JP2003056617A - Impact energy absorption structure member - Google Patents
Impact energy absorption structure memberInfo
- Publication number
- JP2003056617A JP2003056617A JP2001248784A JP2001248784A JP2003056617A JP 2003056617 A JP2003056617 A JP 2003056617A JP 2001248784 A JP2001248784 A JP 2001248784A JP 2001248784 A JP2001248784 A JP 2001248784A JP 2003056617 A JP2003056617 A JP 2003056617A
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- energy absorbing
- impact energy
- structural member
- absorbing structural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Body Structure For Vehicles (AREA)
- Vibration Dampers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば、自動車の
構造部材として用いられて、衝突時の衝撃エネルギを吸
収して衝撃を和らげるのに利用される衝撃エネルギ吸収
構造部材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impact energy absorbing structural member used as a structural member of an automobile, for example, to absorb impact energy at the time of a collision and to absorb the impact.
【0002】[0002]
【従来の技術】従来、上記したような衝撃エネルギ吸収
構造部材に類するものとしては、例えば、車体のアルミ
ニウム製フレームで囲まれた部分に発泡アルミニウムを
充填した構成をなすものがある。2. Description of the Related Art Conventionally, as a member similar to the above-mentioned impact energy absorbing structural member, there is, for example, one in which a portion surrounded by an aluminum frame of a vehicle body is filled with aluminum foam.
【0003】これは、圧縮変形の際にほぼ一定の反力を
示しつつ変形するプラトー域を有する発泡アルミニウム
の特性を利用したものであって、この発泡アルミニウム
の材質や密度を制御してプラトー域を適当な値にするこ
とにより、衝突時において、フレームを安定に座屈変形
させて、車両前部からの衝突エネルギを効率的に吸収す
るようになっている(特開平8−164869号)。This utilizes the characteristics of aluminum foam which has a plateau region that deforms while exhibiting a substantially constant reaction force during compression deformation. The plateau region is controlled by controlling the material and density of this aluminum foam. Is set to an appropriate value, the frame is stably buckled and deformed at the time of a collision, and the collision energy from the front part of the vehicle is efficiently absorbed (Japanese Patent Laid-Open No. 8-164869).
【0004】また、これとは別の衝撃エネルギ吸収構造
部材としては、例えば、図13に示すものがあり、これ
は管体100の中空部100aに発泡アルミニウム10
1を充填することで、衝突時の座屈変形による吸収エネ
ルギ量を増加させるようになっている(J.E.Sie
bels,“Derivation of Mater
ials energy absorption re
quirementsfrom crash situ
ation”,Metal Foams and Po
rous Metal Structures,Ed.
by J.Banhart,M.F.Ashby,N.
A.Fleck MIT Verlag,1999)。As another impact energy absorbing structural member, for example, there is one shown in FIG. 13, which has a hollow portion 100a of a tubular body 100 and a foamed aluminum 10 formed therein.
The amount of absorbed energy due to buckling deformation at the time of collision is increased by filling 1 (JE Sie).
bels, "Derivation of Mater"
als energy absorption re
qualitys from crash situ
ation ”, Metal Foams and Po
rous Metal Structures, Ed.
by J. Banhart, M .; F. Ashby, N .;
A. Flick MIT Verlag, 1999).
【0005】ここで、この衝撃エネルギ吸収構造部材
(C)の平均反力と潰れ量との関係を図14に示す。図1
4から判るように、この衝撃エネルギ吸収構造部材で
は、同じく図14に示すアルミニウム管単体(D)と比較
して、部材座屈変形時の平均反力が上昇して、吸収エネ
ルギ量が増加している。このときの吸収エネルギ量は、
アルミニウム管単体の場合の吸収エネルギ量と、発泡ア
ルミニウム101単体の場合の吸収エネルギ量とを足し
合わせた値以上となる。すなわち、金属製の管体の中空
部に多孔質体を充填することで、吸収エネルギ量が増加
することが実証されている。Here, this impact energy absorbing structural member
FIG. 14 shows the relationship between the average reaction force and the amount of collapse in (C). Figure 1
As can be seen from FIG. 4, in this impact energy absorbing structure member, the average reaction force at the time of buckling deformation of the member is increased and the amount of absorbed energy is increased, as compared with the aluminum tube alone (D) also shown in FIG. ing. The amount of absorbed energy at this time is
It is equal to or more than the sum of the absorbed energy amount of the aluminum tube alone and the absorbed energy amount of the foam aluminum 101 alone. That is, it has been proved that the amount of absorbed energy is increased by filling the hollow portion of the metal tubular body with the porous body.
【0006】[0006]
【発明が解決しようとする課題】ところが、従来におけ
る管体100の中空部100aに発泡アルミニウム10
1を充填したタイプの衝撃エネルギ吸収構造部材におい
て、吸収エネルギ量が増加するものの、発泡アルミニウ
ム101を全体に充填してある分だけ、重量が大きくな
ってしまい、このように発泡アルミニウム101を管体
100に充填するよりも管体100自体の肉厚を増す方
が部材単位質量あたりの吸収エネルギ量の増加には有効
となる、すまわち、部材の質量低減化には効果的でない
という問題があった。However, aluminum foam 10 is formed in the hollow portion 100a of the conventional tubular body 100.
In the impact energy absorbing structural member of the type filled with 1, the amount of absorbed energy is increased, but the weight is increased due to the fact that the entire foam aluminum 101 is filled. Increasing the wall thickness of the tubular body 100 itself rather than filling 100 is more effective in increasing the amount of absorbed energy per unit mass of the member, that is, it is not effective in reducing the mass of the member. there were.
【0007】また、上記衝撃エネルギ吸収構造部材で
は、金属製の管体単体の場合と同様に、衝突直後の反力
が著しく大きくなる反力ピークC1が生じてしまうとい
った問題を有しており、これらの問題を解決することが
従来の課題となっていた。Further, the impact energy absorbing structural member has a problem that a reaction force peak C1 in which the reaction force immediately after a collision becomes significantly large occurs, as in the case of a single metallic tube. Solving these problems has been a conventional problem.
【0008】[0008]
【発明の目的】本発明は、上記した従来の課題に着目し
てなされたもので、軽量化を実現することができ、例え
ば、自動車の構造部材として用いた場合には、衝突直後
に生じる反力ピークを極力少なく抑えることが可能であ
る衝撃エネルギ吸収構造部材を提供することを目的とし
ている。SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above-mentioned conventional problems, and it is possible to realize weight reduction. For example, when it is used as a structural member of an automobile, a reaction that occurs immediately after a collision occurs. It is an object of the present invention to provide an impact energy absorbing structure member capable of suppressing a force peak as small as possible.
【0009】[0009]
【課題を解決するための手段】本発明の請求項1に係わ
る衝撃エネルギ吸収構造部材は、断面形状が略円形状あ
るいは多角形状をなす金属製の管体と、圧縮応力が負荷
された段階で一定の反力を維持しつつ崩壊する多孔質体
を備え、管体の軸心回りの周囲を多孔質体で被覆した構
成としたことを特徴としており、この衝撃エネルギ吸収
構造部材の構成を前述した従来の課題を解決するための
手段としている。According to a first aspect of the present invention, there is provided a shock energy absorbing structural member which comprises a metal tube having a substantially circular or polygonal cross section and a compressive stress applied thereto. It is characterized in that it has a porous body that collapses while maintaining a constant reaction force, and has a structure in which the circumference around the axis of the tubular body is covered with a porous body. This is a means for solving the above-mentioned conventional problems.
【0010】本発明に係わる衝撃エネルギ吸収構造部材
は、請求項2として、多孔質体の密度を多孔質体素材の
密度の30%以下とし、多孔質体が圧縮応力負荷時に維
持する一定の反力を金属製管体の強度の0.5%以上と
し、多孔質体の金属製管体に対する質量比を1/2以下
とし、多孔質体の厚みを管体の軸心から多孔質体の外面
までの距離の15%以上とした構成としている。According to a second aspect of the impact energy absorbing structural member of the present invention, the density of the porous body is 30% or less of the density of the porous body material, and the porous body maintains a constant anti-compatibility when a compressive stress is applied. The force is 0.5% or more of the strength of the metal tube, the mass ratio of the porous body to the metal tube is 1/2 or less, and the thickness of the porous body is from the axial center of the tube to the porous body. It is configured to be 15% or more of the distance to the outer surface.
【0011】本発明の請求項2に係わる衝撃エネルギ吸
収構造部材において、多孔質体の密度を多孔質体素材の
密度の30%以下に設定する理由は、このようにする
と、多孔質に対して圧縮応力を負荷した際に、圧縮応力
負荷方向と直交する方向への多孔質体の広がりが生じな
くなり(大塚正久訳「セル構造体」内田老鶴圃)、そのた
め、金属製管体が座屈変形して閉断面の外側方向へ折れ
曲がる場合にも、多孔質体が部材横断面周囲方向に拡大
することなく部材横断面内で圧縮可能となるからであ
る。In the impact energy absorbing structural member according to claim 2 of the present invention, the reason why the density of the porous body is set to 30% or less of the density of the porous body material is that the porous body is When compressive stress is applied, the porous body no longer spreads in the direction orthogonal to the compressive stress loading direction (Masahisa Otsuka Translated "Cell structure" Uchida Old Crane Field), so the metal tube buckles. This is because even when the porous body is deformed and bent outward of the closed cross section, the porous body can be compressed within the cross section of the member without expanding in the circumferential direction of the cross section of the member.
【0012】また、本発明の請求項2に係わる衝撃エネ
ルギ吸収構造部材において、多孔質体が圧縮応力負荷時
に維持する一定の反力を金属製管体の強度の0.5%以
上に限定する理由は、このように限定することで、金属
製管体が座屈変形により閉断面の外側方向へ折れ曲がる
場合において、多孔質体が部材横断面内で圧縮される際
の反力で金属製管体の折れ曲がりを制御し得るからであ
る。In the impact energy absorbing structural member according to the second aspect of the present invention, the constant reaction force maintained by the porous body under compressive stress is limited to 0.5% or more of the strength of the metallic tube. The reason for this is that by limiting in this way, when the metal pipe body bends to the outside of the closed cross section due to buckling deformation, the metal pipe is compressed by the reaction force when the porous body is compressed in the member cross section. This is because the bending of the body can be controlled.
【0013】さらに、本発明の請求項2に係わる衝撃エ
ネルギ吸収構造部材において、多孔質体の金属製管体に
対する質量比を1/2以下とした理由は、こうすること
で、部材単位質量当たりの吸収エネルギ能力を金属製管
体単体よりも高めることが可能となるからであり、さら
にまた、多孔質体の厚みを管体の軸心から多孔質体の外
面までの距離の15%以上とした理由は、このように多
孔質体の厚みを規定することで、金属製管体が座屈変形
により閉断面の外側方向へ折れ曲がる場合には、多孔質
体が部材横断面内において一定応力を維持しつつ崩壊し
て、金属製管体の折れ曲がりを制御し得るからである。Further, in the impact energy absorbing structure member according to claim 2 of the present invention, the reason why the mass ratio of the porous body to the metal tube body is 1/2 or less is that the unit mass per member is This is because it is possible to increase the absorbed energy capacity of the porous body to that of a metal tubular body alone, and further, the thickness of the porous body is 15% or more of the distance from the axial center of the tubular body to the outer surface of the porous body. The reason for doing this is that by defining the thickness of the porous body in this way, when the metal tube bends to the outside of the closed cross section due to buckling deformation, the porous body exerts a constant stress in the member cross section. This is because the metal tube can be collapsed while being maintained and the bending of the metal tube body can be controlled.
【0014】本発明に係わる衝撃エネルギ吸収構造部材
は、請求項3として、管体の軸心回りの周囲を被覆する
多孔質体を囲み方向に連続させてある構成とし、請求項
4として、管体の軸心回りの周囲を被覆する多孔質体は
囲み方向に不連続部分を有し、この不連続部分を多孔質
体自体の引張り強度よりも高い破断強度を呈する接着や
ろう付けなどの接合手段で接合してある構成としてい
る。The impact energy absorbing structural member according to the present invention has, as claim 3, a structure in which a porous body that covers the periphery of the axial center of the tubular body is continuous in the surrounding direction. The porous body covering the periphery of the body has a discontinuous portion in the surrounding direction, and this discontinuous portion has a breaking strength higher than the tensile strength of the porous body itself, such as bonding or brazing. It is configured to be joined by means.
【0015】本発明に係わる衝撃エネルギ吸収構造部材
は、請求項5として、多孔質体を発泡アルミニウムや発
泡マグネシウムや発泡鉄やポリウレタンフォームや金属
(ステンレス,アルミニウムなど)繊維焼結体などの発泡
金属からなる発泡体とした構成とし、請求項6として、
発泡金属からなる発泡体は、金属製管体を被覆する段階
で発泡させて金属製管体の軸心回りの周囲に金属的に接
合させてある構成としている。According to a fifth aspect of the impact energy absorbing structural member of the present invention, the porous body is formed of foamed aluminum, foamed magnesium, foamed iron, polyurethane foam or metal.
(Stainless steel, aluminum, etc.) A foamed body made of a foamed metal such as a fiber sintered body is used.
The foamed body made of foamed metal is foamed at the stage of covering the metal tube body and metallically joined to the periphery of the axis of the metal tube body.
【0016】本発明に係わる衝撃エネルギ吸収構造部材
は、請求項7として、金属製管体の軸心回りの周囲を被
覆する多孔質体の半径方向の密度分布を外側に向けて単
調に増加させてある構成とし、請求項8として、金属製
管体の軸心回りの周囲を被覆する多孔質体の平均密度を
多孔質体を構成する素材の密度に対して14〜23%と
し、かつ、半径方向の密度分布を外側に向けて1/2.
5以上の傾きをもって減少させてある構成としている。According to a seventh aspect of the impact energy absorbing structural member of the present invention, the density distribution in the radial direction of the porous body covering the circumference of the metallic tube around the axis is monotonically increased toward the outside. And the average density of the porous body covering the circumference around the axis of the metal tubular body is 14 to 23% with respect to the density of the material constituting the porous body, and Radial density distribution toward the outside 1/2.
The configuration is such that the inclination is reduced by 5 or more.
【0017】本発明に係わる衝撃エネルギ吸収構造部材
は、請求項9として、自動車用構造部材として用いた構
成としている。The impact energy absorbing structural member according to the present invention has a structure used as a structural member for an automobile according to claim 9.
【0018】[0018]
【発明の作用】本発明の請求項1〜5に係わる衝撃エネ
ルギ吸収構造部材では、上記した構成としているので、
例えば、自動車の構造部材として用いた場合には、衝突
直後に発生する反力ピークが低く抑えられて、金属製管
体単体の場合と比較して、部材単位質量当たりの吸収エ
ネルギ量が増加することとなり、とくに、請求項2に係
わる衝撃エネルギ吸収構造部材では、金属製管体が座屈
変形により閉断面の外側方向へ折れ曲がる場合におい
て、多孔質体が部材横断面内で圧縮される際の反力で金
属製管体の折れ曲がりを制御し得ることとなる。Since the impact energy absorbing structural member according to the first to fifth aspects of the present invention has the above-mentioned structure,
For example, when used as a structural member of an automobile, the reaction force peak generated immediately after a collision is suppressed to be low, and the amount of absorbed energy per unit mass of the member is increased as compared with the case of a single metal tube body. In particular, in the impact energy absorbing structure member according to claim 2, when the metal tube bends outward due to buckling deformation in the closed cross section, the porous body is compressed in the member cross section. The bending force of the metal pipe body can be controlled by the reaction force.
【0019】本発明の請求項6に係わる衝撃エネルギ吸
収構造部材では、上記した構成としているので、発泡金
属からなる発泡体が金属製管体の軸方向および周囲方向
に移動することが阻止されることとなり、本発明の請求
項7に係わる衝撃エネルギ吸収構造部材では、上記した
構成としたから、金属製管体の軸心回りの周囲を被覆す
る多孔質体の密度勾配(金属製管体の軸心回りの周囲を
被覆する多孔質体の密度が、金属製管体の半径方向内側
よりも外側で大きくなる場合をマイナスと定義し、半径
方向内側の密度を外側の密度で除した値)が負の場合に
おいて、多孔質体が密度勾配を有していない場合(密度
勾配が1である場合)と比較してエネルギ吸収量が増加
することとなり、本発明の請求項8に係わる衝撃エネル
ギ吸収構造部材では、上記した構成としたから、金属製
管体の軸心回りの周囲を被覆する多孔質体の密度勾配が
正でかつ2.5以上の場合において、密度勾配が1でか
つ多孔質体が均一密度を有している場合と比較してエネ
ルギ吸収量が増加することとなる。Since the impact energy absorbing structural member according to claim 6 of the present invention has the above-mentioned structure, the foam made of the foam metal is prevented from moving in the axial direction and the peripheral direction of the metal pipe body. Therefore, in the impact energy absorbing structural member according to claim 7 of the present invention, since it has the above-mentioned configuration, the density gradient of the porous body covering the periphery around the axis of the metal pipe body (of the metal pipe body) If the density of the porous body that covers the circumference around the axis is larger outside the radial inside of the metal tube, it is defined as minus, and the density inside the radial direction is divided by the density outside). When is negative, the energy absorption amount increases as compared with the case where the porous body has no density gradient (when the density gradient is 1), and the impact energy according to claim 8 of the present invention. With absorbing structural member Since the above structure is adopted, when the density gradient of the porous body covering the periphery around the axis of the metal tubular body is positive and 2.5 or more, the density gradient is 1 and the porous body is uniform. The energy absorption amount increases as compared with the case of having the density.
【0020】本発明の請求項9に係わる衝撃エネルギ吸
収構造部材では、上記した構成としているので、車両衝
突直後に大きな反力ピークを生じさせることなく、効率
よく衝撃エネルギの吸収がなされることとなる。Since the impact energy absorbing structural member according to claim 9 of the present invention is configured as described above, the impact energy can be efficiently absorbed without causing a large reaction force peak immediately after a vehicle collision. Become.
【0021】[0021]
【発明の効果】本発明の請求項1〜5に係わる衝撃エネ
ルギ吸収構造部材では、上記した構成としたから、例え
ば、自動車の構造部材として用いた場合において、車両
の衝突直後に生じる反力ピークを極力少なく抑えつつ、
部材単位質量当たりの吸収エネルギ量を増加させること
ができ、とりわけ、請求項2に係わる衝撃エネルギ吸収
構造部材では、金属製管体が座屈変形により閉断面の外
側方向へ折れ曲がる場合において、その折れ曲がりを制
御することが可能であるという非常に優れた効果がもた
らされる。Since the impact energy absorbing structural member according to claims 1 to 5 of the present invention has the above-mentioned structure, for example, when it is used as a structural member of an automobile, a reaction force peak generated immediately after a vehicle collision occurs. While keeping it as low as possible,
The amount of absorbed energy per unit mass of the member can be increased. Particularly, in the impact energy absorbing structural member according to claim 2, when the metal tube bends outward due to buckling deformation, the bending It has a very excellent effect of being able to control.
【0022】本発明の請求項6に係わる衝撃エネルギ吸
収構造部材では、上記した構成としているので、発泡金
属からなる発泡体の金属製管体に対する軸方向および周
囲方向への移動を確実に防止することができるという非
常に優れた効果がもたらされる。Since the impact energy absorbing structural member according to claim 6 of the present invention has the above-mentioned structure, it is possible to reliably prevent the foam made of the foam metal from moving in the axial direction and the peripheral direction with respect to the metal pipe body. It has a very excellent effect of being able to do.
【0023】本発明の請求項7に係わる衝撃エネルギ吸
収構造部材では、上記した構成としたから、金属製管体
の軸心回りの周囲を被覆する多孔質体の密度勾配が負の
場合において、多孔質体が密度勾配を有していない場合
と比較してエネルギ吸収量を増加させることができ、本
発明の請求項8に係わる衝撃エネルギ吸収構造部材で
は、上記した構成としたから、金属製管体の軸心回りの
周囲を被覆する多孔質体の密度勾配が正でかつ2.5以
上の場合において、密度勾配が1でかつ多孔質体が均一
密度を有している場合と比較してエネルギ吸収量の増加
を実現することが可能であるという非常に優れた効果が
もたらされる。Since the impact energy absorbing structural member according to claim 7 of the present invention has the above-mentioned structure, when the density gradient of the porous body covering the circumference of the metal tube body around the axis is negative, The energy absorption amount can be increased as compared with the case where the porous body does not have a density gradient, and the impact energy absorption structural member according to claim 8 of the present invention has the above-mentioned configuration, and therefore is made of metal. Compared with the case where the density gradient of the porous body covering the circumference around the axis of the tubular body is positive and 2.5 or more, the density gradient is 1 and the porous body has a uniform density. Therefore, it is possible to realize an increase in the amount of absorbed energy, which is a very excellent effect.
【0024】本発明の請求項9に係わる衝撃エネルギ吸
収構造部材では、上記した構成としたから、車両衝突直
後に生じる反力ピークを少なく抑えたうえで、効率のよ
い衝撃エネルギの吸収を実現することが可能であるとい
う非常に優れた効果がもたらされる。Since the impact energy absorbing structural member according to claim 9 of the present invention has the above-mentioned structure, the reaction force peak generated immediately after the vehicle collision is suppressed to a small level and the impact energy is efficiently absorbed. It has a very excellent effect that it is possible.
【0025】[0025]
【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
【0026】図1は、本発明に係わる衝撃エネルギ吸収
構造部材の一実施例を示している。FIG. 1 shows an embodiment of a shock energy absorbing structure member according to the present invention.
【0027】図1に示すように、この衝撃エネルギ吸収
構造部材1は、板厚1.6mmの270MPa級鋼板か
ら形成したφ60mm、長さ300mmの管体2の軸心
回りの周囲を発泡アルミニウム(多孔質体)3で被覆した
構成をなしている。As shown in FIG. 1, the impact energy absorbing structural member 1 is made of foamed aluminum (aluminum) around a shaft center of a tubular body 2 having a diameter of 60 mm and a length of 300 mm, which is formed from a 270 MPa class steel plate having a thickness of 1.6 mm. A porous body 3 is used for coating.
【0028】この場合、管体2の軸心回りの周囲を被覆
する発泡アルミニウム3は、囲み方向に連続させてあ
り、その厚さは長手方向に一定させてある。また、発泡
アルミニウム3は管体2に密着配置してあるだけで、溶
接や接着のような接合手段は用いていない。なお、表面
に露出している発泡アルミニウム3が欠けるのを避ける
ために、発泡アルミニウム3を樹脂などでコーティング
することが望ましい。In this case, the foamed aluminum 3 covering the circumference around the axis of the tubular body 2 is continuous in the surrounding direction, and its thickness is constant in the longitudinal direction. Further, the foamed aluminum 3 is only placed in close contact with the tube body 2, and no joining means such as welding or adhesion is used. In addition, in order to prevent the foamed aluminum 3 exposed on the surface from being chipped, it is desirable to coat the foamed aluminum 3 with a resin or the like.
【0029】図2は、衝撃エネルギ吸収構造部材に対し
て300kgの質量体を長手方向に速度8m/sで衝突
させた際の平均反力と部材の潰れ量との関係を示してお
り、符号Aは、プラトー域における一定応力が約1.7
MPaとなるようにした密度240kg/m3の発泡ア
ルミニウムを厚さ10mmで鋼管(管体)に被覆してなる
衝撃エネルギ吸収構造部材の場合の平均反力と部材の潰
れ量との関係を示し、一方、符号Bは、発泡アルミニウ
ムを具備していない鋼管単体の場合の平均反力と部材の
潰れ量との関係を示している。FIG. 2 shows the relationship between the average reaction force and the crush amount of the member when a mass body of 300 kg is collided with the impact energy absorbing structure member in the longitudinal direction at a velocity of 8 m / s. A has a constant stress in the plateau region of about 1.7.
The relationship between the average reaction force and the amount of crushing of a shock energy absorbing structural member formed by covering a steel pipe (tube) with a thickness of 10 mm of foamed aluminum having a density of 240 kg / m 3 which is set to MPa is shown. On the other hand, symbol B indicates the relationship between the average reaction force and the crush amount of the member in the case of a single steel pipe not including aluminum foam.
【0030】図2から判るように、本発明に係わる衝撃
エネルギ吸収構造部材では、鋼管単体の場合と比べて高
い平均反力を示し、鋼管単体の場合よりも高いエネルギ
吸収能力を有している。また、鋼管単体の場合に見られ
るような衝突直後の平均反力のピークB1は、本発明に
係わる衝撃エネルギ吸収構造部材の場合にはほとんど現
れない。As can be seen from FIG. 2, the impact energy absorbing structural member according to the present invention exhibits a higher average reaction force than that of the steel pipe alone, and has a higher energy absorbing capacity than that of the steel pipe alone. . Further, the peak B1 of the average reaction force immediately after the collision, which is seen in the case of the steel pipe alone, hardly appears in the case of the impact energy absorbing structural member according to the present invention.
【0031】そこで、図1に示した実施例1の衝撃エネ
ルギ吸収構造部材および図2において用いた実施例2の
衝撃エネルギ吸収構造部材の各単位質量当たりの吸収エ
ネルギ量を調べたところ、表1に示す結果を得た。な
お、比較のため、比較例1〜6に係わる衝撃エネルギ吸
収構造部材の各単位質量当たりの吸収エネルギ量も併せ
て表1に記した。Therefore, the amount of absorbed energy per unit mass of the impact energy absorbing structure member of Example 1 shown in FIG. 1 and the impact energy absorbing structure member of Example 2 used in FIG. The results shown in are obtained. For comparison, Table 1 also shows the amount of absorbed energy per unit mass of the impact energy absorbing structural members according to Comparative Examples 1 to 6.
【0032】[0032]
【表1】 [Table 1]
【0033】表1から判るように、実施例1の衝撃エネ
ルギ吸収構造部材および実施例2の衝撃エネルギ吸収構
造部材では、鋼管単体である比較例1,2の場合と比べ
て、部材単位質量当たりの吸収エネルギ量が増加する、
すなわち、部材のエネルギ吸収能力を維持したうえで、
部材の質量の低減が実現可能となる。As can be seen from Table 1, in the impact energy absorbing structural member of Example 1 and the impact energy absorbing structural member of Example 2, as compared with Comparative Examples 1 and 2 which are steel pipes alone, per unit mass of the member The amount of absorbed energy of
That is, while maintaining the energy absorption capacity of the member,
It is possible to reduce the mass of the member.
【0034】一方、比較例3の衝撃エネルギ吸収構造部
材では、発泡アルミニウムの密度をアルミニウムの密度
の約35%となるように945kg/m3としており、
この場合、発泡アルミニウムに、応力が負荷される方向
以外の方向の歪が生じて、管体の座屈に伴って部材の円
周方向に拡大してしまい、その結果、管体の座屈モード
を制御することができず、鋼管単体である比較例1,2
の場合と比べても、部材のエネルギ吸収量を増加させる
には至っていない。On the other hand, in the impact energy absorbing structural member of Comparative Example 3, the density of the foam aluminum is set to 945 kg / m 3 so as to be about 35% of the density of aluminum,
In this case, the foamed aluminum is distorted in a direction other than the direction in which the stress is applied and expands in the circumferential direction of the member due to the buckling of the tubular body, resulting in the buckling mode of the tubular body. Comparative Examples 1 and 2 in which the steel pipe alone cannot be controlled.
Compared with the above case, the energy absorption amount of the member has not yet been increased.
【0035】また、比較例4の衝撃エネルギ吸収構造部
材では、発泡アルミニウムの密度を140kg/m3と
し、プラトー域での一定反力が約0.5MPaとなるよ
うにしており、この場合も、発泡アルミニウムによって
管体の座屈モードを制御することがほとんどできず、鋼
管単体である比較例1,2の場合と比較して、部材のエ
ネルギ吸収量を増加させるには至っていない。Further, in the impact energy absorbing structural member of Comparative Example 4, the density of the foamed aluminum was set to 140 kg / m 3, and the constant reaction force in the plateau region was set to about 0.5 MPa. Also in this case, The buckling mode of the tubular body can hardly be controlled by the foamed aluminum, and the energy absorption amount of the member has not yet been increased as compared with the cases of Comparative Examples 1 and 2 which are single steel tubes.
【0036】さらに、比較例5の衝撃エネルギ吸収構造
部材では、鋼管の質量に対する発泡アルミニウムの質量
を約0.9としており、この場合において、部材が吸収
するエネルギ量は増加するものの、部材質量も大幅に増
えるため、鋼管単体である比較例1,2の場合に比し
て、部材単位質量当たりのエネルギ吸収量を増加させる
には至っていない。Furthermore, in the impact energy absorbing structural member of Comparative Example 5, the mass of foam aluminum is about 0.9 with respect to the mass of the steel pipe. In this case, the amount of energy absorbed by the member increases, but the mass of the member also increases. Since it greatly increases, the amount of energy absorbed per unit mass of the member has not been increased as compared with the cases of Comparative Examples 1 and 2 which are steel pipes alone.
【0037】さらにまた、比較例6の衝撃エネルギ吸収
構造部材では、発泡アルミニウムの厚さを2mmとして
おり、この場合は、鋼管座屈の際の折れ曲がりによる発
泡アルミニウムの部材円周方向への圧縮歪が大きくな
り、発泡アルミニウム圧縮時の一定した反力を維持する
ことができない。したがって、管体の座屈モードを制御
することがほとんどできず、比較例1,2の場合と比較
しても、部材のエネルギ吸収量を増加させるには至って
いない。Furthermore, in the impact energy absorbing structural member of Comparative Example 6, the thickness of the foamed aluminum is 2 mm, and in this case, the compression strain of the foamed aluminum in the circumferential direction of the member due to bending at the time of buckling of the steel pipe. Becomes large and it is impossible to maintain a constant reaction force when the foamed aluminum is compressed. Therefore, the buckling mode of the tubular body can hardly be controlled, and the energy absorption amount of the member has not been increased even compared with the cases of Comparative Examples 1 and 2.
【0038】なお、上記実施例1,2に係わる衝撃エネ
ルギ吸収構造部材は、いずれも管体がφ60mmの円筒
状をなしているが、金属製管体の断面形状が正方形や長
方形や八角形などの多角形状をなしていても、上記実施
例1,2に係わる衝撃エネルギ吸収構造部材と同様の効
果が期待できる。In each of the impact energy absorbing structural members of Examples 1 and 2, the tubular body has a cylindrical shape with a diameter of 60 mm, but the cross-sectional shape of the metallic tubular body is square, rectangular, octagonal or the like. Even if it has a polygonal shape, the same effects as those of the impact energy absorbing structural members according to the first and second embodiments can be expected.
【0039】次に、本発明に係わる衝撃エネルギ吸収構
造部材を自動車用構造部材として用いた場合を例示す
る。Next, a case where the impact energy absorbing structural member according to the present invention is used as a structural member for automobile will be exemplified.
【0040】図4に示すように、この衝撃エネルギ吸収
構造部材11は、車体のフロントサイドメンバM(図3
参照)の先端に位置する先細り管体12の軸心回りの周
囲を金属多孔質体13で被覆してなっており、先細り管
体12に対する金属多孔質体13の軸方向への移動が問
題になる場合は、両者を溶接や接着などの接合手段によ
り接合する。As shown in FIG. 4, the impact energy absorbing structure member 11 is a front side member M of the vehicle body (see FIG. 3).
(Refer to (1)), the periphery of the tapered tubular body 12 around the axis is covered with the metallic porous body 13, and the axial movement of the metallic porous body 13 relative to the tapered tubular body 12 poses a problem. In such a case, the both are joined by joining means such as welding or adhesion.
【0041】この衝撃エネルギ吸収構造部材11では、
車両前面衝突時において、衝突直後に大きな反力ピーク
を生じさせることなく、衝撃エネルギを吸収し得ること
となり、加えて、フロントサイドメンバMの単位質量当
たりの吸収エネルギ量を増加させ得ることとなる。In this impact energy absorbing structure member 11,
At the time of a vehicle front collision, the impact energy can be absorbed without causing a large reaction force peak immediately after the collision, and in addition, the absorbed energy amount per unit mass of the front side member M can be increased. .
【0042】図5は、本発明に係わる衝撃エネルギ吸収
構造部材を車両のフロントバンパFBを固定するバンパ
ステイとした場合を示している。FIG. 5 shows a case where the impact energy absorbing structural member according to the present invention is used as a bumper stay for fixing the front bumper FB of the vehicle.
【0043】図5に示すように、この衝撃エネルギ吸収
構造部材21は、金属製管体22の軸心回りの周囲を金
属多孔質体23で被覆してなっており、この衝撃エネル
ギ吸収構造部材21では、車両前面衝突時にバンパステ
イとして座屈することで、衝撃エネルギの吸収を効率よ
く行うことが可能となる。As shown in FIG. 5, the impact energy absorbing structure member 21 is formed by covering the circumference of the metal tube 22 around the axis with a metal porous body 23. In No. 21, it is possible to efficiently absorb the impact energy by buckling as a bumper stay at the time of a vehicle frontal collision.
【0044】図6は、本発明に係わる衝撃エネルギ吸収
構造部材を車両のドアインナDのバーリングしたエッジ
部に適用した場合を示している。FIG. 6 shows a case where the impact energy absorbing structural member according to the present invention is applied to a burring edge portion of a door inner D of a vehicle.
【0045】図6に示すように、この衝撃エネルギ吸収
構造部材31は、車両のドアインナDのバーリングした
エッジ部(管体)32の軸心回りの周囲を金属多孔質体3
3で被覆してなっており、この衝撃エネルギ吸収構造部
材31では、バーリングエッジ部32の座屈を利用する
ことで、車両側面衝突時には、ドアインナが衝撃エネル
ギを効率よく吸収することとなる。As shown in FIG. 6, the impact energy absorbing structure member 31 includes a porous metal body 3 around the axis of a burring edge portion (tube body) 32 of a vehicle door inner D.
In this impact energy absorbing structure member 31, the buckling of the burring edge portion 32 is utilized in the impact energy absorbing structure member 31 so that the door inner efficiently absorbs the impact energy at the time of a side collision of the vehicle.
【0046】図7は、本発明に係わる衝撃エネルギ吸収
構造部材を車体のリアサイドメンバに適用した場合を示
している。FIG. 7 shows a case where the impact energy absorbing structure member according to the present invention is applied to a rear side member of a vehicle body.
【0047】図7に示すように、この衝撃エネルギ吸収
構造部材41は、車体のリアサイドメンバRM(図3参
照)の後端に位置する先細り管体42の軸心回りの周囲
を金属多孔質体43で被覆してなっており、この場合
も、先細り管体42に対する金属多孔質体43の軸方向
への移動が問題になる場合は、両者を溶接や接着などの
接合手段により接合する。As shown in FIG. 7, the impact energy absorbing structure member 41 has a porous metal body around the axial center of the tapered tube body 42 located at the rear end of the rear side member RM (see FIG. 3) of the vehicle body. In this case as well, when the movement of the porous metal body 43 in the axial direction with respect to the tapered tubular body 42 poses a problem, the both are joined by a joining means such as welding or adhesion.
【0048】この衝撃エネルギ吸収構造部材41にあっ
ても、車両後面衝突時に、その衝突直後に大きな反力ピ
ークを生じさせずに衝撃エネルギを吸収し得ることとな
り、加えて、リアサイドメンバRMの単位質量当たりの
吸収エネルギ量をも増加させ得ることとなる。Even with this impact energy absorbing structural member 41, at the time of a vehicle rear surface collision, it is possible to absorb the impact energy without causing a large reaction force peak immediately after the collision, and, in addition, the unit of the rear side member RM. The amount of absorbed energy per mass can also be increased.
【0049】図8は、本発明に係わる衝撃エネルギ吸収
構造部材を車両のダッシュパネルP(図3参照)に取り付
けた場合を示している。FIG. 8 shows a case where the impact energy absorbing structure member according to the present invention is attached to a dash panel P (see FIG. 3) of a vehicle.
【0050】図8に示すように、この衝撃エネルギ吸収
構造部材51は、ベースプレート54上に設けた金属製
管体52の軸心回りの周囲を金属多孔質体53で被覆し
てなっており、ダッシュパネルPの前面に複数個配置し
てある。この衝撃エネルギ吸収構造部材51では、その
座屈を利用することで、車両前面衝突時などの衝撃エネ
ルギの吸収を効率よく行うことが可能となる。As shown in FIG. 8, the impact energy absorbing structure member 51 has a metal porous body 53 covering the circumference of the axis of a metal tubular body 52 provided on a base plate 54. Plural pieces are arranged on the front surface of the dash panel P. By utilizing the buckling of the impact energy absorbing structure member 51, it is possible to efficiently absorb the impact energy at the time of a frontal collision of the vehicle.
【0051】図9は、本発明に係わる衝撃エネルギ吸収
構造部材の他の実施例を示している。FIG. 9 shows another embodiment of the impact energy absorbing structure member according to the present invention.
【0052】図9に示すように、この衝撃エネルギ吸収
構造部材61は、アルミニウムよりなる管体62の軸心
回りの周囲を発泡体としての発泡アルミニウム63で被
覆してなっており、発泡アルミニウム63は、管体62
を被覆する段階で発泡させて管体62の軸心回りの周囲
に金属的に接合させてある。As shown in FIG. 9, the impact energy absorbing structure member 61 has a tubular body 62 made of aluminum, which is covered with a foamed aluminum 63 as a foamed material around the axial center thereof. Is the tube 62
Is foamed at the stage of coating and is metallically bonded to the periphery of the tube body 62 around its axis.
【0053】この衝撃エネルギ吸収構造部材61を製作
するに際しては、アルミニウムよりなる管体62に十分
な熱容量を有する円筒状成形型70を余裕をもって嵌合
し、管体62と円筒状成形型70との間に形成される隙
間Sに、水酸化チタニウムなどの発泡材を添加して溶融
させたアルミニウムを流し込むのに続いて、発泡材を含
有した溶融アルミニウムを発泡させた後、十分に冷却し
て発泡アルミニウム63を管体62の軸心回りの周囲に
金属的に接合させるようにしている。When the impact energy absorbing structure member 61 is manufactured, a cylindrical molding die 70 having a sufficient heat capacity is fitted in a tubular body 62 made of aluminum with a margin to form the tubular body 62 and the cylindrical molding die 70. After pouring the aluminum melted by adding the foaming material such as titanium hydroxide into the gap S formed between the two, the molten aluminum containing the foaming material is foamed and then sufficiently cooled. The foamed aluminum 63 is metallically joined to the circumference of the tubular body 62 around the axis.
【0054】隙間Sに溶融させたアルミニウムを流し込
むに際して、アルミニウムよりなる管体62が軟化して
折れ曲がりなどの不具合が生じる可能性がある場合に
は、管体62の内部に耐熱性を有する治具を挿入してお
くことが望ましい。When the molten aluminum is poured into the gap S, and there is a possibility that the tubular body 62 made of aluminum will soften and become bent, a jig having heat resistance inside the tubular body 62 will be used. It is desirable to insert.
【0055】この衝撃エネルギ吸収構造部材61では、
アルミニウムよりなる管体62と発泡アルミニウム63
とが一体化しているため、発泡アルミニウム63が管体
62の軸方向および周囲方向に移動することが阻止され
ることとなる。In this impact energy absorbing structure member 61,
Aluminum tube 62 and aluminum foam 63
Since and are integrated, the aluminum foam 63 is prevented from moving in the axial direction and the circumferential direction of the tubular body 62.
【0056】図10(a)は、本発明に係わる衝撃エネル
ギ吸収構造部材の他の実施例を示したもので、閉断面を
有する金属製管体72の軸心回りの周囲を被覆する発泡
体としての発泡アルミニウム73を示しており、この発
泡アルミニウム73は、その半径方向に密度分布を有し
ている。FIG. 10 (a) shows another embodiment of the impact energy absorbing structural member according to the present invention, which is a foam for covering the periphery of the axis of the metallic tube 72 having a closed cross section. 7 shows a foamed aluminum 73, which has a density distribution in the radial direction.
【0057】図10(b)は、上記衝撃エネルギ吸収構造
部材71を軸方から見た図であって、閉断面を有する金
属製管体72と、この金属製管体72の軸心回りの周囲
を被覆する発泡アルミニウム73からなり、この発泡ア
ルミニウム73は、管体72の半径方向rに対して、金
属製管体72に近い部分73aと金属製管体72から遠
い部分73bとの間で密度勾配がある場合を想定してい
る。FIG. 10 (b) is a view of the impact energy absorbing structural member 71 as seen from the axial direction, and shows a metal tube body 72 having a closed cross section and the axial center of the metal tube body 72. The foamed aluminum 73 covers the surroundings, and the foamed aluminum 73 is between the portion 73a close to the metal pipe body 72 and the portion 73b far from the metal pipe body 72 in the radial direction r of the pipe body 72. It is assumed that there is a density gradient.
【0058】図11は、上記発泡アルミニウム73にお
ける金属製管体72の半径方向rの密度分布とエネルギ
吸収量との関係を示しており、横軸は密度勾配を示し、
縦軸はエネルギ吸収量を示している。密度勾配は、金属
製管体72の軸心回りの周囲を被覆する発泡アルミニウ
ム73の密度が、金属製管体72の半径r方向内側より
も外側で大きくなる場合をマイナスと定義し、半径r方
向内側の密度を外側の密度で除した値としている。FIG. 11 shows the relationship between the density distribution in the radial direction r of the metallic tube 72 in the foamed aluminum 73 and the energy absorption amount, and the horizontal axis shows the density gradient,
The vertical axis represents the energy absorption amount. The density gradient is defined as a minus when the density of the foamed aluminum 73 covering the periphery of the axis of the metal tubular body 72 is greater outside the radius r direction inner side of the metal tubular body 72, and the radius r It is the value obtained by dividing the density on the inside of the direction by the density on the outside.
【0059】図11から判るように、上記多孔質体とし
ての発泡アルミニウム73では、密度勾配が負の場合
(領域1)において、多孔質体が密度勾配を有していない
場合(密度勾配が1である場合)と比較して、エネルギ
吸収量が増加する。As can be seen from FIG. 11, in the case of the foamed aluminum 73 as the porous body, when the density gradient is negative.
In (region 1), the amount of energy absorption increases as compared with the case where the porous body does not have a density gradient (when the density gradient is 1).
【0060】一方、金属製管体72の軸心回りの周囲を
被覆する発泡アルミニウム73の密度勾配が正でかつ
2.5以上の場合(領域2)においても、密度勾配が1で
かつ多孔質体が均一密度を有している場合と比較して、
エネルギ吸収量が増加する。On the other hand, even when the density gradient of the foamed aluminum 73 covering the circumference around the axis of the metal tubular body 72 is positive and is 2.5 or more (region 2), the density gradient is 1 and the porosity is high. Compared to the case where the body has a uniform density,
Energy absorption increases.
【0061】図12は実験結果を示しており、太い実線
は密度勾配が一様に3である場合を示し、破線は多孔質
体が均一密度(密度勾配1)を有している場合を示して
いる。FIG. 12 shows the experimental results. The thick solid line shows the case where the density gradient is uniformly 3, and the broken line shows the case where the porous body has a uniform density (density gradient 1). ing.
【0062】図12から、密度勾配3の部材は、均一で
密度勾配1の部材と比較して、約4%のエネルギ吸収量
が増加したことが判る。From FIG. 12, it can be seen that the member having the density gradient 3 increased the energy absorption amount by about 4% as compared with the member having the uniform density gradient 1.
【図1】本発明に係わる衝撃エネルギ吸収構造部材の一
実施例を示す斜視説明図である。FIG. 1 is a perspective explanatory view showing an embodiment of a shock energy absorbing structure member according to the present invention.
【図2】図1の衝撃エネルギ吸収構造部材に衝撃荷重を
加えた際の平均反力と潰れ量との関係を示すグラフであ
る。FIG. 2 is a graph showing a relationship between an average reaction force and a crush amount when an impact load is applied to the impact energy absorbing structure member of FIG.
【図3】本発明に係わる衝撃エネルギ吸収構造部材を用
い得る車体を示す全体斜視説明図である。FIG. 3 is an overall perspective view showing a vehicle body in which the impact energy absorbing structure member according to the present invention can be used.
【図4】本発明に係わる衝撃エネルギ吸収構造部材を自
動車用構造部材としてのフロントサイドメンバに適用し
た状況を示す斜視説明図(a)および断面説明図(b)であ
る。FIG. 4 is a perspective explanatory view (a) and a sectional explanatory view (b) showing a situation in which the impact energy absorbing structural member according to the present invention is applied to a front side member as a structural member for an automobile.
【図5】本発明に係わる衝撃エネルギ吸収構造部材を自
動車用構造部材としてのバンパステイに適用した状況を
示す斜視説明図(a)および拡大斜視説明図(b)である。FIG. 5 is a perspective explanatory view (a) and an enlarged perspective explanatory view (b) showing a situation in which the impact energy absorbing structural member according to the present invention is applied to a bumper stay as a structural member for an automobile.
【図6】本発明に係わる衝撃エネルギ吸収構造部材を自
動車用構造部材としてのドアインナのバーリングエッジ
部に適用した状況を示す斜視説明図である。FIG. 6 is a perspective explanatory view showing a situation in which the impact energy absorbing structural member according to the present invention is applied to a burring edge portion of a door inner as a structural member for an automobile.
【図7】本発明に係わる衝撃エネルギ吸収構造部材を自
動車用構造部材としてのリアサイドメンバに適用した状
況を示す斜視説明図である。FIG. 7 is a perspective explanatory view showing a situation in which the impact energy absorbing structural member according to the present invention is applied to a rear side member as a structural member for an automobile.
【図8】本発明に係わる衝撃エネルギ吸収構造部材を自
動車のダッシュパネルに取り付けた状況を示す斜視説明
図(a)および拡大斜視説明図(b)である。FIG. 8 is a perspective explanatory view (a) and an enlarged perspective explanatory view (b) showing a state in which the impact energy absorbing structure member according to the present invention is attached to a dash panel of an automobile.
【図9】本発明に係わる衝撃エネルギ吸収構造部材を成
形型を用いて製作する状況を示す斜視説明図である。FIG. 9 is a perspective explanatory view showing a situation in which the impact energy absorbing structural member according to the present invention is manufactured using a molding die.
【図10】本発明に係わる衝撃エネルギ吸収構造部材の
実施例を示す斜視説明図(a)および正面説明図(b)であ
る。FIG. 10 is a perspective explanatory view (a) and a front explanatory view (b) showing an embodiment of the impact energy absorbing structural member according to the present invention.
【図11】本発明に係わる衝撃エネルギ吸収構造部材に
用いる多孔質体における金属製管体の半径方向の密度分
布とエネルギ吸収量との関係を示す図である。FIG. 11 is a diagram showing a relationship between a radial density distribution of a metal tube body and an energy absorption amount in a porous body used for an impact energy absorption structure member according to the present invention.
【図12】本発明に係わる衝撃エネルギ吸収構造部材の
実験結果示すグラフである。FIG. 12 is a graph showing an experimental result of the impact energy absorbing structure member according to the present invention.
【図13】従来の衝撃エネルギ吸収構造部材を示す斜視
説明図である。FIG. 13 is a perspective explanatory view showing a conventional impact energy absorbing structure member.
【図14】図13の衝撃エネルギ吸収構造部材に衝撃荷
重を加えた際の平均反力と潰れ量との関係を示すグラフ
である。14 is a graph showing a relationship between an average reaction force and a crush amount when an impact load is applied to the impact energy absorbing structure member of FIG.
1,11,21,31,41,51,61,71 衝撃
エネルギ吸収構造部材
2,12,22,32,42,52,62,72 管体
3,13,23,33,43,53,63,73 多孔
質体1, 11, 21, 31, 41, 51, 61, 71 Impact energy absorbing structural member 2, 12, 22, 32, 42, 52, 62, 72 Tube body 3, 13, 23, 33, 43, 53, 63 , 73 Porous body
───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂元 宏規 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 馬久地 裕 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 渡辺 茂雄 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3J066 AA01 AA23 BA03 BB01 BC01 BD05 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hironori Sakamoto Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Inside the automobile corporation (72) Inventor Yu Makuji Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Inside the automobile corporation (72) Inventor Shigeo Watanabe Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Inside the automobile corporation F term (reference) 3J066 AA01 AA23 BA03 BB01 BC01 BD05
Claims (9)
なす金属製の管体と、圧縮応力が負荷された段階で一定
の反力を維持しつつ崩壊する多孔質体を備え、管体の軸
心回りの周囲を多孔質体で被覆したことを特徴とする衝
撃エネルギ吸収構造部材。1. A tubular body comprising a metallic tubular body having a substantially circular or polygonal cross section and a porous body that collapses while maintaining a constant reaction force when a compressive stress is applied. An impact energy absorbing structural member characterized in that the periphery around the axis is covered with a porous body.
30%以下とし、多孔質体が圧縮応力負荷時に維持する
一定の反力を金属製管体の強度の0.5%以上とし、多
孔質体の金属製管体に対する質量比を1/2以下とし、
多孔質体の厚みを管体の軸心から多孔質体の外面までの
距離の15%以上とした請求項1に記載の衝撃エネルギ
吸収構造部材。2. The density of the porous body is 30% or less of the density of the porous body material, and the constant reaction force maintained by the porous body under compressive stress is 0.5% or more of the strength of the metal tubular body. And the mass ratio of the porous body to the metal tube is 1/2 or less,
The impact energy absorbing structural member according to claim 1, wherein the thickness of the porous body is 15% or more of the distance from the axial center of the tubular body to the outer surface of the porous body.
体を囲み方向に連続させてある請求項1または2に記載
の衝撃エネルギ吸収構造部材。3. The impact energy absorbing structural member according to claim 1 or 2, wherein a porous body covering the circumference of the tubular body around the axis is continuous in the surrounding direction.
体は囲み方向に不連続部分を有し、この不連続部分を多
孔質体自体の引張り強度よりも高い破断強度を呈する接
合手段で接合してある請求項1または2に記載の衝撃エ
ネルギ吸収構造部材。4. A porous body covering a periphery of an axis of a tubular body has a discontinuous portion in an enclosing direction, and the discontinuous portion has a breaking strength higher than the tensile strength of the porous body itself. The impact energy absorbing structural member according to claim 1 or 2, which is joined by means.
た請求項1ないし4のいずれかに記載の衝撃エネルギ吸
収構造部材。5. The impact energy absorbing structural member according to claim 1, wherein the porous body is a foam made of foam metal.
を被覆する段階で発泡させて金属製管体の軸心回りの周
囲に金属的に接合させてある請求項5に記載の衝撃エネ
ルギ吸収構造部材。6. The impact according to claim 5, wherein the foamed body made of foamed metal is foamed at the stage of covering the metal tube body and metallically joined to the periphery of the axis of the metal tube body. Energy absorbing structural member.
多孔質体の半径方向の密度分布を外側に向けて単調に増
加させてある請求項1ないし6のいずれかに記載の衝撃
エネルギ吸収構造部材。7. The impact according to claim 1, wherein the density distribution in the radial direction of the porous body covering the circumference around the axis of the metal tubular body is monotonically increased toward the outside. Energy absorbing structural member.
多孔質体の平均密度を多孔質体を構成する素材の密度に
対して14〜23%とし、かつ、半径方向の密度分布を
外側に向けて1/2.5以上の傾きをもって減少させて
ある請求項1ないし7のいずれかに記載の衝撃エネルギ
吸収構造部材。8. The average density of the porous body covering the periphery of the axis of the metal tube is 14 to 23% of the density of the material constituting the porous body, and the density distribution in the radial direction. The impact energy absorbing structural member according to any one of claims 1 to 7, wherein the impact energy absorbing structural member is reduced toward the outside with a slope of 1 / 2.5 or more.
ないし8のいずれかに記載の衝撃エネルギ吸収構造部
材。9. The use as a structural member for automobiles according to claim 1.
9. The impact energy absorbing structural member according to any one of 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001248784A JP2003056617A (en) | 2001-08-20 | 2001-08-20 | Impact energy absorption structure member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001248784A JP2003056617A (en) | 2001-08-20 | 2001-08-20 | Impact energy absorption structure member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003056617A true JP2003056617A (en) | 2003-02-26 |
Family
ID=19077885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001248784A Pending JP2003056617A (en) | 2001-08-20 | 2001-08-20 | Impact energy absorption structure member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003056617A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029362A1 (en) * | 2005-09-09 | 2007-03-15 | Toyoda Iron Works Co., Ltd | Impact absorption member for vehicle |
JP2009002368A (en) * | 2007-06-19 | 2009-01-08 | Mazda Motor Corp | Energy absorbing member |
US8232207B2 (en) | 2008-12-26 | 2012-07-31 | Tokyo Electron Limited | Substrate processing method |
CN107097741A (en) * | 2017-05-31 | 2017-08-29 | 华侨大学 | Graded composite collision energy-absorbing pipe fitting |
CN109070821A (en) * | 2016-04-22 | 2018-12-21 | 日产自动车株式会社 | energy absorbing structure |
JP2019039468A (en) * | 2017-08-23 | 2019-03-14 | 三菱重工業株式会社 | Shock absorption member, buffer, process of manufacture cask and buffer |
JP2019077128A (en) * | 2017-10-26 | 2019-05-23 | 三菱重工業株式会社 | Impact absorption member, buffer, cask and manufacturing method of buffer |
CN110030308A (en) * | 2019-03-19 | 2019-07-19 | 东南大学 | One kind can restore shock resistance mixing every vibration absorber and oscillation damping method |
US10453656B2 (en) | 2011-10-05 | 2019-10-22 | Applied Materials, Inc. | Symmetric plasma process chamber |
-
2001
- 2001-08-20 JP JP2001248784A patent/JP2003056617A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029362A1 (en) * | 2005-09-09 | 2007-03-15 | Toyoda Iron Works Co., Ltd | Impact absorption member for vehicle |
JPWO2007029362A1 (en) * | 2005-09-09 | 2009-03-12 | 豊田鉄工株式会社 | Shock absorbing member for vehicle |
US7694787B2 (en) | 2005-09-09 | 2010-04-13 | Toyoda Iron Works Co., Ltd. | Shock absorbing member for vehicle |
JP4792036B2 (en) * | 2005-09-09 | 2011-10-12 | 豊田鉄工株式会社 | Shock absorbing member for vehicle |
JP2009002368A (en) * | 2007-06-19 | 2009-01-08 | Mazda Motor Corp | Energy absorbing member |
US8232207B2 (en) | 2008-12-26 | 2012-07-31 | Tokyo Electron Limited | Substrate processing method |
US10580620B2 (en) | 2011-10-05 | 2020-03-03 | Applied Materials, Inc. | Symmetric plasma process chamber |
US10615006B2 (en) | 2011-10-05 | 2020-04-07 | Applied Materials, Inc. | Symmetric plasma process chamber |
US11315760B2 (en) | 2011-10-05 | 2022-04-26 | Applied Materials, Inc. | Symmetric plasma process chamber |
US10546728B2 (en) | 2011-10-05 | 2020-01-28 | Applied Materials, Inc. | Symmetric plasma process chamber |
US10535502B2 (en) | 2011-10-05 | 2020-01-14 | Applied Materials, Inc. | Symmetric plasma process chamber |
US10453656B2 (en) | 2011-10-05 | 2019-10-22 | Applied Materials, Inc. | Symmetric plasma process chamber |
CN109070821A (en) * | 2016-04-22 | 2018-12-21 | 日产自动车株式会社 | energy absorbing structure |
EP3446929A4 (en) * | 2016-04-22 | 2019-02-27 | Nissan Motor Co., Ltd. | ENERGY ABSORPTION STRUCTURE |
CN107097741A (en) * | 2017-05-31 | 2017-08-29 | 华侨大学 | Graded composite collision energy-absorbing pipe fitting |
CN107097741B (en) * | 2017-05-31 | 2023-08-29 | 华侨大学 | Gradient composite collision energy-absorbing pipe fitting |
JP2019039468A (en) * | 2017-08-23 | 2019-03-14 | 三菱重工業株式会社 | Shock absorption member, buffer, process of manufacture cask and buffer |
JP2019077128A (en) * | 2017-10-26 | 2019-05-23 | 三菱重工業株式会社 | Impact absorption member, buffer, cask and manufacturing method of buffer |
JP7032909B2 (en) | 2017-10-26 | 2022-03-09 | 三菱重工業株式会社 | Manufacturing method of shock absorbing member, shock absorber, cask and shock absorber |
CN110030308A (en) * | 2019-03-19 | 2019-07-19 | 东南大学 | One kind can restore shock resistance mixing every vibration absorber and oscillation damping method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5488069B2 (en) | Crash box and car body | |
WO2002076809A1 (en) | Automobile strengthening member | |
JP2023537494A (en) | Integrated energy absorbing casting | |
JP4219184B2 (en) | Shock absorber mounting structure | |
EP1293390A2 (en) | Taper and flare energy absorption system | |
JP2004148994A (en) | Impact absorbing member for vehicle | |
JP2003056617A (en) | Impact energy absorption structure member | |
JPWO2005075254A1 (en) | Vehicle shock absorber | |
JP2009241869A (en) | Bumper structure | |
JP5235007B2 (en) | Crash box | |
JP4645131B2 (en) | Bumper structure for vehicle and method for forming the same | |
JP5311730B2 (en) | Bumper structure | |
JPH10138950A (en) | Shock absorbing member and manufacture therefor | |
JP3676491B2 (en) | Shock absorbing member | |
JP2001241478A (en) | Impact energy absorbing structure | |
US20030072900A1 (en) | Impact energy absorbing structure | |
JP2003105407A (en) | Porous energy-absorbing member, and member for car body frame | |
JP2000053017A (en) | Automobile energy absorptive structure | |
JPH11255048A (en) | Structural member with reinforcement structure | |
KR20090040218A (en) | Method of manufacturing impact energy absorbing member and impact energy absorbing member | |
JPH09277954A (en) | Tapered shock absorbing member | |
JP2001153169A (en) | Hybrid type shock absorbing member | |
JP3562919B2 (en) | Shock absorbing bumper | |
JP2007001386A (en) | Bumper stay and bumper device | |
JP2005325968A (en) | Impact energy absorbing structural member |