高い濃度の酸素を含む気体としたものであり、多孔性
セラミックスの担体が、粘土、珪石又は水酸化アルミニ
ウムから選んだ二種以上のものに気孔形成材料を添加し
て焼成成形したものである。Further, the gas containing oxygen is air or a gas containing oxygen at a concentration higher than that of air, and the carrier of the porous ceramic is two or more kinds selected from clay, silica stone or aluminum hydroxide. It is obtained by adding a pore forming material and firing and molding.
【0013】前記発明において、多孔性セラミックス
と、炭素分の割合を記載したが、この種の担体の特性
上、前記数値以外は使用できないというのでなく、ほぼ
この位が良いという数値である。例えば多孔性セラミッ
クスの割合は9体積%であっても、81体積%であって
も、10体積%又は80体積%とほぼ同一効果がある。In the above invention, the ratio of the porous ceramics and the carbon content is described. However, due to the characteristics of the carrier of this kind, it is not impossible to use values other than the above-mentioned values, and it is a value that is about this value. For example, even if the proportion of the porous ceramics is 9% by volume or 81% by volume, there is almost the same effect as 10% by volume or 80% by volume.
【0014】この発明は、多孔性セラミックスと活性炭
の混合物を生物膜担体として用い、該混合物を流動させ
ながら、好気性の生物処理を行なうと、微生物の増殖が
抑制された状態で生物処理を行なうことができるという
知見に基づいてなされたものである。According to the present invention, when a mixture of porous ceramics and activated carbon is used as a biofilm carrier and aerobic biotreatment is carried out while flowing the mixture, the biotreatment is carried out in a state in which the growth of microorganisms is suppressed. It was made based on the knowledge that it is possible.
【0015】即ち、多孔性セラミックスと活性炭の混合
物を、流動床の担体として用いると、BOD負荷約1k
g/(m3・日)までは余剰汚泥がほとんど発生せずに
生物処理を行なうことができた。That is, when a mixture of porous ceramics and activated carbon is used as a carrier for a fluidized bed, the BOD load is about 1 k.
Up to g / (m 3 · day), biological treatment could be performed with almost no excess sludge generated.
【0016】余剰汚泥の発生を抑制できる詳細なメカニ
ズムについては、まだ明らかではないが、多孔性セラミ
ックスと炭素の接触により抑制作用が起こるものと推定
している。Although the detailed mechanism for suppressing the generation of excess sludge has not been clarified yet, it is presumed that the contact effect between the porous ceramics and carbon causes the suppressing effect.
【0017】また本発明者等は、空気または酸素富化空
気の微細気泡を含んだ廃水を流動床の濾床と接触させる
ように循環させると、廃水の処理速度が増大するという
知見を得ている。Further, the present inventors have found that when the waste water containing fine bubbles of air or oxygen-enriched air is circulated so as to come into contact with the filter bed of the fluidized bed, the treatment rate of the waste water is increased. There is.
【0018】この発明に用いられる多孔性セラミックス
は、SiO2とAl2O3を主成分として持つ多孔性セ
ラミックスである。その製造法の一例を以下に記すが、
この方法に限定されるものではない。The porous ceramic used in the present invention is a porous ceramic containing SiO 2 and Al 2 O 3 as main components. An example of the manufacturing method is described below,
The method is not limited to this.
【0019】この発明に用いられる多孔性セラミックス
の製造法の一例として、粘土、珪石および水酸化アルミ
ニウムの中から選んだ二種以上のものの混合物に、気泡
形成材料としてオガクズやモミガラ等と水を添加して混
合し、この混合物をブロック状態で又は他の適当な形状
で乾燥させた後、焼成することにより気泡形成材料が消
失して多孔部が作成される。As an example of the method for producing the porous ceramics used in the present invention, a mixture of two or more kinds selected from clay, silica and aluminum hydroxide is added with sawdust, chaff, etc. and water as a bubble forming material. Then, the mixture is dried, and the mixture is dried in a block state or in another suitable shape, and then fired, whereby the cell-forming material disappears to form a porous portion.
【0020】例えば前記三成分を用いる場合は、粘土を
20重量%〜70重量%、珪石を70重量%〜20重量
%、水酸化アルミニウムを10重量%とし、この100
重量部に対しオガクズを100重量部〜140重量部と
水を加えて混合し、この混合物をブロック状態等の適当
な形に成形して、自然乾燥又は強制乾燥等で一定状態ま
で乾燥したのち、1000℃以上で焼成することにより
SiO2およびAl2O3を主成分とする多孔性セラミ
ックスを作る。For example, when the above three components are used, clay is 20% by weight to 70% by weight, silica stone is 70% by weight to 20% by weight, and aluminum hydroxide is 10% by weight.
100 parts by weight to 140 parts by weight of sawdust and water are added to and mixed with each other by weight, and the mixture is molded into a suitable shape such as a block state and dried to a certain state by natural drying or forced drying, Porous ceramics containing SiO 2 and Al 2 O 3 as main components are produced by firing at 1000 ° C. or higher.
【0021】前記焼成温度は、1050℃〜1350℃
が好ましく、1200℃〜1300℃がより好ましい。The firing temperature is 1050 ° C. to 1350 ° C.
Is preferable, and 1200 to 1300 ° C is more preferable.
【0022】ここでSiO2を80重量%〜45重量
%、Al2O3を15重量%〜40重量%を含むことが
好ましく、それぞれの下限値即ちSiO2が45重量%
以下、Al2O3が15重量%以下ではこの発明に好ま
しい多孔性セラミックスを作成することが出来ない。又
SiO2が80重量%以上、Al2O3が40重量%以
上でも同様の理由で好ましくないことが分かっている。[0022] Here, the SiO 2 80 wt% to 45 wt%, preferably includes an Al 2 O 3 15 wt% to 40 wt%, each of the lower limit value or SiO 2 is 45 wt%
Hereinafter, if Al 2 O 3 is 15% by weight or less, a porous ceramic suitable for the present invention cannot be prepared. It has been found that SiO 2 of 80% by weight or more and Al 2 O 3 of 40% by weight or more are not preferable for the same reason.
【0023】この発明における流動とは、多孔性セラミ
ックスと炭素の片方あるいは両者が動くことにより接触
する状態である。具体的な方法としては、多孔性セラミ
ックスと炭素の混合物を充填(容積の30%位)した処
理塔に底部からの水の上向流により、該混合物を流動さ
せる流動床法、該混合物を充填した処理塔の下部からの
散気により、該混合物を動かす方法、該混合物を入れた
槽の撹拌(機械撹拌または散気による撹拌)により該混
合物を動かす方法等を用いることができるが、前記混合
物がほぼ均等に動けばこれらの方法に限定されるもので
はない。The flow in the present invention means a state in which one or both of the porous ceramic and the carbon move to come into contact with each other. As a concrete method, a fluidized bed method in which a mixture of porous ceramics and carbon is filled (about 30% of the volume) by a upward flow of water from the bottom to cause the mixture to flow, and the mixture is filled The method of moving the mixture by aeration from the lower part of the treated tower, the method of moving the mixture by agitation of the tank containing the mixture (mechanical agitation or agitation by aeration) can be used. Are not limited to these methods as long as they move almost uniformly.
【0024】この発明における多孔性セラミックスと炭
素の混合割合は、好ましくは多孔性セラミックスとして
略10体積%〜略80体積%、炭素分として略20体積
%〜略90体積%、より好ましくは多孔性セラミックス
として略20体積%〜略70体積%、炭素分として略3
0体積%〜略80体積%を用いる。この範囲に入らない
混合割合では、微生物増殖に対する抑制効果が低くなる
おそれがある。The mixing ratio of the porous ceramics and carbon in the present invention is preferably about 10% by volume to about 80% by volume as the porous ceramics, about 20% by volume to about 90% by volume as the carbon content, and more preferably porous. About 20% by volume to about 70% by volume as ceramics and about 3 as carbon content
0% by volume to about 80% by volume is used. If the mixing ratio does not fall within this range, the effect of suppressing microbial growth may be low.
【0025】炭素としては、活性炭、亜炭、骨炭、木
炭、アンスラサイト等が好ましいが、活性炭がより好ま
しい。前記多孔性セラミックスおよび炭素の形状は、粒
状が好ましく、形は球状、破砕状等どんな形でも良い
が、粉状に砕けないように配慮する。As carbon, activated carbon, lignite, bone charcoal, charcoal, anthracite and the like are preferable, but activated carbon is more preferable. The shape of the porous ceramics and carbon is preferably granular, and the shape may be spherical, crushed, or any other shape, but care should be taken to prevent crushing into powder.
【0026】多孔性セラミックスおよび炭素の平均粒径
は、円滑に流動するためには約0.1〜4mmが好まし
いが、流出し易い微細粒子が少ない0.5〜2mmがよ
り好ましい。The average particle diameter of the porous ceramics and carbon is preferably about 0.1 to 4 mm in order to smoothly flow, but more preferably 0.5 to 2 mm in which few fine particles easily flow out.
【0027】この発明に用いられる微細気泡の平均気泡
径は、およそ500μ以下が好ましく、それより微細で
あるほど(例えば数μ)より好ましいが、微細気泡形成
のための装置、コストを考慮すると10〜100μが適
用し易い範囲と思われる。気泡が500μより大きくな
ると流動床中の担体の流動が乱れたり、担体が飛び上が
ったりするため、担体が摩耗し易くなるおそれがある。The average bubble diameter of the fine bubbles used in the present invention is preferably about 500 μ or less, and the finer it is, the more preferable it is (for example, several μ). However, considering the apparatus and cost for forming the fine bubbles, 10 ~ 100μ seems to be a range that is easy to apply. When the bubbles are larger than 500 μ, the flow of the carrier in the fluidized bed is disturbed or the carrier jumps up, which may cause the carrier to be easily worn.
【0028】また微細気泡を共存させる場合、処理槽内
へ流入する気体流量(Vg l/min)と液体流量
(Vl l/min)の比、気液流量比(Vg/Vl)
は、0.01〜0.2が好ましく、0.03〜0.1が
より好ましい。When fine bubbles coexist, the ratio of the gas flow rate (Vg 1 / min) and the liquid flow rate (Vl 1 / min) flowing into the processing tank, the gas-liquid flow rate ratio (Vg / Vl).
Is preferably 0.01 to 0.2, more preferably 0.03 to 0.1.
【0029】微細気泡の発生法としては、方法を問わな
いが、例えば水循環用ポンプに気体を吸引し、ポンプ内
で撹拌してポンプから吐出後、更にスタティックミキサ
ーで混合する方法、液循環用配管の途中にエジェクター
を設けて空気を引き込む方法などが簡便でこの発明に好
ましい。Any method may be used to generate the fine bubbles. For example, a method of sucking gas into a water circulation pump, stirring the gas in the pump, discharging the gas from the pump, and then mixing with a static mixer, a liquid circulation pipe A method in which an ejector is provided in the middle of the process to draw in air is simple and preferable for the present invention.
【0030】この発明に用いられる酸素富化空気は、例
えば酸素富化膜、PSA(PressureSwing Adsorption)
を利用した装置、酸素ボンベ等で作られるが、これらに
限られることはない。例えば酸素富化膜を利用した場
合、4〜5気圧の加圧空気で簡易に酸素濃度30%以上
の気体を作ることができる。酸素の富化は、酸素濃度5
0%以下が好ましい。The oxygen-enriched air used in the present invention is, for example, an oxygen-enriched film or PSA (Pressure Swing Adsorption).
It is made of, but is not limited to, a device using oxygen, an oxygen cylinder, or the like. For example, when an oxygen-enriched membrane is used, a gas having an oxygen concentration of 30% or more can be easily produced with pressurized air of 4 to 5 atm. Enrichment of oxygen, oxygen concentration 5
0% or less is preferable.
【0031】微細気泡を含んだ廃水を流動床中の担体に
接触させることにより、処理速度が増大する理由はまだ
明らかではないが、微細気泡と微生物が直接接触するこ
と、活性炭が微細気泡から酸素を吸収すること等によ
り、微生物に必要な酸素の供給速度が増大するためと推
測できる。The reason why the treatment rate is increased by contacting the waste water containing fine bubbles with the carrier in the fluidized bed is not clear yet, but the direct contact between the fine bubbles and the microorganisms, the activated carbon from the fine bubbles to oxygen. It can be speculated that the absorption rate of oxygen increases the supply rate of oxygen required by the microorganisms.
【0032】この発明の装置の例としては、粒状多孔性
セラミックスおよび炭素を処理塔に充填し、水の上向流
で担体を流動させる流動床装置があるが、微生物汚泥の
発生がすこぶる少量に抑えられるので、簡易な構造の装
置で閉塞がない安定した運転が達成される。As an example of the apparatus of the present invention, there is a fluidized bed apparatus in which granular porous ceramics and carbon are packed in a treatment tower and the carrier is made to flow in an upward flow of water. Since it is suppressed, stable operation without obstruction is achieved with a device having a simple structure.
【0033】流動床装置の例としては次のとおりであ
る。円筒状の処理塔底部に循環流の吐出口と逆洗用散気
管を設け、処理塔上部に担体流出防止用網目スクリーン
(0.5〜2mm)を取り付けて、循環用ポンプを用い
処理塔上部の循環用流出口から底部の吐出口へと液を循
環させる。処理される廃水(原水)は処理塔上部の循環
用流出口近くに流入させ、処理水は処理塔最上部の排出
口より排出される。An example of the fluidized bed apparatus is as follows. A circular flow outlet and a backwash diffuser are provided at the bottom of the cylindrical treatment tower, and a mesh screen (0.5-2 mm) for preventing carrier outflow is attached to the top of the treatment tower. The liquid is circulated from the circulation outlet to the bottom outlet. The wastewater (raw water) to be treated is made to flow into the upper part of the treatment tower near the circulation outlet, and the treated water is discharged from the outlet at the top of the treatment tower.
【0034】廃水中の溶存酸素が不足する場合は、処理
塔上部に曝気のための散気管を設けることもできる。When the dissolved oxygen in the waste water is insufficient, an aeration pipe for aeration can be provided above the treatment tower.
【0035】また微生物担体として粒状多孔性セラミッ
クスおよび炭素を処理塔に充填するが、担体体積の約1
0%〜20%の支持床を処理塔底部に敷くのが通例であ
る。この支持床としては、石、セラミックス、活性炭等
担体より粒径が大きく、軽くないものならばよい。微生
物担体の量は、処理塔内の液体積の15%〜50%が好
ましいが、20%〜40%がより好ましい。Further, the treatment tower is packed with granular porous ceramics and carbon as a microorganism carrier, but the carrier volume is about 1
It is customary to lay a 0% to 20% support bed at the bottom of the treatment tower. The support bed may be of any size such as stone, ceramics, activated carbon and the like, which has a larger particle size and is not light. The amount of the microbial carrier is preferably 15% to 50% of the liquid volume in the processing tower, more preferably 20% to 40%.
【0036】微細気泡を共存させる場合の装置の例とし
ては、循環用ポンプとして、気体を吸引してポンプ内で
撹拌させてポンプから吐出後、スタティックミキサーで
混合して微細気泡(平均気泡径50μ)を発生させるこ
とができるタイプを用いることができる。As an example of an apparatus for coexisting fine bubbles, as a circulation pump, gas is sucked, stirred in the pump, discharged from the pump, and then mixed by a static mixer to obtain fine bubbles (average bubble diameter 50 μm). ) Can be used.
【0037】酸素富化空気を作る装置の例としては、中
空系フィルターと、コンプレッサーを用いることができ
る。該フィルターにコンプレッサーにより加圧した4気
圧の空気を通すことにより、酸素濃度31%の酸素富化
気体が得られる。As an example of a device for producing oxygen-enriched air, a hollow filter and a compressor can be used. By passing 4 atm of air pressurized by a compressor through the filter, an oxygen-enriched gas having an oxygen concentration of 31% is obtained.
【0038】[0038]
【発明の実施の形態】この発明は、SiO2とAl2O
3を主成分とした多孔性セラミックスの粒状化物と、粒
状の炭素分を混合したものを微生物の担体として用い、
前記担体を流動させて浄化すべき水と接触させることに
より浄水するものであって、前記多孔性セラミックスの
量は10体積%〜80体積%、炭素分を20体積%〜9
0体積%とし、前記担体の粒度は4mm以下としたもの
である。BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to SiO 2 and Al 2 O.
Using a mixture of a granular material of porous ceramics containing 3 as a main component and granular carbon content as a carrier for microorganisms,
Water is purified by bringing the carrier into contact with water to be purified, wherein the amount of the porous ceramics is 10% by volume to 80% by volume and the carbon content is 20% by volume to 9%.
0% by volume, and the particle size of the carrier was 4 mm or less.
【0039】前記における多孔性セラミックスと、炭素
分の流動床処理塔中の体積は20%〜40%であり、上
向き流の水流によって、前記担体を流動撹拌させて均一
接触を図っている。また、空気又は多量の酸素を含んだ
高濃度酸素微細気泡を使用する。The volume of the porous ceramic and the carbon content in the fluidized bed treatment tower is 20% to 40%, and the carrier is fluidized and stirred by the upward flow of water to achieve uniform contact. Further, air or high concentration oxygen fine bubbles containing a large amount of oxygen are used.
【0040】この発明の装置は、従来の流動床処理塔
に、前記多孔性セラミックスと炭素とを一定の割合に混
合して所定の体積比(約20%〜40%)で収容すると
共に、送水、送気したものである。In the apparatus of the present invention, the above-mentioned porous ceramics and carbon are mixed in a constant ratio in a conventional fluidized bed treatment tower and accommodated at a predetermined volume ratio (about 20% -40%), and water is sent. , That was sent.
【0041】[0041]
【実施例1】(A)多孔性セラミックス(焼成温度13
00℃)および活性炭の混合物の流動による細菌増殖抑
制についての実施例。Example 1 (A) Porous ceramics (firing temperature 13
Example for inhibiting bacterial growth by flowing a mixture of (00 ° C.) and activated carbon.
【0042】多孔性セラミックスは、粘土、珪石および
水酸化アルミニウムの混合物に、気泡形成材料のオガク
ズと水を添加して混合し、この混合物をブロック状態で
乾燥させた後、1300℃で焼成して調製した。多孔性
セラミックス中のSiO2、Al2O3の含量(重量
%)は各々69%と、21%であった。その他の成分お
よび含量(重量%)は以下の通りであった。For the porous ceramics, a mixture of clay, silica stone and aluminum hydroxide is added and mixed with sawdust and water as a bubble forming material, and the mixture is dried in a block state and then fired at 1300 ° C. Prepared. The contents (% by weight) of SiO 2 and Al 2 O 3 in the porous ceramics were 69% and 21%, respectively. The other components and contents (% by weight) were as follows.
【0043】Fe2O 0.80% K2O 0.93% CaO 0.45% MgO 2.50% Na2O 0.35% TiO2 0.30%Fe 2 O 0.80% K 2 O 0.93% CaO 0.45% MgO 2.50% Na 2 O 0.35% TiO 2 0.30%
【0044】また気孔率は82%、嵩比重は0.35で
あった。この多孔性セラミックスを粉砕し、1〜2mm
に分級して用いた。活性炭は、粒径が約1mmのものを
用いた。The porosity was 82% and the bulk specific gravity was 0.35. Crush this porous ceramics to 1-2 mm
It was used after classification. The activated carbon used had a particle size of about 1 mm.
【0045】乾熱滅菌した多孔性セラミックスおよび活
性炭の各々5mlの混合物を200ml三角フラスコに
採った。水道水で調製したpH7のリン酸緩衝液中(ア
ンモニウム塩を含む)に酢酸ナトリウムをTOC(Tota
l Organic Carbon;全有機炭素)として400mg/l
溶解した溶液をオートクレーブ滅菌した後、その溶液の
100mlを前述の三角フラスコに加えた。ここに植種
菌(Pseudomonas aeruginosa)が103個/mlにな
るように、植種菌懸濁液を加えた。植種菌の個数は、平
板培地による生菌数測定とATPによる化学発光強度が
相関することを利用し、液の発光強度より求めた。植種
菌添加後、25℃で振とう(125rpm)した。A mixture of 5 ml each of dry heat sterilized porous ceramics and activated carbon was placed in a 200 ml Erlenmeyer flask. Sodium acetate was added to the TOC (Tota) solution in a pH 7 phosphate buffer (containing ammonium salt) prepared with tap water.
l Organic Carbon; 400 mg / l as total organic carbon
The dissolved solution was autoclaved and 100 ml of the solution was added to the Erlenmeyer flask. An inoculum suspension was added to this so that the inoculum (Pseudomonas aeruginosa) was 10 3 cells / ml. The number of inoculated bacteria was determined from the luminescence intensity of the liquid by utilizing the fact that the viable cell count of a plate medium and the chemiluminescence intensity of ATP are correlated. After adding the inoculum, the mixture was shaken (125 rpm) at 25 ° C.
【0046】(B)多孔性セラミックス(焼成温度11
00℃)および活性炭の混合物の流動による細菌増殖抑
制についての実施例。(B) Porous ceramics (firing temperature 11
Example for inhibiting bacterial growth by flowing a mixture of (00 ° C.) and activated carbon.
【0047】焼成温度が1100℃である多孔性セラミ
ックスを用いた以外、実施例1(A)と同様に実施し
た。多孔性セラミックス中のSiO2、Al2O3の含
量は各々69%、21%であった。The same procedure as in Example 1 (A) was performed except that a porous ceramic having a firing temperature of 1100 ° C. was used. The contents of SiO 2 and Al 2 O 3 in the porous ceramics were 69% and 21%, respectively.
【0048】その他の成分および含量(重量%)は以下
の通りであった。Other components and contents (% by weight) were as follows.
【0049】Fe2O 0.81% K2O 0.92% CaO 0.43% MgO 2.70% Na2O 0.35% TiO2 0.30%Fe 2 O 0.81% K 2 O 0.92% CaO 0.43% MgO 2.70% Na 2 O 0.35% TiO 2 0.30%
【0050】また気孔率は80%、嵩比重は0.40で
あった。The porosity was 80% and the bulk specific gravity was 0.40.
【0051】前記実施例(A)、(B)の各々につい
て、振とう開始後、40日間の、担体上の菌数を10日
毎に調べた結果を、表−1に示す。液中の生菌数を調べ
た結果を、表−2に示す。Table 1 shows the results of examining the number of bacteria on the carrier every 10 days for 40 days after the start of shaking in each of Examples (A) and (B). The results of examining the viable cell count in the liquid are shown in Table-2.
【0052】[0052]
【比較例1】振盪しない以外は実施例1と同様に実施し
た。結果を表−1、表−2に示す。Comparative Example 1 The procedure of Example 1 was repeated, except that no shaking was performed. The results are shown in Table-1 and Table-2.
【0053】[0053]
【比較例2】(A)多孔性セラミックスのみを担体とし
て用いた場合。Comparative Example 2 (A) When only porous ceramics is used as a carrier.
【0054】微生物担体として、多孔性セラミックスの
みを用いた以外は実施例1と同様に実施した。The same procedure as in Example 1 was carried out except that only porous ceramics was used as the microorganism carrier.
【0055】(B)活性炭のみを担体として用いた場
合。(B) When only activated carbon is used as a carrier.
【0056】微生物担体として、活性炭のみを用いた以
外は実施例1と同様に実施した。The same procedure as in Example 1 was carried out except that only activated carbon was used as the microorganism carrier.
【0057】結果を表−1、表−2に示す。The results are shown in Tables 1 and 2.
【0058】[0058]
【表1】 [Table 1]
【0059】表中の表示<102はATPの化学発光強
度による生菌数測定の検出限界値102以下であること
を示す。The indication <10 2 in the table indicates that the detection limit value of viable cell count by chemiluminescence intensity of ATP is 10 2 or less.
【0060】表−1中の生菌数の数値の単位は、個/g
−担体である。The unit of the numerical value of the viable cell count in Table 1 is the unit / g.
-A carrier.
【0061】[0061]
【表2】 [Table 2]
【0062】表中の表示<102はATPの化学発光強
度による生菌数測定の検出限界値102以下であること
を示す。表−2中の生菌数の数値の単位は個/mlであ
る。The indication <10 2 in the table indicates that the detection limit value of viable cell count by the chemiluminescence intensity of ATP is 10 2 or less. The unit of the numerical value of the viable cell count in Table 2 is cells / ml.
【0063】実施例1と比較例2で行なったフラスコの
振とうにより、フラスコ内の担体は流動している状態に
なる。実施例1と比較例1より、多孔性セラミックスお
よび活性炭の混合物が流動している状態で、微生物の増
殖が抑制されていることが分かる。微生物の増殖の抑制
は多孔性セラミックスおよび活性炭の両方で起こってい
ることが分かる。By shaking the flask in Example 1 and Comparative Example 2, the carrier in the flask is in a fluidized state. From Example 1 and Comparative Example 1, it can be seen that the growth of microorganisms is suppressed in the state where the mixture of porous ceramics and activated carbon is flowing. It can be seen that the inhibition of microbial growth occurs in both porous ceramics and activated carbon.
【0064】実施例1と比較例2の比較より、多孔性セ
ラミックス、活性炭各々単独では、微生物の増殖を抑制
する作用がないことが分かる。From the comparison between Example 1 and Comparative Example 2, it can be seen that the porous ceramics and the activated carbon alone do not have the effect of suppressing the growth of microorganisms.
【0065】多孔性セラミックスの焼成温度が1300
℃でも1100℃でも、多孔性セラミックスと活性炭を
混合して流動させた場合の微生物増殖抑制作用が見られ
たが、1300℃の場合の方が1100℃よりも、微生
物増殖抑制作用が強いことが分かる。The firing temperature of the porous ceramics is 1300.
Both ℃ and 1100 ℃ showed a microbial growth inhibitory effect when mixing and flowing porous ceramics and activated carbon, but at 1300 ℃, microbial growth inhibitory effect is stronger than 1100 ℃ I understand.
【0066】[0066]
【実施例2】多孔性セラミックスおよび活性炭の混合物
を担体として用いた流動床による養豚場廃水の活性汚泥
処理液の脱色についての実施例。Example 2 Example of decolorization of activated sludge treatment liquid of swine farm wastewater by a fluidized bed using a mixture of porous ceramics and activated carbon as a carrier.
【0067】(A)微細気泡を共存させない場合。(A) In the case where fine bubbles do not coexist.
【0068】養豚場廃水を活性汚泥処理した後の処理液
を、中空糸で濾過して懸濁物を除去した液を原水として
用いた。原水の水質は、BOD 40mg/l、COD
Mn350mg/l、DOC(溶解している有機物由来
の炭素濃度) 210mg/l、400nmでの吸光度
1.5であり褐色を呈していた。The treated liquid obtained by treating the swine farm wastewater with activated sludge was filtered through a hollow fiber to remove the suspension, and used as raw water. Raw water quality is BOD 40mg / l, COD
Mn 350 mg / l, DOC (carbon concentration derived from dissolved organic matter) 210 mg / l, absorbance at 400 nm was 1.5, and it was brown.
【0069】多孔性セラミックス(実施例1(A)と同
様)および活性炭の混合物を充填した流動床処理塔(液
量10l)に、原水を10l/日(HRT(液の滞留時
間)1日)で流入させて処理した。処理塔に粒径1〜2
mmの多孔性セラミックスおよび活性炭を体積比3:7
で混合した混合物3lを充填した。処理塔の底部に支持
床として粒径5〜10mmの砂利を敷いた。10 l / day of raw water (HRT (retention time of liquid) for 1 day) was placed in a fluidized bed treatment tower (liquid volume: 10 l) packed with a mixture of porous ceramics (similar to Example 1 (A)) and activated carbon. It was made to flow in and was processed. Particle size 1-2 in the processing tower
mm porous ceramic and activated carbon in volume ratio 3: 7
3 l of the mixture mixed in was charged. Gravel with a particle size of 5 to 10 mm was laid as a support bed at the bottom of the treatment tower.
【0070】処理塔は円筒状であり、処理塔底部に循環
流の吐出口と逆洗用散気管を設け、処理塔上部に担体流
出防止用網目スクリーン(0.8mm)を取り付けて、
循環用ポンプを用い処理塔上部の循環用流出口から底部
の吐出口へと液を循環させる。処理される廃水(原水)
は処理塔上部の循環用流出口近くに流入させ、処理水は
処理塔最上部の排出口より排出される。処理塔上部に散
気管を設置して曝気を行なった。The treatment tower is cylindrical, a discharge port for circulating flow and a backwash diffuser are provided at the bottom of the treatment tower, and a mesh screen (0.8 mm) for preventing carrier outflow is attached to the top of the treatment tower.
A circulation pump is used to circulate the liquid from the circulation outlet at the top of the processing tower to the discharge port at the bottom. Wastewater treated (raw water)
Is made to flow into the upper part of the treatment tower near the circulation outlet, and the treated water is discharged from the top outlet of the treatment tower. Aeration was performed by installing an air diffuser on the upper part of the treatment tower.
【0071】3日毎に処理塔底部の逆洗用散気管に空気
を送ることにより逆洗を行なった。Backwashing was performed by sending air to the backwash diffuser at the bottom of the treatment tower every 3 days.
【0072】2ヶ月後の処理水の水質は、BOD 4m
g/l、CODMn 27mg/l、DOC 16mg
/l、400nmでの吸光度 0.1以下でありほとん
ど無色であった。この結果を表−3に示した。The water quality of the treated water after 2 months was 4 m of BOD.
g / l, CODMn 27 mg / l, DOC 16 mg
/ L, the absorbance at 400 nm was less than 0.1 and was almost colorless. The results are shown in Table-3.
【0073】(B)空気の微細気泡を共存させる場合の
実施例。(B) Example in which fine air bubbles coexist.
【0074】空気の微細気泡を共存させ、原水を20l
/日(HRT0.5日)で流入させた以外は実施例2
(A)と同様に行なった。20 l of raw water was mixed with fine air bubbles.
Example 2 except that the inflow was carried out every day / day (0.5 days for HRT).
It carried out like (A).
【0075】空気の微細気泡は、循環用ポンプ(ニクニ
ポンプ)に気体を吸引してポンプ内で撹拌させてポンプ
から吐出後、スタティックミキサーで混合して発生させ
た(平均気泡径50〜100μ)。Fine air bubbles were generated by sucking the gas into a circulation pump (Nikuni pump), stirring the gas in the pump, discharging the gas from the pump, and then mixing with a static mixer (average bubble diameter 50 to 100 μm).
【0076】処理槽内へ流入する気体流量(Vg l/
min)と液体流量(Vl l/min)の比、気液流
量比(Vg/Vl)は、0.05であった。この結果を
表−3に示した。Gas flow rate (Vgl /
min) to the liquid flow rate (Vl 1 / min) and the gas-liquid flow rate ratio (Vg / Vl) were 0.05. The results are shown in Table-3.
【0077】(C)酸素富化気体の微細気泡を共存させ
る場合の実施例。(C) Example in the case of coexistence of fine bubbles of oxygen-enriched gas.
【0078】酸素富化気体の微細気泡を共存させた以外
は実施例2(B)と同様に行なった。The same procedure as in Example 2 (B) was carried out except that fine bubbles of oxygen-enriched gas were allowed to coexist.
【0079】酸素富化気体については、PSA酸素発生
装置により発生させた酸素濃度90vol%の気体と空
気を混合して酸素を40%含む気体を作った。この結果
を表−3に示した。As for the oxygen-enriched gas, a gas containing 90% by volume of oxygen generated by a PSA oxygen generator was mixed with air to form a gas containing 40% of oxygen. The results are shown in Table-3.
【0080】[0080]
【比較例3】活性炭を担体として用いた流動床による養
豚場廃水の活性汚泥処理液の脱色。[Comparative Example 3] Decolorization of an activated sludge treatment liquid of a pig farm wastewater by a fluidized bed using activated carbon as a carrier.
【0081】担体として活性炭を用いた以外は実施例2
(A)と同様に行った。Example 2 except that activated carbon was used as the carrier
It carried out like (A).
【0082】結果を表−3に示した。The results are shown in Table 3.
【0083】[0083]
【表3】 [Table 3]
【0084】実施例2(A)、(B)、(C)と比較例
3より、流動床の担体として多孔性セラミックスと活性
炭の混合物を用いた場合、発生汚泥量が活性炭を用いた
場合の約10%前後と極めて少量になることが分かる。From Examples 2 (A), (B) and (C) and Comparative Example 3, when the mixture of porous ceramics and activated carbon was used as the carrier of the fluidized bed, the amount of sludge generated was the case when activated carbon was used. It can be seen that the amount is extremely small, around 10%.
【0085】実施例2(A)と比較例3より、多孔性セ
ラミックスと活性炭の混合物を担体として用いた方が、
活性炭のみを用いた場合より、DOCと吸光度(色)の
低減に効果が高いことが分かる。From Example 2 (A) and Comparative Example 3, it is better to use a mixture of porous ceramics and activated carbon as a carrier.
It can be seen that the effect of reducing DOC and the absorbance (color) is higher than the case of using only activated carbon.
【0086】実施例2(A)と、実施例2(B)との比
較により、多孔性セラミックスと活性炭の混合物を担体
とした場合、微細気泡の共存により、処理効率が増大す
ることが分かる。即ち処理時間を2分の1にしたにもか
かわらず、微細気泡を用いない場合より良好な水質の処
理水を得ることができた。From a comparison between Example 2 (A) and Example 2 (B), it can be seen that when a mixture of porous ceramics and activated carbon is used as a carrier, coexistence of fine bubbles increases the treatment efficiency. That is, although the treatment time was halved, it was possible to obtain treated water having a better water quality than when the fine bubbles were not used.
【0087】また実施例2(B)と、実施例2(C)と
の比較により、多孔性セラミックスと活性炭の混合物を
担体とした場合、微細気泡として酸素富化気体を用いる
と、更に良好な水質の処理水を得られることが分かる。Further, comparing Example 2 (B) with Example 2 (C), when a mixture of porous ceramics and activated carbon is used as a carrier, it is more preferable to use oxygen-enriched gas as fine bubbles. It can be seen that treated water of water quality can be obtained.
【0088】[0088]
【実施例3】この発明の実施例を図1に基づいて説明す
る。[Embodiment 3] An embodiment of the present invention will be described with reference to FIG.
【0089】処理塔1の内側下部へ支持床11を設け、
該支持床11の上部へ流動床12を収容する。該流動床
12は、処理塔1の容積の30%〜40%収容する。前
記処理塔1の上部へ担体流出防止用のスクリーン10に
よる濾水室25を設ける。また、循環ポンプ6の吐水パ
イプ4の先端4aを前記支持床11内へ開口させると共
に、前記循環ポンプ6の吸水パイプ3の吸入口3aを前
記濾水室25内へ上向きに開口させ、前記吸入口3a内
へ、汚水パイプ2の先端側を挿入開口させてある。前記
濾水室25には、処理水パイプ7の吸入端7aが上向き
に開口させてある。A support bed 11 is provided at the lower inside of the processing tower 1,
A fluidized bed 12 is housed above the support bed 11. The fluidized bed 12 accommodates 30% to 40% of the volume of the processing tower 1. A drainage chamber 25 with a screen 10 for preventing carrier outflow is provided above the treatment tower 1. Further, the tip end 4a of the water discharge pipe 4 of the circulation pump 6 is opened into the support floor 11, and the suction port 3a of the water suction pipe 3 of the circulation pump 6 is opened upward into the drainage chamber 25 so that the suction is performed. The front end side of the dirty water pipe 2 is inserted and opened into the mouth 3a. A suction end 7a of the treated water pipe 7 is opened upward in the drainage chamber 25.
【0090】前記実施例において、原水パイプ2から処
理すべき原水を矢示15のように送水し、汚水が処理塔
1内の所定の水位5に達したならば、循環ポンプ6を始
動する。該循環ポンプ6の始動によって、汚水は、矢示
17、18、19、20、21のように循環し、流動床
12を、レベル13の位置からレベル14の位置まで浮
遊させ、原水と微生物とを接触させて原水を生物膜処理
によって浄水する。In the above embodiment, the raw water to be treated is fed from the raw water pipe 2 as shown by the arrow 15, and when the sewage reaches the predetermined water level 5 in the treatment tower 1, the circulation pump 6 is started. When the circulation pump 6 is started, the sewage circulates as indicated by arrows 17, 18, 19, 20, 21 and floats the fluidized bed 12 from the position of level 13 to the position of level 14 to remove raw water and microorganisms. And the raw water is purified by biofilm treatment.
【0091】前記における原水の水質は、BOD 40
mg/l、CODMn 350mg/l、DOC 21
0mg/l、400nmでの吸光度 1.5で褐色であ
った。The quality of the raw water in the above is BOD 40
mg / l, CODMn 350 mg / l, DOC 21
It was brown with 0 mg / l and an absorbance of 1.5 at 400 nm.
【0092】前記処理塔には、粒径1〜2mmの多孔性
セラミックスおよび同径の活性炭を体積比3:7で混入
し、処理塔の容積の30%収容した。また、支持床とし
ては、砂利(径2〜5mm)を前記処理塔の容積の5%
収容した。In the treatment tower, porous ceramics having a particle diameter of 1 to 2 mm and activated carbon having the same diameter were mixed in a volume ratio of 3: 7, and 30% of the volume of the treatment tower was accommodated. As the support bed, gravel (diameter 2 to 5 mm) is 5% of the volume of the processing tower.
Accommodated.
【0093】また、循環ポンプ6は、処理塔中の循環流
の線速度が15〜20m/hとなる能力がある。Further, the circulation pump 6 has the ability to make the linear velocity of the circulation flow in the processing tower 15 to 20 m / h.
【0094】前記実施例において、原水を1日処理した
ところ、処理水の水質は、BOD4mg/l、CODM
n 27mg/l、DOC 16mg/l、400nm
での吸光度 0.1以下であり、ほとんど無色であっ
た。In the above example, when the raw water was treated for 1 day, the quality of the treated water was 4 mg / l of BOD and CODM.
n 27 mg / l, DOC 16 mg / l, 400 nm
The absorbance was 0.1 or less and was almost colorless.
【0095】そこで、原水の滞留を24時間の割合にし
て、原水を少量迄供給すれば、連続して浄化することが
できる。Therefore, if the raw water is retained for 24 hours and a small amount of the raw water is supplied, continuous purification can be achieved.
【0096】前記連続して浄化する場合には、少量の原
水を連続して供給すると共に、処理水パイプ7から所定
水位5を超える処理水を矢示16のように自動的に取り
出し、連続処理することができる。In the case of continuous purification, a small amount of raw water is continuously supplied, and the treated water exceeding the predetermined water level 5 is automatically taken out from the treated water pipe 7 as indicated by an arrow 16 to continuously treat the treated water. can do.
【0097】前記実施例においては、3日毎に、処理塔
底部の逆洗用散気管22から矢示23のように加圧空気
をおくり、担体を浄化した。この場合の送気量は、循環
流の10〜20体積%であった。図中24は、排気パイ
プである。In the above embodiment, pressurized air was blown from the backwash diffuser 22 at the bottom of the treatment tower as indicated by arrow 23 to clean the carrier every 3 days. The amount of air supplied in this case was 10 to 20% by volume of the circulating flow. In the figure, 24 is an exhaust pipe.
【0098】[0098]
【実施例4】この発明の他の実施例を図2に基づいて説
明する。Fourth Embodiment Another embodiment of the present invention will be described with reference to FIG.
【0099】処理塔1の内側下部へ支持床11を設け、
該支持床11の上部へ流動床12を収容する。該流動床
12は、処理塔1の容積の30%〜40%収容する。前
記処理塔1の上部へ担体流出防止用のスクリーン10に
よる濾水室25を設ける。また、循環ポンプ6の吐水パ
イプ4にスタティックミキサ8を介装し、前記吐水パイ
プ4の先端4aを前記支持床11内へ開口させると共
に、前記循環ポンプ6の吸水パイプ3の吸入口3aを前
記濾水室25内へ上向きに開口させ、前記吸入口3a内
へ、汚水パイプ2の先端側を挿入開口させてある。前記
濾水室25には、処理水パイプ7の吸入端7aが上向き
に開口させてある。A support bed 11 is provided at the lower inside of the processing tower 1,
A fluidized bed 12 is housed above the support bed 11. The fluidized bed 12 accommodates 30% to 40% of the volume of the processing tower 1. A drainage chamber 25 with a screen 10 for preventing carrier outflow is provided above the treatment tower 1. Further, a static mixer 8 is interposed in the water discharge pipe 4 of the circulation pump 6, the tip 4a of the water discharge pipe 4 is opened into the support floor 11, and the suction port 3a of the water suction pipe 3 of the circulation pump 6 is described above. The drainage chamber 25 is opened upward, and the front end side of the dirty water pipe 2 is inserted and opened into the suction port 3a. A suction end 7a of the treated water pipe 7 is opened upward in the drainage chamber 25.
【0100】前記実施例において、原水パイプ2から処
理すべき原水を矢示15のように送水し、汚水が処理塔
1内の所定の水位5に達したならば、循環ポンプ6を始
動する。該循環ポンプ6の始動によって、汚水は、矢示
17、18、19、20、21のように循環し、流動床
12を、レベル13の位置からレベル14の位置まで浮
遊させ、原水と微生物とを接触させて原水を生物膜処理
によって浄水する。In the above embodiment, the raw water to be treated is fed from the raw water pipe 2 as shown by the arrow 15, and when the sewage reaches the predetermined water level 5 in the treatment tower 1, the circulation pump 6 is started. When the circulation pump 6 is started, the sewage circulates as indicated by arrows 17, 18, 19, 20, 21 and floats the fluidized bed 12 from the position of level 13 to the position of level 14 to remove raw water and microorganisms. And the raw water is purified by biofilm treatment.
【0101】前記における原水の水質は、BOD 40
mg/l、CODMn 350mg/l、DOC 21
0mg/l、400nmでの吸光度 1.5で褐色であ
った。The quality of the raw water in the above is BOD 40
mg / l, CODMn 350 mg / l, DOC 21
It was brown with 0 mg / l and an absorbance of 1.5 at 400 nm.
【0102】前記処理塔には、粒径1〜2mmの多孔性
セラミックスおよび同径の活性炭を体積比3:7で混入
し、処理塔の容積の30%収容した。また、支持床とし
ては、砂利(径1〜3mm)を前記処理塔の容積の5%
収容した。In the treatment tower, porous ceramics having a particle diameter of 1 to 2 mm and activated carbon having the same diameter were mixed in a volume ratio of 3: 7, and 30% of the volume of the treatment tower was accommodated. As the support bed, gravel (diameter 1 to 3 mm) is 5% of the volume of the processing tower.
Accommodated.
【0103】また、循環ポンプ6は、処理塔中の循環流
の線速度が15〜20m/hとなる能力がある。Further, the circulation pump 6 has the ability to make the linear velocity of the circulating flow in the processing tower 15 to 20 m / h.
【0104】前記実施例において、原水を20時間処理
したところ、処理水の水質は、BOD 4mg/l、C
ODMn 27mg/l、DOC 16mg/l、40
0nmでの吸光度 0.1以下であり、ほとんど無色で
あった。In the above example, when the raw water was treated for 20 hours, the quality of the treated water was BOD 4 mg / l, C
ODMn 27 mg / l, DOC 16 mg / l, 40
The absorbance at 0 nm was 0.1 or less, and it was almost colorless.
【0105】前記実施例において、循環ポンプ6へ、送
気パイプ9を介して矢示26のように空気(気液流量比
(vg/vl)は0.05であった)供給すると共に、
該空気と原水は、スタティックミキサ8によって撹拌混
合されるので、空気と、微生物との接触を一層良好に
し、処理効率を向上させたので、同一容量の処理塔にお
ける1日の処理量を向上させることができた。In the above-mentioned embodiment, air (gas-liquid flow rate ratio (vg / vl) was 0.05) was supplied to the circulation pump 6 through the air supply pipe 9 as shown by the arrow 26, and
The air and the raw water are agitated and mixed by the static mixer 8, so that the contact between the air and the microorganisms is further improved and the treatment efficiency is improved, so that the daily treatment amount in the treatment tower of the same volume is improved. I was able to.
【0106】前記実施例において、処理塔内の担体は水
と、水の上向流によって流動するので、担体流動の為に
特別の駆動手段を設ける必要はないと共に、担体の比重
が多少重くても流動に支障はない。In the above-mentioned embodiment, the carrier in the treatment tower flows with water and the upward flow of water, so that it is not necessary to provide a special driving means for the carrier flow, and the specific gravity of the carrier is somewhat heavy. However, there is no hindrance to the flow.
【0107】前記実施例において、多孔性セラミックス
と炭素分とは、所定の割合でほぼ均一に混合している為
に担体の微生物に遠赤外線微弱電流、その他何等かの効
果を与えていることが推定され、微生物の増殖を抑制
し、生物膜の活性を保つと共に、一定の厚さに保ち、汚
泥の発生を防止する効果がある。In the above-mentioned embodiment, since the porous ceramics and the carbon content are mixed almost uniformly at a predetermined ratio, it is possible to give the far-infrared weak current and some other effects to the microorganisms of the carrier. It is presumed that it has the effects of suppressing the growth of microorganisms, maintaining the activity of biofilms, and maintaining a certain thickness to prevent the generation of sludge.
【0108】[0108]
【発明の効果】この発明によれば、生物膜処理において
余剰汚泥が格段に少ない運転が可能であるため、閉塞が
起こりにくく、長期に亘って安定した処理性能を維持す
ることができ、処理装置の維持管理も容易になるなどの
効果がある。EFFECT OF THE INVENTION According to the present invention, since the operation with significantly less surplus sludge is possible in the biofilm treatment, clogging is less likely to occur, and stable treatment performance can be maintained over a long period of time. It also has the effect of making maintenance easier.
【図1】この発明の微細気泡の供給手段を設置しない流
動床の実施例の概念図。FIG. 1 is a conceptual diagram of an embodiment of a fluidized bed in which a means for supplying fine bubbles of the present invention is not installed.
【図2】同じく設置した流動床の実施例の概念図。FIG. 2 is a conceptual diagram of an example of a fluidized bed that is also installed.
1 処理塔 2 汚水パイプ 3 吸水パイプ 5 水位 6 循環ポンプ 7 処理水パイプ 8 スタティックミキサ 9 送気パイプ 10 スクリーン 11 支持床 12 流動床 25 濾水室 1 processing tower 2 Sewage pipe 3 Water absorption pipe 5 water level 6 circulation pumps 7 treated water pipe 8 static mixer 9 Air supply pipe 10 screens 11 Support floor 12 fluidized bed 25 Drainage chamber
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D003 AA14 AB01 AB02 EA22 EA23 EA24 EA25 FA07 4G035 AB43 AE13 4G036 AC70 4G037 AA01 EA10 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 4D003 AA14 AB01 AB02 EA22 EA23 EA24 EA25 FA07 4G035 AB43 AE13 4G036 AC70 4G037 AA01 EA10
Claims (10)
つ多孔性セラミックスを粒状化したものと、粒状の炭素
分を混合したものを微生物の担体として用い、担体を流
動させる状態で浄化すべき水と担体の微生物とを接触さ
せることを特徴とした水の浄化方法。1. A granular material of porous ceramics having SiO 2 and Al 2 O 3 as main components and a mixture of granular carbon content are used as a carrier for microorganisms, and the carrier is purified in a fluidized state. A method for purifying water, characterized in that the water to be treated is brought into contact with the microorganisms of the carrier.
80体積%、炭素分として20体積%〜90体積%を用
いることを特徴とした請求項1記載の水の浄化方法。2. A volume ratio of 10% by volume as the porous ceramics.
The water purification method according to claim 1, wherein 80% by volume and 20% by volume to 90% by volume as the carbon content are used.
下で流動させることを特徴とした請求項1又は2記載の
水の浄化方法。3. The method for purifying water according to claim 1, wherein the carrier is caused to flow while supplying fine bubbles of a gas containing oxygen.
高い濃度の酸素を含む気体とし、その微細気泡の供給下
で、担体を流動させることを特徴とした請求項3記載の
水の浄化方法。4. The method for purifying water according to claim 3, wherein the gas containing oxygen is air or a gas containing oxygen at a concentration higher than air, and the carrier is caused to flow under the supply of fine bubbles. .
石又は水酸化アルミニウムから選んだ二種以上のものに
気孔形成材料を添加して焼成することにより成形するこ
とを特徴とした請求項1、2、3又は4の何れか1項記
載の水の浄化方法。5. The porous ceramic carrier is formed by adding a pore-forming material to two or more kinds selected from clay, silica stone, or aluminum hydroxide and firing the mixture. The method for purifying water according to any one of 2, 3, or 4.
つ多孔性セラミックスを粒状化したものと、粒状の炭素
分を混合したものが担体として充填された流動床処理塔
中に、浄化すべき水を上向流で流す為の水の供給手段を
設置したことを特徴とする水の浄化装置。6. A fluidized bed treatment tower in which a granular material of porous ceramics containing SiO 2 and Al 2 O 3 as main components and a mixture of granular carbon components are packed as a carrier are purified. A water purifying device, which is provided with a water supply means for flowing the power water in an upward flow.
80体積%、炭素分として20体積%〜90体積%を用
いたことを特徴とする請求項6記載の水の浄化装置。7. The volume percentage of porous ceramics is from 10% by volume.
The water purifying apparatus according to claim 6, wherein 80% by volume and 20% by volume to 90% by volume as the carbon content are used.
設置したことを特徴とする請求項6記載の水の浄化装
置。8. The water purifying apparatus according to claim 6, further comprising a supply means for supplying fine bubbles of a gas containing oxygen.
濃度の酸素を含む気体としたことを特徴とする請求項8
記載の水の浄化装置。9. The gas containing oxygen is air and a gas containing oxygen at a concentration higher than that of air.
The water purification device described.
珪石又は水酸化アルミニウムから選んだ二種以上のもの
に気孔形成材料を添加して焼成成形したことを特徴とす
る請求項6記載の水の浄化装置。10. The porous ceramic carrier is clay,
7. The water purifying apparatus according to claim 6, wherein the pore-forming material is added to two or more kinds selected from silica stone or aluminum hydroxide and fired and molded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001266297A JP2003071480A (en) | 2001-09-03 | 2001-09-03 | Water purification method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001266297A JP2003071480A (en) | 2001-09-03 | 2001-09-03 | Water purification method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003071480A true JP2003071480A (en) | 2003-03-11 |
Family
ID=19092623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001266297A Pending JP2003071480A (en) | 2001-09-03 | 2001-09-03 | Water purification method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003071480A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005329397A (en) * | 2004-04-23 | 2005-12-02 | Mitsubishi Rayon Co Ltd | Separation method and separation apparatus |
US11571375B2 (en) | 2018-06-29 | 2023-02-07 | The Procter & Gamble Company | Dual phase products |
US11583479B2 (en) | 2018-06-29 | 2023-02-21 | The Procter & Gamble Company | Dual phase products |
US11889912B2 (en) | 2018-06-29 | 2024-02-06 | The Procter & Gamble Company | Dual phase products |
US12194119B2 (en) | 2018-06-29 | 2025-01-14 | The Procter & Gamble Company | Dual phase products |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61153196A (en) * | 1984-12-25 | 1986-07-11 | Fuiruton Internatl Kk | Waste water treating apparatus |
JPS6211596A (en) * | 1985-07-09 | 1987-01-20 | Fuiruton Internatl Kk | Treatment of waste water by microbe and apparatus therefor |
JPS62181773A (en) * | 1986-02-05 | 1987-08-10 | Agency Of Ind Science & Technol | Liquid-treatment process and apparatus therefor |
JPH02107582A (en) * | 1988-10-13 | 1990-04-19 | Hisao Yamazaki | Porous soft ceramics and production thereof |
JPH07214088A (en) * | 1994-02-10 | 1995-08-15 | Tonen Corp | Extrusion flow type three-phase fluid biological treatment equipment |
JPH08141589A (en) * | 1994-11-24 | 1996-06-04 | Nagao Kk | Ceramics porous element and treatment of waste water using the same |
JPH09220089A (en) * | 1996-02-19 | 1997-08-26 | Shinagawa Refract Co Ltd | Ceramic microbial immobilization carrier |
JPH10139564A (en) * | 1996-11-01 | 1998-05-26 | Fuirutetsuku Kk | Porous ceramic composite and its production |
JPH10151475A (en) * | 1996-11-22 | 1998-06-09 | Kurita Water Ind Ltd | Contact oxidation type biological treatment equipment |
JPH10202278A (en) * | 1997-01-22 | 1998-08-04 | Matsushita Electric Ind Co Ltd | Circulating warm bath |
JP2001025785A (en) * | 1999-05-07 | 2001-01-30 | Sgr:Kk | Sewage bio-purification method using porous ceramic composite and string-shaped contact material |
JP2001137893A (en) * | 1999-11-15 | 2001-05-22 | Nippon Flour Mills Co Ltd | Method and apparatus for treating high-concentration organic waste liquid |
JP2001310197A (en) * | 2000-05-02 | 2001-11-06 | Nippon Flour Mills Co Ltd | Method and apparatus for treating shochu waste liquid |
-
2001
- 2001-09-03 JP JP2001266297A patent/JP2003071480A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61153196A (en) * | 1984-12-25 | 1986-07-11 | Fuiruton Internatl Kk | Waste water treating apparatus |
JPS6211596A (en) * | 1985-07-09 | 1987-01-20 | Fuiruton Internatl Kk | Treatment of waste water by microbe and apparatus therefor |
JPS62181773A (en) * | 1986-02-05 | 1987-08-10 | Agency Of Ind Science & Technol | Liquid-treatment process and apparatus therefor |
JPH02107582A (en) * | 1988-10-13 | 1990-04-19 | Hisao Yamazaki | Porous soft ceramics and production thereof |
JPH07214088A (en) * | 1994-02-10 | 1995-08-15 | Tonen Corp | Extrusion flow type three-phase fluid biological treatment equipment |
JPH08141589A (en) * | 1994-11-24 | 1996-06-04 | Nagao Kk | Ceramics porous element and treatment of waste water using the same |
JPH09220089A (en) * | 1996-02-19 | 1997-08-26 | Shinagawa Refract Co Ltd | Ceramic microbial immobilization carrier |
JPH10139564A (en) * | 1996-11-01 | 1998-05-26 | Fuirutetsuku Kk | Porous ceramic composite and its production |
JPH10151475A (en) * | 1996-11-22 | 1998-06-09 | Kurita Water Ind Ltd | Contact oxidation type biological treatment equipment |
JPH10202278A (en) * | 1997-01-22 | 1998-08-04 | Matsushita Electric Ind Co Ltd | Circulating warm bath |
JP2001025785A (en) * | 1999-05-07 | 2001-01-30 | Sgr:Kk | Sewage bio-purification method using porous ceramic composite and string-shaped contact material |
JP2001137893A (en) * | 1999-11-15 | 2001-05-22 | Nippon Flour Mills Co Ltd | Method and apparatus for treating high-concentration organic waste liquid |
JP2001310197A (en) * | 2000-05-02 | 2001-11-06 | Nippon Flour Mills Co Ltd | Method and apparatus for treating shochu waste liquid |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005329397A (en) * | 2004-04-23 | 2005-12-02 | Mitsubishi Rayon Co Ltd | Separation method and separation apparatus |
US11571375B2 (en) | 2018-06-29 | 2023-02-07 | The Procter & Gamble Company | Dual phase products |
US11583479B2 (en) | 2018-06-29 | 2023-02-21 | The Procter & Gamble Company | Dual phase products |
US11889912B2 (en) | 2018-06-29 | 2024-02-06 | The Procter & Gamble Company | Dual phase products |
US12194119B2 (en) | 2018-06-29 | 2025-01-14 | The Procter & Gamble Company | Dual phase products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101761949B1 (en) | Suspended media membrane biological reactor system and process including suspension system | |
CN1127454C (en) | Waste water treatment apparatus | |
JPH0137992B2 (en) | ||
JPH01135592A (en) | Biological purification of waste water | |
CN101318758A (en) | A water treatment process combining air flotation and biological filter | |
PL167645B1 (en) | Method of and reactor for treating water | |
NZ243700A (en) | Treating waste liquid using primary and secondary tanks containing filtering medium and periodic back flushing | |
JP2010125361A (en) | Wastewater treatment system and purification system | |
CN1277942A (en) | System for treatment of water or wastewater, and method using such system | |
KR101889687B1 (en) | Waste water purifing apparatus for water closet | |
US20110180467A1 (en) | Submerged biofiltration purifying apparatus | |
JP4119997B2 (en) | Wastewater septic tank | |
CN214781350U (en) | Sewage deepening treatment system | |
KR100878324B1 (en) | Circulating flush toilet | |
JP2003071480A (en) | Water purification method and apparatus | |
JP3491125B2 (en) | Water treatment equipment | |
JP2004322084A (en) | Biological filtration equipment | |
CA2565052A1 (en) | System for improved dissolved air floatation with a biofilter | |
CN209052538U (en) | A kind of sewage-treatment plant | |
JP2014217806A (en) | Water purification method and apparatus | |
CN101798158A (en) | Advanced treatment method of refractory organic industrial sewage | |
JP3972406B2 (en) | 厨 芥 Processing device | |
KR20090129288A (en) | Circulating flush toilet | |
RU2472719C2 (en) | Method of increasing efficiency of aerobic waste water treatment | |
JPH0710384B2 (en) | Sewage treatment equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120112 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121030 |