[go: up one dir, main page]

JP2003065618A - Heat carrying equipment - Google Patents

Heat carrying equipment

Info

Publication number
JP2003065618A
JP2003065618A JP2001256199A JP2001256199A JP2003065618A JP 2003065618 A JP2003065618 A JP 2003065618A JP 2001256199 A JP2001256199 A JP 2001256199A JP 2001256199 A JP2001256199 A JP 2001256199A JP 2003065618 A JP2003065618 A JP 2003065618A
Authority
JP
Japan
Prior art keywords
liquid pump
refrigerant
degree
heat exchanger
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001256199A
Other languages
Japanese (ja)
Inventor
Kazuaki Mizukami
和明 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001256199A priority Critical patent/JP2003065618A/en
Publication of JP2003065618A publication Critical patent/JP2003065618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide heat carrying equipment which suppress lowering of the efficiency of a heat exchanger. SOLUTION: The heat carrying equipment has a closed-loop circulation circuit which connects a rotation speed variable type liquid pump 1, an evaporator 3 and the heat exchanger 7 sequentially and is filled with a refrigerant. The equipment is provided with detecting means 31 and 33 for detecting a supercooling degree at an inlet of the liquid pump 1 and a control means 41 for controlling the speed of rotation of the liquid pump 1 according to the supercooling degree detected by these detecting means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、業務用冷
凍庫やショーケース等に使用されて好適な熱搬送装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device suitable for use in, for example, commercial freezers and showcases.

【0002】[0002]

【従来の技術】一般に、液ポンプと蒸発器と熱交換器と
を順に接続し、冷媒を充填してなる閉ループの循環回路
を備える熱搬送装置が知られている。この種のもので
は、近年、上記循環回路にCO2またはHFC等の高圧
作動冷媒を封入したものが提案されている。例えば、循
環回路にCO2冷媒が封入された場合、このCO2冷媒は
粘性が低いため、圧力損失が少なく、循環回路の配管長
を長くすることができると共に、CO2冷媒は低温域で
の潜熱が高いため、冷媒の循環量を少なくすることがで
きる等の利点が得られる。
2. Description of the Related Art Generally, a heat transfer device is known which is provided with a closed loop circulation circuit in which a liquid pump, an evaporator, and a heat exchanger are connected in order and filled with a refrigerant. In this type, in recent years, there has been proposed one in which a high-pressure working refrigerant such as CO 2 or HFC is enclosed in the circulation circuit. For example, if the CO 2 refrigerant is filled in the circulation circuit, since the CO 2 refrigerant has a low viscosity, it is possible to pressure loss is small, a longer pipe length of the circulation circuit, CO 2 refrigerant in the low-temperature region Since the latent heat is high, there are advantages such as that the circulation amount of the refrigerant can be reduced.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の構成
では、液ポンプの入口の過冷却度が所定値を越えた場
合、液ポンプの入口に連なる熱交換器に液冷媒が滞留
し、その分だけ熱交換に要する面積が減少し、熱交換器
の効率が低下するという問題がある。
By the way, in the conventional structure, when the degree of supercooling at the inlet of the liquid pump exceeds a predetermined value, the liquid refrigerant stays in the heat exchanger connected to the inlet of the liquid pump, and that much However, there is a problem that the area required for heat exchange is reduced and the efficiency of the heat exchanger is reduced.

【0004】一方、液ポンプの入口の過冷却度が低くな
りすぎた場合、気泡が発生して、キャビテーションが発
生するという問題がある。
On the other hand, if the degree of supercooling at the inlet of the liquid pump becomes too low, there is a problem that bubbles are generated and cavitation occurs.

【0005】そこで、本発明の目的は、上述した従来の
技術が有する課題を解消し、熱交換器の効率低下を抑制
でき、キャビテーションの発生を抑制することができる
熱搬送装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a heat transfer device capable of suppressing a decrease in efficiency of the heat exchanger and suppressing the occurrence of cavitation. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明は、回転数可変型液ポンプと蒸
発器と熱交換器とを順に接続し、冷媒を充填してなる閉
ループの循環回路を備える熱搬送装置において、前記液
ポンプの入口の過冷却度を検知する検知手段と、この検
知手段で検知された過冷却度に応じて前記液ポンプの回
転数を制御する制御手段とを備えたことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a closed loop in which a variable rotation speed type liquid pump, an evaporator and a heat exchanger are connected in order and a refrigerant is filled. In the heat transfer device including the circulation circuit, a detection unit that detects the degree of supercooling at the inlet of the liquid pump, and a control unit that controls the rotation speed of the liquid pump according to the degree of supercooling detected by the detection unit. It is characterized by having and.

【0007】請求項2記載の発明は、回転数一定型液ポ
ンプと蒸発器と熱交換器とを順に接続し、冷媒を充填し
てなる閉ループの循環回路を備える熱搬送装置におい
て、前記液ポンプを迂回する管路に設けられた流量調整
弁と、前記液ポンプの入口の過冷却度を検知する検知手
段と、この検知手段で検知された過冷却度に応じて前記
流量調整弁の弁開度を制御する制御手段とを備えたこと
を特徴とする。
According to a second aspect of the present invention, there is provided a heat transfer device including a closed-loop circulation circuit in which a constant-speed liquid pump, an evaporator, and a heat exchanger are connected in sequence and a refrigerant is filled. A flow rate adjusting valve provided in a pipe bypassing the pump, a detecting means for detecting the degree of supercooling at the inlet of the liquid pump, and a valve of the flow rate adjusting valve according to the degree of supercooling detected by the detecting means. A control means for controlling the opening is provided.

【0008】請求項3記載の発明は、請求項1または2
記載のものにおいて、前記循環回路に充填された冷媒が
CO2またはHFC等の高圧作動冷媒であることを特徴
とするものである。
The invention according to claim 3 is the invention according to claim 1 or 2.
In the above described, the refrigerant filled in the circulation circuit is a high pressure working refrigerant such as CO 2 or HFC.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は、熱搬送装置の回路図である。図1
において、1はロータリー式の全密閉型液ポンプを示
す。この液ポンプ1は、インバータ駆動方式による回転
数可変型のポンプである。この液ポンプ1の吐出側には
液管2を介してショーケース等の複数の蒸発器3が並列
に接続されている。4はそれぞれの蒸発器3への冷媒流
入量を調整する流量調整弁である。
FIG. 1 is a circuit diagram of the heat transfer device. Figure 1
In the figure, 1 indicates a rotary type totally enclosed liquid pump. The liquid pump 1 is a variable speed pump of an inverter drive system. On the discharge side of the liquid pump 1, a plurality of evaporators 3 such as a showcase are connected in parallel via a liquid pipe 2. Reference numeral 4 is a flow rate adjusting valve for adjusting the amount of refrigerant flowing into each evaporator 3.

【0011】各蒸発器3はガス管6を介して熱交換器7
に接続され、この熱交換器7は液ポンプ1の吸い込み側
に接続されている。
Each evaporator 3 has a heat exchanger 7 through a gas pipe 6.
The heat exchanger 7 is connected to the suction side of the liquid pump 1.

【0012】上記熱交換器7は冷媒と冷媒との間で熱交
換させるいわば冷媒対冷媒・熱交換器であり、凝縮部7
Aと蒸発部7Bとを有する。
The heat exchanger 7 is, so to speak, a refrigerant-to-refrigerant heat exchanger for exchanging heat between the refrigerants, and the condensing section 7
It has A and the evaporation part 7B.

【0013】凝縮部7Aは、上記液ポンプ1に連なる管
路で構成され、蒸発部7Bを構成する管路には、冷凍サ
イクル9が接続されている。
The condensing section 7A is composed of a pipe line connected to the liquid pump 1, and the refrigeration cycle 9 is connected to the pipe line of the evaporation section 7B.

【0014】この冷凍サイクル9は圧縮機11と、凝縮
器13と、減圧装置15と、蒸発部7Bとを配管接続し
て構成されている。
The refrigeration cycle 9 is constructed by connecting a compressor 11, a condenser 13, a decompression device 15 and an evaporation section 7B by piping.

【0015】次に、この熱搬送装置の動作を説明する。Next, the operation of this heat transfer device will be described.

【0016】冷凍サイクル9は、圧縮機11の駆動によ
り動作する。この圧縮機11が駆動されると、閉ループ
内を冷媒が矢印P方向に循環し、凝縮器13で凝縮した
冷媒が、冷媒対冷媒・熱交換器7における蒸発部7Bで
蒸発される。一方、熱搬送装置は、液ポンプ1の駆動に
より動作する。この液ポンプ1が駆動されると、閉ルー
プ内を冷媒が矢印Q方向に循環して、蒸発器3で蒸発
し、ショーケースの庫内が冷却される。ついで、冷媒
は、冷媒対冷媒・熱交換器7に流入し、この冷媒対冷媒
・熱交換器7における凝縮部7Aで凝縮され液化されて
液ポンプ1に吸い込まれる。この液ポンプ1は、冷媒を
液で吸い込み、液で吐出する。
The refrigeration cycle 9 operates by driving the compressor 11. When the compressor 11 is driven, the refrigerant circulates in the closed loop in the direction of the arrow P, and the refrigerant condensed in the condenser 13 is evaporated in the evaporator 7B of the refrigerant / refrigerant / heat exchanger 7. On the other hand, the heat transfer device operates by driving the liquid pump 1. When the liquid pump 1 is driven, the refrigerant circulates in the closed loop in the direction of the arrow Q, is evaporated by the evaporator 3, and the inside of the showcase is cooled. Next, the refrigerant flows into the refrigerant / refrigerant / heat exchanger 7, is condensed and liquefied in the condensing portion 7A of the refrigerant / refrigerant / heat exchanger 7, and is sucked into the liquid pump 1. The liquid pump 1 sucks a refrigerant as a liquid and discharges it as a liquid.

【0017】この熱搬送装置の閉ループにはCO2冷媒
が封入される。このCO2冷媒は粘性が低いため、圧力
損失が少なく、循環回路の配管長を長くできる。従っ
て、本構成は、業務用冷凍庫や複数のショーケースを接
続した、スーパーマーケット等の大店舗用熱搬送装置に
好適である。
A CO 2 refrigerant is enclosed in the closed loop of the heat transfer device. Since this CO 2 refrigerant has a low viscosity, the pressure loss is small and the piping length of the circulation circuit can be lengthened. Therefore, this configuration is suitable for a heat transfer device for a large store such as a supermarket to which a commercial freezer or a plurality of showcases are connected.

【0018】また、CO2冷媒は低温域での潜熱が高い
ため、冷媒の循環量を少なくすることができる。循環量
を少なくできるので圧力損失を少なく、配管長を長く
(配管径を小さく)することができる。さらにCO2
媒はオゾン破壊係数が0で、地球温暖化係数が1である
ため、毒性が少なく、可燃性がなく安全で安価であり、
環境への負荷の小さい熱搬送装置が提供される。
Further, since the CO 2 refrigerant has a high latent heat in a low temperature range, the circulation amount of the refrigerant can be reduced. Since the circulation amount can be reduced, the pressure loss can be reduced and the pipe length can be increased (the pipe diameter can be reduced). Furthermore, since the CO 2 refrigerant has an ozone depletion potential of 0 and a global warming potential of 1, it is less toxic, non-flammable, safe and inexpensive.
Provided is a heat transfer device having a low environmental load.

【0019】図2は、液ポンプ1を示す。この液ポンプ
1は、シェルケース21の内部にステータ22Aとロー
タ22Bからなる電動機部22と、この電動機部22の
下部に連結されて駆動される、上下に並列配置の2つの
ポンプ部23、24とを有して構成されている。各ポン
プ部23、24は、各吸い込み部23A、24Aから吸
い込まれた液冷媒を圧縮し、各吐出部23B、24Bか
ら蒸発器3側に吐出する。各ポンプ部23、24の吸い
込み部23A、24Aは、上記熱交換器7の凝縮部7A
に連なる。
FIG. 2 shows the liquid pump 1. The liquid pump 1 includes an electric motor unit 22 including a stator 22A and a rotor 22B inside a shell case 21, and two pump units 23 and 24 arranged in parallel in the vertical direction, which are driven by being connected to a lower portion of the electric motor unit 22. And is configured. The pump units 23 and 24 compress the liquid refrigerant sucked from the suction units 23A and 24A, and discharge the liquid refrigerant from the discharge units 23B and 24B to the evaporator 3 side. The suction portions 23A and 24A of the pump portions 23 and 24 are the condensing portion 7A of the heat exchanger 7.
Connected to.

【0020】図3は、液ポンプ1の入口の過冷却度(サ
ブクール)SCと吐出流量Qとをパラメータにして、液
ポンプ1を運転した場合の単位時間当たりの消費電力k
Wを計測した実験結果を示す。
FIG. 3 shows the power consumption k per unit time when the liquid pump 1 is operated with the subcooling degree (subcool) SC at the inlet of the liquid pump 1 and the discharge flow rate Q as parameters.
The experimental result which measured W is shown.

【0021】この結果によると、液ポンプ1の吐出流量
Qが変化した場合、外気温度の変化に応じてなだらかな
変化はあるものの、液ポンプ1の消費電力kWに大きな
変化は見られない。しかし、過冷却度SCが高くなった
場合、液ポンプ1の消費電力kWは明らかに増大する。
According to this result, when the discharge flow rate Q of the liquid pump 1 changes, the power consumption kW of the liquid pump 1 does not change significantly, although there is a smooth change according to the change of the outside air temperature. However, when the supercooling degree SC becomes high, the power consumption kW of the liquid pump 1 obviously increases.

【0022】図2を参照して、液ポンプ1の入口の過冷
却度SCが高くなった場合、熱交換器7における冷媒液
面Aが上昇するため、熱交換器7の実際の伝熱面積Bが
減少し、熱交換効率が低下する。
Referring to FIG. 2, when the supercooling degree SC at the inlet of the liquid pump 1 becomes high, the refrigerant liquid level A in the heat exchanger 7 rises, so that the actual heat transfer area of the heat exchanger 7 is increased. B is reduced and heat exchange efficiency is reduced.

【0023】本実施形態では、熱交換器7の熱交換効率
の低下を抑制するため、液ポンプ1の入口の過冷却度S
Cが高くなった場合、液ポンプ1の回転数を増加させ、
液ポンプ1の吐出流量Qを増大させる。
In this embodiment, in order to suppress a decrease in heat exchange efficiency of the heat exchanger 7, the supercooling degree S at the inlet of the liquid pump 1 is suppressed.
When C becomes high, the number of rotations of the liquid pump 1 is increased,
The discharge flow rate Q of the liquid pump 1 is increased.

【0024】この吐出流量Qが増大すれば、熱交換器7
内の液冷媒が液ポンプ1側に排出され、上記冷媒液面A
が下降するため、熱交換器7の実際の伝熱面積Bが増大
し、熱交換効率を向上させることができる。
If the discharge flow rate Q increases, the heat exchanger 7
The liquid refrigerant inside is discharged to the liquid pump 1 side, and the refrigerant liquid level A
Is decreased, the actual heat transfer area B of the heat exchanger 7 is increased, and the heat exchange efficiency can be improved.

【0025】具体的には、図2に示すように、液ポンプ
1の入口の冷媒温度を検知する温度センサ31と、液ポ
ンプ1の入口の冷媒圧力を検知する圧力センサ33とが
設けられ、これらが制御手段41に接続され、この制御
手段41において、過冷却度SCが演算され、過冷却度
SCが所定値を上回った場合、インバータ液ポンプ1に
対し回転数増加指令が出力される。
Specifically, as shown in FIG. 2, a temperature sensor 31 for detecting the refrigerant temperature at the inlet of the liquid pump 1 and a pressure sensor 33 for detecting the refrigerant pressure at the inlet of the liquid pump 1 are provided. These are connected to the control means 41. In the control means 41, the degree of supercooling SC is calculated, and when the degree of supercooling SC exceeds a predetermined value, a rotation speed increase command is output to the inverter liquid pump 1.

【0026】ここで、過冷却度SCは、冷媒圧力から飽
和温度が演算され、この飽和温度と実測された冷媒温度
との偏差により求められる。
Here, the degree of supercooling SC is obtained by calculating the saturation temperature from the refrigerant pressure and calculating the deviation between the saturation temperature and the measured refrigerant temperature.

【0027】本実施形態では、液ポンプ1の入口の過冷
却度SCが高くなった場合、液ポンプ1の回転数を増加
させ、液ポンプ1の吐出流量Qを増大させるため、熱交
換器7の熱交換効率の低下を抑制することができる。
In this embodiment, when the supercooling degree SC at the inlet of the liquid pump 1 becomes high, the number of rotations of the liquid pump 1 is increased and the discharge flow rate Q of the liquid pump 1 is increased. It is possible to suppress the decrease in heat exchange efficiency.

【0028】図3を参照して、液ポンプ1の吐出流量Q
が増大しても、液ポンプ1の消費電力kWに大きな変化
が現れないことが判明している。
With reference to FIG. 3, the discharge flow rate Q of the liquid pump 1
It has been found that the power consumption kW of the liquid pump 1 does not change significantly even when the power consumption increases.

【0029】従って、本実施形態では、消費電力kWを
増大させることなく、熱交換器7の熱交換効率の低下を
抑制することができる。
Therefore, in this embodiment, it is possible to suppress a decrease in the heat exchange efficiency of the heat exchanger 7 without increasing the power consumption kW.

【0030】一方、液ポンプ1の入口の過冷却度SCが
低くなった場合、気泡が発生し、キャビテーションが発
生する。この場合、本実施形態では、液ポンプ1の回転
数を減少させる。すると、液ポンプ1の吐出流量Qが減
少するため、気泡の発生がなくなり、キャビテーション
の発生が解消される。
On the other hand, when the supercooling degree SC at the inlet of the liquid pump 1 becomes low, bubbles are generated and cavitation occurs. In this case, in the present embodiment, the rotation speed of the liquid pump 1 is reduced. Then, since the discharge flow rate Q of the liquid pump 1 is reduced, the generation of bubbles is eliminated and the generation of cavitation is eliminated.

【0031】つぎに、別の実施形態を説明する。Next, another embodiment will be described.

【0032】本実施形態では、液ポンプ1の入口の過冷
却度SCが高くならないように、閉ループ内のCO2
冷媒充填量が少な目に設定される。
In the present embodiment, the refrigerant charging amount of CO 2 in the closed loop is set to be small so that the supercooling degree SC at the inlet of the liquid pump 1 does not become high.

【0033】そして、本実施形態では、液ポンプ1に回
転数定速型液ポンプが用いられると共に、図1に示すよ
うに、この液ポンプ1を迂回する管路5が設けられ、こ
の管路5に流量調整弁8が設けられる。
In the present embodiment, a constant rotation speed type liquid pump is used as the liquid pump 1, and as shown in FIG. 1, a pipe line 5 that bypasses the liquid pump 1 is provided. 5 is provided with a flow rate adjusting valve 8.

【0034】本実施形態では、上述したように、CO2
の充填量が少な目に設定されるため、液ポンプ1を運転
した場合、液ポンプ1の入口の過冷却度SCが高くなる
ことがない。その反面、液ポンプ1の入口の過冷却度S
Cが低くなり、気泡が発生し、キャビテーションの発生
率が高くなる。
In this embodiment, as described above, CO 2
Since the filling amount is set to a small value, the subcooling degree SC at the inlet of the liquid pump 1 does not increase when the liquid pump 1 is operated. On the other hand, the supercooling degree S at the inlet of the liquid pump 1
C becomes low, bubbles are generated, and the occurrence rate of cavitation becomes high.

【0035】そこで、液ポンプ1の入口の過冷却度SC
が低くなった場合、流量調整弁8の弁開度を増大させ
る。或いは、全閉の流量調整弁8を全開に制御する。こ
の弁開度が増大すれば、液ポンプ1から吐出された冷媒
は、管路5を通じて液ポンプ1の吸い込み側に戻され
る。
Therefore, the supercooling degree SC at the inlet of the liquid pump 1
When becomes low, the valve opening of the flow rate adjusting valve 8 is increased. Alternatively, the fully closed flow rate adjusting valve 8 is controlled to be fully opened. When the valve opening degree increases, the refrigerant discharged from the liquid pump 1 is returned to the suction side of the liquid pump 1 through the conduit 5.

【0036】そのため、液ポンプ1の吸い込み側に気泡
の発生がなくなり、キャビテーションの発生を抑制する
ことができる。
Therefore, bubbles are not generated on the suction side of the liquid pump 1, and cavitation can be suppressed.

【0037】以上、一実施形態に基づいて本発明を説明
したが、本発明はこれに限定されるものではない。
Although the present invention has been described based on the embodiment, the present invention is not limited to this.

【0038】[0038]

【発明の効果】本発明では、液ポンプの入口の過冷却度
を検知する検知手段と、この検知手段で検知された過冷
却度に応じて液ポンプの回転数を制御する制御手段とを
備えたから、熱交換器の効率低下を抑制することができ
ると共に、キャビテーションの発生を抑制することがで
きる。
According to the present invention, the detecting means for detecting the degree of supercooling at the inlet of the liquid pump and the controlling means for controlling the number of revolutions of the liquid pump according to the degree of supercooling detected by the detecting means are provided. Therefore, it is possible to suppress a decrease in the efficiency of the heat exchanger and suppress the occurrence of cavitation.

【0039】本発明では、液ポンプを迂回する管路に設
けられた流量調整弁と、液ポンプの入口の過冷却度を検
知する検知手段と、この検知手段で検知された過冷却度
に応じて流量調整弁の弁開度を制御する制御手段とを備
えたから、キャビテーションの発生を抑制することがで
きる。
According to the present invention, the flow rate adjusting valve provided in the conduit bypassing the liquid pump, the detecting means for detecting the degree of supercooling at the inlet of the liquid pump, and the means for detecting the degree of supercooling detected by the detecting means are used. Since the control means for controlling the valve opening of the flow rate adjusting valve is provided, the occurrence of cavitation can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による熱搬送装置の一実施形態を示す回
路図である。
FIG. 1 is a circuit diagram showing an embodiment of a heat transfer device according to the present invention.

【図2】液ポンプの一実施形態を示す図である。FIG. 2 is a diagram showing an embodiment of a liquid pump.

【図3】液ポンプの入口の過冷却度SCと吐出流量Qと
をパラメータにして、液ポンプを運転した場合の、単位
時間当たりの消費電力KWを計測した実験結果を示す線
図である。
FIG. 3 is a diagram showing an experimental result in which a power consumption KW per unit time is measured when the liquid pump is operated by using the supercooling degree SC at the inlet of the liquid pump and the discharge flow rate Q as parameters.

【符号の説明】[Explanation of symbols]

1 液ポンプ 3 蒸発器 7 熱交換器 11 圧縮機 13 凝縮器 15 減圧装置 31 温度センサ 33 圧力センサ 41 制御手段 1-liquid pump 3 evaporator 7 heat exchanger 11 compressor 13 condenser 15 Pressure reducing device 31 Temperature sensor 33 Pressure sensor 41 Control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転数可変型液ポンプと蒸発器と熱交換
器とを順に接続し、冷媒を充填してなる閉ループの循環
回路を備える熱搬送装置において、 前記液ポンプの入口の過冷却度を検知する検知手段と、 この検知手段で検知された過冷却度に応じて前記液ポン
プの回転数を制御する制御手段とを備えたことを特徴と
する熱搬送装置。
1. A heat transfer device comprising a closed-loop circulation circuit in which a variable-speed liquid pump, an evaporator, and a heat exchanger are connected in order, and a closed loop circulation circuit is filled with a refrigerant. A heat transfer device comprising: a detection unit that detects the temperature of the liquid pump; and a control unit that controls the rotation speed of the liquid pump according to the degree of supercooling detected by the detection unit.
【請求項2】 回転数一定型液ポンプと蒸発器と熱交換
器とを順に接続し、冷媒を充填してなる閉ループの循環
回路を備える熱搬送装置において、 前記液ポンプを迂回する管路に設けられた流量調整弁
と、 前記液ポンプの入口の過冷却度を検知する検知手段と、 この検知手段で検知された過冷却度に応じて前記流量調
整弁の弁開度を制御する制御手段とを備えたことを特徴
とする熱搬送装置。
2. A heat transfer device comprising a closed-loop circulation circuit in which a constant-rotation type liquid pump, an evaporator and a heat exchanger are connected in sequence, and a closed loop circulating circuit is filled with a refrigerant. A flow rate adjusting valve, a detecting means for detecting the degree of supercooling at the inlet of the liquid pump, and a control for controlling the valve opening of the flow rate adjusting valve according to the degree of supercooling detected by the detecting means. And a heat transfer device.
【請求項3】 前記循環回路に充填された冷媒がCO2
またはHFC等の高圧作動冷媒であることを特徴とする
請求項1または2記載の熱搬送装置。
3. The refrigerant filled in the circulation circuit is CO 2
Alternatively, the heat transfer device according to claim 1 or 2, which is a high pressure working refrigerant such as HFC.
JP2001256199A 2001-08-27 2001-08-27 Heat carrying equipment Pending JP2003065618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256199A JP2003065618A (en) 2001-08-27 2001-08-27 Heat carrying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256199A JP2003065618A (en) 2001-08-27 2001-08-27 Heat carrying equipment

Publications (1)

Publication Number Publication Date
JP2003065618A true JP2003065618A (en) 2003-03-05

Family

ID=19084045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256199A Pending JP2003065618A (en) 2001-08-27 2001-08-27 Heat carrying equipment

Country Status (1)

Country Link
JP (1) JP2003065618A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514121A (en) * 2003-12-05 2007-05-31 リーバート・コーポレイシヨン Cooling system for high density heat load
CN100449226C (en) * 2003-11-21 2009-01-07 株式会社前川制作所 Ammonia/CO2refrigeration systems, CO2brine production systems for use therein, and ammonia cooling units incorporating such production systems
JP2009525453A (en) * 2006-02-03 2009-07-09 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system
JP2009281665A (en) * 2008-05-22 2009-12-03 Corona Corp Storage water heater and storage water heater heating device
WO2011030420A1 (en) * 2009-09-10 2011-03-17 三菱電機株式会社 Air conditioning device
CN103032931A (en) * 2012-12-26 2013-04-10 深圳市英维克科技有限公司 Temperature control device
CN103032930A (en) * 2012-12-26 2013-04-10 深圳市英维克科技有限公司 Temperature control device
WO2013092728A1 (en) * 2011-12-20 2013-06-27 Airbus Operations Gmbh Storage assembly with a conveying device integrated into a storage container
JP2014145514A (en) * 2013-01-29 2014-08-14 Daikin Ind Ltd Secondary refrigerant air conditioning system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449226C (en) * 2003-11-21 2009-01-07 株式会社前川制作所 Ammonia/CO2refrigeration systems, CO2brine production systems for use therein, and ammonia cooling units incorporating such production systems
US7992397B2 (en) 2003-11-21 2011-08-09 Mayekawa Mfg. Co., Ltd. Ammonia/CO2 refrigeration system, CO2 brine production system for use therein, and ammonia cooling unit incorporating that production system
EP1688685A4 (en) * 2003-11-21 2012-03-07 Maekawa Seisakusho Kk AMMONIA/CO sb 2 /sb REFRIGERATION SYSTEM, CO sb 2 /sb BRINE PRODUCTION SYSTEM FOR USE THEREIN, AND AMMONIA COOING UNIT INCORPORATING THAT PRODUCTION SYSTEM
EP2570752A1 (en) * 2003-11-21 2013-03-20 Mayekawa Mfg. Co., Ltd. Carbon dioxide brine production system for use in an ammonia refrigeration system using liquefied carbon dioxide as heat transfer medium
US9243823B2 (en) 2003-12-05 2016-01-26 Liebert Corporation Cooling system for high density heat load
JP2007514121A (en) * 2003-12-05 2007-05-31 リーバート・コーポレイシヨン Cooling system for high density heat load
US9772126B2 (en) 2003-12-05 2017-09-26 Liebert Corporation Cooling system for high density heat load
US9243822B2 (en) 2003-12-05 2016-01-26 Liebert Corporation Cooling system for high density heat load
JP2009525453A (en) * 2006-02-03 2009-07-09 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system
US10214292B2 (en) 2006-02-03 2019-02-26 Airbus Operations Gmbh Cooling system using chiller and thermally coupled cooling circuit
JP2009281665A (en) * 2008-05-22 2009-12-03 Corona Corp Storage water heater and storage water heater heating device
WO2011030420A1 (en) * 2009-09-10 2011-03-17 三菱電機株式会社 Air conditioning device
WO2013092728A1 (en) * 2011-12-20 2013-06-27 Airbus Operations Gmbh Storage assembly with a conveying device integrated into a storage container
US9669929B2 (en) 2011-12-20 2017-06-06 Airbus Operations Gmbh Storage assembly with a conveying device integrated into a storage container
CN103032931B (en) * 2012-12-26 2016-06-22 深圳市英维克科技股份有限公司 A kind of temperature control equipment
CN103032930B (en) * 2012-12-26 2016-07-27 深圳市英维克科技股份有限公司 A kind of temperature control equipment
CN103032930A (en) * 2012-12-26 2013-04-10 深圳市英维克科技有限公司 Temperature control device
CN103032931A (en) * 2012-12-26 2013-04-10 深圳市英维克科技有限公司 Temperature control device
JP2014145514A (en) * 2013-01-29 2014-08-14 Daikin Ind Ltd Secondary refrigerant air conditioning system

Similar Documents

Publication Publication Date Title
JP5169295B2 (en) Refrigeration equipment
US8959951B2 (en) Refrigeration apparatus controlling opening degree of a second expansion mechanism based on air temperature at the evaporator or refergerant temperature at the outlet of a two stage compression element
KR100208322B1 (en) Cold pump heat pump air conditioner
EP2652333B1 (en) Motor cooling system
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
CN102483054A (en) Motor cooling applications
WO2009147826A1 (en) Refrigeration cycle device
EP3132211B1 (en) Method for operating a chiller
KR101220741B1 (en) Freezing device
JP2005214443A (en) Refrigerator
KR20110074706A (en) Freezer
JP3861912B2 (en) Refrigeration equipment
KR101220663B1 (en) Freezer
JP2011017455A (en) Turbo refrigerator
JP2003065618A (en) Heat carrying equipment
KR101332478B1 (en) Freezing device
KR101190317B1 (en) Freezing device
JP2004340410A (en) Screw refrigeration equipment
JP2007183078A (en) Refrigerating machine and refrigerating device
JP5713570B2 (en) Refrigerator unit and control method thereof
JP6780518B2 (en) Refrigeration equipment
JP2013096602A (en) Refrigeration cycle device
WO2015104822A1 (en) Refrigeration cycle device
JP5176897B2 (en) Refrigeration equipment
JP7448848B2 (en) air conditioner