[go: up one dir, main page]

JP2003069011A - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法

Info

Publication number
JP2003069011A
JP2003069011A JP2001255454A JP2001255454A JP2003069011A JP 2003069011 A JP2003069011 A JP 2003069011A JP 2001255454 A JP2001255454 A JP 2001255454A JP 2001255454 A JP2001255454 A JP 2001255454A JP 2003069011 A JP2003069011 A JP 2003069011A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
manufacturing
silicon
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001255454A
Other languages
English (en)
Other versions
JP2003069011A5 (ja
Inventor
Yasuhiro Shimamoto
泰洋 嶋本
Katsunori Obata
勝則 小畑
Kazunari Torii
和功 鳥居
Masahiko Hiratani
正彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001255454A priority Critical patent/JP2003069011A/ja
Priority to TW091116494A priority patent/TW564549B/zh
Priority to US10/216,792 priority patent/US6787451B2/en
Publication of JP2003069011A publication Critical patent/JP2003069011A/ja
Priority to US10/900,430 priority patent/US7119407B2/en
Publication of JP2003069011A5 publication Critical patent/JP2003069011A5/ja
Priority to US11/516,629 priority patent/US20070001244A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/671Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor having lateral variation in doping or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31616Deposition of Al2O3
    • H01L21/3162Deposition of Al2O3 on a silicon body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • H10D64/685Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/691Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31641Deposition of Zirconium oxides, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31645Deposition of Hafnium oxides, e.g. HfO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/682Capacitors having no potential barriers having dielectrics comprising perovskite structures
    • H10D1/684Capacitors having no potential barriers having dielectrics comprising perovskite structures the dielectrics comprising multiple layers, e.g. comprising buffer layers, seed layers or gradient layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0212Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

(57)【要約】 【課題】 ゲート絶縁膜の膜厚がSiO換算膜厚2n
m以下になる場合、従来のSiO膜の代わりに高誘電
体膜を適用して、リーク電流抑制と薄膜化の両方を実現
する必要がある。しかしながら、従来技術で作製したゲ
ート絶縁膜は、固定電荷発生による閾値電圧のシフト
や、移動度劣化によるドレイン電流低下の問題点があっ
た。 【解決手段】 Si基板(多結晶シリコンゲート)と高
誘電体絶縁膜界面に0.5nm以上のSiO膜を形成
することと、SiO膜形成温度を後工程の熱処理温度
以上にする。 【効果】 本発明によれば、従来のSiO膜に比べて
リーク電流を1/100以下に抑制し、SiO換算膜
厚2nm以下のゲート絶縁膜を有する電界効果トランジ
スタを、固定電荷発生や移動度劣化がなく製造できる。
つまり、微細電界効果トランジスタの低消費電力化、大
電流化を実現することができる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は半導体装置及びその
製造方法に関し、特に、電界効果トランジスタ用のゲー
ト絶縁膜に高誘電体膜を適用した電界効果トランジスタ
を有する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】大規模集積回路(LSI)の基本構成回
路であるMOSトランジスタは、これまでスケーリング
則に従い高集積化を実現してきた。しかし、現状の二酸
化シリコン(SiO)を用いるゲート絶縁膜は、直接
トンネルリーク電流の増大による消費電力の上昇と絶縁
膜の信頼性低下によって、2.0nm以下の膜厚で限界
に到達すると考えられている。また、そのような薄いS
iOは不純物に対する拡散バリアが弱くなるため、ゲ
ート電極からの不純物漏れを引き起こす。さらに、薄い
SiO膜を均一性良く、量産するには厳密な製造制御
が必要となる。
【0003】そこで、更なる素子の微細化と高速化を両
立し、このスケーリング限界を打破するために、SiO
より厚く形成されても同等以上の電界効果性能が得ら
れる“高誘電率(high−K)材料”の開発が精力的
に進められている。有力候補となっている材料は、ジル
コニア(ZrO),ハフニア(HfO)などのIV
族酸化物、アルミナ(Al),イットリア(Y
)などのIII族酸化物、これら金属酸化物とSi
固溶体であるシリケート、などである。IV族酸化
物,III族酸化物はSi半導体の初期にゲート絶縁膜
として利用された材料である。しかし、SiOによる
ゲート絶縁膜の形成技術が確立された後は、その優れた
特性のため、もっぱらSiOが用いられてきた。最近
の報告としては、例えば、ZrOをゲート絶縁膜に用
いた電界効果トランジスタ(FET)はIEDM’99
Tech. Digest pp.145,1999
に、HfOをゲート絶縁膜に用いた電界効果トランジ
スタは2000 Symposium on VLSI T
echnology Digest of Techni
cAl Papersに、アルミナをゲート絶縁膜に用
いた電界効果トランジスタはIEDM’00 Tec
h. Digest pp.145,2000に記載され
ている。金属シリケートの作製方法は、例えば、特開平
11−135774に記載されている。
【0004】
【発明が解決しようとする課題】従来のFET形成工程
では、ゲート絶縁膜を形成した後に、多結晶シリコンな
どからなるゲートを堆積する工程,多結晶シリコンゲー
トに不純物を注入する工程,ゲートを加工する工程,ソ
ース・ドレインに不純物を注入する工程,不純物を活性
化する加熱工程などが存在する。特に、不純物を活性化
する加熱工程は、所望の不純物プロファイルに制御する
ため、900℃以上の温度が望ましい。従って、高誘電
体材料からなるゲート絶縁膜は、上記加熱工程を含むF
ET形成工程を経ても高品質な界面特性を維持する必要
がある。
【0005】しかしながら、例えば、Alをゲー
ト絶縁膜に適用したFETを形成した場合、IEDM’
00 Tech. Digest pp.145,に記載
されているように、次のような問題点が存在する。絶縁
膜中に負の固定電荷が存在するため、Nチャネル型のM
ISFETのフラットバンド電圧が、正電圧側に0.3
V以上シフトし、FETの閾値電圧も変化する。また、
電子の移動度が小さく、SiO膜のユニバーサルカー
ブ(移動度の有効電界依存性を与える普遍的曲線)に比
べて約1/4であるため、FETを動作させた時のソー
ス・ドレイン間の電流を期待通りに増大させることがで
きない。電子の移動度が小さい原因の一つは、絶縁膜中
に負の固定電荷が存在するために、チャネル中の電子が
散乱されるためと考えられている。従って、Al
をゲート絶縁膜に適用するためには、絶縁膜中の負の固
定電荷を取り除く必要がある。
【0006】以下、高誘電体ゲート絶縁膜のSiO
算膜厚(EOT)を次のように定義する。周波数が78
4nmの光を用いたエリプソメータ測定で、屈折率を
1.64に固定して得られるSiOゲート絶縁膜の膜
厚がtOXであるとき、このSiOゲート絶縁膜を用
いて形成したMOSキャパシタと同じ電気容量をもつ高
誘電体ゲート絶縁膜のSiO換算膜厚(EOT)をt
OXとする。
【0007】本発明の目的は、SiO換算膜厚が小さ
く、同じ換算膜厚で比較してリーク電流が小さく、しか
も、FET形成工程の熱負荷にも安定で、界面特性に優
れた高品質な高誘電体絶縁膜を開発することにある。
【0008】
【課題を解決するための手段】上記問題を解決するため
に、発明者らは、第1に高誘電体材料とSi基板界面の
SiO膜とFET特性の関係について、第2にFET
特性と界面SiO膜の形成温度の関係について、第3
にFET特性とゲート電極材料の関係について詳細に調
べた。
【0009】以下、第1に高誘電体材料とSi基板界面
のSiO膜とFET特性の関係について詳述する。高
誘電体材料として、ここではAl膜を例に挙げ
る。Alの作製方法は、次の通りである。Si単
結晶基板(抵抗率10Ωcm,8インチ)をHF洗浄し
た後、ECRスパッタ装置によって室温でAl
を堆積する。装置の概要は図8に示す通りである。Ar
とOの供給量は、マスフローメータによって制御し
た。そして、一定磁界のもとで、2.45GHzのマイ
クロ波を導入し、ECRプラズマを発生させた。マイク
ロ波出力は500Wである。さらに、13.56MHz
のRF電界をAlのリングターゲットに印加すること
で、スパッタリングを行った。RF出力は500Wであ
る。この装置では、Si基板の位置がAlターゲットの
位置から遠く、基板面はスパッタリングターゲット面に
対して90°偏向した上、偏心して配置されている。さ
らに、基板電位を浮遊電位としている。そのため、通常
のDCマグネトロンスパッタ装置に比べてプラズマ損傷
を小さくできる特徴がある。また、面内の堆積膜厚を均
一にするため、ウエハを20RPMで回転させながら堆
積することができた。さらに、シャッター機構を備え、
ECRプラズマ放電やスパッタ放電を安定させた後に、
堆積することができる。成膜室の通常圧力は1×10
−4Pa、ガス導入時の圧力は9×10−2Paであ
る。
【0010】Arの供給量を25sccm,Oの供給
量を3.0sccmとして、Alターゲット表面を酸化
しない状態でスパッタする。Si上に形成された30n
mの膜をオージェ電子分光法によって分析した結果、膜
中にAlとOが均一に分布し、堆積膜がAlであ
ることを確認した。従って、スパッタされたAlは、S
i基板上でECRプラズマ中の酸素によって酸化され、
Al膜になることがわかる。Al膜の成膜
レートは1.7Å/sである。
【0011】Al/Si界面のSiO膜厚がで
きるだけ薄い膜を形成するため、まず、上記方法を用い
てAl膜を12秒間堆積し、さらに、同一装置内
で450℃,10分間の真空中熱処理(Ar雰囲気,圧
力7×10−4Torr)を施した後に、大気中に取り
出した。導出法は後述するが、このときのSiO膜厚
は0.1nm〜0.2nmである。また、上記膜をさら
に酸化性雰囲気で熱処理することによってAl
Si界面にSiO膜を成長させた。TEM測定によっ
て決定したAlの膜厚は2.0nm±0.1nm
である。図9にさまざまな酸化熱処理条件を施した膜の
Si2p電子とAl2p電子のXPSスペクトルを示
す。光電子の検出角度は、試料表面に平行な方向に対し
て30°の方向である。Si2p電子スペクトルに現れ
るSi基板のSi−Si(Si0+)結合エネルギーを
99.2eVとすることでエネルギー位置を決定してい
る。また、Si2p光電子の検出数は全て、Al2p電
子スペクトルに共通して観測された75.7eVの結合
エネルギーを有するピーク(AlのAl3+結合
状態)の面積で規格化している。一方、Si2p電子ス
ペクトルで103.5eV−104.0eVに観測され
るピークは、SiO結合(Si4+)である。試料番
号の順番にSi0+強度が減少し、Si4+強度が増大
しているのは、この順番に界面SiO膜が成長してい
ることに相当する。Alの膜厚(=2.0nm)
と密度は一定と考えられるので、界面のSiO膜の成
長とともに、Si4+結合状態にある光電子量は増大
し、基板のSi0+結合状態にある光電子量は減少す
る。Si2pスペクトルに観測されるSi−O(Si
4+)結合ピーク面積をISi−O,基板のSi−Si
(Si0+)結合ピーク面積をI Si,光電子の平均自
由行程をλとすると、界面のSiO膜厚dXPSとの
間に次の関係式(1)が成立することが知られている
(Appl. Phys. Lett., 78(199
6)6653)。
【0012】
【式1】
【0013】今回、λ=3.9nm、K=0.45とし
てSiO膜厚(dXPS)を決定した。上記(1)式
によって決定したSiO膜厚(dXPS)は、リン酸に
よってAl層だけ除去した後にエリプソメータに
よって測定したSiO膜厚dELとdEL=dXPS
+0.4nmの関係にある。これは、エリプソメータで
測定した膜厚が、実際のSiO膜厚よりも表面吸着層
の存在の分だけ大きく見えるためである。また、Alゲ
ートを堆積後に測定したAl/Al/SiO
Siキャパシタの電気的膜厚EOTはSiO界面膜厚
の変化に対して変化率1.0で対応することを確認し
た。また、図10に示されるEOTのAl 膜厚依
存性からAl膜厚をゼロに外挿した膜厚が界面S
iO膜厚に相当する。図10から決定した界面SiO
膜厚と(1)式を用いて決定したSiO膜厚が0.
1nm以内の差で一致することを確認した。表1に、図
9に示した膜の酸化熱処理条件と上記方法で決定した界
面のSiO膜厚をまとめた。
【0014】
【表1】
【0015】最も界面のSiO膜厚が薄い試料#0に
ついて、図9に示されるAl2p電子のXPSスペクト
ルに注目する。Alの結合状態を示すAl3+
合(75.7eV)と、それよりも低エネルギー側(7
3.6eV)にピークが観測された。このピークは、金
属AlのAlの結合位置(72.8eV)に近いの
で、Al−Al−O(Al1+)などのようにAl
よりも酸素が少ない結合状態だと考えられる。角度分
解XPSスペクトルによって、このAl金属的な結合状
態(AlO)は、AlとSiに挟まれ、Si基
板側に存在することがわかった。また、この結合状態は
界面のSiO膜厚が薄い(0.1nm−0.2nm)
場合にだけ観測された。
【0016】次に、Alゲートを堆積した後にAl/A
/SiO/Si構造を有するMISキャパシ
タの容量−電圧特性の界面SiO膜厚依存を調べた。
図5に界面SiO膜厚とフラットバンド電圧のシフト
量ΔVFBの関係を示した。図5から、SiO膜厚が
薄い場合、正電圧側に約3.0Vシフトすることがわか
る。これは、膜中に負の固定電荷が存在することを示し
ている。そして、界面SiO膜厚の増大とともにΔV
FBは小さくなり、0.5nm以上の界面SiO膜が
存在する場合に消失することがわかった。今回、SiO
膜の形成温度が300℃から1100℃の膜に調べて
みたが、以上の特性は酸化熱処理温度に依存しないこと
を確認した。
【0017】ここで、負の固定電荷発生メカニズムを考
える。前述したように、SiO膜厚が薄い場合に、A
/Si界面に金属的なAlO結合状態(Al
からOが欠損した状態)が安定に存在する。Al
が還元された状態のAlO中では、負電荷の発
生が予想できる。ΔVFB>3.0Vから見積もられる
固定電荷量は、4×1013/cm以上である。一
方、SiO膜の成長に伴いフラットバンド電圧のシフ
ト量が減少するのは、Al中の酸素分布が一様に
なり、AlO層が減少するためと考えられる。そし
て、0.5nmのSiO層が存在する場合に、Al
/SiO界面の酸素分布は一様になり、AlO
層が消失する。SiO膜が薄いときに、AlO層が
形成されるのは、SiO/Si界面のようにAl
/Si界面を急峻にできないためと考えられる。Al
とSi基板界面を整合させるためには、0.5n
m以上のSiOバッファ層が必要である。SiO
厚が約0.3nmの場合、図9のAl2p電子のXPS
スペクトル(#2の場合)でAlO層が消失している
にもかかわらず、図5でフラットバンド電圧シフトが約
0.3V存在した。ΔV FB=0.3Vから見積もられ
る固定電荷量は、約4×1012/cmである。XP
Sスペクトルの感度がせいぜい1013/cm程度で
あることを考えると、XPS測定で観測できないことも
理解できる。
【0018】以上の検討から見出された、界面特性に優
れたAlゲート絶縁膜を形成するための第1の発
明は、AlとSi基板の間に0.5nm以上の界
面SiO膜を有する構造である。後述するが、これら
の膜は少なくとも750℃以下の熱負荷に対して安定で
ある。本発明は、Al以外の他のhigh−K絶
縁膜についても適用できる。HfO膜,ZrO膜,
La膜について、界面SiO膜厚とフラットバ
ンド電圧シフト量の関係を図5に同時に示した。これら
の膜の場合、金属のHf,Zr,Laを蒸着後に300
℃の減圧酸素雰囲気で高速酸化処理を行い、熱処理時間
とO分圧を変えることで界面SiO膜厚を制御し
た。Alと同様にXPSスペクトル,TEM測
定,エリプソメータ測定によってSiO膜厚を導出し
た。ゲート電極はPtである。図1から、これらの高誘
電体絶縁膜の場合にも、フラットバンド電圧シフトをゼ
ロにするために界面SiO膜が0.5nm以上必要で
あることがわかる。以上は、Y やLa以外
の希土類酸化物やHfSiO膜,ZrSiO膜につ
いても同じであることを確認した。
【0019】以下、第2に行った検討として、FET特
性と界面SiO膜の形成温度の関係について詳述す
る。発明者らは、まず、Al/SiO/Si構
造の熱安定性を調べた。酸化熱処理によってAl
/SiO/Si構造を形成した後に、不活性雰囲気中
で後熱処理を行い、Alゲート電極を形成し、容量−電
圧測定を行った。図6に後熱処理温度とフラットバンド
電圧シフト量の関係を示す。いずれの膜も0.5nm−
0.7nmの界面SiO膜を有する膜であり、酸化直
後のフラットバンド電圧シフト量はゼロである。膜形成
の酸化熱処理温度が400℃の膜は、後熱処理温度が7
50℃以下であれば、形成温度に依存せずにフラットバ
ンド電圧シフトが生じることはなかった。しかし、80
0℃以上の後熱処理を行った場合、0.5nm以上の界
面SiO膜が存在しても後熱処理後にフラットバンド
電圧の正電圧シフトが観測された。これは、Al
/SiO界面の酸素分布が高温熱処理によって変化し
た結果と考えられる。しかし、膜の形成温度(酸化処理
温度)が、後熱処理温度と同じか、もしくはそれ以上で
あれば、850℃以上の熱処理温度に対してもフラット
バンド電圧のシフトは見られなかった。以上の結果が示
すように、発明者が見出した第1の発明であるAl
とSi基板の間に0.5nm以上の界面SiO膜を
有する構造の膜は750℃以下の後熱処理後も安定で、
優れた界面特性を示すことがわかった。発明者が見出し
た第2の発明は、後工程の熱処理温度以上の温度で、酸
化性雰囲気において、AlとSi基板界面に0.
5nm以上の界面SiO膜を形成することを特徴とす
る成膜方法である。これによって、1100℃の熱処理
に対して安定で、優れた界面特性を示す絶縁膜を形成す
ることができる。ただし、この場合、高温酸化で酸化膜
厚を制御するため、希釈酸素、もしくは減圧酸素雰囲気
中の熱処理が必要である。例えば、O分圧5torr
の雰囲気中で1000℃,5秒の高速酸化処理(RTO
処理)を施すことでAlとSi基板の間に0.6
nmのSiO膜を形成することができる。また、O
分圧1torrの雰囲気中で1100℃,5秒のRTO
処理を施すことでAlとSi基板の間に0.6n
mのSiO膜を形成することができる。
【0020】上記第2の発明は、Al膜に限ら
ず、他の高誘電体絶縁膜の形成方法として有効である。
ZrO膜,HfO膜について、膜形成後の減圧酸素
雰囲気中熱処理によって界面SiO膜を形成した後
に、不活性雰囲気中で後熱処理を行った。そして、Pt
ゲート電極を形成し、MISキャパシタ容量の電圧依存
を測定した。図7に後熱処理温度とMISキャパシタの
フラットバンド電圧シフト量の関係を示す。いずれの膜
も0.8nmの界面SiO膜を有する膜である。酸化
処理温度が400℃の膜は、後熱処理温度が750℃以
下であれば、形成温度に依存せずにフラットバンド電圧
シフトが生じることはなかった。しかし、800℃以上
の後熱処理を行ったところ、後熱処理温度が酸化処理温
度より高い膜の場合、フラットバンド電圧の正電圧シフ
トが観測された。これは、800℃以上の高温熱処理に
よって高誘電体絶縁膜とSiO界面でSi,O,Hf
(Zr)が相互拡散した結果と考えられる。しかし、後
熱処理温度よりも高い温度の酸化性雰囲気で界面SiO
膜を形成した膜の場合、FET特性の劣化は見られな
かった。以上の結果が示すように、後工程の熱処理温度
以上の酸化処理温度で高誘電体絶縁膜とSi基板の間に
界面SiO膜を形成することによって、1100℃の
熱処理に対して安定で、優れた界面特性を示す絶縁膜を
形成することができる。以上は、HfO,ZrO
限らず、YやLaなどの希土類酸化物,H
fSiO,ZrSiOについても同様である。ま
た、Hf添加SiO膜,Zr添加SiO膜でも同様
であった。ただし、この場合、高温酸化で酸化膜厚を制
御するために、希釈酸素もしくは減圧酸素雰囲気中の熱
処理が必要である。例えば、O分圧1torrの雰囲
気中で1000℃,5秒のRTO処理を施すことで高誘
電体絶縁膜とSi基板の間に0.7nmのSiO膜が
成長する。また、O分圧1torrの雰囲気中で11
00℃,5秒のRTO処理を施すことで高誘電体絶縁膜
とSi基板の間に1.0nmのSiO膜が成長する。
【0021】上記では、高誘電体絶縁膜とSi基板の間
に必要な界面SiO膜を、高誘電体絶縁膜形成後の酸
化熱処理によって形成したが、高誘電体絶縁膜堆積前に
形成することも可能である。例えば、Si基板を酸化性
雰囲気の熱処理で酸化して0.5nmのSiO膜を形
成した後に高誘電体絶縁膜を堆積することで750℃以
下の後熱処理温度でも安定で、優れた界面特性を示す膜
を形成できる。また、この場合も、SiO膜形成温度
を後熱処理温度以上にすることで熱安定性が高く優れた
界面特性を示す絶縁膜を形成することができる。ただ
し、高誘電体絶縁膜形成後にさらに界面SiO膜が成
長しない酸化条件で熱処理をすることが望ましい。例え
ば、後熱処理温度が1000℃の場合、次のように高誘
電体絶縁膜を形成すればよい。Si基板をO分圧5t
orrの雰囲気中で1000℃,5秒のRTO処理を施
すことで0.5nmのSiO膜を形成する。さらに高
誘電体絶縁膜を堆積した後に、O分圧1torrの雰
囲気中で1000℃,5秒のRTO処理を施すことが望
ましい。
【0022】また、高誘電体絶縁膜とSi基板の間のS
iO膜をシリコン酸窒化膜(SiON)に置き換える
ことも可能である。成膜方法は次の通りである。第1の
方法は、上記方法で形成した0.5nm以上のSiO
膜を有する高誘電体絶縁膜/SiO/Si基板にさら
にNO処理を施すことで、SiO/Si界面付近にN
を導入する方法である。NO処理条件は、例えば900
℃程度のNO雰囲気中で10秒の熱処理である。第2の
方法は、まず、高誘電体絶縁膜堆積前にSi基板をN
O雰囲気の熱処理で酸化して0.5nm以上のSiON
膜を形成する方法である。その後に高誘電体絶縁膜を堆
積することで750℃の後熱処理温度でも安定で、優れ
た界面特性を示す膜を形成できる。例えばNO処理条
件は、N O分圧10torrの雰囲気中で1000
℃,5秒の高速熱処理を施すことで0.5nmのSiO
N膜を形成することができる。SiON膜の形成温度
を、後熱処理温度以上にすることで、熱安定性に優れた
膜を形成できる。ただし、高誘電体絶縁膜形成後にさら
に界面SiO膜が成長しない酸化性雰囲気で熱処理を
することが望ましい。さらに、第3の方法は、次の通り
である。Si基板をHF洗浄後にNH雰囲気中700
℃以下の温度で窒化する。このときの窒化膜はSi表面
1層程度である。そして高誘電体絶縁膜を堆積し、酸化
性雰囲気の熱処理を行い、高誘電体絶縁膜とSi界面に
0.5nm以上のSiON膜を形成する。この場合も酸
化性雰囲気の熱処理温度を、後熱処理温度以上にするこ
とで、熱安定性に優れた膜を形成できる。第4の方法は
次の通りである。Si基板上に高誘電体絶縁膜を形成後
に、NO雰囲気中で熱処理で界面に0.5nm以上の
SiON膜を形成する。この場合も酸化性雰囲気の熱処
理温度を、後熱処理温度以上にすることで、熱安定性に
優れた膜を形成できる。例えばNO処理条件は、N
O分圧10torrの雰囲気中で1000℃,5秒の高
速熱処理を施すことで0.5nmのSiON膜を形成す
ることができる。上記熱処理でNO熱処理はNO処理
に置きかえることもできる。上記4つの方法によって、
界面SiON膜を形成することで、リーク電流をさらに
1/2以下に抑制することができる。
【0023】以下、第3に行った検討として、FET特
性とゲート電極材料の関係について詳述する。発明者ら
は、まず、多結晶シリコンゲートを用いたAl
ート絶縁膜について検討した。1.5nmのAl
膜を堆積後に、O分圧5Torrの雰囲気中で100
0℃,5秒の高速熱処理を行い、界面SiO膜を0.
6nm形成した後、多結晶Siゲートを形成した。続い
て、ゲート,ソース,ドレイン領域に不純物イオンを打
ち込み、活性化熱処理として1000℃,5秒の高速熱
処理を行った。さらに配線形成工程を経た後に、MIS
FETを形成した。MISキャパシタの容量の電圧依存
を測定した結果、膜のSiO換算膜厚は1.3nmで
あった。しかし、同時に+0.3Vのフラットバンド電
圧シフトが観測された。これは、多結晶Siゲート電極
とAl界面も急峻にできないため、Al
の酸素が多結晶Siゲート電極にわずかに拡散しAlO
層が形成され、負の固定電荷を発生するためと考えら
れる。このときのNチャネル型のMISFETの移動度
は、SiO膜のユニバーサルカーブ(移動度の有効電
界依存性を与える普遍的曲線)に比べて約3/4に劣化
した(図21中のAlゲート絶縁膜の場合)。
この劣化原因は、多結晶シリコンゲートとAl
面に存在する負の固定電荷によって、電子が散乱される
ためと考えられる。IEDM’00 Tech. Dig
est pp.145, 2000に記載されているAl
を用いたNチャネル型のMISFETの移動度は
ユニバーサルカーブに比べての約1/4に劣化している
(図21中の従来の技術)。本発明者らの検討結果の方
が移動度が約3倍大きいのは、Al/Si基板界
面の固定電荷を本発明によって減らすことができたため
と考えられる。
【0024】さらなる検討の結果、多結晶Si/Al
界面に0.5nmのSiO層を形成することによ
って、固定電荷を消失できることを見出した。作製方法
は次の通りである。1.0nmのAl膜堆積に引
き続きSiとHOを用いたALCVD法によっ
てSiO膜を0.5nm形成する。さらに、酸化性雰
囲気の熱処理によってAl/Si基板界面に0.
5nm以上のSiO膜を形成する。ソース・ドレイン
の活性化熱処理が800℃以上になる場合、酸化熱処理
温度は活性化熱処理温度以上の例えばO分圧5tor
rの雰囲気中で1000℃,5秒の高速熱処理を行えば
よい。以上の作製方法によって、フラットバンド電圧シ
フトがなくて、移動度の劣化がない(図21中のAl
ゲート絶縁膜の場合)FETを形成できることを
見出した。ただし、この場合、Al膜とSi基板
界面,Al膜と多結晶シリコン基板界面にいずれ
も0.5nm以上のSiO膜が必要であるため、ゲー
ト絶縁膜の薄膜化を阻害する要因になる。例えば、上記
の方法で形成したゲート絶縁膜のSiO換算膜厚は
1.6nmであった。
【0025】次に、ゲート電極材料として高融点金属材
料を検討した。界面SiO膜厚を0.5nm形成した
Al膜(1.5nm)上に反応性スパッタリング
法によってTiN膜を形成した後、スパッタリング法に
よってW膜を堆積した。この場合、Alと多結晶
シリコンゲート界面に見られるような不整合は発生せず
に、優れた界面特性を維持することができた。MISキ
ャパシタのSiO換算膜厚は1.2nmであった。上
記TiN膜は、ゲート絶縁膜とWの反応防止のため必要
であり、WN,MoN,TaN,ZrN,HfNなどの
導電性バリア膜に置きかえることが可能である。また、
W電極をMo電極に置きかえることもできる。また、後
工程の熱処理温度以上の酸化処理温度でAl膜と
Si基板の間に界面SiO膜を形成することによっ
て、後工程の熱負荷に対して安定なFETを形成するこ
とができる。また、界面SiO膜はSiON膜でも同
様である。
【0026】上記は、Alとゲート電極材料の整
合性について述べたが、Al以外の高誘電体絶縁
膜とゲート電極材料の関係を調べた。ここでは、HfO
膜を例に挙げて説明する。3.0nmのHfO膜を
HfClとHOを用いるALCVD法によって堆積
した。基板温度は300℃である。堆積後にO分圧1
Torrの雰囲気中で1050℃,5秒の高速熱処理を
行い、界面SiO膜を0.8nm形成した後、多結晶
Siゲートを形成した。さらに、ゲート,ソース,ドレ
イン領域に不純物イオンを打ち込み、活性化熱処理とし
て1050℃,1秒の高速熱処理を行った。さらに配線
形成工程を経た後に、MISFETを形成した。MIS
キャパシタの容量の電圧依存を測定した結果、膜のSi
換算膜厚は1.5nmであった。また、フラットバ
ンド電圧シフト量は0.1V以下であり、MISFET
の移動度は、SiO膜のユニバーサルカーブ(移動度
の有効電界依存性を与える普遍的曲線)とほぼ一致し
た。以上の結果は、多結晶Siゲート電極とHfO
面の整合性がAlよりも優れることを示してい
る。MISFETの断面TEM分析を行った結果、 H
fOと多結晶シリコンの界面に0.5nmの界面層が
見られた。元素分析の結果、この層はHfがわずかに混
入したSiO膜であることがわかった。多結晶Siゲ
ート電極とAl界面には、反応層が見られないこ
とから、両者の整合性の差を与える原因の一つはこの反
応層の存在にあると考えられる。このSiOを主とす
る界面層の存在がバッファ層の役目を果たし、固定電荷
の発生を抑制するためと推測する。以上は、HfO
限らず、ZrOでも同様であった。一方、HfSiO
,ZrSiOの場合、上記反応層は見られないが、
界面特性に優れた膜を形成できることを確認した。ま
た、多結晶シリコンゲートの代わりに高融点金属材料を
用いることもできる。高誘電体絶縁膜上にTiN,W
N,MoN,TaN,ZrN,HfNなどの導電性バリ
ア膜とW,Mo等の金属を積層することで、優れた界面
特性を維持することができる。また、後工程の熱処理温
度以上の酸化処理温度で高誘電体絶縁膜とSi基板の間
に界面SiO膜を形成することによって、後工程の熱
負荷に対して安定なFETを形成することができる。ま
た、界面SiO膜はSiON膜でも同様である。
【0027】尚、ゲート絶縁膜として、Al膜と
Al以外の高誘電体絶縁膜の積層膜を用いること
も可能である。作製方法は以下の通りである。Si基板
上に例えばALCVD法によって0.5nmのAl
を形成した後に、同じくALCVD法によって例えば
3.0nmのHfO膜を堆積する。そして、1050
℃で5Torrの減圧酸素雰囲気中で5秒の高速熱処理
を行い、Al/Si界面に0.5nmのSiO
膜を形成する。さらに上記に述べた方法で多結晶Siゲ
ートもしくは高融点金属ゲートを形成する。MISキャ
パシタのSiO 換算膜厚は1.3nm,フラットバン
ド電圧シフト量はゼロであった。また、Nチャネル型,
Pチャネル型のMISFETの移動度が劣化しないこと
を確認した。上記HfO膜の代わりにZrOについ
ても同様に優れた界面特性を示した。
【0028】図10に高誘電体絶縁膜キャパシタのSi
換算膜厚EOTと高誘電体絶縁膜厚の関係を示す。
直線の傾きから各高誘電体絶縁膜の比誘電率がわかる。
また、高誘電体絶縁膜厚をゼロに外挿することで、界面
のSiO膜厚を決定することができる。例えば、EC
Rスパッタ法によって形成したAl膜の場合、比
誘電率が7.8,界面SiO膜厚が0.6nmであっ
た。従って、Al 膜を1.0nm−3.0nm堆
積することによって、換算膜厚EOT=1.1nm−
2.1nmのゲート絶縁膜を形成することができる。ま
た、図11にリーク電流とEOTの関係を示した。高誘
電体絶縁膜を用いることでSiO膜に比べてリーク電
流を1/100以下に抑制することがわかる。
【0029】以上、詳細に説明したように、本発明は、
優れた界面特性を有するFETを提供するゲート絶縁膜
の構造とその成膜方法、特に高誘電体絶縁膜とSi基板
界面のSiO(SiON)膜とその成膜方法に関する
ものである。従って、上記では、高誘電体絶縁膜を、金
属膜の酸化,ECRスパッタ法,ALCVD法によって
堆積したが、これに限らないことは言うまでもない。
【0030】
【発明の実施の形態】以下、本発明を実施例によりさら
に詳細に説明する。理解を容易にするため、図面を用い
て説明し、要部は他の部分よりも拡大して示されてい
る。各部の材質,導電型及び製造条件等は本実施例の記
載に限定されるものではなく、各々多くの変形が可能で
あることは言うまでもない。 <実施例1>図1は本発明の第1の実施例による半導体
装置の完成断面図であり、図14及び図15はその製造
工程順を示す断面図である。
【0031】面方位(100),P導電型,直径20c
mの単結晶Siよりなる半導体基板1に活性領域を画定
する素子間分離絶縁領域(図示せず)の形成,基板濃度
調整用のP導電型イオンの注入と引き延ばし熱処理及び
閾電圧調整用イオン注入と活性化熱処理を従来公知の手
法により施した。その後、トリメチルアルミニウム[A
l(CH]を原料ガスに、HOを酸化ガスに用
いる原子層堆積CVD法(ALCVD法)によって35
0℃で1.0nmのAl膜を堆積する。さらに、
同一装置内において、SiとHOを用いたAL
CVD法によってSiO膜を0.5nm形成する。そ
して、O分圧5torrの雰囲気中で1000℃,5
秒のRTO処理を施すことでAlとSi基板の間
に0.6nmのSiO膜2を形成した。以上の工程に
よって、AlとSi基板の間の0.6nmのSi
膜2と高誘電体絶縁膜3(1.0nmのAl
)とAl膜上の0.5nmのSiO膜4
から形成されるゲート絶縁膜を形成することができる。
【0032】さらに、ゲート電極5となる100nmの
In−Situリンドープ多結晶Si膜5を形成した。
本実施例においては、上記In−Situリンドープ多
結晶Si膜5の形成にモノシラン(SiH)とホスフ
ィン(PH)を用い630℃の温度で堆積を行った
(図12)。上記In−situリンドープ多結晶Si
膜5の低抵抗化は上記のごとく予め不純物を添加するの
ではなく従来公知の相補型MOSの製法に基づき所望ゲ
ート電極領域に選択的にリンを高濃度イオン注入し形成
しても何ら問題ない。続いて750℃の窒素雰囲気中で
5分の熱処理を行った後、上記In−Situリンドー
プ多結晶Si膜5をゲート電極5にそれぞれ加工した。
【0033】ゲート電極5形成後、この状態よりAsイ
オンを加速エネルギー3keV,注入量1×1015
cmの条件で垂直方向からイオン注入し、浅い拡散層
6を形成した。続いて上記浅い拡散層6を包み込むごと
く、Bのイオン注入を垂直方向から加速エネルギー10
keV,注入量4×1013/cmなる条件で実施し
パンチスル−防止のためのP導電型パンチスルー防止拡
散層7とした。次に50nm厚のシリコン酸化膜をプラ
ズマ補助堆積法により400℃の低温で全面に堆積して
から異方性ドライエッチングによりゲート電極5の側壁
部にのみ選択的に残置させてゲート側壁絶縁膜8とし
た。上記ゲート側壁絶縁膜8をイオン注入阻止マスクと
してAsイオンを加速エネルギー30keV,注入量2
×1015/cmの条件で垂直方向からイオン注入
し、N型高濃度拡散層9を形成した(図13)。
【0034】続いて、1000℃,5秒の窒素アニール
で注入イオンの活性化熱処理を施した。さらにCo膜を
スパッタリング法により全面に薄く堆積し、500℃に
おける短時間アニールによるシリサイド化を施した。未
反応Co膜を塩酸と過酸化水素水混合液で除去し、Si
基板露出部に選択的にCoシリサイド膜10を残置させ
た後、短時間熱処理によりCoシリサイド膜10の低抵
抗化を施した。次に厚いシリコン酸化堆積膜を全面に形
成した後、その表面を化学的機械的研摩により平坦化し
て表面保護絶縁膜11とした。該表面保護絶縁膜の所望
領域に開口を施してから配線金属の拡散障壁材としての
TiN膜と配線金属としてのW膜を堆積し、その平坦化
研摩により開口部分のみに選択的にW膜を残置した。そ
の後、所望回路構成に従いアルミニュームを主材料とす
る金属膜の堆積とそのパターニングによりソース、ドレ
イン電極12を含む配線を形成し、電界効果トランジス
タを製造した(図1)。これによって、SiO換算膜
厚が1.6nmのMISFETを形成できる。図5のA
/Si界面のSiO界面膜厚とフラットバン
ド電圧シフトの関係が示すように、SiとAl
面に0.5m以上のSiO膜を形成することで、固定
電荷のないゲート絶縁膜を形成できる。また、図6の後
熱処理温度とフラットバンド電圧シフト量の関係が示す
ように、ゲート絶縁膜形成時の酸化熱処理条件を、ソー
ス・ドレインの活性化熱処理温度以上にすることで、キ
ャリア移動度の劣化がなく、優れた界面特性を示すFE
Tを形成できる。上記方法で、ソース・ドレインの活性
化熱処理温度を1050℃,1秒にする場合、ゲート絶
縁膜形成時の酸化熱処理条件は、O分圧1torrの
雰囲気中で1050℃,5秒のRTO処理を施す必要が
ある。
【0035】上記半導体装置の高誘電体絶縁膜3として
Alの代わりにZrOやHfOを適用するこ
ともできる。ZrClを原料ガスに、HOを酸化ガ
スに用いる原子層堆積CVD法(ALCVD法)によっ
て300℃で2.0nmのZrO膜を堆積する。さら
に、同一装置内において、SiとHOを用いた
ALCVD法によってSiO膜を0.5nm形成す
る。そして、O分圧5torrの雰囲気中で1050
℃,5秒のRTO処理を施すことでZrOとSi基板
の間に0.8nmのSiO膜2を形成した。以上の工
程によって、ZrOとSi基板の間の0.8nmのS
iO膜2と高誘電体絶縁膜3(2.0nmのZr
)とZrO膜上の0.5nmのSiO膜4から
形成されるゲート絶縁膜を形成することができる。以下
の作製方法は上記の通りである。以上の方法によって、
SiO換算膜厚が1.8nmのMISFET構造(図
1)を形成できる。図5、図7に示されるように、Si
とZrO界面に0.5m以上のSiO膜を形成する
ことと、ゲート絶縁膜形成時の酸化熱処理条件をソース
・ドレインの活性化熱処理温度以上にすることによっ
て、キャリア移動度の劣化がなく、優れた界面特性を示
すFETを形成できる。HfO膜の場合、2.0nm
のHfO膜をHfClとHOを用いるALCVD
法によって堆積し、上記と同じ作製方法でMISFET
を形成することで、同等の特性を得ることができる。以
上は、ZrOやHfOに限らず、YやLa
などの希土類酸化物,HfSiO,ZrSiO
についても同様である。この場合にも、高温酸化処理に
よってSi基板1と高誘電体絶縁膜3の界面のSiO
膜2の膜厚を制御するために、希釈酸素もしくは減圧酸
素雰囲気中の熱処理が必要である。例えば、O分圧1
torrの雰囲気中で1000℃,5秒のRTO処理を
施すことで高誘電体絶縁膜3とSi基板1の間に0.7
nmのSiO膜2が成長した。また、O分圧1to
rrの雰囲気中で1100℃,5秒のRTO処理を施す
ことで高誘電体絶縁膜3とSi基板1の間に1.0nm
のSiO膜2が成長した。
【0036】また、上記半導体装置のゲート絶縁膜構造
に必要な高誘電体絶縁膜3と多結晶シリコン5の界面の
SiO層4を次の方法で形成することもできる。ここ
では、HfO膜を例に挙げて説明する。2.0nmの
HfO膜をHfClとH Oを用いるALCVD法
によって堆積する。基板温度は300℃である。堆積後
にO分圧1Torrの雰囲気中で1050℃,5秒の
高速熱処理を行い、界面SiO膜2を0.8nm形成
した後、多結晶Siゲート5を形成する。さらに、上記
と同様に、ソース,ドレイン領域の活性化熱処理として
1000℃,5秒の高速熱処理などを行い、MISFE
T構造を完成させる。このとき、MISFETのゲート
絶縁膜構造を断面TEM分析によって調べた結果、Hf
と多結晶シリコンの界面に約0.5nmの界面層が
見られた。元素分析の結果、この層はHfがわずかに混
入したSiO膜であることがわかった。このとき、M
ISキャパシタの容量の電圧依存を測定した結果、膜の
SiO換算膜厚は1.5nmであった。また、フラッ
トバンド電圧シフト量は0.1V以下であり、MISF
ETの移動度は、SiO膜のユニバーサルカーブ(移
動度の有効電界依存性を与える普遍的曲線)とほぼ一致
した。また、図11に示されるリーク電流とEOTの関
係から、上記ゲート絶縁膜は、従来のSiO膜に比べ
てリーク電流を1/1000以下に抑制できることがわ
かった。ゲート絶縁膜にAl膜を用いて、Al
膜上のSiO膜4を形成しなかった場合、MIS
キャパシタは、正電圧側に0.3Vのフラットバンド電
圧シフトを示す。また、キャリアの移動度は、SiO
膜4がある場合に比べて25%劣化する。断面TEM分
析の結果、多結晶Siゲート電極とAl界面に
は、反応層が見られないことから、両者の特性差を与え
る原因はこの界面層の存在にあることがわかる。このS
iOを主とする界面層がバッファ層になって、HfO
膜3と多結晶シリコン5の整合性を維持する役目を果
たし、固定電荷の発生を抑制すると考えられる。この界
面層は、多結晶シリコン形成後の熱処理が700℃以上
になる場合に形成される。従って、HfO膜3とSi
膜2中の酸素と多結晶Siゲートが、高温熱処理で
反応した結果と考えられる。上記の作製方法によって、
高誘電体絶縁膜3と多結晶シリコン5の界面のSiO
層4を堆積しないで形成できる。また、HfOに限ら
ず、ZrOでも同様に界面のSiO層4を形成する
ことができた。
【0037】上記では、高誘電体絶縁膜とSi基板の間
に必要な界面SiO膜を、高誘電体絶縁膜形成後の酸
化熱処理によって形成したが、高誘電体絶縁膜堆積前に
形成することも可能である。例えば、Si基板を酸化性
雰囲気の熱処理で酸化して0.5nmのSiO膜を形
成した後に高誘電体絶縁膜を堆積することで750℃以
下の後熱処理温度でも安定で優れた界面特性を示す膜を
形成できる。また、この場合も、SiO膜形成温度を
後熱処理温度以上にすることで熱安定性が高く優れた界
面特性を示す絶縁膜を形成することができる。ただし、
高誘電体絶縁膜形成後にさらに界面SiO膜が成長し
ない酸化条件で熱処理をすることが望ましい。
【0038】また、高誘電体絶縁膜とSi基板の間のS
iO膜をシリコン酸窒化膜(SiON)に置き換える
ことも可能である。成膜方法は次の通りである。第1の
方法は、上記方法で形成した0.5nm以上のSiO
膜を有する高誘電体絶縁膜/SiO/Si基板にさら
にNO処理を施すことで、SiO/Si界面付近にN
を導入する方法である。NO処理条件は、例えば900
℃程度のNO雰囲気中で10秒の熱処理である。第2の
方法は、まず、高誘電体絶縁膜堆積前にSi基板をN
O雰囲気の熱処理で酸化して0.5nm以上のSiON
膜を形成する方法である。その後に高誘電体絶縁膜を堆
積することで800℃の後熱処理温度でも安定で、優れ
た界面特性を示す膜を形成できる。例えばNO処理条
件は、N O分圧10torrの雰囲気中で1000
℃,5秒の高速熱処理を施すことで0.5nmのSiO
N膜を形成することができる。SiON膜の形成温度
を、後熱処理温度以上にすることで、熱安定性に優れた
膜を形成できる。ただし、高誘電体絶縁膜形成後にさら
に界面SiO膜が成長しない酸化性雰囲気で熱処理を
することが望ましい。さらに、第3の方法は、次の通り
である。Si基板をHF洗浄後にNH雰囲気中700
℃以下の温度で窒化する。このときの窒化膜はSi表面
1層程度である。そして高誘電体絶縁膜を堆積し、酸化
性雰囲気の熱処理を行い、高誘電体絶縁膜とSi界面に
0.5nm以上のSiON膜を形成する。この場合も酸
化性雰囲気の熱処理温度を、後熱処理温度以上にするこ
とで、熱安定性に優れた膜を形成できる。第4の方法は
次の通りである。Si基板上に高誘電体絶縁膜を形成後
に、NO雰囲気中で熱処理で界面に0.5nm以上の
SiON膜を形成する。この場合も酸化性雰囲気の熱処
理温度を、後熱処理温度以上にすることで、熱安定性に
優れた膜を形成できる。例えばNO処理条件は、N
O分圧10torrの雰囲気中で1000℃,5秒の高
速熱処理を施すことで0.5nmのSiON膜を形成す
ることができる。上記熱処理でNO熱処理はNO処理
に置きかえることもできる。上記4つの方法によって、
界面SiON膜を形成することで、リーク電流をさらに
1/2以下に抑制することができる。
【0039】上記では、Al,HfO,ZrO
をALCVD法によって堆積する場合を説明したが、
堆積方法はこれに限らない。例えば、Al,Hf
,ZrO,Y,Laなどの希土類酸
化物膜を、所望の金属酸化物に対応した金属ターゲット
を用いるECRスパッタリング法によって形成すること
もできる。ECRスパッタ装置の概要は図8に示す通り
である。所望の金属酸化物に対応した金属ターゲットを
マスフローメータによって、Arの供給量を25scc
m,Oの供給量を3.0sccmに制御した。そし
て、一定磁界のもとで、2.45GHzのマイクロ波を
導入し、ECRプラズマを発生させた。マイクロ波出力
は500Wである。さらに、13.56MHzのRF電
界を金属のリングターゲットに印加することで、金属タ
ーゲット表面を酸化することなしにスパッタリングを行
うことができる。RF出力は500Wである。所望の膜
厚が得られるように堆積時間を制御して高誘電体絶縁膜
を堆積し、さらに、同一装置内で200℃から500℃
の真空中熱処理(Ar雰囲気,圧力7×10−4Tor
r)を施した後に、大気中に取り出せばよい。また、金
属ターゲットのRFスパッタリング法によって、金属を
蒸着した後に400℃以下の低温酸化で高誘電体絶縁膜
を形成することも可能である。また、HfSiO(Z
rSiO)は、酸化物ターゲットによるスパッタリン
グ法、もしくは、HfCl(ZrCl ),SiH
を原料にHOを酸化ガスに用いたCVD法によって形
成することもできる。 <実施例2>図2は本発明の第2の実施例による電界効
果トランジスタを示す完成断面図であり図14,図15
がその製造工程の模式図である。本実施例2に基づく電
界効果トランジスタでは、多結晶シリコンゲートの代わ
りに高融点金属ゲートを適用している。
【0040】面方位(100),P導電型,直径20c
mの単結晶Siよりなる半導体基板1に活性領域を画定
する素子間分離絶縁領域(図示せず)の形成,基板濃度
調整用のP導電型イオンの注入と引き延ばし熱処理及び
閾電圧調整用イオン注入と活性化熱処理を従来公知の手
法により施した。その後、ECRスパッタリング法によ
ってAl膜3を1.5nmの厚みで形成した。E
CRスパッタリング法は実施例1に示した通りである。
ただし、1.5nmのAl膜を形成するためのス
パッタ時間は9秒とした。そして、O分圧5torr
の雰囲気中で1000℃,5秒のRTO処理を施すこと
でAl膜3とSi基板1の間に0.6nmのSi
膜を形成した。さらにNO雰囲気中で900℃,1
0秒高速熱処理を行うことで、Al膜3とSi基
板1の間に0.7nmの界面SiON膜2を形成した。
実施例1に示されるようにSiON膜を形成した後にA
膜を形成することも可能である。また、SiO
N膜の代わりにSiO膜でも構わない。
【0041】次に、高融点金属の窒化物であるTaNゲ
ート電極13aを反応性スパッタリング法によって形成
する。TaNはTiN,WN,MoN,ZrN,HfN
でも構わない。さらに高融点金属であるWゲート13b
(もしくはMo)をスパッタリング法もしくはCVD法
によって形成した(図14)。さらにフォトレジスト膜
をマスクにしてエッチングすることによってゲート電極
13a,13bを形成する。この状態よりAsイオンを
加速エネルギー3keV,注入量1×1015/cm
の条件で垂直方向からイオン注入し、浅い拡散層6を形
成した。続いて上記浅い拡散層6を包み込むごとく、B
のイオン注入を垂直方向から加速エネルギー10ke
V,注入量4×1013/cmなる条件で実施しパン
チスル−防止のためのP導電型パンチスルー防止拡散層
7とした。次に50nm厚のシリコン酸化膜をプラズマ
補助堆積法により400℃の低温で全面に堆積してから
異方性ドライエッチングによりゲート電極13の側壁部
にのみ選択的に残置させてゲート側壁絶縁膜8とした。
上記ゲート側壁絶縁膜8をイオン注入阻止マスクとして
Asイオンを加速エネルギー30keV,注入量2×1
15/cmの条件で垂直方向からイオン注入し、N
型高濃度拡散層を形成した(図15)。
【0042】続いて、1000℃,5秒の窒素アニール
で注入イオンの活性化熱処理を施した。さらにCo膜を
スパッタリング法により全面に薄く堆積し、500℃に
おける短時間アニールによるシリサイド化を施した。未
反応Co膜を塩酸と過酸化水素水混合液で除去し、Si
基板露出部に選択的にCoシリサイド膜9を残置させた
後、短時間熱処理によりCoシリサイド膜10の低抵抗
化を施した。次に厚いシリコン酸化堆積膜を全面に形成
した後、その表面を化学的機械的研摩により平坦化して
表面保護絶縁膜11とした。該表面保護絶縁膜の所望領
域に開口を施してから配線金属の拡散障壁材としてのT
iN膜と配線金属としてのW膜を堆積し、その平坦化研
摩により開口部分のみに選択的にW膜を残置した。その
後、所望回路構成に従いアルミニュームを主材料とする
金属膜の堆積とそのパターニングによりドレイン及びソ
ース電極12を含む配線を形成し、電界効果トランジス
タを製造した(図2)。これによって、SiO換算膜
厚が1.3nmのMOSFETを形成できる。図5のA
/Si基板界面のSiO界面膜厚とフラット
バンド電圧シフトの関係が示すように、Si基板1とA
膜3の界面に0.5m以上のSiO(SiO
N)膜2を形成することで、固定電荷のないゲート絶縁
膜を形成できる。また、Al膜3と高融点金属の
窒化物13aの界面は整合性がよいためするため、固定
電荷を発生しない。さらに、図6の後熱処理温度とフラ
ットバンド電圧シフト量の関係が示すように、ゲート絶
縁膜形成時の酸化熱処理条件を、ソース・ドレインの活
性化熱処理温度以上にすることで、キャリア移動度の劣
化がなく、優れた界面特性を示すFETを形成できる。
上記方法では、Si基板1とAl膜3の界面をS
iON膜2にすることで、リーク電流をSiO膜に比
べて1/500に抑制することができた。
【0043】上記Al膜の代わりにHfO,Z
rO,Y,Laなどの希土類酸化物、H
fSiO、ZrSiO膜を用いることも可能であ
る。高誘電体絶縁膜3,Si基板1と高誘電体絶縁膜界
面の界面SiO(SiON)膜2の形成工程は、実施
例1に説明した通りである。ただし、これらの高誘電体
絶縁膜は、Al膜と同様に高融点金属の窒化物1
3aとの界面整合性がよいため、高誘電体絶縁膜3と高
融点金属の窒化物13aの間にSiO層は必要ない。
また、高融点金属の窒化物13aの形成後のFET形成
工程は、上記に示した通りである。本発明であるSi基
板と高誘電体絶縁膜界面にSiO(SiON)膜を
0.5nm以上形成することと、SiO膜の形成温度
を後工程の温度よりも高くすることで、界面特性に優れ
た膜を形成できる。
【0044】尚、本実施例2に基づく電界効果トランジ
スタでは容量−電圧特性にゲート電極の空乏化に伴う容
量低下がおこらないため、従来公知の多結晶Siを用い
た電界効果トランジスタと比較して容量が大きくなるこ
とも合わせて明らかとなった。従って、容量特性の観点
からも、本実施例2に基づく電界効果トランジスタが優
れていることが判明した。 <実施例3>図3は本発明の第3の実施例による電界効
果トランジスタを示す完成断面図であり図16から図2
0がその製造工程の模式図である。本実施例3に基づく
電界効果トランジスタでは、ゲート絶縁膜の形成前に注
入イオンの活性化熱処理を行うことで、高誘電体絶縁膜
の熱負荷が軽減されている。
【0045】まず、面方位(100),P導電型,直径
20cmの単結晶Siよりなる半導体基板1に活性領域
を画定する素子間分離絶縁領域(図示せず)の形成,基
板濃度調整用のP導電型イオンの注入と引き延ばし熱処
理及び閾電圧調整用イオン注入と活性化熱処理を従来公
知の手法により施した後、熱酸化膜14を5nm形成し
た。次に上記熱酸化膜14の上に、非晶質のノンドープ
Si膜15を150nm堆積した後、シリコン酸化堆積
膜を50nm堆積して表面保護絶縁膜11を形成した。
その後、従来公知のリソグラフィ法及びエッチング法を
用いて、ダミーゲート電極16を形成した。ダミーゲー
ト電極16形成後、この状態よりPイオンを垂直方向か
らイオン注入し、不純物濃度が1×1020/cm
度の浅い拡散層6を形成した。続いて1050℃,1秒
の条件で熱処理を施し、注入不純物の活性化を実施し
た。続いて上記浅い拡散層6を包み込むごとく、Bのイ
オン注入を施してパンチスル−防止のためのP導電型パ
ンチスルー防止拡散層7とした(図16)。
【0046】続いて、Siを全面に堆積した後、
異方性ドライエッチングによりダミーゲート電極18の
側壁部にのみ選択的に残置させてダミーゲート側壁絶縁
膜17とした。上記ダミーゲート側壁絶縁膜17をイオ
ン注入阻止マスクとして不純物濃度が1×1020/c
程度のN型高濃度拡散層9を形成した後、1050
℃,1秒の条件で注入イオンの活性化熱処理を施した
(図17)。
【0047】続いて、希フッ酸を用いてSiO絶縁膜
14の露出部を除去した後、Co膜をスパッタリング法
により全面に薄く堆積し、500℃における短時間アニ
ールによるシリサイド化を施した。未反応Co膜を塩酸
と過酸化水素水混合液で除去し、Si基板露出部に選択
的にCoシリサイド膜10を残置させた後、短時間熱処
理によりCoシリサイド膜12の低抵抗化を施した(図
18)。この工程によって、本実施例2では、前記実施
例1のようにゲート絶縁膜2形成後にCoシリサイド膜
10を形成する工程と比較して、ゲート絶縁膜の形成後
の熱処理を減らすことができる。
【0048】次に、厚いシリコン酸化堆積膜を全面に形
成した後、その表面を化学的機械的研摩により平坦化し
て表面保護絶縁膜11を形成した後、800℃の窒素雰
囲気で30分のアニールを行った。次に全面を化学的機
械的研摩により平坦化し、ダミーゲート電極16の上面
を露出させた。その後、ダミーゲート電極16を選択的
に除去した後、希フッ酸を用いてSiO絶縁膜14の
露出部を除去し、開口部18を形成した(図19)。
【0049】本実施例3のようにゲート絶縁膜の形成に
先立って、ソース,ドレイン上にCoシリサイド膜10
を形成することで、ゲート絶縁膜やメタルゲート電極に
加わる熱負荷を軽減することができる。その後、開口部
18に高誘電体絶縁膜を、被覆性に優れたCVD法によ
って堆積した。例えば、Al膜の場合、トリメチ
ルアルミニウム[Al(CH]を原料ガスに、H
Oを酸化ガスに用いる原子層堆積CVD法(ALCV
D法)によって350℃で1.0nmのAl膜を
堆積する。さらに、同一装置内において、Si
Oを用いたALCVD法によってSiO膜を0.
5nm形成する。そして、O分圧100torrの雰
囲気中で700℃,60秒のRTO処理を施すことでA
とSi基板の間に0.5nmのSiO膜2を
形成した。以上の工程によって、AlとSi基板
の間の0.5nmのSiO膜2と高誘電体絶縁膜3
(1.0nmのAl)とAl膜上の0.5
nmのSiO膜4から形成されるゲート絶縁膜を形成
することができる。ZrO,HfO,HfSi
,ZrSiOの場合はALCVD法を用いて次の
ようにゲート絶縁膜を形成する。例えば、ZrO膜の
場合、ZrClとHOを原料,反応ガスとするAL
CVD法によって2.0nmのZrO膜を堆積する。
堆積温度は300℃である。O分圧10torrの雰
囲気中で700℃,20秒のRTO処理を施すことでZ
rO膜とSi基板の間に0.6nmのSiO膜2を
形成できる。上記の場合、高誘電体絶縁膜3とSi基板
1の界面のSiO膜を形成する熱処理温度は、拡散層
の不純物プロファイルを変化させない温度,時間に調整
した。
【0050】引き続き、開口部18に、ゲート電極5と
なるIn−Situリンドープ多結晶Si膜5をモノシ
ラン(SiH)とホスフィン(PH)を用い630
℃の温度で100nmの堆積を行った。続いて5nmの
タングステン・ナイトライドを反応性スパッタリング法
により堆積させてWN障壁層19を形成した後、50
nmのタングステンWをスパッタリングにより堆積させ
てWゲート電極20を形成した。続いて、700℃,2
0分の活性化アニールを実施した後、全面を化学的機械
的研摩により平坦化し、埋め込み加工トランジスタ構造
を形成した(図20)。
【0051】その後、厚いシリコン酸化堆積膜を全面に
形成して、表面保護絶縁膜11の所望領域に開口を施し
てから配線金属の拡散障壁材としてのTiN膜と配線金
属としてのW膜を堆積し、その平坦化研摩により開口部
分のみに選択的にW膜を残置した。最後に、所望回路構
成に従いアルミニュームを主材料とする金属膜の堆積と
そのパターニングによりソース・ドレイン電極12及び
ゲート電極配線21を含む配線を形成し、電界効果トラ
ンジスタを製造した(図3)。ZrO膜の場合、In
−situリンドープ多結晶Si膜5とZrO膜3界
面のSiO膜4は、700℃の活性化処理時に両者が
反応して形成されたものである。これは、ZrOに限
らず、HfOでも同様に界面のSiO層4が形成さ
れた。一方、HfSiO、ZrSiOの場合、上記
反応層は見られないが、界面特性に優れた膜を形成でき
ることを確認した。上記方法で形成したMISFETに
ついて、キャパシタのSiO換算膜厚は、例えば、高
誘電体絶縁膜3がAl 膜の場合に1.5nm、Z
rO,HfO膜の場合に1.2nm、HfSi
,ZrSiOの場合に1.4nmであった。ま
た、移動度の劣化が見られず、優れた界面特性を有する
FETを実現することができた。
【0052】また、高誘電体絶縁膜とSi基板の間のS
iO膜をシリコン酸窒化膜(SiON)に置き換える
ことも可能である。この場合の成膜工程は実施例1に示
される通りである。ただし、高誘電体絶縁膜3とSi基
板1の界面のSiON膜を形成する熱処理温度は、拡散
層の不純物プロファイルを変化させない温度,時間に調
整する必要があった。本発明であるSi基板と高誘電体
絶縁膜界面にSiO(SiON)膜を0.5nm以上
形成することによって界面特性に優れたFETを形成す
ることができた。 <実施例4>本実施例は、ゲート絶縁膜の形成前に注入
イオンの活性化熱処理を行うことと、メタルゲート電極
を用いることで、高誘電体絶縁膜の熱負荷が軽減されて
いる電界効果トランジスタの作製方法に関する。図4が
本発明の第4の実施例による電界効果トランジスタを示
す完成断面図である。
【0053】まず実施例3と同様の工程で図19に示す
ような、ソース及びドレイン上にCoシリサイド膜10
が形成され、チャネル部が開口された構造18を作製す
る。引き続き、実施例3と同様の工程で開口部18に高
誘電体絶縁膜を、被覆性に優れたCVD法によって堆積
する。例えば、Al膜の場合、トリメチルアルミ
ニウム[Al(CH]を原料ガスに、HOを酸
化ガスに用いる原子層堆積CVD法(ALCVD法)に
よって350℃で1.5nmのAl膜を堆積す
る。そして、O分圧100torrの雰囲気中で70
0℃,60秒のRTO処理を施すことでAlとS
i基板の間に0.5nmのSiO膜2を形成した。以
上の工程によって、AlとSi基板の間の0.5
nmのSiO膜2と高誘電体絶縁膜3(1.5nmの
Al)から形成されるゲート絶縁膜を形成するこ
とができる。ZrO,HfO,HfSiO,Zr
SiOの場合はALCVD法を用いて次のようにゲー
ト絶縁膜を形成する。例えば、HfO膜の場合、Hf
ClとHOを原料,反応ガスとするALCVD法に
よって3.0nmのZrO膜を堆積する。堆積温度は
300℃である。O分圧10torrの雰囲気中で7
00℃,20秒のRTO処理を施すことでZrO膜と
Si基板の間に0.6nmのSiO膜2を形成する。
上記の場合、高誘電体絶縁膜3とSi基板1の界面のS
iO膜を形成する熱処理温度は、拡散層の不純物プロ
ファイルを変化させない温度,時間に調整した。
【0054】引き続き、開口部18に、高融点金属窒化
膜13aとなるTaNをALCVD法を用いて20nm
蒸着した。本実施例4ではTaNを用いたが、TiN,
WN,MoN,ZrN,HfNでも構わない。さらに高
融点金属膜13bとしてWもしくはMoをスパッタリン
グ法もしくはCVD法によって形成した。その後、厚い
シリコン酸化堆積膜を全面に形成した後、全面を化学的
機械的研摩により平坦化し、埋め込み加工トランジスタ
構造を形成した。そして、表面保護絶縁膜11の所望領
域に開口を施してから配線金属の拡散障壁材としてのT
iN膜と配線金属としてのW膜を堆積し、その平坦化研
摩により開口部分のみに選択的にW膜を残置した。最後
に、所望回路構成に従いアルミニュームを主材料とする
金属膜の堆積とそのパターニングによりソース・ドレイ
ン電極12及びゲート電極配線21を含む配線を形成
し、電界効果トランジスタを製造した(図4)。上記方
法で形成したMISFETについて、キャパシタのSi
換算膜厚は、例えば、高誘電体絶縁膜3がAl
膜の場合に1.2nm、ZrO,HfO膜の場合
に1.1nm、HfSiO,ZrSiOの場合に
1.2nmであった。本実施例の場合、Al膜3
とメタルゲート13の界面の整合性が良いため、多結晶
Siゲートの場合のように界面SiO膜は必要なかっ
た。また、ZrO ,HfO,HfSiO,ZrS
iOの場合、メタルゲート電極の界面に反応層が形成
されることはなかった。上記実施例で作製したFETを
評価した結果、移動度の劣化が見られず、優れた界面特
性を有するとを確認した。
【0055】なお、高誘電体絶縁膜とSi基板の間のS
iO膜をシリコン酸窒化膜(SiON)に置き換える
ことも可能である。この場合の成膜工程は実施例1に示
される通りである。ただし、高誘電体絶縁膜3とSi基
板1の界面のSiON膜を形成する熱処理温度は、拡散
層の不純物プロファイルを変化させない温度,時間に調
整する必要があった。本発明であるSi基板と高誘電体
絶縁膜界面にSiO(SiON)膜を0.5nm以上
形成することによって界面特性に優れたFETを形成す
ることができた。また、本実施例4に基づく電界効果ト
ランジスタでは容量−電圧特性にゲート電極の空乏化に
伴う容量低下がおこらないため、従来公知の多結晶Si
を用いた電界効果トランジスタと比較して容量が大きく
なることも合わせて明らかとなった。
【図面の簡単な説明】
【図1】本発明の第1の実施例による高誘電率ゲート絶
縁膜電界効果トランジスタの完成断面図。
【図2】本発明の第2の実施例による高誘電率ゲート絶
縁膜電界効果トランジスタの完成断面図。
【図3】本発明の第3の実施例による高誘電率ゲート絶
縁膜電界効果トランジスタの完成断面図。
【図4】本発明の第4の実施例による高誘電率ゲート絶
縁膜電界効果トランジスタの完成断面図。
【図5】高誘電体膜/Si基板界面のSiO膜厚とフ
ラットバンド電圧のシフト量ΔVFBの関係を示す図。
【図6】後熱処理温度とフラットバンド電圧シフト量の
関係を示す図(Al膜)。
【図7】後熱処理温度とフラットバンド電圧シフト量の
関係を示す図(Al以外の膜)。
【図8】ECRスパッタ装置の概要を示す図。
【図9】Al/SiO/Si構造についてSi
2p電子とAl2p電子のXPSスペクトルを示す図。
【図10】高誘電体絶縁膜/SiO/Siキャパシタ
のSiO換算膜厚EOTと高誘電体絶縁膜厚の関係を
示す図。
【図11】高誘電体絶縁膜/SiO/Siキャパシタ
のSiO換算膜厚EOTとリーク電流の関係を示す
図。
【図12】本発明の第1の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図13】本発明の第1の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図14】本発明の第2の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図15】本発明の第2の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図16】本発明の第3の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図17】本発明の第3の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図18】本発明の第3の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図19】本発明の第3の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図20】本発明の第3の実施例による高誘電率ゲート
絶縁膜電界効果トランジスタの製造工程順を示す断面
図。
【図21】Alをゲート絶縁膜に用いたNチャネ
ル型MISFETについて、移動度の有効電界依存を示
した図。
【符号の説明】
1…半導体基板、2…SiO膜もしくはSiON膜、
3…高誘電体絶縁膜、4…SiO膜、5…多結晶Si
ゲート電極、6…浅い拡散層、7…パンチスルー防止拡
散層、8…ゲ−ト側壁絶縁膜、9…高濃度拡散層、10
…シリサイド膜、11…表面保護絶縁膜、12…ソース
・ドレイン電極、13…高融点金属ゲート、13a…高
融点金属窒化膜、13b…高融点金属膜、14…熱酸化
膜、15…非晶質ノンドープSi膜、16…ダミーゲー
ト電極、17…ダミー・ゲ−ト側壁絶縁膜、18…開口
部、19…WN障壁層、20…Wゲート電極、21…
ゲート電極配線。
フロントページの続き (72)発明者 鳥居 和功 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 平谷 正彦 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 4M104 AA01 BB01 BB02 BB20 BB29 BB30 BB31 BB32 BB33 BB40 CC05 DD16 DD37 DD43 DD55 DD64 DD75 DD78 DD80 DD84 EE03 FF17 FF18 FF22 GG09 GG10 GG14 HH12 HH14 HH16 HH18 5F058 BD01 BD02 BD04 BD05 BD12 BD15 BF55 BF61 BJ01 5F140 AA24 AA40 BA01 BA20 BC06 BC17 BD02 BD05 BD09 BD11 BE07 BE08 BE09 BE10 BF04 BF10 BF11 BF17 BF18 BF20 BF21 BF27 BG02 BG03 BG05 BG08 BG14 BG28 BG30 BG31 BG33 BG34 BG36 BG37 BG40 BG44 BG45 BG52 BG53 BG56 BH15 BH35 BJ08 BJ11 BJ17 BJ20 BJ27 BK02 BK05 BK13 BK21 BK22 BK25 BK26 BK29 BK34 CA03 CC03 CE07 CF04

Claims (52)

    【特許請求の範囲】
  1. 【請求項1】シリコン基板上にシリコン酸化膜よりも高
    い誘電率を有する金属酸化物を用いて形成した、SiO
    換算膜厚が2.0nm以下のゲート絶縁膜を備えた電
    界効果トランジスタを有する半導体装置において、上記
    シリコン基板と上記金属酸化物に挟まれた領域に0.5
    nm以上の厚さのシリコン酸化膜あるいはシリコン酸窒
    化膜を有することを特徴とする半導体装置。
  2. 【請求項2】上記金属酸化物は、Al,Zr
    ,HfO,ZrSiO,HfSiO,Y
    ,Laなどの希土類酸化物膜、もしくは、Al
    とAl上に形成されるZrO,Hf
    ,ZrSiO,HfSiO,Y,La
    などの希土類酸化物の積層膜であることを特徴とす
    る請求項1に記載の半導体素子及びその製造方法。
  3. 【請求項3】シリコン基板上にシリコン酸化膜よりも高
    い誘電率を有する金属酸化物を用いて形成した、SiO
    換算膜厚が2.0nm以下のゲート絶縁膜と多結晶シ
    リコンゲートとを備えた電界効果トランジスタを有する
    半導体装置において、上記シリコン基板と上記金属酸化
    物に挟まれた領域に0.5nm以上の厚さの第1シリコ
    ン酸化膜を有し、かつ、上記金属酸化物と上記多結晶シ
    リコンゲートに挟まれた領域に0.5nm以上の厚さの
    第2シリコン酸化膜を有することを特徴とする半導体装
    置。
  4. 【請求項4】上記金属酸化物は、Al,Zr
    ,HfO,ZrSiO,HfSiO,Y
    ,Laなどの希土類酸化物膜、もしくは、Al
    とAl上に形成されるZrO,Hf
    ,ZrSiO,HfSiO,Y,La
    などの希土類酸化物の積層膜であることを特徴とす
    る請求項3に記載の半導体素子及びその製造方法。
  5. 【請求項5】シリコン基板上に形成されたシリコン酸化
    膜よりも高い誘電率の金属酸化物をゲート絶縁膜とする
    電界効果トランジスタを有する半導体装置の製造方法に
    おいて、上記シリコン基板上に上記金属酸化物を形成す
    る第1の工程と、上記電界効果トランジスタの形成工程
    の最大温度の酸化雰囲気の熱処理によって上記シリコン
    基板と上記金属酸化物との界面に0.5nm以上の厚み
    のシリコン酸化膜あるいはシリコン酸窒化膜を形成する
    第2の工程と、ゲートを形成する第3の工程とを有する
    ことを特徴とする半導体装置の製造方法。
  6. 【請求項6】シリコン基板上に形成されたシリコン酸化
    膜よりも高い誘電率の金属酸化物をゲート絶縁膜とする
    電界効果トランジスタを有する半導体装置の製造方法に
    おいて、上記シリコン基板上に上記金属酸化物を形成す
    る第1の工程と、上記金属酸化物上に第1シリコン酸化
    膜を形成する第2の工程と、上記電界効果トランジスタ
    の形成工程の最大温度の酸化雰囲気の熱処理によって上
    記シリコン基板と上記金属酸化物との界面に0.5nm
    以上の厚みの第2シリコン酸化膜あるいはシリコン酸窒
    化膜を形成する第3の工程と、ゲートを形成する第4の
    工程とを有することを特徴とする半導体装置の製造方
    法。
  7. 【請求項7】シリコン基板上に形成されたシリコン酸化
    膜よりも高い誘電率の金属酸化物をゲート絶縁膜とする
    電界効果トランジスタを有する半導体装置の製造方法に
    おいて、上記シリコン基板を窒化してシリコン窒化膜を
    形成する第1の工程と、上記シリコン窒化膜上に金属酸
    化物を形成する第2の工程と、上記電界効果トランジス
    タの形成工程の最大温度の酸化雰囲気の熱処理によって
    上記シリコン基板と上記金属酸化物の界面に0.5nm
    以上の厚みのシリコン酸窒化膜を形成する第3の工程
    と、ゲートを形成する第4の工程とを有することを特徴
    とする半導体装置の製造方法。
  8. 【請求項8】シリコン基板上に形成されたシリコン酸化
    膜よりも高い誘電率の金属酸化物をゲート絶縁膜とする
    電界効果トランジスタを有する半導体装置の製造方法に
    おいて、上記シリコン基板を窒化してシリコン窒化膜を
    形成する第1の工程と、上記シリコン窒化膜上に金属酸
    化物を形成する第2の工程と、上記金属酸化物上にシリ
    コン酸化膜を形成する第3の工程と、上記電界効果トラ
    ンジスタの形成工程の最大温度の酸化雰囲気の熱処理に
    よって上記シリコン基板と上記金属酸化物との界面に
    0.5nm以上の厚みのシリコン酸窒化膜を形成する第
    4の工程と、ゲートを形成する第5の工程とを有するこ
    とを特徴とする半導体装置の製造方法。
  9. 【請求項9】シリコン基板上に形成されたシリコン酸化
    膜よりも高い誘電率の金属酸化物をゲート絶縁膜とする
    電界効果トランジスタを有する半導体装置の製造方法に
    おいて、上記電界効果トランジスタの形成工程の最大温
    度の酸化雰囲気の熱処理によって上記シリコン基板上に
    0.5nm以上の厚みのシリコン酸化膜あるいはシリコ
    ン酸窒化膜を形成する第1の工程と、上記シリコン酸化
    膜あるいは上記シリコン酸窒化膜上に金属酸化物を形成
    する第2の工程と、ゲートを形成する第3の工程とを有
    することを特徴とする半導体装置の製造方法。
  10. 【請求項10】シリコン基板上に形成されたシリコン酸
    化膜よりも高い誘電率の金属酸化物をゲート絶縁膜とす
    る電界効果トランジスタを有する半導体装置の製造方法
    において、上記電界効果トランジスタの形成工程の最大
    温度の酸化雰囲気の熱処理によって上記シリコン基板上
    に0.5nm以上の厚みの第1シリコン酸化膜あるいは
    シリコン酸窒化膜を形成する第1の工程と、上記第1シ
    リコン酸化膜あるいは上記シリコン酸窒化膜上に金属酸
    化物を形成する第2の工程と、上記金属酸化物上に第2
    シリコン酸化膜を形成する第3の工程と、ゲートを形成
    する第4の工程とを有することを特徴とする半導体装置
    の製造方法。
  11. 【請求項11】上記電界効果トランジスタの形成工程の
    最大温度は800℃以上であることを特徴とする請求項
    5に記載の半導体装置の製造方法。
  12. 【請求項12】上記電界効果トランジスタの形成工程の
    最大温度は800℃以上であることを特徴とする請求項
    6に記載の半導体装置の製造方法。
  13. 【請求項13】上記電界効果トランジスタの形成工程の
    最大温度は800℃以上であることを特徴とする請求項
    7に記載の半導体装置の製造方法。
  14. 【請求項14】上記電界効果トランジスタの形成工程の
    最大温度は800℃以上であることを特徴とする請求項
    8に記載の半導体装置の製造方法。
  15. 【請求項15】上記酸化雰囲気の熱処理は、減圧酸素雰
    囲気あるいは希釈酸素雰囲気中で行うことを特徴とする
    請求項5に記載の半導体装置の製造方法。
  16. 【請求項16】上記酸化雰囲気の熱処理は、Oもしく
    はNOもしくはNOを用いて行うことを特徴とする請
    求項5に記載の半導体装置の製造方法。
  17. 【請求項17】上記酸化雰囲気の熱処理は、減圧酸素雰
    囲気あるいは希釈酸素雰囲気中で行うことを特徴とする
    請求項6に記載の半導体装置の製造方法。
  18. 【請求項18】上記酸化雰囲気の熱処理は、Oもしく
    はNOもしくはNOを用いて行うことを特徴とする請
    求項6に記載の半導体装置の製造方法。
  19. 【請求項19】上記酸化雰囲気の熱処理は、減圧酸素雰
    囲気あるいは希釈酸素雰囲気中で行うことを特徴とする
    請求項7に記載の半導体装置の製造方法。
  20. 【請求項20】上記酸化雰囲気の熱処理は、Oもしく
    はNOもしくはNOを用いて行うことを特徴とする請
    求項7に記載の半導体装置の製造方法。
  21. 【請求項21】上記酸化雰囲気の熱処理は、減圧酸素雰
    囲気あるいは希釈酸素雰囲気中で行うことを特徴とする
    請求項8に記載の半導体装置の製造方法。
  22. 【請求項22】上記酸化雰囲気の熱処理は、Oもしく
    はNOもしくはNOを用いて行うことを特徴とする請
    求項8に記載の半導体装置の製造方法。
  23. 【請求項23】上記酸化雰囲気の熱処理は、減圧酸素雰
    囲気あるいは希釈酸素雰囲気中で行うことを特徴とする
    請求項9に記載の半導体装置の製造方法。
  24. 【請求項24】上記酸化雰囲気の熱処理は、Oもしく
    はNOもしくはNOを用いて行うことを特徴とする請
    求項9に記載の半導体装置の製造方法。
  25. 【請求項25】上記酸化雰囲気の熱処理は、減圧酸素雰
    囲気あるいは希釈酸素雰囲気中で行うことを特徴とする
    請求項10に記載の半導体装置の製造方法。
  26. 【請求項26】上記酸化雰囲気の熱処理は、Oもしく
    はNOもしくはNOを用いて行うことを特徴とする請
    求項10に記載の半導体装置の製造方法。
  27. 【請求項27】上記金属酸化物が、Al,ZrO
    ,HfO,ZrSiO,HfSiO,Y
    ,Laなどの希土類酸化物、もしくは、A
    とAl上に形成されるZrO,HfO
    ,ZrSiO,HfSiO,Y ,La
    などの希土類酸化物の積層膜であることを特徴とする
    請求項5に記載の半導体装置の製造方法。
  28. 【請求項28】上記ゲートが高融点金属窒化物であるT
    aN,TiN,WN,MoN,ZrN,HfNから選ば
    れた膜であることを特徴とする請求項27に記載の半導
    体装置の製造方法。
  29. 【請求項29】上記ゲートが多結晶シリコンであること
    を特徴とする請求項27に記載の半導体装置の製造方
    法。
  30. 【請求項30】上記金属酸化物がZrOあるいはHf
    であり、上記ゲートが多結晶シリコンであり、上記
    金属酸化物と上記多結晶シリコンの反応によって金属酸
    化物と多結晶シリコンゲートに挟まれた領域に0.5n
    m以上の厚みのシリコン酸化膜を形成することを特徴と
    する請求項5に記載の半導体装置の製造方法。
  31. 【請求項31】上記金属酸化物が、Al,ZrO
    ,HfO,ZrSiO,HfSiO,Y
    ,Laなどの希土類酸化物、もしくは、A
    とAl上に形成されるZrO,HfO
    ,ZrSiO,HfSiO,Y ,La
    などの希土類酸化物の積層膜であることを特徴とする
    請求項6に記載の半導体装置の製造方法。
  32. 【請求項32】上記ゲートが高融点金属窒化物であるT
    aN,TiN,WN,MoN,ZrN,HfNから選ば
    れた膜であることを特徴とする請求項31に記載の半導
    体装置の製造方法。
  33. 【請求項33】上記ゲートが多結晶シリコンであること
    を特徴とする請求項31に記載の半導体装置の製造方
    法。
  34. 【請求項34】上記金属酸化物がZrOあるいはHf
    であり、上記ゲートが多結晶シリコンであり、上記
    金属酸化物と上記多結晶シリコンの反応によって金属酸
    化物と多結晶シリコンゲートに挟まれた領域に0.5n
    m以上の厚みのシリコン酸化膜を形成することを特徴と
    する請求項6に記載の半導体装置の製造方法。
  35. 【請求項35】上記金属酸化物が、Al,ZrO
    ,HfO,ZrSiO,HfSiO,Y
    ,Laなどの希土類酸化物、もしくは、A
    とAl上に形成されるZrO,HfO
    ,ZrSiO,HfSiO,Y ,La
    などの希土類酸化物の積層膜であることを特徴とする
    請求項7に記載の半導体装置の製造方法。
  36. 【請求項36】上記ゲートが高融点金属窒化物であるT
    aN,TiN,WN,MoN,ZrN,HfNから選ば
    れた膜であることを特徴とする請求項35に記載の半導
    体装置の製造方法。
  37. 【請求項37】上記ゲートが多結晶シリコンであること
    を特徴とする請求項35に記載の半導体装置の製造方
    法。
  38. 【請求項38】上記金属酸化物がZrOあるいはHf
    であり、上記ゲートが多結晶シリコンであり、上記
    金属酸化物と上記多結晶シリコンの反応によって金属酸
    化物と多結晶シリコンゲートに挟まれた領域に0.5n
    m以上の厚みのシリコン酸化膜を形成することを特徴と
    する請求項7に記載の半導体装置の製造方法。
  39. 【請求項39】上記金属酸化物が、Al,ZrO
    ,HfO,ZrSiO,HfSiO,Y
    ,Laなどの希土類酸化物、もしくは、A
    とAl上に形成されるZrO,HfO
    ,ZrSiO,HfSiO,Y ,La
    などの希土類酸化物の積層膜であることを特徴とする
    請求項8に記載の半導体装置の製造方法。
  40. 【請求項40】上記ゲートが高融点金属窒化物であるT
    aN,TiN,WN,MoN,ZrN,HfNから選ば
    れた膜であることを特徴とする請求項39に記載の半導
    体装置の製造方法。
  41. 【請求項41】上記ゲートが多結晶シリコンであること
    を特徴とする請求項39に記載の半導体装置の製造方
    法。
  42. 【請求項42】上記金属酸化物がZrOあるいはHf
    であり、上記ゲートが多結晶シリコンであり、上記
    金属酸化物と上記多結晶シリコンの反応によって金属酸
    化物と多結晶シリコンゲートに挟まれた領域に0.5n
    m以上の厚みのシリコン酸化膜を形成することを特徴と
    する請求項8に記載の半導体装置の製造方法。
  43. 【請求項43】上記金属酸化物が、Al,ZrO
    ,HfO,ZrSiO,HfSiO,Y
    ,Laなどの希土類酸化物、もしくは、A
    とAl上に形成されるZrO,HfO
    ,ZrSiO,HfSiO,Y ,La
    などの希土類酸化物の積層膜であることを特徴とする
    請求項9に記載の半導体装置の製造方法。
  44. 【請求項44】上記ゲートが高融点金属窒化物であるT
    aN,TiN,WN,MoN,ZrN,HfNから選ば
    れた膜であることを特徴とする請求項43に記載の半導
    体装置の製造方法。
  45. 【請求項45】上記ゲートが多結晶シリコンであること
    を特徴とする請求項43に記載の半導体装置の製造方
    法。
  46. 【請求項46】上記金属酸化物がZrOあるいはHf
    であり、上記ゲートが多結晶シリコンであり、上記
    金属酸化物と上記多結晶シリコンの反応によって金属酸
    化物と多結晶シリコンゲートに挟まれた領域に0.5n
    m以上の厚みのシリコン酸化膜を形成することを特徴と
    する請求項9に記載の半導体装置の製造方法。
  47. 【請求項47】上記金属酸化物が、Al,ZrO
    ,HfO,ZrSiO,HfSiO,Y
    ,Laなどの希土類酸化物、もしくは、A
    とAl上に形成されるZrO,HfO
    ,ZrSiO,HfSiO,Y ,La
    などの希土類酸化物の積層膜であることを特徴とする
    請求項10に記載の半導体装置の製造方法。
  48. 【請求項48】上記ゲートが高融点金属窒化物であるT
    aN,TiN,WN,MoN,ZrN,HfNから選ば
    れた膜であることを特徴とする請求項47に記載の半導
    体装置の製造方法。
  49. 【請求項49】上記ゲートが多結晶シリコンであること
    を特徴とする請求項47に記載の半導体装置の製造方
    法。
  50. 【請求項50】上記金属酸化物がZrOあるいはHf
    であり、上記ゲートが多結晶シリコンであり、上記
    金属酸化物と上記多結晶シリコンの反応によって金属酸
    化物と多結晶シリコンゲートに挟まれた領域に0.5n
    m以上の厚みのシリコン酸化膜を形成することを特徴と
    する請求項10に記載の半導体装置の製造方法。
  51. 【請求項51】上記シリコン酸窒化膜は、シリコン基板
    を窒化してシリコン窒化膜を作製する工程とシリコン窒
    化膜を酸化雰囲気の熱処理によって酸化する工程によっ
    て形成する、あるいは、酸化雰囲気の熱処理によってシ
    リコン基板を酸化する工程とNO中の熱処理によって形
    成する、あるいは、NO中の熱処理によって形成する
    ことを特徴とする請求項9に記載の半導体装置の製造方
    法。
  52. 【請求項52】上記シリコン酸窒化膜は、シリコン基板
    を窒化してシリコン窒化膜を作製する工程とシリコン窒
    化膜を酸化雰囲気の熱処理によって酸化する工程によっ
    て形成する、あるいは、酸化雰囲気の熱処理によってシ
    リコン基板を酸化する工程とNO中の熱処理によって形
    成する、あるいは、NO中の熱処理によって形成する
    ことを特徴とする請求項10に記載の半導体装置の製造
    方法。
JP2001255454A 2001-08-27 2001-08-27 半導体装置とその製造方法 Pending JP2003069011A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001255454A JP2003069011A (ja) 2001-08-27 2001-08-27 半導体装置とその製造方法
TW091116494A TW564549B (en) 2001-08-27 2002-07-24 Semiconductor device and the manufacturing method thereof
US10/216,792 US6787451B2 (en) 2001-08-27 2002-08-13 Semiconductor device and manufacturing method thereof
US10/900,430 US7119407B2 (en) 2001-08-27 2004-07-28 Semiconductor device and manufacturing method thereof
US11/516,629 US20070001244A1 (en) 2001-08-27 2006-09-07 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255454A JP2003069011A (ja) 2001-08-27 2001-08-27 半導体装置とその製造方法

Publications (2)

Publication Number Publication Date
JP2003069011A true JP2003069011A (ja) 2003-03-07
JP2003069011A5 JP2003069011A5 (ja) 2005-06-16

Family

ID=19083420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255454A Pending JP2003069011A (ja) 2001-08-27 2001-08-27 半導体装置とその製造方法

Country Status (3)

Country Link
US (3) US6787451B2 (ja)
JP (1) JP2003069011A (ja)
TW (1) TW564549B (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288891A (ja) * 2003-03-24 2004-10-14 Hitachi Ltd 半導体装置およびその製造方法
JP2005509287A (ja) * 2001-08-31 2005-04-07 エーエスエム インターナショナル エヌ.ヴェー. 低温度におけるゲートスタック製造方法
JP2005159316A (ja) * 2003-10-30 2005-06-16 Tokyo Electron Ltd 半導体装置の製造方法及び成膜装置並びに記憶媒体
JP2005197676A (ja) * 2003-12-29 2005-07-21 Samsung Electronics Co Ltd 半導体装置及びその製造方法
WO2005074037A1 (ja) * 2004-01-28 2005-08-11 Nec Corporation 半導体装置の製造方法
JP2005285809A (ja) * 2004-03-26 2005-10-13 Sony Corp 半導体装置およびその製造方法
JP2006054465A (ja) * 2004-08-12 2006-02-23 Internatl Business Mach Corp <Ibm> ウェハ接合によって製造される半導体−誘電体−半導体デバイス構造体
JP2006066503A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2006086151A (ja) * 2004-09-14 2006-03-30 Fujitsu Ltd 半導体装置の製造方法
JP2006086272A (ja) * 2004-09-15 2006-03-30 Fujitsu Ltd 半導体装置
JP2006269520A (ja) * 2005-03-22 2006-10-05 Renesas Technology Corp 半導体装置およびその製造方法
JP2007500946A (ja) * 2003-07-31 2007-01-18 東京エレクトロン株式会社 自己制限的界面酸化による超極薄酸化物層および酸窒化物層の形成。
JP2007242412A (ja) * 2006-03-08 2007-09-20 Hamamatsu Photonics Kk 光電面、それを備える電子管及び光電面の製造方法
JP2008530770A (ja) * 2005-01-13 2008-08-07 インターナショナル・ビジネス・マシーンズ・コーポレーション n−FET用途のためのHfSiN金属を形成する方法
JP2008537347A (ja) * 2005-04-21 2008-09-11 フリースケール セミコンダクター インコーポレイテッド 非SiO2ゲート誘電体を有するMOSデバイスの製造方法
US7473994B2 (en) 2003-10-07 2009-01-06 Sony Corporation Method of producing insulator thin film, insulator thin film, method of manufacturing semiconductor device, and semiconductor device
JP2009141161A (ja) * 2007-12-07 2009-06-25 Renesas Technology Corp 半導体装置およびその製造方法
US7554156B2 (en) 2004-12-15 2009-06-30 Panasonic Corporation Semiconductor device having a field effect transistor using a high dielectric constant gate insulating film and manufacturing method of the same
JP2010118677A (ja) * 2010-01-15 2010-05-27 Renesas Technology Corp 半導体装置
US7750396B2 (en) 2005-09-26 2010-07-06 Panasonic Corporation Semiconductor device and method for fabricating the same
JP2011014614A (ja) * 2009-06-30 2011-01-20 Fujitsu Semiconductor Ltd 半導体装置及びその製造方法
JP2012049181A (ja) * 2010-08-24 2012-03-08 Fujitsu Semiconductor Ltd 半導体装置の製造方法
WO2012131898A1 (ja) * 2011-03-29 2012-10-04 株式会社日立製作所 炭化珪素半導体装置
JP2021097238A (ja) * 2015-06-05 2021-06-24 ソニーグループ株式会社 光検出装置、および測距センサ

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334732C (zh) * 2001-11-30 2007-08-29 株式会社瑞萨科技 半导体集成电路器件及其制造方法
US6787440B2 (en) * 2002-12-10 2004-09-07 Intel Corporation Method for making a semiconductor device having an ultra-thin high-k gate dielectric
US20040126944A1 (en) * 2002-12-31 2004-07-01 Pacheco Rotondaro Antonio Luis Methods for forming interfacial layer for deposition of high-k dielectrics
JP2005072405A (ja) * 2003-08-27 2005-03-17 Sony Corp 薄膜の形成方法および半導体装置の製造方法
US7144825B2 (en) * 2003-10-16 2006-12-05 Freescale Semiconductor, Inc. Multi-layer dielectric containing diffusion barrier material
US7071122B2 (en) * 2003-12-10 2006-07-04 International Business Machines Corporation Field effect transistor with etched-back gate dielectric
US7115959B2 (en) * 2004-06-22 2006-10-03 International Business Machines Corporation Method of forming metal/high-k gate stacks with high mobility
CN101027758A (zh) * 2004-09-21 2007-08-29 飞思卡尔半导体公司 半导体器件及其形成方法
US7242055B2 (en) * 2004-11-15 2007-07-10 International Business Machines Corporation Nitrogen-containing field effect transistor gate stack containing a threshold voltage control layer formed via deposition of a metal oxide
KR101048890B1 (ko) * 2004-12-01 2011-07-13 주식회사 하이닉스반도체 반도체 소자의 커패시터 형성 방법
US7531405B2 (en) * 2005-02-28 2009-05-12 Qimonds Ag Method of manufacturing a dielectric layer and corresponding semiconductor device
JP4522900B2 (ja) * 2005-03-30 2010-08-11 東京エレクトロン株式会社 成膜方法および記録媒体
US7301219B2 (en) * 2005-06-06 2007-11-27 Macronix International Co., Ltd. Electrically erasable programmable read only memory (EEPROM) cell and method for making the same
US7473607B2 (en) * 2005-07-06 2009-01-06 International Business Machines Corporation Method of manufacturing a multi-workfunction gates for a CMOS circuit
US7655994B2 (en) * 2005-10-26 2010-02-02 International Business Machines Corporation Low threshold voltage semiconductor device with dual threshold voltage control means
JP4782037B2 (ja) * 2006-03-03 2011-09-28 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び製造装置
CN101454881B (zh) * 2006-05-31 2012-09-05 东京毅力科创株式会社 绝缘膜的形成方法和半导体装置的制造方法
US8247331B2 (en) * 2006-12-28 2012-08-21 Tokyo Electron Limited Method for forming insulating film and method for manufacturing semiconductor device
JP5521726B2 (ja) * 2010-04-16 2014-06-18 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US8492247B2 (en) * 2010-08-17 2013-07-23 International Business Machines Corporation Programmable FETs using Vt-shift effect and methods of manufacture
CN103177966B (zh) * 2011-12-22 2017-09-22 中芯国际集成电路制造(上海)有限公司 晶体管及其制作方法
KR101934829B1 (ko) * 2012-10-23 2019-03-18 삼성전자 주식회사 반도체 장치 및 반도체 장치의 제조 방법
CN104701240A (zh) * 2015-03-31 2015-06-10 上海华力微电子有限公司 用于制备高k介质层的方法
US11045646B2 (en) 2016-06-27 2021-06-29 Board Of Regents, The University Of Texas System Softening nerve cuff electrodes
KR102208520B1 (ko) 2016-07-19 2021-01-26 어플라이드 머티어리얼스, 인코포레이티드 디스플레이 디바이스들에서 활용되는 지르코늄 산화물을 포함하는 하이-k 유전체 재료들
US9876069B1 (en) * 2017-05-18 2018-01-23 Vanguard International Semiconductor Corporation High-voltage semiconductor device and method for manufacturing the same
JP6887307B2 (ja) * 2017-05-19 2021-06-16 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US12336249B2 (en) * 2022-03-16 2025-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Gate spacer and formation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298297A (ja) * 1996-04-30 1997-11-18 Ricoh Co Ltd 半導体装置およびその製造方法
JPH10189483A (ja) * 1996-12-26 1998-07-21 Fujitsu Ltd 半導体装置の製造方法及び半導体装置
JPH1116900A (ja) * 1997-06-20 1999-01-22 Res Dev Corp Of Japan 半導体基板表面の絶縁膜の形成方法及びその形成装置
JPH1126756A (ja) * 1997-06-30 1999-01-29 Sharp Corp 半導体装置の製造方法
JP2000049349A (ja) * 1998-07-15 2000-02-18 Texas Instr Inc <Ti> 集積回路に電界効果デバイスを製造する方法
JP2000058831A (ja) * 1998-06-04 2000-02-25 Toshiba Corp Mis半導体装置及び不揮発性半導体記憶装置
JP2000106432A (ja) * 1998-09-29 2000-04-11 Nec Corp ゲート絶縁膜の製造方法及びそれを用いた半導体装置
JP2000307083A (ja) * 1999-04-22 2000-11-02 Hitachi Ltd 半導体装置およびその製造方法
JP2000315789A (ja) * 1999-04-30 2000-11-14 Toshiba Corp 半導体装置及びその製造方法
JP2000332235A (ja) * 1999-05-17 2000-11-30 Hitachi Ltd 半導体装置およびその製造方法
JP2001077108A (ja) * 1999-08-31 2001-03-23 Nec Corp 半導体装置及び複合酸化物薄膜の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135774A (ja) 1997-07-24 1999-05-21 Texas Instr Inc <Ti> 高誘電率シリケート・ゲート誘電体
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
US6140167A (en) * 1998-08-18 2000-10-31 Advanced Micro Devices, Inc. High performance MOSFET and method of forming the same using silicidation and junction implantation prior to gate formation
US6610548B1 (en) * 1999-03-26 2003-08-26 Sony Corporation Crystal growth method of oxide, cerium oxide, promethium oxide, multi-layered structure of oxides, manufacturing method of field effect transistor, manufacturing method of ferroelectric non-volatile memory and ferroelectric non-volatile memory
CA2360312A1 (en) * 2000-10-30 2002-04-30 National Research Council Of Canada Novel gate dielectric

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298297A (ja) * 1996-04-30 1997-11-18 Ricoh Co Ltd 半導体装置およびその製造方法
JPH10189483A (ja) * 1996-12-26 1998-07-21 Fujitsu Ltd 半導体装置の製造方法及び半導体装置
JPH1116900A (ja) * 1997-06-20 1999-01-22 Res Dev Corp Of Japan 半導体基板表面の絶縁膜の形成方法及びその形成装置
JPH1126756A (ja) * 1997-06-30 1999-01-29 Sharp Corp 半導体装置の製造方法
JP2000058831A (ja) * 1998-06-04 2000-02-25 Toshiba Corp Mis半導体装置及び不揮発性半導体記憶装置
JP2000049349A (ja) * 1998-07-15 2000-02-18 Texas Instr Inc <Ti> 集積回路に電界効果デバイスを製造する方法
JP2000106432A (ja) * 1998-09-29 2000-04-11 Nec Corp ゲート絶縁膜の製造方法及びそれを用いた半導体装置
JP2000307083A (ja) * 1999-04-22 2000-11-02 Hitachi Ltd 半導体装置およびその製造方法
JP2000315789A (ja) * 1999-04-30 2000-11-14 Toshiba Corp 半導体装置及びその製造方法
JP2000332235A (ja) * 1999-05-17 2000-11-30 Hitachi Ltd 半導体装置およびその製造方法
JP2001077108A (ja) * 1999-08-31 2001-03-23 Nec Corp 半導体装置及び複合酸化物薄膜の製造方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509287A (ja) * 2001-08-31 2005-04-07 エーエスエム インターナショナル エヌ.ヴェー. 低温度におけるゲートスタック製造方法
JP2004288891A (ja) * 2003-03-24 2004-10-14 Hitachi Ltd 半導体装置およびその製造方法
JP2007500946A (ja) * 2003-07-31 2007-01-18 東京エレクトロン株式会社 自己制限的界面酸化による超極薄酸化物層および酸窒化物層の形成。
JP4933256B2 (ja) * 2003-07-31 2012-05-16 東京エレクトロン株式会社 半導体微細構造物を形成する方法
US7622401B2 (en) 2003-10-07 2009-11-24 Sony Corporation Method of producing insulator thin film, insulator thin film, method of manufacturing semiconductor device, and semiconductor device
US7473994B2 (en) 2003-10-07 2009-01-06 Sony Corporation Method of producing insulator thin film, insulator thin film, method of manufacturing semiconductor device, and semiconductor device
JP2005159316A (ja) * 2003-10-30 2005-06-16 Tokyo Electron Ltd 半導体装置の製造方法及び成膜装置並びに記憶媒体
JP2005197676A (ja) * 2003-12-29 2005-07-21 Samsung Electronics Co Ltd 半導体装置及びその製造方法
JPWO2005074037A1 (ja) * 2004-01-28 2007-09-13 日本電気株式会社 半導体装置の製造方法
JP5050351B2 (ja) * 2004-01-28 2012-10-17 日本電気株式会社 半導体装置の製造方法
WO2005074037A1 (ja) * 2004-01-28 2005-08-11 Nec Corporation 半導体装置の製造方法
JP2005285809A (ja) * 2004-03-26 2005-10-13 Sony Corp 半導体装置およびその製造方法
JP2006054465A (ja) * 2004-08-12 2006-02-23 Internatl Business Mach Corp <Ibm> ウェハ接合によって製造される半導体−誘電体−半導体デバイス構造体
JP2006066503A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2006086151A (ja) * 2004-09-14 2006-03-30 Fujitsu Ltd 半導体装置の製造方法
JP2006086272A (ja) * 2004-09-15 2006-03-30 Fujitsu Ltd 半導体装置
US7554156B2 (en) 2004-12-15 2009-06-30 Panasonic Corporation Semiconductor device having a field effect transistor using a high dielectric constant gate insulating film and manufacturing method of the same
US7956413B2 (en) 2004-12-15 2011-06-07 Panasonic Corporation Semiconductor device having a field effect transistor using a high dielectric constant gate insulating film and manufacturing method of the same
JP2008530770A (ja) * 2005-01-13 2008-08-07 インターナショナル・ビジネス・マシーンズ・コーポレーション n−FET用途のためのHfSiN金属を形成する方法
JP2006269520A (ja) * 2005-03-22 2006-10-05 Renesas Technology Corp 半導体装置およびその製造方法
JP2008537347A (ja) * 2005-04-21 2008-09-11 フリースケール セミコンダクター インコーポレイテッド 非SiO2ゲート誘電体を有するMOSデバイスの製造方法
US7750396B2 (en) 2005-09-26 2010-07-06 Panasonic Corporation Semiconductor device and method for fabricating the same
US8035174B2 (en) 2005-09-26 2011-10-11 Panasonic Corporation Semiconductor device and method for fabricating the same
JP2007242412A (ja) * 2006-03-08 2007-09-20 Hamamatsu Photonics Kk 光電面、それを備える電子管及び光電面の製造方法
JP2009141161A (ja) * 2007-12-07 2009-06-25 Renesas Technology Corp 半導体装置およびその製造方法
JP2011014614A (ja) * 2009-06-30 2011-01-20 Fujitsu Semiconductor Ltd 半導体装置及びその製造方法
JP2010118677A (ja) * 2010-01-15 2010-05-27 Renesas Technology Corp 半導体装置
JP2012049181A (ja) * 2010-08-24 2012-03-08 Fujitsu Semiconductor Ltd 半導体装置の製造方法
WO2012131898A1 (ja) * 2011-03-29 2012-10-04 株式会社日立製作所 炭化珪素半導体装置
JP2021097238A (ja) * 2015-06-05 2021-06-24 ソニーグループ株式会社 光検出装置、および測距センサ

Also Published As

Publication number Publication date
US20040262642A1 (en) 2004-12-30
US7119407B2 (en) 2006-10-10
US20030042557A1 (en) 2003-03-06
US20070001244A1 (en) 2007-01-04
TW564549B (en) 2003-12-01
US6787451B2 (en) 2004-09-07

Similar Documents

Publication Publication Date Title
US6787451B2 (en) Semiconductor device and manufacturing method thereof
US7521345B2 (en) High-temperature stable gate structure with metallic electrode
US6552388B2 (en) Hafnium nitride gate dielectric
US7317229B2 (en) Gate electrode structures and methods of manufacture
US6992357B2 (en) Semiconductor device and method of manufacturing the same
US7687869B2 (en) Semiconductor device and method of manufacturing the same
US7432216B2 (en) Semiconductor device and manufacturing method thereof
US20060081939A1 (en) Semiconductor device having misfet using high dielectric constant gate insulation film and method for fabricating the same
US7820503B2 (en) Semiconductor device and manufacturing method of the same
KR101142405B1 (ko) 유전체막, 유전체막을 이용한 반도체 디바이스 제조방법, 및 반도체 제조기기
JP2012004577A (ja) 高誘電率のゲート絶縁膜を有する半導体装置及びそれの製造方法
CN101409234A (zh) 一种半导体结构及其制造方法
WO2001008208A1 (fr) Dispositif a semi-conducteur, procede permettant de former une couche d&#39;oxyde de silicium et appareil permettant de former une couche d&#39;oxyde de silicium
JP5387173B2 (ja) 半導体装置及びその製造方法
US6528362B1 (en) Metal gate with CVD amorphous silicon layer for CMOS devices and method of making with a replacement gate process
JP2003069013A (ja) 半導体装置及びその製造方法
US7361613B2 (en) Semiconductor device, manufacture and evaluation methods for semiconductor device, and process condition evaluation method
JP2009038229A (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021