JP2003048870A - Method for producing acrylonitrile and / or acrylic acid - Google Patents
Method for producing acrylonitrile and / or acrylic acidInfo
- Publication number
- JP2003048870A JP2003048870A JP2002091444A JP2002091444A JP2003048870A JP 2003048870 A JP2003048870 A JP 2003048870A JP 2002091444 A JP2002091444 A JP 2002091444A JP 2002091444 A JP2002091444 A JP 2002091444A JP 2003048870 A JP2003048870 A JP 2003048870A
- Authority
- JP
- Japan
- Prior art keywords
- tellurium
- metal oxide
- acrylic acid
- molybdenum
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 title claims abstract description 42
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 title claims abstract description 28
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 83
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000003054 catalyst Substances 0.000 claims abstract description 65
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 51
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 45
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 40
- 239000011733 molybdenum Substances 0.000 claims abstract description 40
- 239000001294 propane Substances 0.000 claims abstract description 40
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 39
- 239000012190 activator Substances 0.000 claims abstract description 36
- 239000002131 composite material Substances 0.000 claims abstract description 31
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 30
- 230000003197 catalytic effect Effects 0.000 claims abstract description 29
- 239000007789 gas Substances 0.000 claims abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000001301 oxygen Substances 0.000 claims abstract description 26
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 26
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 24
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 22
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 15
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims description 18
- 239000010955 niobium Substances 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052787 antimony Chemical group 0.000 claims description 8
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical group [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical group [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Chemical group 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical group [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical group [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Chemical group 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Chemical group 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 description 32
- 239000012071 phase Substances 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000002002 slurry Substances 0.000 description 11
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 11
- 239000002994 raw material Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 150000003498 tellurium compounds Chemical class 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000005078 molybdenum compound Substances 0.000 description 7
- 150000002752 molybdenum compounds Chemical class 0.000 description 7
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- FXADMRZICBQPQY-UHFFFAOYSA-N orthotelluric acid Chemical compound O[Te](O)(O)(O)(O)O FXADMRZICBQPQY-UHFFFAOYSA-N 0.000 description 6
- -1 iron and chromium Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- IIXQANVWKBCLEB-UHFFFAOYSA-N tellurium trioxide Chemical compound O=[Te](=O)=O IIXQANVWKBCLEB-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 101710192523 30S ribosomal protein S9 Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- RYZCLUQMCYZBJQ-UHFFFAOYSA-H lead(2+);dicarbonate;dihydroxide Chemical compound [OH-].[OH-].[Pb+2].[Pb+2].[Pb+2].[O-]C([O-])=O.[O-]C([O-])=O RYZCLUQMCYZBJQ-UHFFFAOYSA-H 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- MAKKVCWGJXNRMD-UHFFFAOYSA-N niobium(5+);oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] MAKKVCWGJXNRMD-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
(57)【要約】
【課題】 流動床反応器を用いて、モリブデン、バナジ
ウム、およびテルルを含む複合金属酸化物触媒の存在
下、プロパンをアンモニアおよび酸素と気相接触酸化反
応させてアクリロニトリルおよび/またはアクリル酸を
製造する際に、長期間に亘り高収率で安定的に製造する
方法を提供する。
【解決手段】 流動床反応器を用いて、モリブデン、バ
ナジウムおよびテルルを含む複合金属酸化物触媒の存在
下、プロパンをアンモニアおよび酸素と気相接触酸化反
応させてアクリロニトリルおよび/またはアクリル酸を
製造する際に、該反応系に賦活剤としてモリブデンおよ
びテルルを含む複合金属酸化物を添加する。PROBLEM TO BE SOLVED: To provide a gas phase catalytic oxidation reaction of propane with ammonia and oxygen in the presence of a composite metal oxide catalyst containing molybdenum, vanadium, and tellurium using a fluidized bed reactor to react acrylonitrile and / or Alternatively, the present invention provides a method for producing acrylic acid stably at a high yield over a long period of time. SOLUTION: In a fluidized bed reactor, propane is subjected to a gas phase catalytic oxidation reaction with ammonia and oxygen in the presence of a composite metal oxide catalyst containing molybdenum, vanadium and tellurium to produce acrylonitrile and / or acrylic acid. At this time, a composite metal oxide containing molybdenum and tellurium is added as an activator to the reaction system.
Description
【0001】[0001]
【発明の属する技術分野】本発明は流動床反応器を用い
てプロパンをアンモニア、酸素と気相接触酸化反応させ
てアクリロニトリルおよび/またはアクリル酸を製造す
る方法に関する。さらに詳しくは、経時的な反応成績の
低下を抑えて安定にこれらを製造させる方法に関する。TECHNICAL FIELD The present invention relates to a method for producing acrylonitrile and / or acrylic acid by subjecting propane to a gas phase catalytic oxidation reaction with ammonia and oxygen using a fluidized bed reactor. More specifically, it relates to a method for stably producing these by suppressing a decrease in reaction performance over time.
【0002】[0002]
【従来の技術】アクリロニトリルは合成樹脂、合成繊
維、合成ゴムなどの中間原料として、一方アクリル酸は
合成樹脂、塗料、接着剤、可塑剤などの原料として工業
的に重要である。これらの化学品は、現在はプロピレン
の気相接触酸化反応または反応系にアンモニアを存在さ
せた気相接触酸化反応(アンモ酸化反応)により製造さ
れているが、最近は価格の上で有利なプロパンがプロピ
レンに代わって使用できるように関心が高まっている。
これら酸化反応、およびアンモ酸化反応は発熱反応であ
るため、反応熱の除去が容易で触媒層内全体にわたり温
度制御が可能な流動床反応器方式が採用される。プロパ
ンの気相接触酸化反応及びアンモ酸化反応の触媒に関す
る研究の報告は多数有り、触媒として、モリブデン(M
o)、バナジウム(V)およびテルル(Te)を必須成
分とする複合金属酸化物触媒が他の金属酸化物触媒に比
べ優れた性能を示すことが知られている。本発明者も、
Mo,V,Teを含む触媒がプロパンのアンモ酸化反応
によるアクリロニトリルの製造に有効であることを特開
平2−257号公報、特開平5−148212号公報及
び特開平5−208136号公報などにより、また、プ
ロパンの酸化反応によるアクリル酸の製造に有効である
ことを特開平6−279351号公報などにより開示し
ている。Acrylonitrile is industrially important as an intermediate raw material for synthetic resins, synthetic fibers, synthetic rubbers, and acrylic acid is a raw material for synthetic resins, paints, adhesives, plasticizers and the like. These chemicals are currently manufactured by the vapor-phase catalytic oxidation reaction of propylene or the vapor-phase catalytic oxidation reaction (ammoxidation reaction) in which ammonia is present in the reaction system. There is growing interest in replacing propylene with propylene.
Since the oxidation reaction and the ammoxidation reaction are exothermic reactions, a fluidized bed reactor system is adopted in which the reaction heat can be easily removed and the temperature can be controlled over the entire catalyst layer. There are many reports on research on catalysts for propane vapor-phase catalytic oxidation reactions and ammoxidation reactions.
It is known that a composite metal oxide catalyst containing o), vanadium (V) and tellurium (Te) as essential components exhibits superior performance to other metal oxide catalysts. The inventor also
According to JP-A-2-257, JP-A-5-148212, JP-A-5-208136, etc., that a catalyst containing Mo, V, Te is effective for producing acrylonitrile by ammoxidation reaction of propane, Further, it is disclosed in JP-A-6-279351 that it is effective for the production of acrylic acid by the oxidation reaction of propane.
【0003】これらの公報に開示された複合金属酸化物
触媒は、反応操作条件の選定によっては、気相接触酸化
反応の経過とともに性能が低下して、アクリロニトリル
および/またはアクリル酸の収率が低下することが観測
されている。このため、賦活効果を有する物質を添加し
て、劣化した触媒を賦活する方法が提案されている。モ
リブデンおよびテルルを含む酸化物触媒の性能の維持に
対して、例えば、特開昭58−139745号公報及び
特公平1−41135号報公報では、有機化合物の酸化
反応、アンモ酸化反応または脱水素反応において、テル
ル化合物またはテルル化合物とモリブデン化合物を添加
して、性能の低下した触媒を賦活する方法を開示してい
る。しかしながら、これらの公報では、メタノールのア
ンモ酸化反応、プロピレンのアンモ酸化反応、トルエン
のアンモ酸化反応およびブテンの酸化脱水素反応の実施
例が開示されているのみである。The performances of the composite metal oxide catalysts disclosed in these publications decrease with the progress of the gas phase catalytic oxidation reaction depending on the selection of reaction operating conditions, and the yield of acrylonitrile and / or acrylic acid decreases. It has been observed to do. Therefore, a method of activating a deteriorated catalyst by adding a substance having an activating effect has been proposed. For maintaining the performance of oxide catalysts containing molybdenum and tellurium, for example, in Japanese Patent Laid-Open No. 58-139745 and Japanese Patent Publication No. 41135/1984, an oxidation reaction, an ammoxidation reaction or a dehydrogenation reaction of an organic compound is described. Discloses a method of activating a catalyst having reduced performance by adding a tellurium compound or a tellurium compound and a molybdenum compound. However, these publications only disclose examples of methanol ammoxidation reaction, propylene ammoxidation reaction, toluene ammoxidation reaction, and butene oxidative dehydrogenation reaction.
【0004】また、最近、特開平11−124361号
公報において、モリブデン、テルル、バナジウムおよび
ニオブを含有する酸化物触媒の存在下、プロパンを気相
接触アンモ酸化反応させてアクリロニトリルを製造する
際に、反応時にテルル化合物と、任意にモリブデン化合
物を賦活剤として添加する方法が提案されている。この
方法では反応器内の触媒重量の約1%ものテルル酸を定
期的に添加して反応が実施され、添加直後に反応成績が
若干改善されることが報告されている。しかしながら、
添加後の反応成績の経時変化については記載されていな
い。さらに、添加したテルル酸のうちの触媒中に取り込
まれた割合が記されておらず、本発明者らの研究による
と、添加したテルル酸の少なくとも一部は、酸化テル
ル、あるいは反応ガスにより還元を受けて、金属テルル
を生成し、これら酸化テルル及び金属テルルが反応器に
接続されている配管を閉塞させたり、反応器あるいは反
応器に接続されている配管などを形成する材料に作用し
て損傷を生じさせる恐れも考えられる。このようなこと
から、モリブデン、テルル、バナジウムおよびニオブを
含有する酸化物触媒の存在下、プロパンを気相接触アン
モ酸化反応させてアクリロニトリルを製造する際に、反
応時にテルル化合物と、任意にモリブデン化合物を賦活
剤として添加する方法は実用的な面から問題があった。Further, recently, in JP-A-11-124361, when acrylonitrile is produced by subjecting propane to a gas phase catalytic ammoxidation reaction in the presence of an oxide catalyst containing molybdenum, tellurium, vanadium and niobium, A method of adding a tellurium compound and optionally a molybdenum compound as an activator at the time of reaction has been proposed. It is reported that in this method, about 1% of the catalyst weight in the reactor is regularly added to carry out the reaction, and the reaction results are slightly improved immediately after the addition. However,
There is no description about the change with time in the reaction results after addition. Furthermore, the ratio of the added telluric acid incorporated into the catalyst is not described, and according to the research conducted by the present inventors, at least a part of the added telluric acid is reduced by tellurium oxide or a reaction gas. In response, the metal tellurium is produced, and these tellurium oxide and metal tellurium act on the material forming the reactor, the pipe connected to the reactor, etc., to close the pipe connected to the reactor. It may cause damage. Therefore, in the presence of an oxide catalyst containing molybdenum, tellurium, vanadium and niobium, when producing acrylonitrile by a gas phase catalytic ammoxidation reaction of propane, a tellurium compound and optionally a molybdenum compound are produced during the reaction. There was a problem in terms of practical use in the method of adding as an activator.
【0005】[0005]
【発明が解決しようとする課題】本発明は、流動床反応
器を用いて、モリブデン、バナジウムおよびテルルを含
む複合金属酸化物触媒の存在下、プロパンをアンモニア
および酸素と気相接触酸化反応させる方法において、高
い収率で長期間に亘って安定的にアクリロニトリルおよ
び/またはアクリル酸を製造する方法を提供することを
目的とするものである。DISCLOSURE OF THE INVENTION The present invention is a method of using a fluidized bed reactor to carry out a gas phase catalytic oxidation reaction of propane with ammonia and oxygen in the presence of a mixed metal oxide catalyst containing molybdenum, vanadium and tellurium. It is an object of the present invention to provide a method for stably producing acrylonitrile and / or acrylic acid in a high yield over a long period of time.
【0006】[0006]
【課題を解決するための手段】本発明者らは、流動床反
応器を用いて、モリブデン、バナジウムおよびテルルを
含む複合金属酸化物触媒の存在下、プロパンの気相接触
酸化反応によりアクリロニトリルおよび/またはアクリ
ル酸を製造する方法に関して鋭意研究した結果、本発明
を完成させるに至った。The present inventors have used a fluidized bed reactor in the presence of a mixed metal oxide catalyst containing molybdenum, vanadium and tellurium by a gas phase catalytic oxidation reaction of propane to produce acrylonitrile and / or Further, as a result of intensive research on a method for producing acrylic acid, the present invention has been completed.
【0007】すなわち、本発明の要旨は、流動床反応器
を用いて、モリブデン、バナジウムおよびテルルを含む
複合金属酸化物触媒の存在下、プロパンをアンモニアお
よび酸素と気相接触酸化反応させてアクリロニトリルお
よび/またはアクリル酸を製造する際に、反応系にモリ
ブデンおよびテルルを含む複合金属酸化物を賦活剤とし
て添加することを特徴とするアクリロニトリルおよび/
またはアクリル酸の製造方法に存する。That is, the gist of the present invention is to use a fluidized bed reactor in the presence of a mixed metal oxide catalyst containing molybdenum, vanadium and tellurium to cause propane to undergo a gas phase catalytic oxidation reaction with ammonia and oxygen to obtain acrylonitrile and And / or acrylonitrile and / or acrylonitrile, which is characterized in that a complex metal oxide containing molybdenum and tellurium is added to the reaction system as an activator when producing acrylic acid.
Or it exists in the manufacturing method of acrylic acid.
【0008】[0008]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明においては、流動床反応器を用いて、モリブデ
ン、バナジウムおよびテルルを含む複合金属酸化物触媒
の存在下、プロパンをアンモニアおよび酸素と気相接触
酸化反応させてアクリロニトリルおよび/またはアクリ
ル酸を製造する際に、反応系にモリブデンおよびテルル
を含む複合金属酸化物を賦活剤として添加する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
In the present invention, a fluidized bed reactor is used to produce acrylonitrile and / or acrylic acid by gas phase catalytic oxidation reaction of propane with ammonia and oxygen in the presence of a mixed metal oxide catalyst containing molybdenum, vanadium and tellurium. In doing so, a composite metal oxide containing molybdenum and tellurium is added to the reaction system as an activator.
【0009】本発明では、流動床反応器が使用される。
これはプロパンの気相接触アンモ酸化反応が発熱反応で
あるため、容易に反応温度を制御できることと、本発明
で提案するように、触媒性能を維持するために反応を継
続しながら特定の物質を添加できることなどによる。本
発明の触媒はモリブデン、バナジウムおよびテルルを含
む複合金属酸化物触媒が使用されるが、モリブデン、バ
ナジウム、X、Yおよび酸素(Xはテルルもしくはテル
ルおよびアンチモン、Yはニオブ、タンタル、タングス
テン、チタン、アンチモン、アルミニウム、ジルコニウ
ム、クロム、マンガン、鉄、ルテニウム、コバルト、ロ
ジウム、ニッケル、パラジウム、白金、ビスマス、ホウ
素、インジウム、リン、ゲルマニウム、希土類元素、ア
ルカリ金属、アルカリ土類金属からなる群から選ばれた
一種以上の元素を示す)を含む複合金属酸化物触媒が好
ましい。In the present invention, a fluidized bed reactor is used.
This is because the gas-phase catalytic ammoxidation reaction of propane is an exothermic reaction, so that the reaction temperature can be easily controlled, and, as proposed in the present invention, a specific substance is selected while continuing the reaction to maintain the catalytic performance. It depends on what can be added. As the catalyst of the present invention, a mixed metal oxide catalyst containing molybdenum, vanadium and tellurium is used, and molybdenum, vanadium, X, Y and oxygen (X is tellurium or tellurium and antimony, Y is niobium, tantalum, tungsten, titanium). , Antimony, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, bismuth, boron, indium, phosphorus, germanium, rare earth element, alkali metal, alkaline earth metal A mixed metal oxide catalyst containing one or more of the following elements).
【0010】そして、複合金属酸化物触媒中のモリブデ
ン(Mo)、バナジウム(V)、XおよびYの存在割合
が、下記の条件
0.25<rMo<0.98
0.003<rV<0.5
0.003<rX<0.5
0≦rY<0.5
(ただし、rMo、rV、rXおよびrYは、酸素を除
く上記成分の合計に対するMo,V,XおよびYのモル
分率を表わす)を同時に満たしている複合金属酸化物触
媒がより好ましい。Then, the abundance ratios of molybdenum (Mo), vanadium (V), X and Y in the mixed metal oxide catalyst are as follows: 0.25 <rMo <0.98 0.003 <rV <0. 5 0.003 <rX <0.5 0 ≦ rY <0.5 (where rMo, rV, rX and rY represent the mole fractions of Mo, V, X and Y with respect to the total of the above components excluding oxygen). More preferable is a mixed metal oxide catalyst that simultaneously satisfies
【0011】本発明で賦活剤として添加される物質は、
モリブデンおよびテルルを含む複合金属酸化物である。
モリブデン、バナジウム、X、Yおよび酸素(Xはテル
ルまたはテルルおよびアンチモン、Yはニオブ、タンタ
ル、タングステン、チタン、アンチモン、アルミニウ
ム、ジルコニウム、クロム、マンガン、鉄、ルテニウ
ム、コバルト、ロジウム、ニッケル、パラジウム、白
金、ビスマス、ホウ素、インジウム、リン、ゲルマニウ
ム、希土類元素、アルカリ金属、アルカリ土類金属から
なる群から選ばれた一種以上の元素を示す)を含む複合
金属酸化物が好ましい。The substance added as an activator in the present invention is
It is a mixed metal oxide containing molybdenum and tellurium.
Molybdenum, vanadium, X, Y and oxygen (X is tellurium or tellurium and antimony, Y is niobium, tantalum, tungsten, titanium, antimony, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, A composite metal oxide containing one or more elements selected from the group consisting of platinum, bismuth, boron, indium, phosphorus, germanium, rare earth elements, alkali metals and alkaline earth metals) is preferable.
【0012】そして、複合金属酸化物触媒中のモリブデ
ン(Mo)、バナジウム(V)、XおよびYの存在割合
が、下記の条件
0.25<rMo<0.98
0.003<rV<0.5
0.003<rX<0.5
0≦rY<0.5
(ただし、rMo、rV、rXおよびrYは、酸素を除
く上記成分の合計に対するMo,V,XおよびYのモル
分率を表わす)を同時に満たしている複合金属酸化物が
より好ましい。Then, the abundance ratios of molybdenum (Mo), vanadium (V), X and Y in the composite metal oxide catalyst are determined as follows: 0.25 <rMo <0.98 0.003 <rV <0. 5 0.003 <rX <0.5 0 ≦ rY <0.5 (where rMo, rV, rX and rY represent the mole fractions of Mo, V, X and Y with respect to the total of the above components excluding oxygen). ) Is more preferable at the same time.
【0013】本発明の製造プロセスにおいては賦活剤の
添加は、本発明の効果を達成する上で極めて重要であ
る。具体的には、気相接触アンモ酸化反応で劣化した触
媒を賦活剤を添加することにより容易に賦活することが
できるため、アクリロニトリルおよび/またはアクリル
酸の製造を、高い収率を維持しながら長期間に亘って安
定に実施することができる。賦活剤を添加すると、流動
床反応器内にある触媒粒子と添加された賦活剤との間で
反応が起こり触媒粒子の性能が回復するためと推察され
る。In the production process of the present invention, the addition of the activator is extremely important in achieving the effects of the present invention. Specifically, it is possible to easily activate the catalyst deteriorated by the gas-phase catalytic ammoxidation reaction by adding an activator. Therefore, the production of acrylonitrile and / or acrylic acid can be carried out for a long time while maintaining a high yield. It can be carried out stably over a period of time. It is presumed that the addition of the activator causes a reaction between the catalyst particles in the fluidized bed reactor and the added activator to recover the performance of the catalyst particles.
【0014】反応系に賦活剤として添加する複合金属酸
化物のモリブデンおよび/またはテルルのモル分率は、
添加時に反応系に存在する複合金属酸化物触媒のモリブ
デンおよび/またはテルルのそれぞれの元素のモル分率
以上が好ましい。好ましい実施態様として、例えば反応
開始時の複合金属酸化物触媒とモリブデンおよび/また
はテルルのモル分率が等しい複合金属酸化物、該複合金
属酸化物触媒よりもモリブデンおよび/またはテルルの
モル分率を高めた複合金属酸化物などが挙げられる。こ
れらの複合金属酸化物は反応系内の触媒と親和性が良好
であり、気相接触酸化反応を遂行している間に、活性成
分が再構成されて性能を維持しているものと推察され
る。The mole fraction of molybdenum and / or tellurium in the composite metal oxide added as an activator to the reaction system is
It is preferable that the molar ratio of each element of molybdenum and / or tellurium in the composite metal oxide catalyst present in the reaction system at the time of addition is equal to or more than the above. As a preferred embodiment, for example, the mixed metal oxide catalyst and the mixed metal oxide having the same molar fraction of molybdenum and / or tellurium at the start of the reaction, the molar fraction of molybdenum and / or tellurium relative to the mixed metal oxide catalyst are Examples thereof include an enhanced complex metal oxide. These complex metal oxides have good affinity with the catalyst in the reaction system, and it is speculated that the active components are reconstituted and the performance is maintained during the gas phase catalytic oxidation reaction. It
【0015】本発明で提案される賦活剤はモリブデンお
よびテルルを含む複合金属酸化物であって、複合金属酸
化物でないモリブデン化合物またはテルル化合物は含ま
ない。触媒性能が低下したときにテルル化合物や、テル
ル化合物に加えてモリブデン化合物を添加すると、添加
した後1〜10時間後に触媒性能が一時改善する様子が
見られることがある。これは、触媒性能の低下が複合金
属酸化物触媒中のモリブデンおよびテルルの損失に起因
するためと推定される。これらの元素の損失は蛍光X線
分析法、ICP−発光法などにより確認されるが、これ
ら損失した元素の化合物の添加により損失が一時的に補
われ、触媒性能が回復するものと考えられる。しかしな
がらこの場合、触媒性能は一時改善した後速やかに低下
し、長期間に亘る性能の維持は困難である。The activator proposed in the present invention is a composite metal oxide containing molybdenum and tellurium, and does not include a molybdenum compound or a tellurium compound which is not a composite metal oxide. When the tellurium compound or the molybdenum compound is added in addition to the tellurium compound when the catalyst performance is lowered, it may be seen that the catalyst performance is temporarily improved 1 to 10 hours after the addition. This is presumed to be due to the loss of catalytic performance due to the loss of molybdenum and tellurium in the mixed metal oxide catalyst. The loss of these elements is confirmed by a fluorescent X-ray analysis method, an ICP-emission method, etc., but it is considered that the addition of the compounds of these lost elements temporarily compensates the loss and restores the catalytic performance. However, in this case, the catalyst performance is temporarily improved and then rapidly lowered, and it is difficult to maintain the performance for a long period of time.
【0016】そして、例えば典型的な賦活剤であるテル
ル酸を添加した場合、複合金属酸化物触媒にも一部は取
り込まれるが、取り込まれないテルル酸は、気相接触酸
化反応雰囲気下で還元されて金属テルルに変換され、反
応器と接続している配管などに堆積して、配管などを閉
塞させるおそれが考えられる。また、テルルは鉄やクロ
ムなどの金属と親和性が大きいために、反応器や周辺の
配管などに付着した際に、これらの材料を損傷させるお
それもある。モリブデン化合物も触媒に取り込まれない
ものは、反応器に接続された配管に堆積し、安定運転の
支障となるおそれがある。このようなことから、複合金
属酸化物でないモリブデン化合物およびテルル化合物の
添加は安定運転の上では好ましくない。Then, for example, when telluric acid, which is a typical activator, is added, part of it is also incorporated into the composite metal oxide catalyst, but the telluric acid that is not incorporated is reduced in a gas phase catalytic oxidation reaction atmosphere. It may be converted into metal tellurium and deposited on the pipe or the like connected to the reactor to block the pipe or the like. Further, since tellurium has a high affinity with metals such as iron and chromium, there is a possibility that these materials may be damaged when attached to the reactor or peripheral pipes. If the molybdenum compound is not incorporated into the catalyst, it may be accumulated in the pipe connected to the reactor, which may hinder stable operation. For this reason, the addition of molybdenum compounds and tellurium compounds that are not complex metal oxides is not preferable for stable operation.
【0017】本発明においては反応系に賦活剤を添加す
るが、反応系とは実質的に運転中の流動床反応器を意味
する。また、添加とは流動床反応器に賦活剤を供給する
ことであり、賦活剤自身にプロパンの気相接触酸化反応
活性がある場合には、反応速度を好適に維持するために
流動床反応器から必要に応じて一部の触媒を抜き出して
もよい。賦活剤の添加は連続的にも間欠的にも行うこと
ができ、添加と同時に流動床反応器から粒子を連続的も
しくは間欠的に抜き出すことも可能である。In the present invention, an activator is added to the reaction system, and the reaction system means a fluidized bed reactor which is substantially in operation. Further, the addition means to supply an activator to the fluidized bed reactor, and when the activator itself has a gas phase catalytic oxidation reaction activity of propane, the fluidized bed reactor is used in order to maintain a suitable reaction rate. If necessary, a part of the catalyst may be extracted. The activator can be added continuously or intermittently, and at the same time as the addition, the particles can be continuously or intermittently withdrawn from the fluidized bed reactor.
【0018】賦活剤の反応系への添加方法は特に限定さ
れないが、例えば、アンモ酸化反応の原料ガスを供給す
る配管とは別に、賦活剤添加用の配管を反応器に結合し
て添加する方法が簡便である。この方法によれば、流動
床触媒と同様の粉末粒子を配管を通して空気、窒素など
の気流とともに反応器内へ圧送して供給することがで
き、触媒と賦活剤の良好な混合接触を達成することがで
きる。The method of adding the activator to the reaction system is not particularly limited, but, for example, a method in which a pipe for adding the activator is combined with the reactor and is added separately from the pipe for supplying the raw material gas for the ammoxidation reaction. Is simple. According to this method, powder particles similar to the fluidized bed catalyst can be pressure-fed into the reactor together with air streams such as air and nitrogen through a pipe, and the catalyst and the activator can be well mixed and contacted. You can
【0019】本発明で提案される賦活剤の添加の頻度
は、本発明の効果が得られるかぎり特に制限されない
が、通常プロパンの転化率が反応開始24時間後のプロ
パン転化率に対して95%以下となった後に添加する。
実用的な観点からは、賦活剤の添加は1〜30日に1
回、好ましくは1〜7日に1回行われる。賦活剤の添加
の量に関しては特に制限されないが、賦活剤を大量にか
つ急激に添加すると、賦活剤自身がプロパンの気相接触
アンモ酸化反応活性を有し、流動床触媒の流動状態が変
化して反応条件が大きく変化するため好ましくない。賦
活剤の量は流動床反応器内の複合酸化物触媒に対し通常
0.01〜30重量%であって、0.1〜20重量%が
好ましい。また、流動層の流動状態の変化を防いで流動
床反応器を円滑に運転するためには、流動床反応器内の
粒子(触媒成分および賦活材など)の重量を反応開始時
に対して90〜110%に維持するのが好ましい。な
お、流動床反応器内の粒子の重量は、流動層上下の差圧
を測定し、常法により決定される。The frequency of addition of the activator proposed in the present invention is not particularly limited as long as the effect of the present invention can be obtained, but normally the conversion rate of propane is 95% with respect to the conversion rate of propane 24 hours after the start of the reaction. Add after the following.
From a practical point of view, the addition of activator is 1 to 30 days.
Once, preferably once every 1 to 7 days. The amount of the activator to be added is not particularly limited, but when the activator is added in a large amount and rapidly, the activator itself has propane vapor-phase catalytic ammoxidation reaction activity, and the fluidized state of the fluidized bed catalyst changes. Reaction conditions greatly change, which is not preferable. The amount of the activator is usually 0.01 to 30% by weight, preferably 0.1 to 20% by weight, based on the composite oxide catalyst in the fluidized bed reactor. Further, in order to prevent the fluidized state of the fluidized bed from changing and to smoothly operate the fluidized bed reactor, the weight of particles (catalyst component and activator, etc.) in the fluidized bed reactor should be 90-90 relative to the start of the reaction. It is preferably maintained at 110%. The weight of particles in the fluidized bed reactor is determined by an ordinary method by measuring the pressure difference between the upper and lower sides of the fluidized bed.
【0020】賦活剤を添加する頻度や量等の添加条件を
決定する際には、例えば気相接触酸化反応の成績を測定
しながら賦活剤を少量ずつ添加して、賦活剤が最も効果
的に働くように添加の頻度と量を決定する。本発明で使
用されるモリブデン、バナジウムおよびテルルを含む複
合金属酸化物触媒、および賦活剤であるモリブデンおよ
びテルルを含む複合金属酸化物の製造方法は特に制限さ
れないが、複合酸化物の原料の水または有機溶媒の溶液
またはスラリーより調製する方法と、複合酸化物の原料
を混合して高温固相反応により調製する方法の2つがよ
く知られている。より性能の優れた触媒を得るために
は、前者の方法、特に各成分を含む溶液又はスラリー状
の水性液を調製後、乾燥し、焼成する方法が好ましい。
本発明の触媒を調製するときの原料として、カルボン酸
塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウ
ム塩、酸化物、含水酸化物、オキシ酸及びその塩、ハロ
ゲン化物、水素酸、アセチルアセトナート、アルコキシ
ド、ハロゲン化物等の化合物、あるいは金属を適当な試
薬により可溶化あるいはスラリー状態にして使用するこ
とができる。触媒構成元素を含む化合物などから成る溶
液、またはスラリーの調製方法については特に制限はな
いが、水を攪拌しながら所定量の触媒原料を水に順次添
加する方法が一般的であり、必要に応じて温度、溶液ま
たはスラリーの濃度を設定し、濃縮や熟成を行う。ま
た、溶液またはスラリーの調合操作の際に公知の担体成
分、例えば、シリカ、アルミナ、チタニア、ジルコニ
ア、アルミノシリケート、珪藻土などを1〜90重量%
程度添加する。このような担体成分は、触媒原料の溶
液、またはスラリーを調合する際に同時に添加しても、
あるいは溶液またはスラリーを乾燥させた後などに添加
しても良い。In determining the addition conditions such as the frequency and amount of addition of the activator, for example, the activator is added little by little while measuring the results of the gas phase catalytic oxidation reaction, and the activator is most effective. Determine the frequency and amount of addition to work. The method for producing a composite metal oxide catalyst containing molybdenum, vanadium and tellurium used in the present invention, and a composite metal oxide containing molybdenum and tellurium that is an activator are not particularly limited, but water or a raw material of the composite oxide is used. Two methods are well known: a method of preparing from a solution or slurry of an organic solvent and a method of mixing raw materials of a composite oxide to prepare by a high temperature solid phase reaction. In order to obtain a catalyst having more excellent performance, the former method, in particular, a method of preparing an aqueous solution in the form of a solution or slurry containing each component, followed by drying and firing is preferable.
As raw materials for preparing the catalyst of the present invention, carboxylates, carboxylic acid ammonium salts, ammonium halide salts, oxides, hydrous oxides, oxyacids and salts thereof, halides, hydrogen acids, acetylacetonates, alkoxides. A compound such as a halide, or a metal can be solubilized or slurried with an appropriate reagent before use. There is no particular limitation on the method for preparing a solution or slurry containing a compound containing a catalyst-constituting element, but a method of sequentially adding a predetermined amount of a catalyst raw material to water while stirring the water is generally used, and as necessary. Set the temperature, the concentration of the solution or the slurry, and concentrate or age. In addition, 1 to 90% by weight of a known carrier component, such as silica, alumina, titania, zirconia, aluminosilicate, diatomaceous earth, etc., in the operation of preparing a solution or a slurry.
Add about. Such a carrier component may be added at the same time when preparing a solution of a catalyst raw material or a slurry,
Alternatively, it may be added after drying the solution or slurry.
【0021】得られた溶液またはスラリーの乾燥方法は
特に制限されず、製造する触媒の量や形態にもよるが、
通状蒸発皿のような容器の中に上記したような溶液また
はスラリーを添加して電熱器などの熱源の上で蒸発乾固
する方法や熱風乾燥機中で溶媒を蒸発させる方法、噴霧
乾燥法や凍結乾燥法、真空乾燥法などを採用する。次い
で、得られた乾燥物を加熱処理するが、加熱処理方法は
その乾燥物の性状や規模により任意に採用することが可
能であるが、通常蒸発皿上での熱処理や回転炉、流動焼
成炉等の加熱炉による熱処理等が行われる。また、これ
らの処理を複数種組み合わせてもよい。焼成条件は採用
する方法により異なるが、通常、温度は200〜700
℃、好ましくは250〜650℃、時間は通常5分〜3
0時間、好ましくは1〜10時間行われる。また、焼成
は、酸素雰囲気中で行ってもよいが、酸素不存在下での
加熱処理を採用してもよく、あるいは酸素雰囲気中での
加熱処理と酸素不在下での加熱処理を組み合わせること
も可能である。酸素不在下での加熱処理に際しては、窒
素、アルゴン、ヘリウム等の不活性ガス雰囲気中または
真空中で行われる。The method for drying the obtained solution or slurry is not particularly limited, and depends on the amount and form of the catalyst to be produced,
A method of adding the above-mentioned solution or slurry to a vessel such as a continuous evaporation dish and evaporating to dryness on a heat source such as an electric heater, a method of evaporating a solvent in a hot air dryer, a spray drying method. Freeze drying method, vacuum drying method, etc. are adopted. Next, the obtained dried product is subjected to heat treatment, and the heat treatment method can be arbitrarily adopted depending on the property and scale of the dried product, but it is usually heat treatment on an evaporation dish, a rotary furnace, or a fluidized baking furnace. Etc. are heat-treated in a heating furnace. Moreover, you may combine these processes in multiple types. Although the firing conditions vary depending on the method used, the temperature is usually 200 to 700.
℃, preferably 250 ~ 650 ℃, the time is usually 5 minutes to 3
It is carried out for 0 hours, preferably for 1 to 10 hours. Further, the firing may be performed in an oxygen atmosphere, but a heat treatment in the absence of oxygen may be adopted, or a heat treatment in an oxygen atmosphere and a heat treatment in the absence of oxygen may be combined. It is possible. The heat treatment in the absence of oxygen is performed in an atmosphere of an inert gas such as nitrogen, argon or helium, or in vacuum.
【0022】本発明で提案される方法によれば、プロパ
ンの気相接触酸化反応により、アクリロニトリルおよび
/またはアクリル酸の製造を有利に行うことができる。
気相接触酸化反応の条件としては、反応温度は、通常2
00〜500℃、好ましくは300〜490℃であり、
気相反応におけるガス空間速度SVは、通常100〜1
0000hr-1、好ましくは300〜6000hr-1で
ある。気相接触酸化反応は、通常大気圧下で行われる
が、低度の加圧下または減圧下でもよい。また、空間速
度と酸素分圧を調整するための希釈ガスとして、窒素、
アルゴン、ヘリウム、二酸化炭素等の不活性ガスを用い
ることができる。また、目的生成物への選択率が高くな
るように、炭化水素の転化率を70%程度以下に抑えて
反応を行い、未反応の炭化水素を分離、回収して再度反
応器に供給する方式も採用できる。According to the method proposed in the present invention, the production of acrylonitrile and / or acrylic acid can be advantageously carried out by the gas phase catalytic oxidation reaction of propane.
The reaction temperature is usually 2 as the conditions for the gas phase catalytic oxidation reaction.
0 to 500 ° C, preferably 300 to 490 ° C,
The gas space velocity SV in the gas phase reaction is usually 100 to 1
It is 0000 hr -1 , preferably 300 to 6000 hr -1 . The gas-phase catalytic oxidation reaction is usually carried out under atmospheric pressure, but may be carried out under low pressure or low pressure. In addition, as a diluent gas for adjusting the space velocity and the oxygen partial pressure, nitrogen,
An inert gas such as argon, helium or carbon dioxide can be used. Further, in order to increase the selectivity to the target product, the reaction is carried out with the conversion rate of hydrocarbons kept at about 70% or less, and unreacted hydrocarbons are separated and recovered and supplied again to the reactor. Can also be adopted.
【0023】流動床の触媒層における反応速度や流動床
高を制御するために、反応に実質的に不活性な粒子、例
えば、シリカ、アルミナ、チタニア、ジルコニア、アル
ミノシリケ−トなどの金属酸化物、または複合金属酸化
物、窒化ケイ素、炭素などを触媒とともに共存させても
良い。このとき、反応に実質的に不活性な粒子は、触媒
粒子と同様の形状、粒径、粒径分布の範囲とすることが
好ましい。In order to control the reaction rate in the catalyst bed of the fluidized bed and the height of the fluidized bed, particles substantially inert to the reaction, for example, metal oxides such as silica, alumina, titania, zirconia and aluminosilicate, Alternatively, a composite metal oxide, silicon nitride, carbon, etc. may coexist with the catalyst. At this time, it is preferable that the particles substantially inactive in the reaction have the same shape, particle size, and particle size distribution range as the catalyst particles.
【0024】本発明において反応器に供給するガスの組
成は、アンモニア/プロパンのモル比が通常0.1〜
5、好ましくは0.1〜4であり、酸素/アンモニアの
モル比が通常1〜10、好ましくは2〜8である。この
範囲であると、アクリロニトリルとアクリル酸の合計の
選択性が優れる。In the present invention, the composition of the gas supplied to the reactor is such that the molar ratio of ammonia / propane is usually 0.1 to 0.1.
5, preferably 0.1 to 4, and the oxygen / ammonia molar ratio is usually 1 to 10, preferably 2 to 8. Within this range, the total selectivity of acrylonitrile and acrylic acid is excellent.
【0025】[0025]
【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はその要旨を超えない限りこれらの実
施例により限定されるものではない。なお、以下の実施
例および比較例におけるプロパン転化率(%)、目的生
成物選択率(%)、目的生成物収率(%)は、各々以下
の式で算出される。
プロパンの転化率(%)=(消費プロパンのモル数/供
給プロパンのモル数)×100
目的生成物の選択率(%)=(生成目的生成物のモル数
/消費プロパンのモル数)×100
目的生成物の収率(%) =(生成目的生成物のモル数
/供給プロパンのモル数)×100
参考例1 Mo−V−Te−Nb複合酸化物触媒の調製
SiO2を含有するMo、V、Te、およびNbからな
る複合金属酸化物触媒を次のように調製した。温水5.
68リットルに1.38kgのパラモリブデン酸アンモ
ニウム塩、0.275kgのメタバナジン酸アンモニウ
ム塩、0.413kgのテルル酸を溶解し、均一な水溶
液を調製した。さらにシリカ含量が20wt%のシリカ
ゾル0.658kg、および含水酸化ニオブを70℃に
加温されたシュウ酸水溶液に溶解させて調製したニオブ
を含有する水溶液(ニオブの濃度0.4mol/kg)
1.02kgを混合しスラリーを調製した。このスラリ
ーを乾燥させ水分を除去した。次いでこの乾燥物をアン
モニア臭がなくなるまで約300℃で加熱処理した後、
窒素気流中600℃で2時間焼成した。得られた複合金
属酸化物の構成元素の組成分析を行ったところ、90w
t%−Mo1 V0.3Te0.17 Nb0.12 On+10wt%
−SiO2であった。
参考例2 Mo−V−Te−Nb複合金属酸化物賦活剤
の調製
テルル酸の使用量を0.485kgとしたこと以外は参
考例1と同様にして調製を行い、構成元素組成が90w
t%−Mo1 V0.3 Te0.21 Nb0.12 On+10wt
%−SiO2を有する複合金属酸化物を得た。
比較例1
参考例1で調製した複合金属酸化物触媒680gを内径
50mmのステンレス製の流動床反応器に装填した。反
応器下部より窒素ガスを1218NL/hrの流量で導
入し、反応器出口での圧力90kPa(ゲージ)を保持
して電気炉中で触媒層の温度を390℃まで上昇させ
た。その後、酸素、アンモニアおよびプロパンの供給を
以下のように開始した。すなわち、供給ガス量、反応器
出口圧力をほぼ一定に保ちながら反応器出口におけるガ
ス中の酸素濃度が全成分が気化されている状態で約2%
になるように、酸素、アンモニア、およびプロパンガス
の供給量を増大させるとともに、窒素の供給量を減少さ
せた。この操作を繰り返し、最終的に供給されるガスの
組成が、モル比基準でプロパン/アンモニア/酸素/窒
素=1/1.2/3/12となるようにした。なお、こ
の組成でガスを供給する操作の際、触媒層の温度はプロ
パンとアンモニアの気相接触酸化反応により発熱のため
に温度が上昇するが、目的とする反応実施温度445℃
に到達するまで、随時電気炉の温度を制御することによ
り445℃まで温度を上昇させた。なお、反応実施温度
においてSV=1790hr-1であった。このように反
応を開始し、約2時間後における反応成績を求めたとこ
ろ、プロパン転化率88.0%、アクリロニトリル選択
率52.3%、アクリル酸選択率3.3%であった。さ
らに反応を継続し、370時間後、722時間後におけ
る反応成績を表-1に示す。EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples as long as the gist thereof is not exceeded. The propane conversion (%), target product selectivity (%), and target product yield (%) in the following Examples and Comparative Examples are calculated by the following formulas. Propane conversion rate (%) = (mol number of propane consumed / mol number of propane fed) × 100 Selectivity of target product (%) = (mol number of target product produced / mol number of consumed propane) × 100 Yield of target product (%) = (mol number of target product produced / mol number of propane fed) × 100 Reference Example 1 Preparation of Mo—V—Te—Nb composite oxide catalyst Mo containing SiO 2 , A mixed metal oxide catalyst consisting of V, Te, and Nb was prepared as follows. Hot water 5.
1.68 kg of ammonium paramolybdate, 0.275 kg of ammonium metavanadate and 0.413 kg of telluric acid were dissolved in 68 liters to prepare a uniform aqueous solution. Further, 0.658 kg of silica sol having a silica content of 20 wt% and an aqueous solution containing niobium prepared by dissolving niobium oxide hydrate in an oxalic acid aqueous solution heated to 70 ° C. (niobium concentration 0.4 mol / kg)
A slurry was prepared by mixing 1.02 kg. This slurry was dried to remove water. Next, after heat-treating the dried product at about 300 ° C. until the smell of ammonia disappears,
Firing was performed at 600 ° C. for 2 hours in a nitrogen stream. The compositional analysis of the constituent elements of the obtained composite metal oxide was 90
t% -Mo 1 V 0.3 Te 0.17 Nb 0.12 O n + 10wt%
It was -SiO 2. Reference Example 2 Preparation of Mo-V-Te-Nb mixed metal oxide activator Preparation was performed in the same manner as in Reference Example 1 except that the amount of telluric acid used was 0.485 kg, and the constituent element composition was 90 w.
t% -Mo 1 V 0.3 Te 0.21 Nb 0.12 O n + 10wt
% To obtain a composite metal oxide having -SiO 2. Comparative Example 1 680 g of the composite metal oxide catalyst prepared in Reference Example 1 was loaded into a stainless steel fluidized bed reactor having an inner diameter of 50 mm. Nitrogen gas was introduced from the bottom of the reactor at a flow rate of 1218 NL / hr, the pressure at the reactor outlet was maintained at 90 kPa (gauge), and the temperature of the catalyst layer was raised to 390 ° C. in the electric furnace. Then, the supply of oxygen, ammonia and propane was started as follows. That is, the oxygen concentration in the gas at the reactor outlet is about 2% when all the components are vaporized while keeping the supply gas amount and the reactor outlet pressure almost constant.
Therefore, the supply amounts of oxygen, ammonia, and propane gas were increased and the supply amount of nitrogen was decreased. By repeating this operation, the composition of the gas finally supplied was adjusted to be propane / ammonia / oxygen / nitrogen = 1 / 1.2 / 3/12 on a molar ratio basis. During the operation of supplying gas with this composition, the temperature of the catalyst layer rises due to heat generation due to the gas phase catalytic oxidation reaction of propane and ammonia, but the target reaction temperature is 445 ° C.
The temperature was raised up to 445 ° C. by controlling the temperature of the electric furnace at any time until the temperature reached (1). In addition, at the reaction execution temperature, SV = 1790 hr −1 . When the reaction was started in this way and the reaction results were obtained about 2 hours later, the propane conversion was 88.0%, the acrylonitrile selectivity was 52.3%, and the acrylic acid selectivity was 3.3%. The reaction results were further continued, and the reaction results after 370 hours and 722 hours are shown in Table-1.
【0026】次いで734.5時間後に三酸化モリブデ
ン(MoO3)8gを反応器に添加した。さらに、89
1.5時間後に三酸化テルル(TeO3)2gを反応器
に添加した。これらの直後の反応成績を表−1に示す。
この三酸化テルルの添加を表−1に示すように繰り返し
た。さらに、1027.5時間後にモリブデン酸(H 2
MoO4)4gを反応器に添加し、この操作を繰り返し
た。結果を表−1にまとめて示す。
実施例1
比較例1で停止して抜き出された触媒全量を再度流動床
反応器に充填し、比較例1と同様に反応を開始した。
(なお、反応再開の時間を1190時間からと表示す
る。)
反応再開2時間後の成績は、プロパン転化率84.5
%、アクリロニトリル選択率48.3%、アクリル酸選
択率3.2%であった。さらに反応を継続して、130
0時間後の反応成績を表-2に示す。1303時間後
に、反応器内から触媒を30g抜き出し、その直後に参
考例2に記したように調製された組成式90wt%−M
o1 V0.3 Te0.21 Nb0.12 On+10wt%−Si
O2で表される複合金属酸化物を30g添加した。添加
後の反応成績を表−2に示す。同様の操作を1405時
間後にも行った。反応成績の変化を表−2に示す。Then, 734.5 hours later, molybdenum trioxide was added.
(MoO3) 8 g was added to the reactor. In addition, 89
After 1.5 hours, tellurium trioxide (TeO)3) 2g reactor
Was added to. The reaction results immediately after these are shown in Table 1.
Repeat the addition of tellurium trioxide as shown in Table 1.
It was Furthermore, after 1027.5 hours, molybdic acid (H 2
MoOFour) Add 4 g to the reactor and repeat this procedure
It was The results are summarized in Table-1.
Example 1
The whole amount of the catalyst extracted after stopping in Comparative Example 1 was fluidized again.
The reactor was filled and the reaction was started in the same manner as in Comparative Example 1.
(In addition, the time to restart the reaction is displayed as from 1190 hours.
It )
2 hours after the restart of the reaction, the propane conversion was 84.5.
%, Acrylonitrile selectivity 48.3%, acrylic acid selection
The selection rate was 3.2%. Continue the reaction for 130
The reaction results after 0 hours are shown in Table-2. After 1303 hours
In addition, withdraw 30g of catalyst from the reactor, and immediately after that
Composition formula 90 wt% -M prepared as described in Consideration 2
o1 V0.3 Te0.21 Nb0.12On+ 10wt% -Si
O230 g of the composite metal oxide represented by Addition
The subsequent reaction results are shown in Table-2. Same operation at 1405
I went there a while later. Table 2 shows the changes in reaction results.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】表−1と表−2から次のことがわかる。複
合金属酸化物でないTeO3 およびH2MoO4を添加し
た直後にはアクリロニトリル(AN)およびアクリル酸
(AN)選択率がわずかに向上する様子が見られる(T
eO3を添加した前後である735(h)および892
(h)のAN選択率は47.6%および49.1%、A
Aの選択率は2.9%および3.0%、H2MoO4を添
加した前後である1026(h)および1028(h)
のAN選択率は48.4%および49.2%、AA選択
率は3.0%および3.2%)が、TeO3 およびH2
MoO4をそれぞれ加え続けてもAN選択率は漸次低下
している(TeO3を添加した最初と最後である892
(h)および1026(h)のAN選択率は49.1%
および48.4%、H2MoO4を添加した最初と最後で
ある1028(h)および1148(h)のAN選択率
は49.2%および48.4%)。The following can be seen from Table-1 and Table-2. Immediately after the addition of TeO 3 and H 2 MoO 4 which are not complex metal oxides, the acrylonitrile (AN) and acrylic acid (AN) selectivity is slightly improved (T).
735 (h) and 892 before and after the addition of eO 3.
The AN selectivity of (h) is 47.6% and 49.1%, A
Selectivities of A are 2.9% and 3.0%, 1026 (h) and 1028 (h) before and after adding H 2 MoO 4.
Has AN selectivity of 48.4% and 49.2%, AA selectivity of 3.0% and 3.2%), but TeO 3 and H 2
Even if MoO 4 is continuously added, the AN selectivity is gradually decreased (the TeO 3 addition is the first and last 892.
AN selectivity of (h) and 1026 (h) is 49.1%.
And 48.4%, the AN selectivities of 1028 (h) and 1148 (h) at the beginning and end of the addition of H 2 MoO 4 are 49.2% and 48.4%).
【0030】また、プロパン(PPA)転化率が低下
(892(h)、1026(h)、1028(h)およ
び1148(h)のPPA転化率は84.5%、83.
5%、84.1%および84.1%)するために、AN
およびAAの収率はほとんど向上しないことがわかる。
そして、流動床反応器内の圧力が上昇したため、反応開
始後1190時間を経過したところで、反応を停止して
内部を観察したところ、反応器上部に銀白色の物質が多
量に付着している様子が観察された。この付着物の元素
分析、粉末X線回折測定を行ったところ、テルル金属と
三酸化モリブデン(MoO3)及びTe、Fe、Crを
含有する合金状の薄片が検出された。Further, the propane (PPA) conversion rate decreased (892 (h), 1026 (h), 1028 (h) and 1148 (h), the PPA conversion rate was 84.5%, 83.
5%, 84.1% and 84.1%)
It can be seen that the yields of AA and AA hardly improve.
Then, since the pressure inside the fluidized bed reactor increased, the reaction was stopped at 1190 hours after the start of the reaction and the inside was observed. As a result, a large amount of silver-white substance was attached to the upper part of the reactor. Was observed. When elemental analysis and powder X-ray diffraction measurement of this deposit were performed, an alloy-like thin piece containing tellurium metal and molybdenum trioxide (MoO 3 ) and Te, Fe, Cr was detected.
【0031】本発明の複合金属酸化物を添加した直後
に、 ANおよびAAの選択率は向上し(本発明の複合
金属酸化物を添加した前後である1300(h)および
1304(h)のAN選択率は46.5%および47.
2%、AA選択率は3.0%および3.2%)、その後
の添加によりさらに向上し続けた(2回目に添加した1
406(h)およびその後64時間経過した1470
(h)のAN選択率は48.7%および49.7%、A
A選択率3.3%および3.3%)。Immediately after the addition of the mixed metal oxide of the present invention, the selectivity of AN and AA was improved (the AN of 1300 (h) and 1304 (h) before and after the addition of the mixed metal oxide of the present invention). Selectivities are 46.5% and 47.
2%, AA selectivity is 3.0% and 3.2%), and continued to be improved by subsequent addition (1 added at the second time).
406 (h) and 1470 64 hours later
The AN selectivity of (h) is 48.7% and 49.7%, A
A selectivity 3.3% and 3.3%).
【0032】また、PPA転化率も向上しつづけた(1
304(h)、1394(h)、1406(h)および
1470(h)のPPA転化率はそれぞれ83.4%、
84.4%、85.2%および86.1%)ため、AN
収率およびAA収率も複合金属酸化物の添加前と比較し
て向上した(添加前の1300(h)および添加後の1
470(h)のAN収率は38.4%および42.8
%、AA収率は2.5%および2.8%)。The PPA conversion rate also continued to improve (1
The PPA conversion rates of 304 (h), 1394 (h), 1406 (h) and 1470 (h) are 83.4%,
84.4%, 85.2% and 86.1%)
The yield and the AA yield were also improved compared to before the addition of the complex metal oxide (1300 (h) before addition and 1 after addition).
The AN yields of 470 (h) are 38.4% and 42.8.
%, AA yields 2.5% and 2.8%).
【0033】そして、実質的に流動床反応器内の圧力上
昇は確認されなかった。Then, substantially no pressure rise in the fluidized bed reactor was confirmed.
【0034】[0034]
【発明の効果】本発明によれば、モリブデン、バナジウ
ムおよびテルルを含む複合金属酸化物触媒の存在下、プ
ロパンの気相接触酸化反応により工業原料として有用な
アクリロニトリルおよび/またはアクリル酸を長期間に
亘り高収率で安定的に製造することができるため、工業
上非常に有用である。INDUSTRIAL APPLICABILITY According to the present invention, acrylonitrile and / or acrylic acid, which is useful as an industrial raw material, can be produced for a long period of time by a gas phase catalytic oxidation reaction of propane in the presence of a complex metal oxide catalyst containing molybdenum, vanadium and tellurium. Since it can be stably produced in a high yield over a long period of time, it is very useful industrially.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 255/08 C07C 255/08 // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4G069 AA10 BA02B BB06A BB06B BC01A BC08A BC16A BC18A BC23A BC25A BC26A BC38A BC50A BC51A BC54A BC54B BC55A BC55B BC56A BC58A BC59A BC59B BC60A BC62A BC66A BC67A BC68A BC69A BC70A BC71A BC72A BC75A BD03A BD07A BD10A BD10B CB17 CB54 DA08 FC04 FC08 GA20 4H006 AA02 AC46 AC54 BA09 BA10 BA12 BA13 BA14 BA15 BA16 BA18 BA19 BA23 BA24 BA30 BC13 BE14 BE30 BS10 QN24 4H039 CA65 CA70 CL50 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 255/08 C07C 255/08 // C07B 61/00 300 C07B 61/00 300 F term (reference) 4G069 AA10 BA02B BB06A BB06B BC01A BC08A BC16A BC18A BC23A BC25A BC26A BC38A BC50A BC51A BC54A BC54B BC55A BC55B BC56A BC58A BA62A GA66A BC14A BC54A BC14A BC47A BC54A BC07A BA15 BA16 BA18 BA19 BA23 BA24 BA30 BC13 BE14 BE30 BS10 QN24 4H039 CA65 CA70 CL50
Claims (8)
ナジウムおよびテルルを含む複合金属酸化物触媒の存在
下、プロパンをアンモニアおよび酸素と気相接触酸化反
応させてアクリロニトリルおよび/またはアクリル酸を
製造する際に、反応系に賦活剤としてモリブデンおよび
テルルを含む複合金属酸化物を添加することを特徴とす
るアクリロニトリルおよび/またはアクリル酸の製造方
法。1. A fluidized bed reactor is used to produce acrylonitrile and / or acrylic acid by subjecting propane to a gas phase catalytic oxidation reaction with ammonia and oxygen in the presence of a mixed metal oxide catalyst containing molybdenum, vanadium and tellurium. In this case, a method for producing acrylonitrile and / or acrylic acid is characterized in that a complex metal oxide containing molybdenum and tellurium is added to the reaction system as an activator.
ナジウム、X、Yおよび酸素(Xはテルルもしくはテル
ルおよびアンチモン、Yはニオブ、タンタル、タングス
テン、チタン、アンチモン、アルミニウム、ジルコニウ
ム、クロム、マンガン、鉄、ルテニウム、コバルト、ロ
ジウム、ニッケル、パラジウム、白金、ビスマス、ホウ
素、インジウム、リン、ゲルマニウム、希土類元素、ア
ルカリ金属、アルカリ土類金属からなる群から選ばれた
一種以上の元素を示す)を含む複合金属酸化物である請
求項1に記載のアクリロニトリルおよび/またはアクリ
ル酸の製造方法。2. The complex metal oxide catalyst comprises molybdenum, vanadium, X, Y and oxygen (X is tellurium or tellurium and antimony, Y is niobium, tantalum, tungsten, titanium, antimony, aluminum, zirconium, chromium, manganese, (Including one or more elements selected from the group consisting of iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, bismuth, boron, indium, phosphorus, germanium, rare earth elements, alkali metals, and alkaline earth metals) The method for producing acrylonitrile and / or acrylic acid according to claim 1, which is a complex metal oxide.
o)、バナジウム(V)、XおよびYの存在割合が下記
の条件 0.25<rMo<0.98 0.003<rV<0.5 0.003<rX<0.5 0≦rY<0.5 (ただし、rMo、rV、rXおよびrYは、酸素を除
く上記成分の合計に対するMo,V,XおよびYのモル
分率を表わす)を満たす複合金属酸化物である請求項2
に記載のアクリロニトリルおよび/またはアクリル酸の
製造方法。3. The composite metal oxide catalyst is molybdenum (M
o), vanadium (V), the existence ratios of X and Y are as follows: 0.25 <rMo <0.98 0.003 <rV <0.5 0.003 <rX <0.5 0 ≦ rY <0 .5 (provided that rMo, rV, rX and rY represent the mole fractions of Mo, V, X and Y with respect to the total of the above components excluding oxygen).
The method for producing acrylonitrile and / or acrylic acid according to 1.
酸化物が、モリブデン、バナジウム、X、Yおよび酸素
(Xはテルルもしくはテルルおよびアンチモン、Yはニ
オブ、タンタル、タングステン、チタン、アンチモン、
アルミニウム、ジルコニウム、クロム、マンガン、鉄、
ルテニウム、コバルト、ロジウム、ニッケル、パラジウ
ム、白金、ビスマス、ホウ素、インジウム、リン、ゲル
マニウム、希土類元素、アルカリ金属、アルカリ土類金
属からなる群から選ばれた一種以上の元素を示す)を含
む複合金属酸化物である請求項1〜3のいずれか1項に
記載のアクリロニトリルおよび/またはアクリル酸の製
造方法。4. A complex metal oxide containing molybdenum and tellurium is molybdenum, vanadium, X, Y and oxygen (X is tellurium or tellurium and antimony, Y is niobium, tantalum, tungsten, titanium, antimony,
Aluminum, zirconium, chromium, manganese, iron,
Composite metal containing one or more elements selected from the group consisting of ruthenium, cobalt, rhodium, nickel, palladium, platinum, bismuth, boron, indium, phosphorus, germanium, rare earth elements, alkali metals, alkaline earth metals) The method for producing acrylonitrile and / or acrylic acid according to any one of claims 1 to 3, which is an oxide.
酸化物が、モリブデン(Mo)、バナジウム(V)、X
およびYの存在割合が、下記の条件 0.25<rMo<0.98 0.003<rV<0.5 0.003<rX<0.5 0≦rY<0.5 (ただし、rMo、rV、rXおよびrYは、酸素を除
く上記成分の合計に対するMo,V,XおよびYのモル
分率を表わす)を満たす複合金属酸化物である請求項4
に記載のアクリロニトリルおよび/またはアクリル酸の
製造方法。5. A composite metal oxide containing molybdenum and tellurium is molybdenum (Mo), vanadium (V), X.
And the abundance ratio of Y is 0.25 <rMo <0.98 0.003 <rV <0.5 0.003 <rX <0.5 0 ≦ rY <0.5 (provided that rMo, rV , RX and rY represent the mole fractions of Mo, V, X and Y with respect to the total of the above components excluding oxygen).
The method for producing acrylonitrile and / or acrylic acid according to 1.
ンおよびテルルを含む複合金属酸化物のモリブデンおよ
び/またはテルルのモル分率が、添加時に反応系に存在
する複合金属酸化物触媒のモリブデンおよび/またはテ
ルルのそれぞれのモル分率以上である請求項1〜5のい
ずれか1項に記載のアクリロニトリルおよび/またはア
クリル酸の製造方法。6. The molybdenum and / or tellurium mole fraction of the composite metal oxide containing molybdenum and tellurium added as an activator to the reaction system is such that the molybdenum and / or tellurium of the composite metal oxide catalyst present in the reaction system at the time of addition are Alternatively, the method for producing acrylonitrile and / or acrylic acid according to any one of claims 1 to 5, which has a molar fraction of tellurium or more.
ンおよびテルルを含む複合金属酸化物を、プロパンの転
化率が反応開始24時間後のプロパン転化率に対して9
5%以下となった後に添加する請求項1〜6のいずれか
1項に記載のアクリロニトリルおよび/またはアクリル
酸の製造方法。7. The composite metal oxide containing molybdenum and tellurium, which is added as an activator to the reaction system, has a propane conversion rate of 9% with respect to the propane conversion rate 24 hours after the start of the reaction.
The method for producing acrylonitrile and / or acrylic acid according to any one of claims 1 to 6, which is added after the content becomes 5% or less.
ンおよびテルルを含む複合金属酸化物を、添加後の反応
器内の粒子の重量が反応開始時の反応器内の粒子の重量
の90%〜110%となるように添加する請求項1〜7
のいずれか1項に記載のアクリロニトリルおよび/また
はアクリル酸の製造方法。8. The weight of the particles in the reactor after adding the composite metal oxide containing molybdenum and tellurium to be added to the reaction system as an activator is 90% to 90% of the weight of the particles in the reactor at the start of the reaction. Addition so as to be 110%.
The method for producing acrylonitrile and / or acrylic acid according to any one of 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002091444A JP2003048870A (en) | 2001-05-30 | 2002-03-28 | Method for producing acrylonitrile and / or acrylic acid |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001162744 | 2001-05-30 | ||
JP2001-162744 | 2001-05-30 | ||
JP2002091444A JP2003048870A (en) | 2001-05-30 | 2002-03-28 | Method for producing acrylonitrile and / or acrylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003048870A true JP2003048870A (en) | 2003-02-21 |
Family
ID=26615987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002091444A Pending JP2003048870A (en) | 2001-05-30 | 2002-03-28 | Method for producing acrylonitrile and / or acrylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003048870A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005018805A1 (en) * | 2003-08-22 | 2005-03-03 | Mitsubishi Chemical Corporation | Method of regenerating catalyst |
JP2005289962A (en) * | 2004-04-05 | 2005-10-20 | Ms Jubilant Organosys Ltd | Method for preparing cyanopyrazine |
JP2007216222A (en) * | 2006-01-31 | 2007-08-30 | Rohm & Haas Co | Regenerated mixed metal oxide catalyst |
JP2007308423A (en) * | 2006-05-19 | 2007-11-29 | Asahi Kasei Chemicals Corp | Method for producing unsaturated acid or unsaturated nitrile |
JP2011500564A (en) * | 2007-10-11 | 2011-01-06 | イネオス ユーエスエイ リミテッド ライアビリティ カンパニー | Ammoxidation or oxidation method of propane and isobutane |
CN113492017A (en) * | 2020-04-08 | 2021-10-12 | 中国石油天然气股份有限公司 | Supported catalyst for preparing acrylic acid by catalytic oxidation of propane, and preparation method and application thereof |
-
2002
- 2002-03-28 JP JP2002091444A patent/JP2003048870A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005018805A1 (en) * | 2003-08-22 | 2005-03-03 | Mitsubishi Chemical Corporation | Method of regenerating catalyst |
JP2005289962A (en) * | 2004-04-05 | 2005-10-20 | Ms Jubilant Organosys Ltd | Method for preparing cyanopyrazine |
JP2007216222A (en) * | 2006-01-31 | 2007-08-30 | Rohm & Haas Co | Regenerated mixed metal oxide catalyst |
JP2010260053A (en) * | 2006-01-31 | 2010-11-18 | Rohm & Haas Co | Regenerated mixed metal oxide catalyst |
JP2007308423A (en) * | 2006-05-19 | 2007-11-29 | Asahi Kasei Chemicals Corp | Method for producing unsaturated acid or unsaturated nitrile |
JP2011500564A (en) * | 2007-10-11 | 2011-01-06 | イネオス ユーエスエイ リミテッド ライアビリティ カンパニー | Ammoxidation or oxidation method of propane and isobutane |
CN113492017A (en) * | 2020-04-08 | 2021-10-12 | 中国石油天然气股份有限公司 | Supported catalyst for preparing acrylic acid by catalytic oxidation of propane, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6989460B2 (en) | Methods for producing unsaturated carboxylic acids and unsaturated nitriles | |
US7326668B2 (en) | Single crystalline phase catalyst | |
US6747168B2 (en) | Halogen promoted multi-metal oxide catalyst | |
US6589907B2 (en) | Zn and/or Ga promoted multi-metal oxide catalyst | |
EP1192986B1 (en) | Ir promoted multi-metal oxide catalyst | |
US20030004379A1 (en) | Hydrothermally synthesized MO-V-M-X oxide catalysts for the selective oxidation of hydrocarbons | |
EP1192988A1 (en) | Promoted multi-metal oxide catalyst | |
KR20020090155A (en) | Mixed-metal oxide catalysts and processes for preparing the same | |
JP3669077B2 (en) | Nitrile production method | |
JP4081824B2 (en) | Acrylic acid production method | |
JPH1057813A (en) | Method for producing composite metal oxide catalyst and method for producing acrylic acid using the catalyst | |
JP2003048870A (en) | Method for producing acrylonitrile and / or acrylic acid | |
JP3536326B2 (en) | Method for producing catalyst for nitrile production | |
JPH11169716A (en) | Catalyst for producing unsaturated nitrile and / or unsaturated carboxylic acid | |
US20020038052A1 (en) | Calcination | |
JPH1157479A (en) | Method for producing catalyst for gas phase catalytic oxidation reaction of hydrocarbon | |
JPH11124361A (en) | Production of unsaturated nitrile | |
JPH06228073A (en) | Nitrile manufacturing method | |
JP2001213855A (en) | Method for producing unsaturated nitrile | |
JP2001055355A (en) | Gas phase catalytic oxidation reaction of hydrocarbons | |
JP2001206870A (en) | Method of oxidizing alkane | |
JP2001300310A (en) | Method for manufacturing metal oxide catalyst | |
JP2000001464A (en) | Method for producing nitriles from alkanes | |
JP2000117103A (en) | Catalyst for oxidizing alkanes | |
JPH11290684A (en) | Production of acetic acid and ethylene |