[go: up one dir, main page]

JP2003065958A - Sulfur analysis method and analyzer - Google Patents

Sulfur analysis method and analyzer

Info

Publication number
JP2003065958A
JP2003065958A JP2001261434A JP2001261434A JP2003065958A JP 2003065958 A JP2003065958 A JP 2003065958A JP 2001261434 A JP2001261434 A JP 2001261434A JP 2001261434 A JP2001261434 A JP 2001261434A JP 2003065958 A JP2003065958 A JP 2003065958A
Authority
JP
Japan
Prior art keywords
sulfur
oxygen
gas
sample
fluorescence detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001261434A
Other languages
Japanese (ja)
Inventor
Norio Hayashi
則夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoseiko Analytech Co Ltd
Original Assignee
Dia Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Instruments Co Ltd filed Critical Dia Instruments Co Ltd
Priority to JP2001261434A priority Critical patent/JP2003065958A/en
Publication of JP2003065958A publication Critical patent/JP2003065958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

(57)【要約】 【課題】 石油製品や有機合成品に含まれる微量の硫黄
を高精度に定量分析できる硫黄の分析方法および分析装
置を提供する。 【解決手段】 硫黄の分析方法においては、加熱炉
(1)にて不活性ガス及び酸素の供給下に硫黄含有試料
を燃焼分解し、紫外蛍光検出器(5)にて燃焼排ガス中
の二酸化硫黄の蛍光強度を測定することにより、試料中
の硫黄成分の定量分析を行うにあたり、紫外蛍光検出器
(5)を通過するガスの流量および当該ガス中の酸素濃
度が試料の注入前後で一定となる様に、紫外蛍光検出器
(5)に対する不活性ガス及び酸素の流入量を制御す
る。また、硫黄の分析装置は、硫黄含有試料を燃焼分解
する加熱炉(1)と、不活性ガス及び酸素を供給するガ
ス供給手段(2)と、燃焼排ガス中の二酸化硫黄の蛍光
強度を測定する紫外蛍光検出器(5)とを備えている。
(57) [Summary] [PROBLEMS] To provide a sulfur analysis method and an analyzer capable of high-precision quantitative analysis of trace amounts of sulfur contained in petroleum products and organic synthetic products. SOLUTION: In a method for analyzing sulfur, a sulfur-containing sample is burned and decomposed in a heating furnace (1) under supply of an inert gas and oxygen, and sulfur dioxide in a combustion exhaust gas is detected by an ultraviolet fluorescence detector (5). When the quantitative analysis of the sulfur component in the sample is performed by measuring the fluorescence intensity of the sample, the flow rate of the gas passing through the ultraviolet fluorescence detector (5) and the oxygen concentration in the gas become constant before and after the sample is injected. In this way, the flow rates of the inert gas and oxygen into the ultraviolet fluorescence detector (5) are controlled. Further, the sulfur analyzer measures a heating furnace (1) for burning and decomposing a sulfur-containing sample, a gas supply means (2) for supplying an inert gas and oxygen, and measures the fluorescence intensity of sulfur dioxide in the combustion exhaust gas. An ultraviolet fluorescence detector (5).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、硫黄の分析方法お
よび分析装置に関するものであり、詳しくは、石油製
品、有機合成品などに含まれる微量の硫黄を高精度に定
量分析するのに好適な硫黄の分析方法および分析装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sulfur analyzing method and a sulfur analyzing apparatus, and more specifically, it is suitable for highly accurate quantitative analysis of a very small amount of sulfur contained in petroleum products, organic synthetic products and the like. The present invention relates to a sulfur analysis method and a sulfur analysis device.

【0002】[0002]

【従来の技術】ガソリンや軽油などに含まれる硫黄の分
析方法の一つとして、酸素で試料を燃焼分解し、燃焼排
ガスに紫外線を照射すると共に、放出される蛍光の強度
から燃焼排ガス中の二酸化硫黄の含有量を測定するいわ
ゆる紫外蛍光測定法が知られている。上記の分析方法
は、硫黄の含有量が例えば1ppmを越える試料の分析
に関して非常に有効であり、ASTMやEPAにも採用
されている。
2. Description of the Related Art As one of the methods for analyzing sulfur contained in gasoline, light oil, etc., a sample is burned and decomposed with oxygen, and the flue gas is irradiated with ultraviolet rays. A so-called ultraviolet fluorescence measuring method for measuring the content of sulfur is known. The above-mentioned analysis method is very effective for analysis of a sample having a sulfur content exceeding 1 ppm, for example, and is also adopted in ASTM and EPA.

【0003】また、上記の分析方法を実施するための硫
黄の分析装置としては、注入された一定量の試料を燃焼
分解する加熱炉(反応器)と、加熱炉に一定流量で不活
性ガス及び酸素を供給するガス供給手段と、加熱炉から
排出された燃焼排ガス中の二酸化硫黄の蛍光強度を測定
する紫外蛍光検出器とを備え、加熱炉内で不活性ガス雰
囲気下に試料を気化、分解し、更に酸素によって酸化分
解した後、紫外蛍光検出器へ燃焼排ガスを導入する様に
なされた装置が使用される。
As a sulfur analyzer for carrying out the above-mentioned analysis method, a heating furnace (reactor) for burning and decomposing a fixed amount of injected sample and an inert gas and a constant flow rate in the heating furnace are provided. Equipped with a gas supply means for supplying oxygen and an ultraviolet fluorescence detector for measuring the fluorescence intensity of sulfur dioxide in the combustion exhaust gas discharged from the heating furnace, and vaporizing and decomposing the sample in an inert gas atmosphere in the heating furnace. Then, after further oxidizing and decomposing with oxygen, an apparatus adapted to introduce the combustion exhaust gas into the ultraviolet fluorescence detector is used.

【0004】[0004]

【発明が解決しようとする課題】ところで、図5は、酸
素濃度と紫外蛍光検出器から出力される信号レベルとの
関係を示すグラフであるが、上記の分析方法において使
用される紫外蛍光検出器は、図5に示す様に、受光部で
検出される信号レベルが酸素濃度の変化によって大きく
変化する特性がある。具体的には、窒素、炭酸ガス、ア
ルゴン等の酸素を含まないガスの濃度が高い場合(酸素
濃度が低い場合)にはバックグラウンド出力される信号
レベルが大きく、また、酸素ガス濃度が高い場合には出
力される信号レベルが低くなる。
By the way, FIG. 5 is a graph showing the relationship between the oxygen concentration and the signal level output from the ultraviolet fluorescence detector. The ultraviolet fluorescence detector used in the above-described analysis method is used. 5 has a characteristic that the signal level detected by the light receiving unit changes greatly depending on the change in oxygen concentration. Specifically, when the concentration of a gas that does not contain oxygen such as nitrogen, carbon dioxide, or argon is high (when the oxygen concentration is low), the signal level that is output in the background is high, and when the oxygen gas concentration is high. The output signal level is low.

【0005】一方、一定流量の不活性ガス及び酸素ガス
の中に試料を注入し、燃焼により二酸化硫黄を生成させ
た場合には、酸素が消費され、相当量の二酸化炭素が生
成する。そのため、試料の注入前と注入後(燃焼中)で
は紫外蛍光検出器へ導かれるガス中の酸素濃度に差異が
生じる。その結果、紫外蛍光検出器においては、酸素濃
度の変化に伴い、出力される信号レベルに変化が現れ
る。
On the other hand, when the sample is injected into the inert gas and the oxygen gas at a constant flow rate to produce sulfur dioxide by combustion, oxygen is consumed and a considerable amount of carbon dioxide is produced. Therefore, there is a difference in the oxygen concentration in the gas guided to the ultraviolet fluorescence detector before and after the sample injection (during combustion). As a result, in the ultraviolet fluorescence detector, the output signal level changes as the oxygen concentration changes.

【0006】その際、試料中に硫黄が含まれていれば、
同時に二酸化硫黄による信号の変化も現れるはずであ
る。しかしながら、試料中の硫黄の含有量、すなわち、
二酸化硫黄の生成量が微量の場合には、実際、二酸化硫
黄による信号変化と酸素濃度の変化に伴う信号変化とを
区別し難く、正確な二酸化硫黄の濃度測定が出来ないと
言う実情がある。本発明は、斯かる実情に鑑みなされた
ものであり、その目的は、石油製品や有機合成品に含ま
れる微量の硫黄を高精度に定量分析するのに好適な硫黄
の分析方法および分析装置を提供することにある。
At that time, if the sample contains sulfur,
At the same time, a change in the signal due to sulfur dioxide should appear. However, the content of sulfur in the sample, that is,
When the amount of sulfur dioxide produced is very small, it is difficult to distinguish the signal change due to sulfur dioxide from the signal change due to the change in oxygen concentration, and it is impossible to accurately measure the concentration of sulfur dioxide. The present invention has been made in view of such circumstances, and an object thereof is to provide a sulfur analysis method and an analysis device suitable for quantitatively analyzing a trace amount of sulfur contained in a petroleum product or an organic synthetic product with high accuracy. To provide.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係る硫黄の分析方法は、加熱炉にて不活性
ガス及び酸素の供給下に硫黄含有試料を燃焼分解し、紫
外蛍光検出器にて燃焼排ガス中の二酸化硫黄の蛍光強度
を測定することにより、試料中の硫黄成分の定量分析を
行う硫黄の分析方法において、前記紫外蛍光検出器を通
過するガスの流量および当該ガス中の酸素濃度が試料の
注入前後で一定となる様に、前記紫外蛍光検出器に対す
る不活性ガス及び酸素の流入量を制御することを特徴と
する。
In order to solve the above-mentioned problems, the sulfur analysis method according to the present invention is carried out by burning and decomposing a sulfur-containing sample in a heating furnace under the supply of an inert gas and oxygen to obtain ultraviolet fluorescence. By measuring the fluorescence intensity of sulfur dioxide in the combustion exhaust gas with a detector, in the sulfur analysis method for quantitatively analyzing the sulfur component in the sample, the flow rate of the gas passing through the ultraviolet fluorescence detector and the gas in the gas. The inflow amount of the inert gas and the oxygen to the ultraviolet fluorescence detector is controlled so that the oxygen concentration becomes constant before and after the injection of the sample.

【0008】すなわち、上記の分析方法においては、試
料注入時、燃焼分解で発生する二酸化炭素の量に相当す
る量だけ紫外蛍光検出器に対する不活性ガスの流入量を
減らし、燃焼分解で消費される量に相当する量だけ紫外
蛍光検出器に対する酸素の流入量を増やすことにより、
紫外蛍光検出器を通過するガスの流量および当該ガス中
の酸素濃度を試料の注入前後で一定に保持するため、酸
素濃度変化に影響される蛍光検出器での信号変化を最小
に抑えることが出来る。
That is, in the above-mentioned analysis method, when the sample is injected, the inflow amount of the inert gas into the ultraviolet fluorescence detector is reduced by an amount corresponding to the amount of carbon dioxide generated by combustion decomposition, and is consumed by combustion decomposition. By increasing the inflow of oxygen to the ultraviolet fluorescence detector by an amount corresponding to the amount,
Since the flow rate of the gas passing through the ultraviolet fluorescence detector and the oxygen concentration in the gas are kept constant before and after the injection of the sample, it is possible to minimize the signal change in the fluorescence detector that is affected by the oxygen concentration change. .

【0009】また、本発明に係る硫黄の分析装置は、少
なくとも、注入された硫黄含有試料を燃焼分解する加熱
炉と、当該加熱炉に不活性ガス及び酸素を供給するガス
供給手段と、前記加熱炉から排出された燃焼排ガス中の
二酸化硫黄の蛍光強度を測定する紫外蛍光検出器とを備
えた硫黄の分析装置であって、前記紫外蛍光検出器を通
過するガスの流量および当該ガス中の酸素濃度が試料の
注入前後で一定となる様に、前記紫外蛍光検出器に対す
る不活性ガス及び酸素の流入量を制御可能になされてい
ることを特徴とする。
Further, the sulfur analyzer according to the present invention comprises at least a heating furnace for burning and decomposing the injected sulfur-containing sample, a gas supply means for supplying an inert gas and oxygen to the heating furnace, and the heating device. A sulfur analyzer equipped with an ultraviolet fluorescence detector for measuring the fluorescence intensity of sulfur dioxide in combustion exhaust gas discharged from a furnace, wherein the flow rate of gas passing through the ultraviolet fluorescence detector and oxygen in the gas It is characterized in that the inflow rates of the inert gas and oxygen to the ultraviolet fluorescence detector can be controlled so that the concentration becomes constant before and after the injection of the sample.

【0010】すなわち、上記の分析装置において、紫外
蛍光検出器を通過するガスの流量および当該ガス中の酸
素濃度が試料の注入前後で一定となる様に紫外蛍光検出
器に対する不活性ガス及び酸素の流入量を制御可能にな
された構造は、酸素濃度変化に影響される蛍光検出器で
の信号変化を最小に抑える。
That is, in the above-mentioned analyzer, the inert gas and oxygen for the ultraviolet fluorescence detector are adjusted so that the flow rate of the gas passing through the ultraviolet fluorescence detector and the oxygen concentration in the gas become constant before and after the injection of the sample. The controllable inflow rate minimizes signal changes at the fluorescence detector that are affected by changes in oxygen concentration.

【0011】[0011]

【発明の実施の形態】本発明の一実施形態を図面に基づ
いて説明する。図1は、本発明に係る硫黄の分析装置の
構成例を示すフロー図である。本発明に係る硫黄の分析
方法の説明に先立ち、当該硫黄の分析方法の実施に好適
な本発明に係る硫黄の分析装置について説明する。な
お、実施形態の説明においては、硫黄の分析方法を単に
「分析方法」、硫黄の分析装置を「分析装置」とそれぞ
れ略記する。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart showing a configuration example of a sulfur analyzer according to the present invention. Prior to the description of the sulfur analysis method according to the present invention, a sulfur analysis apparatus according to the present invention suitable for carrying out the sulfur analysis method will be described. In the description of the embodiments, the sulfur analysis method will be simply referred to as “analysis method”, and the sulfur analysis device will be simply referred to as “analysis device”.

【0012】本発明の分析装置は、図1に示す様に、注
入された硫黄含有試料を燃焼分解する反応器としての加
熱炉(1)と、当該加熱炉に所定流量で不活性ガス及び
酸素を供給するガス供給手段(2)と、加熱炉(1)か
ら排出された燃焼排ガス中の二酸化硫黄の蛍光強度を測
定する紫外蛍光検出器(5)とを少なくとも備えてい
る。
As shown in FIG. 1, the analyzer of the present invention comprises a heating furnace (1) as a reactor for burning and decomposing an injected sulfur-containing sample, and an inert gas and oxygen at a predetermined flow rate in the heating furnace. And at least an ultraviolet fluorescence detector (5) for measuring the fluorescence intensity of sulfur dioxide in the combustion exhaust gas discharged from the heating furnace (1).

【0013】加熱炉(1)は、試料注入装置(図示省
略)によって試料を上部から注入され且つ注入された試
料を気化させるための内管(11)と、気化した試料に
酸素を反応させて燃焼させるための外管(12)との二
重管構造を備えている。外管(12)の外周部には、内
管(11)及び外管(12)を所定温度に加熱するため
の加熱器(13)が付設される。また、外管(12)の
底部には、液状で内管(11)を通過した一部の試料を
一時的に保持することにより、試料の気化を促進する石
英ウール等の支持体(14)が充填される。
The heating furnace (1) has an inner tube (11) for injecting a sample from above by a sample injection device (not shown) and vaporizing the injected sample, and reacts the vaporized sample with oxygen. It has a double tube structure with an outer tube (12) for burning. A heater (13) for heating the inner pipe (11) and the outer pipe (12) to a predetermined temperature is attached to the outer periphery of the outer pipe (12). Further, on the bottom of the outer tube (12), a support (14), such as quartz wool, which temporarily holds a part of the sample that has passed through the inner tube (11) in a liquid state, thereby promoting the vaporization of the sample. Is filled.

【0014】ガス供給手段(2)は、不活性ガスを供給
する機構ならびに酸素を供給する機構の2つのガス供給
機構から成る。不活性ガスを供給する機構は、アルゴン
等の不活性ガスを収容した不活性ガス容器(21)と、
ガス流量を調節するための質量流量制御器などの流量調
節器(23)及び(24)と、流路(61)、(6
2)、(63)及び(64)と、切替弁(71)とから
主に構成される。
The gas supply means (2) is composed of two gas supply mechanisms, an inert gas supply mechanism and an oxygen supply mechanism. The mechanism for supplying the inert gas includes an inert gas container (21) containing an inert gas such as argon,
Flow controllers (23) and (24) such as a mass flow controller for adjusting the gas flow rate, and the flow paths (61) and (6).
2), (63) and (64), and a switching valve (71).

【0015】そして、上記の不活性ガスを供給する機構
は、流路(61)、流量調節器(23)及び流路(6
2)を介し、試料の燃焼前後を通じて不活性ガス容器
(21)のガスを加熱炉(1)の内管(11)に供給す
る様になされており、更に、切替弁(71)の設定によ
り、流路(61)から分岐する流路(63)、流量調節
器(24)及び流路(64)を介し、試料燃焼前(試料
注入前)に不活性ガス容器(21)のガスを加熱炉
(1)の外管(12)に供給する様になされている。
The mechanism for supplying the above-mentioned inert gas is composed of the flow path (61), the flow rate controller (23) and the flow path (6).
The gas in the inert gas container (21) is supplied to the inner pipe (11) of the heating furnace (1) before and after combustion of the sample via 2), and further, by setting the switching valve (71). Heating the gas in the inert gas container (21) before sample combustion (sample injection) via the flow channel (63) branched from the flow channel (61), the flow rate controller (24) and the flow channel (64). It is designed to supply to the outer tube (12) of the furnace (1).

【0016】他方、酸素を供給する機構は、酸素ガスを
収容した酸素容器(22)と、上記の流量調節器(2
4)及び同様の流量調節器(25)と、流路(65)、
上記の流路(64)、流路(66)、(67)及び(6
8)と、上記の切替弁(71)及び切替弁(72)とか
ら主に構成される。
On the other hand, the mechanism for supplying oxygen includes an oxygen container (22) containing oxygen gas and the flow rate controller (2).
4) and similar flow regulators (25) and flow paths (65),
The above-mentioned channel (64), channel (66), (67) and (6)
8) and the switching valve (71) and the switching valve (72) described above.

【0017】そして、上記の酸素を供給する機構は、流
路(65)、当該流路から分岐する流路(66)、流量
調節器(25)、流路(67)及び(64)を介し、試
料の燃焼前後を通じて酸素容器(22)のガスを加熱炉
(1)の外管(12)に供給する様になされており、更
に、切替弁(71)の設定により、流路(65)、流量
調節器(24)及び流路(64)を介し、試料燃焼時
(試料注入時)に酸素容器(22)のガスを加熱炉
(1)の外管(12)に追加供給する様になされてい
る。
The mechanism for supplying oxygen is provided with a flow path (65), a flow path (66) branched from the flow path, a flow rate controller (25), flow paths (67) and (64). The gas in the oxygen container (22) is supplied to the outer tube (12) of the heating furnace (1) before and after the sample is burned, and the flow path (65) is set by setting the switching valve (71). , So as to additionally supply the gas in the oxygen container (22) to the outer tube (12) of the heating furnace (1) during sample combustion (sample injection) via the flow rate controller (24) and the flow path (64). Has been done.

【0018】なお、不活性ガスの供給される内管(1
1)へ試料が注入された場合には、熱分解により内管
(11)に炭化物が生成するが、上記の酸素を供給する
機構においては、内管(11)に付着した炭化物を注入
処理後に酸素により分解するため、切替弁(72)の設
定により、流路(68)及び(62)を介し、試料燃焼
後(試料注入終了後)に酸素容器(22)の酸素を加熱
炉(1)の内管(11)に供給可能になされている。
The inner pipe (1) to which the inert gas is supplied
When the sample is injected into 1), carbide is generated in the inner pipe (11) due to thermal decomposition, but in the above mechanism for supplying oxygen, the carbide adhered to the inner pipe (11) is injected after the injection treatment. Since it is decomposed by oxygen, by setting the switching valve (72), the oxygen in the oxygen container (22) is heated through the flow paths (68) and (62) after the sample combustion (after the sample injection) (1). Can be supplied to the inner pipe (11).

【0019】また、加熱炉(1)の下流側には、当該加
熱炉において生成する水分を除去するための除湿器
(3)が配置される。除湿器(3)としては、冷却凝縮
器、吸湿膜、脱水剤充填カラムなどが使用される。除湿
器(3)を設置することにより、紫外蛍光検出器(5)
における出力強度の低下を防止できる。
Further, on the downstream side of the heating furnace (1), a dehumidifier (3) for removing water generated in the heating furnace is arranged. As the dehumidifier (3), a cooling condenser, a hygroscopic film, a dehydrating agent-filled column, or the like is used. By installing a dehumidifier (3), an ultraviolet fluorescence detector (5)
It is possible to prevent the output intensity from decreasing.

【0020】紫外蛍光検出器(5)は、除湿器(3)の
下流側に配置される。紫外蛍光検出器(5)は、紫外線
吸収により励起した二酸化硫黄分子が基底状態に戻る際
に放出する蛍光紫外線を光電子増倍管で検出し、蛍光紫
外線強度から二酸化硫黄濃度を測定する従来公知の装置
であり、主に、キセノン放電管などの励起用光源、励起
波長を得るための光学フィルター、励起光焦光用レン
ズ、試料が導入される蛍光室、蛍光紫外線を集めるため
のフィルター及び集光レンズ、光電子増倍管、ならび
に、光電子増倍管の信号を増幅・平滑化などする信号処
理回路から構成される。
The ultraviolet fluorescence detector (5) is arranged downstream of the dehumidifier (3). The ultraviolet fluorescence detector (5) detects the fluorescent ultraviolet light emitted when the sulfur dioxide molecule excited by the ultraviolet absorption returns to the ground state with a photomultiplier and measures the sulfur dioxide concentration from the fluorescent ultraviolet intensity. It is a device, mainly an excitation light source such as a xenon discharge tube, an optical filter for obtaining an excitation wavelength, an excitation light focusing lens, a fluorescence chamber into which a sample is introduced, a filter for collecting fluorescence ultraviolet rays, and a light collection. It is composed of a lens, a photomultiplier tube, and a signal processing circuit that amplifies and smoothes the signal of the photomultiplier tube.

【0021】本発明の分析装置は、紫外蛍光検出器
(5)による測定において酸素による影響を防止し、よ
り高精度に二酸化硫黄の濃度を測定するため、紫外蛍光
検出器(5)を通過するガスの流量および当該ガス中の
酸素濃度が試料の注入前後で一定となる様に、紫外蛍光
検出器(5)に対する不活性ガス及び酸素の流入量を制
御可能になされている。
The analyzer of the present invention passes through the ultraviolet fluorescence detector (5) in order to prevent the influence of oxygen in the measurement by the ultraviolet fluorescence detector (5) and measure the concentration of sulfur dioxide with higher accuracy. The inflow amount of the inert gas and oxygen to the ultraviolet fluorescence detector (5) can be controlled so that the flow rate of the gas and the oxygen concentration in the gas are constant before and after the injection of the sample.

【0022】紫外蛍光検出器(5)に対する不活性ガス
及び酸素の流入量を制御する手段としては、紫外蛍光検
出器(5)以前(上流側)の任意の箇所(加熱炉(1)
から紫外蛍光検出器(5)までの任意の部位)に対し、
不活性ガス及び酸素を供給し且つその供給量を調節し得
る限り、例えば、紫外蛍光検出器(5)の入口部に不活
性ガス及び酸素を供給する機構などの各種の手段を採用
できる。図1に例示した分析装置においては、不活性ガ
ス及び酸素の流入量を制御する機能が上記のガス供給手
段(2)に備えられている。
As a means for controlling the inflow amount of the inert gas and oxygen to the ultraviolet fluorescence detector (5), any position before the ultraviolet fluorescence detector (5) (upstream side) (heating furnace (1)
To the UV fluorescence detector (5)),
As long as the inert gas and oxygen can be supplied and the supply amounts thereof can be adjusted, various means such as a mechanism for supplying the inert gas and oxygen to the inlet of the ultraviolet fluorescence detector (5) can be adopted. In the analyzer illustrated in FIG. 1, the gas supply means (2) has a function of controlling the inflow amounts of the inert gas and oxygen.

【0023】更に、本発明の分析装置は、より一層高精
度に二酸化硫黄の濃度を測定するため、加熱炉(1)よ
り下流側、例えば紫外蛍光検出器(5)の出口側に酸素
濃度計(3)が配置され、当該酸素濃度計によって検出
される酸素濃度の値に基づいて紫外蛍光検出器(5)に
対する不活性ガス及び酸素の流入量を制御する様になさ
れているのが好ましい。
Furthermore, in order to measure the concentration of sulfur dioxide with even higher accuracy, the analyzer of the present invention has an oxygen concentration meter on the downstream side of the heating furnace (1), for example, on the outlet side of the ultraviolet fluorescence detector (5). It is preferable that (3) is arranged to control the inflow amount of the inert gas and oxygen to the ultraviolet fluorescence detector (5) based on the value of the oxygen concentration detected by the oxygen concentration meter.

【0024】上記の分析装置においては、通常、制御用
プログラムが書き込まれたコンピューター等の制御装置
により、流量調節器(23)、(24)及び(25)に
よる流量調整、切替弁(71)及び(72)の切替操
作、加熱炉(1)の稼働、紫外蛍光検出器(5)の作動
などの機器の制御ならびに分析値の演算が行われる。
In the above analyzer, the flow rate is adjusted by the flow rate regulators (23), (24) and (25), the switching valve (71) and Control of equipment such as switching operation of (72), operation of heating furnace (1), operation of ultraviolet fluorescence detector (5), and calculation of analysis value are performed.

【0025】次に、上記の分析装置の操作例と共に、本
発明の分析方法について説明する。本発明の分析方法
は、加熱炉(1)にて一定流量の不活性ガス及び酸素の
供給下に一定量の硫黄含有試料を燃焼分解し、紫外蛍光
検出器(5)にて燃焼排ガス中の二酸化硫黄の蛍光強度
を測定することにより、試料中の硫黄成分の定量分析を
行う分析方法であり、斯かる分析方法の基本的な工程は
従来法におけるのと同様である。
Next, the analysis method of the present invention will be described together with an example of the operation of the above-mentioned analysis apparatus. In the analysis method of the present invention, a certain amount of a sulfur-containing sample is combusted and decomposed in a heating furnace (1) under the supply of a constant flow rate of an inert gas and oxygen, and an ultraviolet fluorescence detector (5) is used to analyze the flue gas in the combustion exhaust gas. This is an analysis method for quantitatively analyzing the sulfur component in a sample by measuring the fluorescence intensity of sulfur dioxide, and the basic steps of this analysis method are the same as those in the conventional method.

【0026】硫黄含有試料としては、ガソリン、軽油な
どの石油製品の他、各種の有機合成品などの液状の試料
が挙げられる。本発明においては、微量の硫黄成分を高
精度に検出できることから、硫黄含有試料としては、特
に、硫黄含有量が1ppm以下の試料が好適である。
Examples of the sulfur-containing sample include petroleum products such as gasoline and light oil, and liquid samples such as various organic synthetic products. In the present invention, a sample having a sulfur content of 1 ppm or less is particularly suitable as a sulfur-containing sample because a trace amount of sulfur component can be detected with high accuracy.

【0027】図1に示す分析装置を使用した分析におい
ては、先ず、不活性ガスである例えばアルゴン及び酸素
を加熱炉(1)に一定流量で供給しておく。アルゴンの
供給は、不活性ガス容器(21)から加熱炉(1)の内
管(11)に対し、流路(61)、流量調節器(2
3)、流路(62)を通じて行い、更に、加熱炉(1)
の外管(12)に対し、分岐する流路(63)、流量調
節器(24)、流路(64)を通じて行う。
In the analysis using the analyzer shown in FIG. 1, first, an inert gas such as argon and oxygen is supplied to the heating furnace (1) at a constant flow rate. Argon is supplied from the inert gas container (21) to the inner pipe (11) of the heating furnace (1) by the flow path (61) and the flow rate controller (2).
3), through the flow path (62), and further heating furnace (1)
For the outer pipe (12) of the above, it is performed through the branched flow path (63), the flow rate controller (24) and the flow path (64).

【0028】また、酸素の供給は、酸素容器(22)か
ら加熱炉(1)の外管(12)に対し、流路(65)か
ら分岐する流路(66)、流量調節器(25)、流路
(67)及び(64)を通じて行う。すなわち、加熱炉
(1)の外管(12)に対しては、流路(64)を介
し、アルゴンと酸素の混合ガスを供給しておく。次い
で、試料注入装置によって加熱炉(1)の内管(11)
に試料を一定流量で注入して加熱分解する。
The oxygen is supplied from the oxygen container (22) to the outer tube (12) of the heating furnace (1) by a flow path (66) branched from the flow path (65) and a flow rate controller (25). , Through channels (67) and (64). That is, a mixed gas of argon and oxygen is supplied to the outer tube (12) of the heating furnace (1) through the flow path (64). Then, the inner tube (11) of the heating furnace (1) is introduced by the sample injection device.
The sample is injected into the sample at a constant flow rate and decomposed by heating.

【0029】ところで、上記の様に加熱炉(1)に試料
を注入した場合には、加熱炉(1)へ供給された酸素が
試料の燃焼により消費されて二酸化炭素を生成するが、
酸素の消費量および二酸化炭素の生成量は、注入される
試料(有機物)の量に依存する。例えば、試料としてト
ルエンが注入された場合には、以下の反応式の通り、ト
ルエン1molあたり、9molの酸素を消費し、7m
olの二酸化炭素を生成する。
By the way, when the sample is injected into the heating furnace (1) as described above, the oxygen supplied to the heating furnace (1) is consumed by the combustion of the sample to generate carbon dioxide.
The amount of oxygen consumed and the amount of carbon dioxide produced depend on the amount of injected sample (organic matter). For example, when toluene is injected as a sample, 9 mol of oxygen is consumed per 1 mol of toluene according to the following reaction formula, and 7 m
produces ol carbon dioxide.

【0030】[0030]

【化1】C6H5−CH3 +9O2 → 7CO2+4H2O[Chemical formula 1] C 6 H 5 -CH 3 + 9O 2 → 7CO 2 + 4H 2 O

【0031】すなわち、例えばトルエンが1μl/se
cの流量で注入された場合には、密度を0.866とし
て計算すると、酸素の消費量および二酸化炭素の発生量
は流量換算で以下の通りである。
That is, for example, toluene is 1 μl / se
When injected at a flow rate of c, if the density is calculated as 0.866, the oxygen consumption amount and the carbon dioxide generation amount are as follows in terms of flow rate.

【0032】[0032]

【数1】 酸素の消費量: 1×0.866/92×22.4×9=1.90(ml/sec) = 114(ml/min) 二酸化炭素の発生量: 114×7/9=89(ml/min)[Equation 1]       Oxygen consumption:         1 x 0.866 / 92 x 22.4 x 9 = 1.90 (ml / sec)                                           = 114 (ml / min)       Carbon dioxide production:         114 x 7/9 = 89 (ml / min)

【0033】従って、仮に、加熱炉(1)の内管(1
1)にアルゴンを100ml/min、外管(12)に
酸素を300ml/minを流した場合には、試料注入
前には後段の紫外蛍光検出器(5)に流入するガスの酸
素濃度は75%であるが、1μl/secの流量でトル
エンを注入して燃焼分解させると、加熱炉(1)の出口
における酸素の流量は約186ml/minに減少し、
非酸素ガス(アルゴンを含む燃焼排ガス)の流量は約1
89ml/minに増加する。換言すれば、試料注入後
は、トルエンの燃焼分解により紫外蛍光検出器(5)に
流入するガスの酸素濃度が凡そ50%に低下する。
Therefore, it is assumed that the inner tube (1) of the heating furnace (1) is
When 100 ml / min of argon is flown in 1) and 300 ml / min of oxygen is flown in the outer tube (12), the oxygen concentration of the gas flowing into the ultraviolet fluorescence detector (5) in the subsequent stage is 75 before the sample injection. %, But when toluene is injected at a flow rate of 1 μl / sec to cause combustion decomposition, the flow rate of oxygen at the outlet of the heating furnace (1) is reduced to about 186 ml / min,
The flow rate of non-oxygen gas (combustion exhaust gas containing argon) is approximately 1
Increase to 89 ml / min. In other words, after the sample injection, the oxygen concentration of the gas flowing into the ultraviolet fluorescence detector (5) drops to about 50% due to the combustion decomposition of toluene.

【0034】その結果、前述した通り、紫外蛍光検出器
(5)で検出される信号レベル、すなわち、ベースライ
ンとなる信号レベルが大きく変化する。酸素濃度と信号
レベルとの関係を表す図5において示すと、酸素濃度が
75%から50%へ変化した場合には蛍光出力で5目盛
の上昇を惹起する。斯かる変化量は、紫外蛍光検出器
(5)において0.03ppmの二酸化硫黄を検出した
場合の信号レベルに相当する。
As a result, as described above, the signal level detected by the ultraviolet fluorescence detector (5), that is, the signal level serving as the baseline changes greatly. As shown in FIG. 5, which shows the relationship between the oxygen concentration and the signal level, when the oxygen concentration changes from 75% to 50%, the fluorescence output causes an increase of 5 scales. Such an amount of change corresponds to the signal level when 0.03 ppm of sulfur dioxide is detected by the ultraviolet fluorescence detector (5).

【0035】そこで、本発明においては、紫外蛍光検出
器(5)を通過するガスの流量および当該ガス中の酸素
濃度が試料の注入前後で一定となる様に、試料(トルエ
ン)の注入に併せて、紫外蛍光検出器(5)に対する不
活性ガス(アルゴン)及び酸素の流入量を制御する。
Therefore, in the present invention, the sample (toluene) is injected together so that the flow rate of the gas passing through the ultraviolet fluorescence detector (5) and the oxygen concentration in the gas are constant before and after the injection of the sample. Thus, the inflow rates of the inert gas (argon) and oxygen to the ultraviolet fluorescence detector (5) are controlled.

【0036】図1に示す分析装置の操作においては、試
料注入前の段階で前述の流量(100ml/min)に
更に89ml/minを加えた189ml/minの流
量でアルゴンを加熱炉(1)に供給しておく。すなわ
ち、トルエン注入前には、流路(62)を通じ、加熱炉
(1)の内管(11)に100ml/minの流量でア
ルゴンを供給し、かつ、流路(64)を通じ、加熱炉
(1)の外管(12)に89ml/minの流量でアル
ゴンを供給する。そして、同時に、流路(67)及び
(64)を通じ、加熱炉(1)の外管(12)に300
ml/minの流量で酸素を供給する。
In the operation of the analyzer shown in FIG. 1, argon was added to the heating furnace (1) at a flow rate of 189 ml / min, which was obtained by adding 89 ml / min to the above flow rate (100 ml / min) before the sample injection. To supply. That is, before injecting toluene, argon is supplied to the inner pipe (11) of the heating furnace (1) at a flow rate of 100 ml / min through the flow path (62), and the heating furnace ( Argon is supplied to the outer tube (12) of 1) at a flow rate of 89 ml / min. And, at the same time, 300 through the outer tube (12) of the heating furnace (1) through the flow paths (67) and (64).
Oxygen is supplied at a flow rate of ml / min.

【0037】次いで、トルエンの注入に併せ、切替弁
(71)を操作することにより、加熱炉(1)に対する
アルゴンの供給を流路(62)だけに切替え、アルゴン
の供給量を100ml/minに変更する。同時に、切
替弁(71)の上記の切替操作により、流路(65)及
び(64)を通じ、114ml/minの流量で酸素を
追加供給する。すなわち、酸素は、トルエンの注入に併
せ、流路(65)、(66)、(67)及び(64)を
通じて300ml/min、流路(65)及び(64)
を通じて更に114ml/minの合計414ml/m
inの流量で加熱炉(1)の外管(12)に供給する。
Then, in conjunction with the injection of toluene, the switching valve (71) is operated to switch the supply of argon to the heating furnace (1) only to the flow path (62), and the supply amount of argon to 100 ml / min. change. At the same time, by the above switching operation of the switching valve (71), oxygen is additionally supplied through the flow paths (65) and (64) at a flow rate of 114 ml / min. That is, oxygen is injected at the same time as the injection of toluene, through the channels (65), (66), (67) and (64), 300 ml / min, the channels (65) and (64).
Through 114 ml / min for a total of 414 ml / m
It is supplied to the outer tube (12) of the heating furnace (1) at a flow rate of in.

【0038】その結果、トルエン注入中、すなわち、燃
焼分解中は、上記の分解反応により、加熱炉の出口から
は、発生する二酸化炭素(流量89ml/min)にア
ルゴン(流量100ml/min)を加えた非酸素ガス
(燃焼排ガス)が189ml/minの流量で排出さ
れ、かつ、消費されなかった酸素が300ml/min
の流量で排出される。換言すれば、トルエン注入前後
(試料の燃焼前後)において、加熱炉(1)には、非酸
素ガスが流量189ml/minで流れ且つ酸素が流量
300ml/minで流れるため、上記の分析装置によ
る分析においては、紫外蛍光検出器(5)を通過するガ
スの流量および当該ガス中の酸素濃度をトルエン注入前
後で一定に維持できる。
As a result, during injection of toluene, that is, during combustion decomposition, argon (flow rate 100 ml / min) was added to carbon dioxide (flow rate 89 ml / min) generated from the outlet of the heating furnace due to the above decomposition reaction. Non-oxygen gas (combustion exhaust gas) was discharged at a flow rate of 189 ml / min, and unconsumed oxygen was 300 ml / min.
Is discharged at a flow rate of. In other words, before and after the injection of toluene (before and after the combustion of the sample), non-oxygen gas flows at a flow rate of 189 ml / min and oxygen flows at a flow rate of 300 ml / min in the heating furnace (1). In, the flow rate of the gas passing through the ultraviolet fluorescence detector (5) and the oxygen concentration in the gas can be maintained constant before and after the toluene injection.

【0039】上記の様な操作により、加熱炉(1)の内
管(11)で試料を気化、分解し、外管(12)で酸素
と反応させ、試料中の硫黄分によって二酸化硫黄を生成
した後、生成したガス(燃焼排ガス)を除湿器(3)に
通過させ、燃焼時に生成した水を除去する。そして、除
湿された燃焼ガスを紫外蛍光検出器(5)に導入し、紫
外線蛍光の強度を検出すると共に、蛍光強度から定法に
基づいて硫黄成分の定量分析を行う。
By the above-mentioned operation, the sample is vaporized and decomposed in the inner tube (11) of the heating furnace (1) and reacted with oxygen in the outer tube (12) to generate sulfur dioxide by the sulfur content in the sample. After that, the generated gas (combustion exhaust gas) is passed through the dehumidifier (3) to remove water generated during combustion. Then, the dehumidified combustion gas is introduced into the ultraviolet fluorescence detector (5) to detect the intensity of the ultraviolet fluorescence, and the sulfur component is quantitatively analyzed based on the standard method from the fluorescence intensity.

【0040】上記の様に、本発明の分析方法において
は、加熱炉(5)への試料注入時、燃焼分解で発生する
二酸化炭素の量に相当する量だけ紫外蛍光検出器(5)
に対する不活性ガスの流入量を減らし、燃焼分解で消費
される量に相当する量だけ紫外蛍光検出器(5)に対す
る酸素の流入量を増やすことにより、紫外蛍光検出器
(5)を通過するガスの流量および当該ガス中の酸素濃
度を試料の注入前後で一定に保持するため、酸素濃度変
化に影響される蛍光検出器(5)での信号変化を最小に
抑えることが出来る。従って、本発明の分析方法によれ
ば、酸素による影響を受けることなく、石油製品などの
試料中の二酸化硫黄の濃度を正確に測定でき、試料に含
まれる微量の硫黄を高精度に定量分析できる。
As described above, in the analysis method of the present invention, when the sample is injected into the heating furnace (5), the ultraviolet fluorescence detector (5) is in an amount corresponding to the amount of carbon dioxide generated by combustion decomposition.
Gas that passes through the ultraviolet fluorescence detector (5) by reducing the inflow amount of inert gas to the ultraviolet fluorescence detector and increasing the oxygen inflow amount to the ultraviolet fluorescence detector (5) by an amount corresponding to the amount consumed by combustion decomposition. Since the flow rate and the oxygen concentration in the gas are kept constant before and after the injection of the sample, it is possible to minimize the signal change in the fluorescence detector (5) which is affected by the oxygen concentration change. Therefore, according to the analysis method of the present invention, the concentration of sulfur dioxide in a sample such as a petroleum product can be accurately measured without being affected by oxygen, and a trace amount of sulfur contained in the sample can be quantitatively analyzed with high accuracy. .

【0041】なお、前述の数値はあくまで一例であり、
不活性ガスと酸素の流量制御においては、例えば、試料
注入前には不活性ガスを189ml/min、酸素を1
84ml/minの各流量で供給し、試料注入開始後は
不活性ガスを100ml/min、酸素を300ml/
minの各流量に調整してもよい。
The above numerical values are merely examples,
In controlling the flow rates of the inert gas and oxygen, for example, before the sample injection, the inert gas is 189 ml / min and the oxygen is 1
It is supplied at each flow rate of 84 ml / min. After starting the sample injection, the inert gas is 100 ml / min and the oxygen is 300 ml / min.
It may be adjusted to each flow rate of min.

【0042】また、蛍光検出器(5)に対する不活性ガ
ス及び酸素の導入量の制御は、上記の様に加熱炉(1)
に対する不活性ガス及び酸素の供給量の調整によって行
ってもよいが、加熱炉(1)よりも下流側で行うことも
出来る。すなわち、上記の制御は、加熱炉(1)の下流
側の紫外蛍光検出器(5)以前の任意の箇所(例えば、
紫外蛍光検出器(5)の入口)に予め供給した不活性ガ
スの量を試料注入の際に制限し、かつ、試料注入の際に
前記の任意の箇所に酸素を追加供給することによっても
可能である。更に、上記の制御においては、上記のガス
供給手段(2)とは別個のガス供給手段を使用すること
も出来る。
The amount of inert gas and oxygen introduced into the fluorescence detector (5) is controlled by the heating furnace (1) as described above.
It may be carried out by adjusting the amounts of inert gas and oxygen supplied to the heating furnace, but it may also be carried out downstream of the heating furnace (1). That is, the above control is performed at an arbitrary position (for example, before the ultraviolet fluorescence detector (5) on the downstream side of the heating furnace (1).
It is also possible to limit the amount of inert gas previously supplied to the ultraviolet fluorescence detector (5) at the time of sample injection, and additionally supply oxygen to any of the above points during sample injection. Is. Further, in the above control, it is possible to use a gas supply means separate from the above-mentioned gas supply means (2).

【0043】更に、本発明の分析方法においては、前述
の分析装置において示した様に、加熱炉(1)より下流
側に酸素濃度計(4)を配置し、当該酸素濃度計によっ
て検出される酸素濃度の値に基づいて紫外蛍光検出器
(5)に対する不活性ガス及び酸素の導入量を制御する
のが好ましい。斯かる制御により、本発明においては、
より一層高精度に二酸化硫黄の濃度を測定でき、試料に
含まれる硫黄を一層高精度に定量分析できる。しかも、
酸素消費量が不明な試料を燃焼分解する場合において
も、燃焼排ガス中の酸素濃度を一定に維持することが可
能であり、組成の不明な試料についても二酸化硫黄の定
量分析ができる。
Further, in the analysis method of the present invention, as shown in the above-mentioned analysis apparatus, the oxygen concentration meter (4) is arranged downstream of the heating furnace (1), and the oxygen concentration meter (4) detects the oxygen concentration. It is preferable to control the amounts of the inert gas and oxygen introduced into the ultraviolet fluorescence detector (5) based on the value of the oxygen concentration. By such control, in the present invention,
The concentration of sulfur dioxide can be measured with higher accuracy, and the sulfur contained in the sample can be quantitatively analyzed with higher accuracy. Moreover,
Even when a sample whose oxygen consumption is unknown is combusted and decomposed, the oxygen concentration in the combustion exhaust gas can be kept constant, and sulfur dioxide can be quantitatively analyzed for a sample whose composition is unknown.

【0044】また、上記の分析方法の実施に好適な本発
明の分析装置において、紫外蛍光検出器(5)を通過す
るガスの流量および当該ガス中の酸素濃度が試料の注入
前後で一定となる様に紫外蛍光検出器(5)に対する不
活性ガス及び酸素の流入量を制御可能になされた構造
は、上述した様に、酸素濃度変化に影響される蛍光検出
器(5)での信号変化を最小に抑えることが出来る。従
って、本発明の分析装置によれば、酸素による影響を受
けることなく、石油製品などの試料中の二酸化硫黄の濃
度を正確に測定でき、試料に含まれる微量の硫黄を高精
度に定量分析できる。
Further, in the analyzer of the present invention suitable for carrying out the above-mentioned analysis method, the flow rate of the gas passing through the ultraviolet fluorescence detector (5) and the oxygen concentration in the gas become constant before and after the injection of the sample. As described above, the structure in which the inflow rates of the inert gas and oxygen to the ultraviolet fluorescence detector (5) are controllable, as described above, changes in the signal in the fluorescence detector (5) that are affected by changes in oxygen concentration. Can be kept to a minimum. Therefore, according to the analyzer of the present invention, the concentration of sulfur dioxide in a sample such as a petroleum product can be accurately measured without being affected by oxygen, and a minute amount of sulfur contained in the sample can be quantitatively analyzed with high accuracy. .

【0045】[0045]

【実施例】図1に示す構造の分析装置を使用し、試料中
の硫黄の定量分析を行った。試料としては、ジブチルジ
スルフィドを含み且つ含有量の異なる2種のトルエン溶
液、および、硫黄成分を含まないトルエン溶液を使用し
た。分析操作においては、加熱炉(1)の上部温度を9
00℃9、下部温度を1000℃に設定した。そして、
試料注入前においては、流路(62)を通じて加熱炉
(1)の内管(11)にアルゴンを100ml/min
の流量で供給し、かつ、流路(64)を通じて外管(1
2)にアルゴンを80ml/minの流量で供給すると
共に、流路(66)、(67)及び(64)を通じて外
管(12)に酸素を300ml/minの流量で供給し
た。
[Examples] Quantitative analysis of sulfur in a sample was performed using the analyzer having the structure shown in FIG. Two types of toluene solutions containing dibutyl disulfide and having different contents and a toluene solution containing no sulfur component were used as samples. In the analysis operation, the upper temperature of the heating furnace (1) was set to 9
The temperature was set to 00 ° C9 and the lower temperature was set to 1000 ° C. And
Before the sample injection, 100 ml / min of argon was introduced into the inner tube (11) of the heating furnace (1) through the flow path (62).
Of the outer pipe (1) through the flow path (64).
Argon was supplied to 2) at a flow rate of 80 ml / min, and oxygen was supplied to the outer tube (12) at a flow rate of 300 ml / min through the channels (66), (67) and (64).

【0046】次に、マイクロシリンジに試料30μlを
採取し、定速注入装置によって加熱炉(1)の内管(1
1)へ1μl/secの流量で注入した。また、試料の
注入開始と同時に、切替弁(71)の切替操作により、
流路(64)を流れるアルゴンを酸素に切り替え、加熱
炉(1)の外管(12)へ酸素を100ml/minの
流量で追加供給した。そして、試料の注入が完了した時
点において、切替弁(71)の切替操作により、流路
(64)を流れる酸素を再びアルゴンに切り替えた。
Next, 30 μl of the sample was sampled in a microsyringe, and the inner tube (1
It was injected into 1) at a flow rate of 1 μl / sec. Further, at the same time when the injection of the sample is started, the switching valve (71) is switched,
The argon flowing through the channel (64) was switched to oxygen, and oxygen was additionally supplied to the outer tube (12) of the heating furnace (1) at a flow rate of 100 ml / min. Then, when the injection of the sample was completed, the switching valve (71) was switched to switch the oxygen flowing through the flow path (64) to argon again.

【0047】一方、加熱炉(1)から排出されるガス
は、除湿器(3)に導入して水分を除去した。除湿器
(3)としては、吸湿性フッ素樹脂チューブを使用し、
チューブの外側に乾燥用ガスとしての窒素ガスを1l/
minで流した。除湿したガスは、紫外蛍光検出器
(5)に導入して紫外蛍光強度を測定した。また、出口
側の酸素濃度計(3)により、試料注入中に紫外蛍光検
出器(5)に流入するガス中の酸素濃度の変化を測定し
た。そして、紫外蛍光検出器(5)からの蛍光強度の信
号をデータ化処理し、図2に示す様なピークを有する試
料の分析データが得られた。更に、得られた分析データ
から図4に示す様な硫黄濃度とピーク面積の関係が得ら
れた。また、酸素濃度計(3)からの出力は図2に示す
様な波形であった。
On the other hand, the gas discharged from the heating furnace (1) was introduced into the dehumidifier (3) to remove water. A hygroscopic fluororesin tube is used as the dehumidifier (3),
Nitrogen gas as a drying gas was added to the outside of the tube at 1 l /
shed at min. The dehumidified gas was introduced into an ultraviolet fluorescence detector (5) to measure the ultraviolet fluorescence intensity. Further, a change in the oxygen concentration in the gas flowing into the ultraviolet fluorescence detector (5) during the injection of the sample was measured by the oxygen concentration meter (3) on the outlet side. Then, the signal of the fluorescence intensity from the ultraviolet fluorescence detector (5) was processed into data, and analytical data of the sample having a peak as shown in FIG. 2 was obtained. Furthermore, from the obtained analytical data, the relationship between the sulfur concentration and the peak area as shown in FIG. 4 was obtained. The output from the oximeter (3) had a waveform as shown in FIG.

【0048】因に、比較例として、切替弁(71)の切
替操作を行うことなく、当初の流量のままアルゴン及び
酸素を加熱炉(1)に供給しつつ、上記と同様の3種の
試料について燃焼分解を行い、紫外蛍光検出器(5)に
よって紫外蛍光強度を測定したところ、図3に示す様な
ピークを有する試料の分析データが得られ、そして、得
られた分析データからは、図4に示す様な硫黄濃度とピ
ーク面積の関係が得られた。また、酸素濃度計(3)か
らの出力は図3に示す様な波形であった。
Incidentally, as a comparative example, three kinds of samples similar to those described above were supplied while argon and oxygen were supplied to the heating furnace (1) without changing the switching valve (71) at the initial flow rate. Was subjected to combustion decomposition, and the ultraviolet fluorescence intensity was measured by an ultraviolet fluorescence detector (5). As a result, analytical data of a sample having a peak as shown in FIG. 3 was obtained. The relationship between the sulfur concentration and the peak area as shown in 4 was obtained. The output from the oximeter (3) had a waveform as shown in FIG.

【0049】上記の実施例と比較例とを図2及び図3に
よって比較すると、燃焼分解の際にアルゴンから酸素に
切り替えた場合には、酸素濃度計(3)の出力変動は切
り替えない場合に比べて非常に小さくなっており、燃焼
排ガス中の酸素濃度の変化が抑えられている。そして、
図2に示すピーク高さと図3に示すピーク高さの相違、
および、図4に示すピーク面積の相違からも明らかな様
に、紫外蛍光検出器(5)の出力は、切替操作を行わな
かった場合に比べ、切替操作を行った場合は小さな値と
なっている。
Comparing the above embodiment with the comparative example with reference to FIG. 2 and FIG. 3, when argon is switched to oxygen during combustion decomposition, the output fluctuation of the oxygen concentration meter (3) is not switched. It is much smaller than the above, and changes in the oxygen concentration in the combustion exhaust gas are suppressed. And
The difference between the peak height shown in FIG. 2 and the peak height shown in FIG.
Also, as is clear from the difference in peak area shown in FIG. 4, the output of the ultraviolet fluorescence detector (5) becomes a smaller value when the switching operation is performed than when the switching operation is not performed. There is.

【0050】すなわち、アルゴンから酸素への切替操作
を行った場合(アルゴンと酸素の流量制御を行った場
合)は、紫外蛍光検出器(5)に流入するガスの酸素濃
度が一定に保持され、紫外蛍光検出器(5)における出
力信号のベースラインの上昇が防止されている。従っ
て、上記の実施例においては、アルゴンと酸素の流量制
御を行い、紫外蛍光検出器(5)に流入するガスの酸素
濃度を一定に保つことにより、紫外蛍光出力のベースラ
インの上昇が発生せず、二酸化硫黄の濃度を正確に測定
できることが確認された。
That is, when the switching operation from argon to oxygen is performed (when the flow rates of argon and oxygen are controlled), the oxygen concentration of the gas flowing into the ultraviolet fluorescence detector (5) is kept constant, The baseline rise of the output signal in the ultraviolet fluorescence detector (5) is prevented. Therefore, in the above embodiment, by controlling the flow rates of argon and oxygen and keeping the oxygen concentration of the gas flowing into the ultraviolet fluorescence detector (5) constant, an increase in the baseline of the ultraviolet fluorescence output occurs. Therefore, it was confirmed that the concentration of sulfur dioxide can be accurately measured.

【0051】[0051]

【発明の効果】以上説明した様に、本発明に係る硫黄の
分析方法によれば、紫外蛍光検出器を通過するガスの流
量および当該ガス中の酸素濃度を試料の注入前後で一定
に保持するため、酸素濃度変化に影響される蛍光検出器
での信号変化を最小に抑えることが出来、その結果、石
油製品などの試料中の二酸化硫黄の濃度を正確に測定で
き、試料に含まれる微量の硫黄を高精度に定量分析でき
る。
As described above, according to the sulfur analysis method of the present invention, the flow rate of the gas passing through the ultraviolet fluorescence detector and the oxygen concentration in the gas are kept constant before and after the injection of the sample. Therefore, it is possible to minimize the signal change in the fluorescence detector that is affected by the oxygen concentration change, and as a result, it is possible to accurately measure the concentration of sulfur dioxide in a sample such as a petroleum product and Highly accurate quantitative analysis of sulfur is possible.

【0052】また、本発明に係る硫黄の分析装置によれ
ば、酸素濃度変化に影響される蛍光検出器での信号変化
を最小に抑えることが出来るため、石油製品などの試料
中の二酸化硫黄の濃度を正確に測定でき、試料に含まれ
る微量の硫黄を高精度に定量分析できる。
Further, according to the sulfur analyzer of the present invention, it is possible to minimize the signal change in the fluorescence detector which is affected by the change in oxygen concentration. The concentration can be accurately measured, and the trace amount of sulfur contained in the sample can be quantitatively analyzed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る硫黄の分析装置の構成例を示すフ
ロー図
FIG. 1 is a flow chart showing a configuration example of a sulfur analyzer according to the present invention.

【図2】実施例における紫外蛍光検出器の出力および酸
素濃度計の出力を示すグラフ
FIG. 2 is a graph showing the output of the ultraviolet fluorescence detector and the output of the oximeter in the example.

【図3】比較例における紫外蛍光検出器の出力および酸
素濃度計の出力を示すグラフ
FIG. 3 is a graph showing the output of an ultraviolet fluorescence detector and the output of an oximeter in a comparative example.

【図4】紫外蛍光出力から得られた実施例および比較例
における硫黄濃度とピーク面積の関係を示すグラフ
FIG. 4 is a graph showing the relationship between sulfur concentration and peak area in Examples and Comparative Examples obtained from ultraviolet fluorescence output.

【図5】酸素濃度と紫外蛍光検出器から出力される信号
レベルとの関係を示すグラフ
FIG. 5 is a graph showing the relationship between the oxygen concentration and the signal level output from the ultraviolet fluorescence detector.

【符号の説明】[Explanation of symbols]

1 :加熱炉 11:内管 12:外管 13:加熱器 2 :ガス供給手段 21:不活性ガス容器 22:酸素容器 23:流量調節器 24:流量調節器 25:流量調節器 3 :除湿器 4 :酸素濃度計 5 :紫外蛍光検出器 62:流路 64:流路 71:切替弁 1: Heating furnace 11: Inner tube 12: Outer tube 13: heater 2: Gas supply means 21: Inert gas container 22: Oxygen container 23: Flow controller 24: Flow controller 25: Flow controller 3: Dehumidifier 4: Oxygen meter 5: UV fluorescence detector 62: flow path 64: flow path 71: Switching valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 31/00 G01N 31/00 P 31/12 31/12 A 33/22 33/22 B Fターム(参考) 2G042 AA01 BA08 BB12 CB03 DA04 FA04 FB01 GA04 GA10 HA07 2G043 AA01 BA11 BA14 BA15 CA01 DA01 EA01 GA07 GB09 GB21 KA03 LA02 NA11 2G052 AA08 AB08 AB11 AB27 AD26 AD42 CA03 CA04 CA18 CA29 CA35 EB11 EB12 FD17 GA11 HA15 HB06 HC04 HC10 HC16 HC22 HC28 JA09 JA11 JA13 2G054 AA02 AB07 BB13 CA10 EA03 FA10 FA17 FA19 FA37 FA40 GA02 GA04 GB02 JA00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 31/00 G01N 31/00 P 31/12 31/12 A 33/22 33/22 B F term (reference) ) 2G042 AA01 BA08 BB12 CB03 DA04 FA04 FB01 GA04 GA10 HA07 2G043 AA01 BA11 BA14 BA15 CA01 DA01 EA01 GA07 GB09 GB21 KA03 LA02 NA11 2G052 AA08 AB08 AB11 AB27 AD26 AD42 CA03 CA04 CA18 CA29 CA35 EB11 EB12 FD17 GA11 HA15 HB06 HC04 HC10 HC16 HC22 HC28 JA09 JA11 JA13 2G054 AA02 AB07 BB13 CA10 EA03 FA10 FA17 FA19 FA37 FA40 GA02 GA04 GB02 JA00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉にて不活性ガス及び酸素の供給下
に硫黄含有試料を燃焼分解し、紫外蛍光検出器にて燃焼
排ガス中の二酸化硫黄の蛍光強度を測定することによ
り、試料中の硫黄成分の定量分析を行う硫黄の分析方法
において、前記紫外蛍光検出器を通過するガスの流量お
よび当該ガス中の酸素濃度が試料の注入前後で一定とな
る様に、前記紫外蛍光検出器に対する不活性ガス及び酸
素の流入量を制御することを特徴とする硫黄の分析方
法。
1. A sulfur-containing sample is combusted and decomposed in a heating furnace under the supply of an inert gas and oxygen, and the fluorescence intensity of sulfur dioxide in the combustion exhaust gas is measured by an ultraviolet fluorescence detector. In the method for analyzing sulfur for quantitatively analyzing sulfur components, the flow rate of the gas passing through the ultraviolet fluorescence detector and the oxygen concentration in the gas are kept constant before and after the injection of the sample. A method for analyzing sulfur, which comprises controlling the inflow of active gas and oxygen.
【請求項2】 加熱炉より下流側に酸素濃度計を配置
し、当該酸素濃度計によって検出される酸素濃度の値に
基づいて前記紫外蛍光検出器に対する不活性ガス及び酸
素の流入量を制御する請求項1に記載の硫黄の分析方
法。
2. An oxygen concentration meter is arranged downstream of the heating furnace, and the inflow amounts of the inert gas and oxygen to the ultraviolet fluorescence detector are controlled based on the value of the oxygen concentration detected by the oxygen concentration meter. The method for analyzing sulfur according to claim 1.
【請求項3】 硫黄含有試料は、硫黄含有量が1ppm
以下の試料である請求項1又は2に記載の硫黄の分析方
法。
3. The sulfur-containing sample has a sulfur content of 1 ppm.
The sulfur analysis method according to claim 1, which is the following sample.
【請求項4】 少なくとも、注入された硫黄含有試料を
燃焼分解する加熱炉と、当該加熱炉に不活性ガス及び酸
素を供給するガス供給手段と、前記加熱炉から排出され
た燃焼排ガス中の二酸化硫黄の蛍光強度を測定する紫外
蛍光検出器とを備えた硫黄の分析装置であって、前記紫
外蛍光検出器を通過するガスの流量および当該ガス中の
酸素濃度が試料の注入前後で一定となる様に、前記紫外
蛍光検出器に対する不活性ガス及び酸素の流入量を制御
可能になされていることを特徴とする硫黄の分析装置。
4. A heating furnace for combusting and decomposing the injected sulfur-containing sample, a gas supply means for supplying an inert gas and oxygen to the heating furnace, and a dioxide in the combustion exhaust gas discharged from the heating furnace. A sulfur analyzer equipped with an ultraviolet fluorescence detector for measuring the fluorescence intensity of sulfur, wherein the flow rate of the gas passing through the ultraviolet fluorescence detector and the oxygen concentration in the gas are constant before and after the injection of the sample. In this manner, the sulfur analyzer is characterized in that the inflow rates of the inert gas and oxygen to the ultraviolet fluorescence detector can be controlled.
【請求項5】 加熱炉より下流側に酸素濃度計が配置さ
れ、当該酸素濃度計によって検出される酸素濃度の値に
基づいて前記紫外蛍光検出器に対する不活性ガス及び酸
素の流入量を制御する様になされている請求項4に記載
の硫黄の分析装置。
5. An oxygen concentration meter is arranged on the downstream side of the heating furnace, and the inflow amount of the inert gas and oxygen to the ultraviolet fluorescence detector is controlled based on the value of the oxygen concentration detected by the oxygen concentration meter. 5. The sulfur analyzer according to claim 4, which is configured as described above.
【請求項6】 硫黄含有試料は、硫黄含有量が1ppm
以下の試料である請求項4又は5に記載の硫黄の分析装
置。
6. The sulfur-containing sample has a sulfur content of 1 ppm.
The sulfur analyzer according to claim 4, which is the following sample.
JP2001261434A 2001-08-30 2001-08-30 Sulfur analysis method and analyzer Pending JP2003065958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261434A JP2003065958A (en) 2001-08-30 2001-08-30 Sulfur analysis method and analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261434A JP2003065958A (en) 2001-08-30 2001-08-30 Sulfur analysis method and analyzer

Publications (1)

Publication Number Publication Date
JP2003065958A true JP2003065958A (en) 2003-03-05

Family

ID=19088482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261434A Pending JP2003065958A (en) 2001-08-30 2001-08-30 Sulfur analysis method and analyzer

Country Status (1)

Country Link
JP (1) JP2003065958A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274139A (en) * 2004-03-22 2005-10-06 Horiba Ltd Measuring intrument for specific component in sample
JP2007309826A (en) * 2006-05-19 2007-11-29 Toshiba Corp Sample measuring device and sample container
JP2008082808A (en) * 2006-09-27 2008-04-10 Dia Instr:Kk Analysis equipment
CN100403016C (en) * 2006-04-28 2008-07-16 朱先德 Sulfur determination meter with automatic sample delivery device
JP2008298606A (en) * 2007-05-31 2008-12-11 Mitsubishi Chemical Analytech Co Ltd Method of burning sample for analysis
CN101858853A (en) * 2010-06-01 2010-10-13 长沙开元仪器有限公司 Sulfur meter
WO2011102137A1 (en) 2010-02-18 2011-08-25 Jfeスチール株式会社 Method and device for analyzing sulfur in metal sample
JP2011237204A (en) * 2010-05-07 2011-11-24 Jx Nippon Oil & Energy Corp Sulfur on-line analyzer
JP2013040826A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Analysis method and analysis apparatus
JP2013040827A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Method and apparatus for analyzing sulfur in pig iron
JP2013040825A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Analysis method and analyzer
EP2722405A4 (en) * 2011-08-12 2015-09-30 Jfe Steel Corp BACKGROUND STEEL DESULFURING METHOD, SECONDARY STEEL REFINING METHOD, AND MOLTEN STEEL MANUFACTURING METHOD
CN105092640A (en) * 2015-08-26 2015-11-25 常州大学 Neutralization-method sulfur detector with automatic tungsten trioxide spraying function
CN105319109A (en) * 2015-11-09 2016-02-10 常州大学 Linear parallel device capable of configuring tungsten trioxide coal samples through adopting double lifting
CN105319099A (en) * 2015-11-09 2016-02-10 常州大学 Toroidal parallel equipment for configuring tungsten trioxide coal samples by lifting of operation end
CN105319105A (en) * 2015-11-09 2016-02-10 常州大学 Serial device capable of configuring tungsten trioxide coal samples through adopting double lifting and rotation of operation end
CN105334092A (en) * 2015-11-09 2016-02-17 常州大学 Double-lifting serial device capable of arranging tungsten trioxide coal samples in horizontal moving mode through chassis
CN105424433A (en) * 2015-11-09 2016-03-23 常州大学 Simple device adopting operation end lifting to make tungsten trioxide containing coal samples
US20160158895A1 (en) * 2011-09-23 2016-06-09 Lucas-Milhaupt, Inc. Luminescent Braze Preforms
JP2020507759A (en) * 2017-12-04 2020-03-12 エルジー・ケム・リミテッド Automated sample pyrolysis equipment
CN112213291A (en) * 2020-10-29 2021-01-12 北京诺德泰科仪器仪表有限公司 Reaction Tubes for Vertical Furnace UV Fluorescence Total Sulfur Analyzers
CN113167778A (en) * 2018-12-04 2021-07-23 株式会社堀场制作所 Analysis device and analysis method
JP2022020962A (en) * 2020-07-21 2022-02-02 日東精工アナリテック株式会社 How to burn a liquid sample

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281186A (en) * 1992-03-30 1993-10-29 Shimadzu Corp Flue gas measuring device
JPH06201543A (en) * 1992-11-11 1994-07-19 Dkk Corp Carbide hydride eliminator
JPH0774462A (en) * 1993-09-01 1995-03-17 Nippon Dennetsu Keiki Kk Inert gas atmosphere controller for soldering apparatus
JPH11352060A (en) * 1998-06-03 1999-12-24 Suga Test Instr Co Ltd Measuring equipment for sulfur dioxide concentration
JP2000065721A (en) * 1998-08-19 2000-03-03 Mitsubishi Chemicals Corp Analyzing device
JP2000065699A (en) * 1998-08-19 2000-03-03 Mitsubishi Chemicals Corp Analytical sample burner, method for controlling supply of inert gas and oxygen-containing gas in analytical sample burner, and analytical system having sample burner
JP2000065722A (en) * 1998-08-19 2000-03-03 Mitsubishi Chemicals Corp Analysis equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281186A (en) * 1992-03-30 1993-10-29 Shimadzu Corp Flue gas measuring device
JPH06201543A (en) * 1992-11-11 1994-07-19 Dkk Corp Carbide hydride eliminator
JPH0774462A (en) * 1993-09-01 1995-03-17 Nippon Dennetsu Keiki Kk Inert gas atmosphere controller for soldering apparatus
JPH11352060A (en) * 1998-06-03 1999-12-24 Suga Test Instr Co Ltd Measuring equipment for sulfur dioxide concentration
JP2000065721A (en) * 1998-08-19 2000-03-03 Mitsubishi Chemicals Corp Analyzing device
JP2000065699A (en) * 1998-08-19 2000-03-03 Mitsubishi Chemicals Corp Analytical sample burner, method for controlling supply of inert gas and oxygen-containing gas in analytical sample burner, and analytical system having sample burner
JP2000065722A (en) * 1998-08-19 2000-03-03 Mitsubishi Chemicals Corp Analysis equipment

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274139A (en) * 2004-03-22 2005-10-06 Horiba Ltd Measuring intrument for specific component in sample
CN100403016C (en) * 2006-04-28 2008-07-16 朱先德 Sulfur determination meter with automatic sample delivery device
JP2007309826A (en) * 2006-05-19 2007-11-29 Toshiba Corp Sample measuring device and sample container
JP2008082808A (en) * 2006-09-27 2008-04-10 Dia Instr:Kk Analysis equipment
JP2008298606A (en) * 2007-05-31 2008-12-11 Mitsubishi Chemical Analytech Co Ltd Method of burning sample for analysis
WO2011102137A1 (en) 2010-02-18 2011-08-25 Jfeスチール株式会社 Method and device for analyzing sulfur in metal sample
JP2011169753A (en) * 2010-02-18 2011-09-01 Jfe Steel Corp Method and device for analyzing sulfur in metal sample
US8900874B2 (en) 2010-02-18 2014-12-02 Jfe Steel Corporation Method and device for analyzing sulfur in metal sample
JP2011237204A (en) * 2010-05-07 2011-11-24 Jx Nippon Oil & Energy Corp Sulfur on-line analyzer
CN101858853A (en) * 2010-06-01 2010-10-13 长沙开元仪器有限公司 Sulfur meter
JP2013040826A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Analysis method and analysis apparatus
JP2013040827A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Method and apparatus for analyzing sulfur in pig iron
JP2013040825A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Analysis method and analyzer
EP2722405A4 (en) * 2011-08-12 2015-09-30 Jfe Steel Corp BACKGROUND STEEL DESULFURING METHOD, SECONDARY STEEL REFINING METHOD, AND MOLTEN STEEL MANUFACTURING METHOD
US11035014B2 (en) * 2011-08-12 2021-06-15 Jfe Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
US10160062B2 (en) * 2011-09-23 2018-12-25 Lucas-Milhaupt, Inc. Luminescent braze preforms
US20160158895A1 (en) * 2011-09-23 2016-06-09 Lucas-Milhaupt, Inc. Luminescent Braze Preforms
CN105092640A (en) * 2015-08-26 2015-11-25 常州大学 Neutralization-method sulfur detector with automatic tungsten trioxide spraying function
CN105319105A (en) * 2015-11-09 2016-02-10 常州大学 Serial device capable of configuring tungsten trioxide coal samples through adopting double lifting and rotation of operation end
CN105334092A (en) * 2015-11-09 2016-02-17 常州大学 Double-lifting serial device capable of arranging tungsten trioxide coal samples in horizontal moving mode through chassis
CN105424433A (en) * 2015-11-09 2016-03-23 常州大学 Simple device adopting operation end lifting to make tungsten trioxide containing coal samples
CN105319109A (en) * 2015-11-09 2016-02-10 常州大学 Linear parallel device capable of configuring tungsten trioxide coal samples through adopting double lifting
CN105319099A (en) * 2015-11-09 2016-02-10 常州大学 Toroidal parallel equipment for configuring tungsten trioxide coal samples by lifting of operation end
JP2020507759A (en) * 2017-12-04 2020-03-12 エルジー・ケム・リミテッド Automated sample pyrolysis equipment
US11614389B2 (en) 2017-12-04 2023-03-28 Lg Energy Solution, Ltd. Automated apparatus for sample pyrolysis
CN113167778A (en) * 2018-12-04 2021-07-23 株式会社堀场制作所 Analysis device and analysis method
JPWO2020115946A1 (en) * 2018-12-04 2021-10-28 株式会社堀場製作所 Analytical equipment and analytical method
EP3892995A4 (en) * 2018-12-04 2022-09-07 HORIBA, Ltd. Analysis device and analysis method
JP7217755B2 (en) 2018-12-04 2023-02-03 株式会社堀場製作所 Analysis device and analysis method
JP2022020962A (en) * 2020-07-21 2022-02-02 日東精工アナリテック株式会社 How to burn a liquid sample
CN112213291A (en) * 2020-10-29 2021-01-12 北京诺德泰科仪器仪表有限公司 Reaction Tubes for Vertical Furnace UV Fluorescence Total Sulfur Analyzers

Similar Documents

Publication Publication Date Title
JP2003065958A (en) Sulfur analysis method and analyzer
US5661036A (en) Process for the detection of sulfur
CN102803949B (en) Method and device for analyzing sulfur in metal sample
US4077774A (en) Interferent-free fluorescence detection of sulfur dioxide
CN106537123B (en) Method for analyzing nitrogen in metal sample, device for analyzing nitrogen in metal sample, method for adjusting nitrogen concentration in molten steel, and method for producing steel
EP1507140B1 (en) Analysis method and apparatus for measuring concentrations of sulfur components using ultraviolet fluorescence
US5330714A (en) Process and apparatus for simultaneous measurement of sulfur and non-sulfur containing compounds
Stedman et al. Analytical applications of gas phase chemiluminescence
CN109752358A (en) The measuring method of sulfur content in a kind of water
JP2003075426A (en) Wet oxidation elemental analyzer
CN113167734A (en) Component analysis system and component detection device
CN105136698B (en) A kind of assay method and device of volatilizable compound
JP2003028852A (en) Analyzer for element in sample
WO1995022049A1 (en) Apparatus for simultaneous measurement of sulfur and non-sulfur containing compounds
JPH05504835A (en) Method and device for simultaneous measurement of sulfur-containing and non-sulfur-containing compounds
CN114207413B (en) Microfluidic analytical method and device for quantifying soluble gaseous pollutants in water
JP4542930B2 (en) Exhaust gas analyzer
JP4109578B2 (en) Chemiluminescent gas analysis method and apparatus
JPH0827273B2 (en) Carbon measuring device
JP2005274139A (en) Measuring intrument for specific component in sample
JP2675496B2 (en) High-precision analyzer for trace components in metal samples
JPH08178910A (en) Method and apparatus for analyzing sulfur and phosphorus in metal sample
JP2000065722A (en) Analysis equipment
JPH1151869A (en) Total organic carbon and total nitrogen meter
RU2166753C2 (en) Procedure and device determining concentration of organic substances in liquid sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026