[go: up one dir, main page]

JP2003045414A - Electrode and lithium secondary battery using the same - Google Patents

Electrode and lithium secondary battery using the same

Info

Publication number
JP2003045414A
JP2003045414A JP2001227002A JP2001227002A JP2003045414A JP 2003045414 A JP2003045414 A JP 2003045414A JP 2001227002 A JP2001227002 A JP 2001227002A JP 2001227002 A JP2001227002 A JP 2001227002A JP 2003045414 A JP2003045414 A JP 2003045414A
Authority
JP
Japan
Prior art keywords
electrode
lithium
active material
composite oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001227002A
Other languages
Japanese (ja)
Inventor
Yuko Ishida
優子 石田
Kenji Okahara
賢二 岡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001227002A priority Critical patent/JP2003045414A/en
Publication of JP2003045414A publication Critical patent/JP2003045414A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【目的】 集電体表面に層状リチウム系複合酸化物の電
極活物質含有層として形成され、リチウム二次電池の正
極として好適に用いられる電極であって、初期放電容量
の低下がなく、レート特性に優れた電極、及び該電極を
正極として用いたリチウム二次電池を提供する。 【構成】 集電体表面に電極活物質含有層が形成されて
なる電極であって、該電極活物質含有層が、下記の
(A)成分、(B)成分、及び(C)成分を含有し、そ
の密度が2.0〜2.7g/cm3 である電極、並び
に、該電極からなる正極、負極、及び電解質から構成さ
れているリチウム二次電池。 (A)リチウム原子(Li)と、ニッケル(Ni)、マ
ンガン(Mn)、及びコバルト(Co)からなる遷移金
属原子群から選択される少なくとも2種とを含んでなる
層状リチウム系複合酸化物 (B)導電剤 (C)結着剤
(57) [Abstract] [Object] An electrode formed on a current collector surface as an electrode active material-containing layer of a layered lithium-based composite oxide, which is suitably used as a positive electrode of a lithium secondary battery. Provided are an electrode which does not decrease and has excellent rate characteristics, and a lithium secondary battery using the electrode as a positive electrode. The present invention is an electrode comprising an electrode active material-containing layer formed on a current collector surface, wherein the electrode active material-containing layer contains the following components (A), (B), and (C) An electrode having a density of 2.0 to 2.7 g / cm 3 , and a lithium secondary battery including a positive electrode, a negative electrode, and an electrolyte including the electrode. (A) a layered lithium-based composite oxide comprising lithium atoms (Li) and at least two selected from transition metal atoms consisting of nickel (Ni), manganese (Mn), and cobalt (Co) ( B) Conductive agent (C) Binder

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、集電体表面に層状
リチウム系複合酸化物の電極活物質含有層が形成されて
なる電極、及び該電極を用いたリチウム二次電池に関す
る。
TECHNICAL FIELD The present invention relates to an electrode having an electrode active material-containing layer of a layered lithium-based composite oxide formed on the surface of a current collector, and a lithium secondary battery using the electrode.

【0002】[0002]

【従来の技術】従来より、リチウム二次電池は、高エネ
ルギー密度及び高出力密度等に優れ、小型化・軽量化で
きることから、ノート型パソコン、携帯電話、ハンディ
ビデオカメラ等の携帯機器の電源として急激な伸びを示
すと共に、電気自動車等の電源としても注目されてい
る。
2. Description of the Related Art Conventionally, lithium secondary batteries are excellent in high energy density and high output density and can be made compact and lightweight, so that they are used as a power source for portable devices such as laptop computers, mobile phones and handy video cameras. In addition to showing rapid growth, it is also attracting attention as a power source for electric vehicles and the like.

【0003】そして、そのリチウム二次電池の正極とし
ては、集電体と、その表面に形成された、正極活物質、
導電剤、及び結着剤を含有する正極活物質含有層とから
なり、その正極活物質としては、リチウムと、コバル
ト、ニッケル、マンガン等の遷移金属との複合酸化物
が、高性能の電池特性が得られることから注目され、一
部実用化に到っている。
The positive electrode of the lithium secondary battery includes a current collector and a positive electrode active material formed on the surface of the current collector.
A positive electrode active material-containing layer containing a conductive agent and a binder, and as the positive electrode active material, a composite oxide of lithium and a transition metal such as cobalt, nickel or manganese has high performance battery characteristics. Since it can be obtained, it has been put to practical use.

【0004】更に、複合酸化物としての安定化や、電池
としての高容量化或いは高温での電池特性の改良等を目
的とし、経済性等も勘案して、それらの遷移金属原子の
一部を他の金属原子で置換した各種の複合酸化物の研究
も進められており、その中で、LiNi1-a Mna 2
(0<a<1)で表される層状リチウムニッケルマンガ
ン複合酸化物が注目され、例えば、Solid State Ionics
311-318(1992)、J. Mater. Chem. 1149-1155(1996) 、
J. Power Sources 629-633(1997)、J. Power Sources 4
6-53(1998)等には、0≦a≦0.5の層状複合酸化物の
単一相の合成例が報告され、又、第41回電池討論会2D20
(2000)では、a=0.5、即ちNi/Mn=1の単一相
の合成例が報告されている。
Furthermore, for the purpose of stabilizing the composite oxide, increasing the capacity of the battery or improving the battery characteristics at high temperature, etc., considering the economical efficiency, etc., a part of these transition metal atoms is considered. Research on various complex oxides substituted with other metal atoms is also underway. Among them, LiNi 1-a Mn a O 2
Layered lithium nickel manganese composite oxides represented by (0 <a <1) have attracted attention, and for example, Solid State Ionics
311-318 (1992), J. Mater. Chem. 1149-1155 (1996),
J. Power Sources 629-633 (1997), J. Power Sources 4
6-53 (1998) et al. Reported a single-phase synthesis example of a layered composite oxide with 0 ≦ a ≦ 0.5, and the 41st Battery Symposium 2D20
(2000) reported a single-phase synthesis example in which a = 0.5, that is, Ni / Mn = 1.

【0005】一方、正極活物質含有層の密度は、高エネ
ルギー密度を求めることから、通常、3.0g/cm3
以上とされているが、本発明者等の検討によると、上記
の層状リチウム系複合酸化物をはじめとする、Ni、M
n、及びCoからなる遷移金属原子群から選択される少
なくとも2種を含む層状リチウム系複合酸化物において
は、従来採用されている密度では、大電流下において放
電容量が低下し、レート特性が悪化するという問題を内
在することが判明した。大電流下での放電容量は、近年
特に注目されているハイパワー工具や電気自動車等にお
いて始動時に特に必要とされるものであり、その低下は
大きな問題となる。
On the other hand, the density of the positive electrode active material-containing layer is usually 3.0 g / cm 3 since a high energy density is required.
As described above, according to the study by the present inventors, Ni, M including the above layered lithium-based composite oxide is included.
In the layered lithium-based composite oxide containing at least two kinds selected from the group of transition metal atoms consisting of n and Co, the density conventionally used decreases the discharge capacity under a large current and deteriorates the rate characteristics. It turned out to be an inherent problem. The discharge capacity under a large current is particularly required at the time of starting in a high power tool, an electric vehicle or the like, which has recently received a great deal of attention, and the decrease thereof is a serious problem.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術と
しての層状リチウム系複合酸化物における前記問題を解
決すべくなされたものであって、従って、本発明は、集
電体表面に層状リチウム系複合酸化物の電極活物質含有
層として形成され、リチウム二次電池の正極として好適
に用いられる電極であって、初期放電容量の低下がな
く、レート特性に優れた電極、及び該電極を正極として
用いたリチウム二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems in the layered lithium-based composite oxide as the prior art. Therefore, the present invention provides a layered lithium on the surface of the current collector. An electrode that is formed as an electrode active material-containing layer of a system-based complex oxide and is suitably used as a positive electrode of a lithium secondary battery, which does not reduce the initial discharge capacity and has excellent rate characteristics, and a positive electrode for the electrode. The purpose of the present invention is to provide a lithium secondary battery used as.

【0007】[0007]

【課題を解決するための手段】本発明者等は、前記課題
を解決すべく鋭意検討した結果、層状リチウム系複合酸
化物の電極活物質含有層の密度を従来より一般に用いら
れてきた密度よりも遙かに小さい特定範囲とすることに
よって、前記目的を達成できることを見出し本発明に到
達したもので、従って、本発明は、集電体表面に電極活
物質含有層が形成されてなる電極であって、該電極活物
質含有層が、下記の(A)成分、(B)成分、及び
(C)成分を含有し、その密度が2.0〜2.7g/c
3 である電極、並びに、該電極からなる正極、負極、
及び電解質から構成されているリチウム二次電池、を要
旨とする。 (A)リチウム原子(Li)と、ニッケル(Ni)、マ
ンガン(Mn)、及びコバルト(Co)からなる遷移金
属原子群から選択される少なくとも2種とを含んでなる
層状リチウム系複合酸化物 (B)導電剤 (C)結着剤
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the density of the electrode active material-containing layer of the layered lithium-based composite oxide is higher than the density generally used conventionally. The present invention has been found to be able to achieve the above-mentioned object by making the specific range to be much smaller, and accordingly, the present invention provides an electrode having an electrode active material-containing layer formed on the surface of a current collector. Then, the electrode active material-containing layer contains the following component (A), component (B), and component (C), and its density is 2.0 to 2.7 g / c.
m 3 , an electrode, and a positive electrode, a negative electrode composed of the electrode,
And a lithium secondary battery composed of an electrolyte. (A) A layered lithium-based composite oxide containing a lithium atom (Li) and at least two kinds selected from a transition metal atom group consisting of nickel (Ni), manganese (Mn), and cobalt (Co) ( B) Conductive agent (C) Binder

【0008】[0008]

【発明の実施の形態】本発明の電極における電極活物質
含有層を構成する(A)成分の層状リチウム系複合酸化
物としては、リチウム原子(Li)と、ニッケル(N
i)、マンガン(Mn)、及びコバルト(Co)からな
る遷移金属原子群から選択される少なくとも2種とを含
んでなり、下記一般式(I)で表される複合酸化物が好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The layered lithium-based composite oxide of the component (A) constituting the electrode active material-containing layer in the electrode of the present invention includes lithium atom (Li) and nickel (N).
A complex oxide containing i), at least two kinds selected from the group of transition metal atoms consisting of manganese (Mn), and cobalt (Co) and represented by the following general formula (I) is preferable.

【0009】[0009]

【化2】 Liv Niw Mnx Coy z 2 (I)Embedded image Li v Ni w Mn x Co y Q z O 2 (I)

【0010】〔式(I)中、vは、0.8≦v≦1.2
の数であり、w、x、y、及びzは、w、x、及びyの
うち少なくとも2つは0より大きく、0≦z≦0.3、
及び、0.8≦w+x+y+z≦1.2の関係を満たす
数であり、Qは、Be、B、Mg、Al、Ca、Sc、
Ti、V、Cr、Fe、Cu、Zn、及びGaからなる
原子群から選択されるいずれかを示す。〕
[In the formula (I), v is 0.8 ≦ v ≦ 1.2
And w, x, y, and z are at least two of w, x, and y are greater than 0, and 0 ≦ z ≦ 0.3,
And 0.8 is a number satisfying the relationship of 0.8 ≦ w + x + y + z ≦ 1.2, and Q is Be, B, Mg, Al, Ca, Sc,
Any one selected from the atomic group consisting of Ti, V, Cr, Fe, Cu, Zn, and Ga is shown. ]

【0011】前記式(I)において、vは、0.9≦v
≦1.1であるのが好ましく、0.95≦v≦1.05
であるのが更に好ましい。又、w+x+y+zは、0.
9≦w+x+y+z≦1.1であるのが好ましく、0.
95≦w+x+y+z≦1.05であるのが更に好まし
い。vが前記範囲超過で、w+x+y+zが前記範囲未
満では、層状複合酸化物として結晶構造が不安定となっ
て、電池に用いたときに電池容量の低下を引き起こす傾
向となり、一方、vが前記範囲未満で、w+x+y+z
が前記範囲超過では、電池の充放電に関与できるリチウ
ムが減少し、電池容量の低下を引き起こす傾向となる。
In the above formula (I), v is 0.9≤v
≦ 1.1 is preferable, and 0.95 ≦ v ≦ 1.05
Is more preferable. Also, w + x + y + z is 0.
It is preferable that 9 ≦ w + x + y + z ≦ 1.1, and 0.
More preferably, 95 ≦ w + x + y + z ≦ 1.05. When v exceeds the above range and w + x + y + z is less than the above range, the crystal structure of the layered composite oxide becomes unstable, and the battery capacity tends to decrease when used in a battery. On the other hand, v is less than the above range. And w + x + y + z
However, if the above range is exceeded, the amount of lithium that can be involved in charging / discharging of the battery decreases, and the battery capacity tends to decrease.

【0012】又、w、x、yは、0<w≦0.7、0<
x≦0.7、0<y≦0.7であるのが好ましく、又、
0.65≦w+x≦1.0であるのが好ましく、0.7
5≦w+x≦1.0であるのが更に好ましい。w+xが
前記範囲未満では、電池に用いたときに電池容量の低下
を引き起こす傾向となり、一方、前記範囲超過では、経
済性の面で不利となる。更に、0.7≦w/x≦9であ
るのが好ましく、0.8≦w/x≦1.2であるのがよ
り好ましく、0.9≦w/x≦1.1であるのが更に好
ましく、0.95≦w/x≦1.05であるのが特に好
ましい。w/xが前記範囲未満では、層状複合酸化物を
単一相で得ることが困難な傾向となり、一方、前記範囲
超過では、経済性の面で不利となる。
Further, w, x, y are 0 <w ≦ 0.7, 0 <
It is preferable that x ≦ 0.7 and 0 <y ≦ 0.7, and
It is preferable that 0.65 ≦ w + x ≦ 1.0, and 0.7
More preferably, 5 ≦ w + x ≦ 1.0. If w + x is less than the above range, the battery capacity tends to decrease when used in a battery, while if it exceeds the above range, it is disadvantageous in terms of economy. Furthermore, 0.7 ≦ w / x ≦ 9 is preferable, 0.8 ≦ w / x ≦ 1.2 is more preferable, and 0.9 ≦ w / x ≦ 1.1 is preferable. More preferably, 0.95 ≦ w / x ≦ 1.05 is particularly preferable. If w / x is less than the above range, it tends to be difficult to obtain a layered composite oxide in a single phase, while if it exceeds the above range, it is disadvantageous in terms of economy.

【0013】又、zは、0≦z≦0.25であるのが好
ましく、0≦z≦0.2であるのが更に好ましい。zが
前記範囲超過では、電池に用いたときに電池容量の低下
を引き起こす傾向となる。尚、Qとしては、Mg、A
l、Ca、Cr、Feが好ましく、Alが特に好まし
い。
Further, z is preferably 0≤z≤0.25, and more preferably 0≤z≤0.2. When z exceeds the above range, the battery capacity tends to decrease when used in a battery. Incidentally, as Q, Mg, A
1, Ca, Cr and Fe are preferable, and Al is particularly preferable.

【0014】本発明において、前記(A)成分の層状リ
チウム系複合酸化物は、SEM観察により測定した平均
一次粒子径が、通常0.01μm以上、好ましくは0.
02μm以上、更に好ましくは0.1μm以上であり、
通常30μm以下、好ましくは5μm以下、更に好まし
くは25μm以下のものである。又、レーザー回折/散
乱式粒度分布測定装置により測定した平均二次粒子径
が、通常1μm以上、好ましくは4μm以上であり、通
常50μm以下、好ましくは40μm以下のものであ
る。又、BET法による比表面積が、通常0.1m2
g以上、好ましくは0.5m2 /g以上、更に好ましく
は2.0m2 /g以上であり、通常10.0m2 /g以
下、好ましくは8.0m2 /g以下、更に好ましくは
7.0m2 /g以下のものである。
In the present invention, the layered lithium-based composite oxide of the component (A) has an average primary particle diameter measured by SEM observation of usually 0.01 μm or more, preferably 0.
02 μm or more, more preferably 0.1 μm or more,
It is usually 30 μm or less, preferably 5 μm or less, and more preferably 25 μm or less. The average secondary particle diameter measured by a laser diffraction / scattering type particle size distribution analyzer is usually 1 μm or more, preferably 4 μm or more, and usually 50 μm or less, preferably 40 μm or less. Further, the specific surface area by the BET method is usually 0.1 m 2 /
g or more, preferably 0.5 m 2 / g or more, more preferably 2.0 m 2 / g or more, usually 10.0 m 2 / g or less, preferably 8.0 m 2 / g or less, more preferably 7. It is 0 m 2 / g or less.

【0015】本発明における前記(A)成分の層状リチ
ウム系複合酸化物は、例えば、リチウム源化合物と、ニ
ッケル源化合物、マンガン源化合物、及びコバルト源化
合物からなる群から選択される少なくとも2種と、更に
必要に応じて、マグネシウム源化合物、アルミニウム源
化合物、カルシウム源化合物、クロム源化合物、及び鉄
源化合物等とを、乾式粉砕機を用いて粉砕及び混合した
後、焼成する乾式法、又は、水等の媒体中にこれらの化
合物を加え、媒体攪拌式粉砕機等の湿式粉砕機を用いて
粉砕及び混合するか、或いは、これらの化合物を乾式粉
砕機を用いて粉砕した後、水等の媒体中に加え混合する
等の方法により調製したスラリーを、噴霧乾燥等により
乾燥させ、焼成する湿式法、により粉体として製造する
ことができるが、本発明においては、後者湿式法による
のが好ましい。
The layered lithium-based composite oxide of the component (A) in the present invention is, for example, a lithium source compound and at least two kinds selected from the group consisting of a nickel source compound, a manganese source compound, and a cobalt source compound. Further, if necessary, a magnesium source compound, an aluminum source compound, a calcium source compound, a chromium source compound, and an iron source compound, and the like, after pulverizing and mixing using a dry pulverizer, a dry method of firing, or, These compounds are added to a medium such as water and pulverized and mixed by using a wet pulverizer such as a medium agitation pulverizer, or after pulverizing these compounds by a dry pulverizer, water and the like A slurry prepared by a method such as mixing in a medium is dried by spray drying or the like, and can be manufactured as a powder by a wet method of firing, In the invention, preferably by the latter wet method.

【0016】尚、ここで、好ましいとする前記湿式法に
おいて、スラリー中における化合物全体による固形分濃
度としては、その後の噴霧乾燥等の乾燥により形成され
る粉体粒子径を最適な範囲に確保する上で、通常10重
量%以上、好ましくは12.5重量%以上とし、又、均
一なスラリーを確保する上で、通常50重量%以下、好
ましくは35重量%以下とする。
Here, in the above-mentioned preferred wet method, as the solid content concentration of the entire compound in the slurry, the powder particle diameter formed by subsequent drying such as spray drying is ensured within an optimum range. In the above, it is usually 10% by weight or more, preferably 12.5% by weight or more, and in order to secure a uniform slurry, it is usually 50% by weight or less, preferably 35% by weight or less.

【0017】又、スラリー中における各化合物の平均粒
子径は、レーザー回折/散乱式粒度分布測定装置により
測定した値として、その後の焼成における反応性、及び
高嵩密度等を確保する上で、通常2μm以下、好ましく
は1μm以下、更に好ましくは0.5μm以下とし、
又、経済性の面から、通常0.01μm以上、好ましく
は0.05μm以上、更に好ましくは0.1μm以上と
する。
The average particle size of each compound in the slurry is usually a value measured by a laser diffraction / scattering type particle size distribution measuring device in order to secure reactivity in subsequent firing and high bulk density. 2 μm or less, preferably 1 μm or less, more preferably 0.5 μm or less,
From the viewpoint of economy, the thickness is usually 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm or more.

【0018】又、スラリーの粘度としては、BM型粘度
計により測定した値として、その後の噴霧乾燥等の乾燥
により形成される粉体粒子径を最適な範囲に確保する上
で、通常50mPa・秒以上、好ましくは100mPa
・秒以上、更に好ましくは200mPa・秒以上とし、
又、スラリーの取扱性を確保する上で、通常3000m
Pa・秒以下、好ましくは2000mPa・秒以下、更
に好ましくは1600mPa・秒以下とする。
The viscosity of the slurry is a value measured by a BM type viscometer, and is usually 50 mPa · sec in order to secure the powder particle diameter formed by the subsequent drying such as spray drying in an optimum range. Or more, preferably 100 mPa
-Seconds or more, more preferably 200 mPa-seconds or more,
Moreover, in order to ensure the handling of the slurry, it is usually 3000 m.
Pa · sec or less, preferably 2000 mPa · sec or less, and more preferably 1600 mPa · sec or less.

【0019】又、ここで、リチウム源化合物、ニッケル
源化合物、マンガン源化合物、及びコバルト源化合物、
並びに、マグネシウム源化合物、アルミニウム源化合
物、カルシウム源化合物、クロム源化合物、及び鉄源化
合物等としては、リチウム、ニッケル、マンガン、コバ
ルト、マグネシウム、アルモニウム、カルシウム、クロ
ム、及び鉄等の各酸化物、水酸化物、炭酸塩、硝酸塩、
硫酸塩、蓚酸塩、カルボン酸塩、アルキル化物、ハロゲ
ン化物等が挙げられ、これらの中から、スラリー化にお
ける媒体への分散或いは溶解性、複合酸化物への反応
性、及び、焼成時におけるNOx 、SOx 等の非発生性
等を考慮して選択される。
Further, here, a lithium source compound, a nickel source compound, a manganese source compound, and a cobalt source compound,
Also, as the magnesium source compound, the aluminum source compound, the calcium source compound, the chromium source compound, the iron source compound and the like, each oxide of lithium, nickel, manganese, cobalt, magnesium, aluminium, calcium, chromium and iron, Hydroxide, carbonate, nitrate,
Examples thereof include sulfates, oxalates, carboxylates, alkylates, and halides, and among these, dispersion or solubility in a medium in slurry formation, reactivity to complex oxides, and NO during firing. It is selected in consideration of non-occurrence of x , SO x and the like.

【0020】そのリチウム源化合物としては、具体的に
は、例えば、Li2 O、LiOH、LiOH・H2 O、
Li2 CO3 、LiNO3 、LiOCOCH3 、Li3
(OCOC)3 4 0H、LiCH3 、LiC2 5
LiCl、LiI等が挙げられ、中で、LiOH・H2
O、Li2 CO3 、LiNO3 、LiCH3 CO2 が好
ましく、LiOH・H2 Oが特に好ましい。
Specific examples of the lithium source compound include Li 2 O, LiOH, LiOH.H 2 O,
Li 2 CO 3 , LiNO 3 , LiOCOCH 3 , Li 3
(OCOC) 3 H 40 H, LiCH 3 , LiC 2 H 5 ,
LiCl, LiI, etc. are mentioned, of which LiOH.H 2
O, Li 2 CO 3 , LiNO 3 , and LiCH 3 CO 2 are preferable, and LiOH.H 2 O is particularly preferable.

【0021】又、ニッケル源化合物としては、具体的に
は、例えば、NiO、Ni(OH) 2 、NiOOH、N
iCO3 ・2Ni(OH)2 ・4H2 O、Ni(N
3 2・6H2 O、NiSO4 、NiSO4 ・6H2
O、Ni(OCO)2 ・2H2 O、 Ni(OCOCH
3 2 、NiCl2 等が挙げられ、中で、NiO、Ni
(OH)2 、NiOOH、NiCO3 ・2Ni(OH)
2 ・4H2 O、NiC2 4 ・2H2 Oが好ましく、N
iO、Ni(OH)2 、NiOOHが特に好ましい。
Specific examples of the nickel source compound include
Is, for example, NiO, Ni (OH) 2, NiOOH, N
iCO3・ 2Ni (OH)2・ 4H2O, Ni (N
O3)2・ 6H2O, NiSOFour, NiSOFour・ 6H2
O, Ni (OCO)2・ 2H2O, Ni (OCOCH
3)2, NiCl2Etc., among them, NiO, Ni
(OH)2, NiOOH, NiCO3・ 2Ni (OH)
2・ 4H2O, NiC2O Four・ 2H2O is preferred, N
iO, Ni (OH)2, NiOOH are particularly preferred.

【0022】又、マンガン源としては、具体的には、例
えば、MnO2 、Mn2 3 、Mn 3 4 、MnOO
H、MnCO3 、Mn(NO3 2 、MnSO4 、Mn
(OCOCH3 2 、Mn(OCOCH3 3 、Mn3
〔(OCOC)3 4 0H〕2、MnCl2 、MnCi
3 等が挙げられ、中で、MnO2 、Mn2 3 、Mn3
4 、MnOOHが好ましく、MnO2 、Mn2 3
Mn3 4 が特に好ましい。
Specific examples of the manganese source include
For example, MnO2, Mn2O3, Mn 3OFour, MnOO
H, MnCO3, Mn (NO3)2, MnSOFour, Mn
(OCOCH3)2, Mn (OCOCH3)3, Mn3
[(OCOC)3HFour0H]2, MnCl2, MnCi
3And the like, among which MnO2, Mn2O3, Mn3
OFour, MnOOH is preferred, and MnO2, Mn2O3,
Mn3OFourIs particularly preferable.

【0023】又、コバルト源化合物としては、具体的に
は、例えば、CoO、Co2 3 、Co3 4 、Co
(OH)2 、Co(NO3 2 ・6H2 O、Co(SO
4 2・7H2 0、Co(OCOCH3 2 ・4H
2 O、CoCl2 等が挙げられ、中で、CoO、Co2
3 、Co3 4 、Co(OH)2 が好ましく、Co
(OH)2 が特に好ましい。
Specific examples of the cobalt source compound include CoO, Co 2 O 3 , Co 3 O 4 and Co.
(OH) 2, Co (NO 3) 2 · 6H 2 O, Co (SO
4) 2 · 7H 2 0, Co (OCOCH 3) 2 · 4H
2 O, CoCl 2, etc., among which CoO, Co 2
O 3 , Co 3 O 4 , and Co (OH) 2 are preferable, and Co
(OH) 2 is particularly preferred.

【0024】又、マグネシウム源化合物としては、具体
的には、例えば、MgO、Mg(OH)2 、Mg(NO
3 2 ・6H2 O、MgSO4 、Mg(OCO)2 ・2
2O、Mg(OCOCH3 2 ・4H2 O、MgCl
2 等が挙げられ、中で、MgO、Mg(OH)2 が好ま
しく、Mg(OH)2 が特に好ましい。
Specific examples of the magnesium source compound include MgO, Mg (OH) 2 and Mg (NO).
3) 2 · 6H 2 O, MgSO 4, Mg (OCO) 2 · 2
H 2 O, Mg (OCOCH 3 ) 2 · 4H 2 O, MgCl
2, and the like, of which, MgO and Mg (OH) 2 are preferable, and Mg (OH) 2 is particularly preferable.

【0025】又、アルミニウム源化合物としては、具体
的には、例えば、Al2 3 、Al(OH)3 、AlO
OH、Al(NO3 3 ・9H2 O、Ai2 (SO4
3 、AlCl3 等が挙げられ、中で、Al2 3 、Al
(OH)3 、AlOOHが好ましく、AlOOHが特に
好ましい。
Specific examples of the aluminum source compound include Al 2 O 3 , Al (OH) 3 and AlO.
OH, Al (NO 3) 3 · 9H 2 O, Ai 2 (SO 4)
3 , AlCl 3 and the like, among which Al 2 O 3 , Al
(OH) 3 and AlOOH are preferable, and AlOOH is particularly preferable.

【0026】又、カルシウム源化合物としては、具体的
には、例えば、CaO、Ca(OH)2 、CaCO3
Ca(NO3 2 ・4H2 O、CaSO4 ・2H2 O、
Ca(OCO)2 ・H2 O、Ca(OCOCH3 2
2 O、CaCl2 等が挙げられ、中で、CaO、Ca
(OH)2 、CaCO3 が好ましく、Ca(OH)2
特に好ましい。
Specific examples of the calcium source compound include CaO, Ca (OH) 2 , CaCO 3 ,
Ca (NO 3) 2 · 4H 2 O, CaSO 4 · 2H 2 O,
Ca (OCO) 2 · H 2 O, Ca (OCOCH 3 ) 2 ·
H 2 O, CaCl 2 and the like can be mentioned. Among them, CaO, Ca
(OH) 2 and CaCO 3 are preferable, and Ca (OH) 2 is particularly preferable.

【0027】又、クロム源化合物としては、具体的に
は、例えば、CrO、CrO2 、Cr 2 3 、Cr(O
H)2 、Cr2 3 ・nH2 O、CrSO4 ・7H
2 O、Cr 2 (SO4 3 、Cr(OCOCH3 2
2H2 O、Cr(OCOCH3 3、CrCl2 、Cr
Cl3 等が挙げられ、中で、CrO、CrO2 、Cr2
3、Cr(OH)2 、Cr2 3 ・nH2 Oが好まし
く、CrO、CrO2 、Cr 2 3 が特に好ましい。
As the chromium source compound,
Is, for example, CrO, CrO2, Cr 2O3, Cr (O
H)2, Cr2O3・ NH2O, CrSOFour・ 7H
2O, Cr 2(SOFour)3, Cr (OCOCH3)2
2H2O, Cr (OCOCH3)3, CrCl2, Cr
Cl3Etc. Among them, among them, CrO, CrO2, Cr2
O3, Cr (OH)2, Cr2O3・ NH2O is preferred
CrO, CrO2, Cr 2O3Is particularly preferable.

【0028】又、鉄源化合物としては、具体的には、例
えば、Fe2 3 、Fe3 4 、FeOOH、Fe(N
3 3 ・9H2 O、FeSO4 ・7H2 O、Fe
2 (SO 4 3 ・nH2 O、Fe(OCO)2 ・2H2
O、FeCl2 、FeCl3 等が挙げられ、中で、Fe
2 3 、Fe3 4 、FeOOHが好ましく、Fe2
3、FeOOHが特に好ましい。
Specific examples of the iron source compound include
For example, Fe2O3, Fe3OFour, FeOOH, Fe (N
O3)3・ 9H2O, FeSOFour・ 7H2O, Fe
2(SO Four)3・ NH2O, Fe (OCO)2・ 2H2
O, FeCl2, FeCl3Etc., among which, Fe
2O3, Fe3OFour, FeOOH is preferable, and Fe2O
3, FeOOH are particularly preferred.

【0029】又、好ましいとする前記湿式法において、
粉砕及び混合された前記スラリーを乾燥させる噴霧乾燥
とは、前記スラリーを加熱された気体流中へ噴霧飛散さ
せ、該気体流で搬送しながら急速に乾燥させて粉体を得
る公知の乾燥法であり、本発明においては、ノズルの先
端から加圧気体によってスラリーを噴射させる方法が好
ましく、そのノズルとしては、特に限定されるものでは
ないが、例えば、特許第2797080号公報に記載さ
れている如き、中心と外周から加圧気体を噴射し、内周
からリング状にスラリーを噴射する三重管構造のノズル
が好適であり、又、その加圧気体としては、空気、窒素
等が用いられ、そのガス線速としては、通常100m/
秒以上、好ましくは200m/秒以上、更に好ましくは
300m/秒以上とし、通常1000m/秒以下とす
る。又、加熱された気体流としては、通常50℃以上、
好ましくは70℃以上とし、通常120℃以下、好まし
くは100℃以下の温度とした加熱空気、窒素等を、上
部から下部に向けてダウンフローさせた気体流とするの
が好ましく、前記ノズルからのスラリーの噴射方向を水
平として、その気体流に対して直交方向に噴射させ、乾
燥させるのが好ましい。
In the wet method, which is preferable,
Spray drying for drying the crushed and mixed slurry is a known drying method in which the slurry is sprayed and dispersed in a heated gas stream and rapidly dried while being conveyed by the gas stream to obtain a powder. In the present invention, the method of injecting the slurry by the pressurized gas from the tip of the nozzle is preferable, and the nozzle is not particularly limited, but, for example, as described in Japanese Patent No. 2977080. A nozzle having a triple pipe structure that injects a pressurized gas from the center and the outer periphery and injects a slurry in a ring shape from the inner periphery is preferable, and as the pressurized gas, air, nitrogen or the like is used. The gas linear velocity is usually 100 m /
Second or more, preferably 200 m / sec or more, more preferably 300 m / sec or more, and usually 1000 m / sec or less. Also, the heated gas flow is usually 50 ° C or higher,
It is preferable to use heated air, nitrogen, etc., which has a temperature of preferably 70 ° C. or higher and usually 120 ° C. or lower, preferably 100 ° C. or lower, as a gas flow down-flowed from the upper part to the lower part. It is preferable that the slurry is sprayed in a direction orthogonal to the gas flow with the spraying direction being horizontal.

【0030】この噴霧乾燥により、前記各化合物の粉砕
混合物としての球形状の粉体が得られる。その粉体の平
均粒子径は、前述の噴霧方法、ノズル形状、加圧気体噴
射速度、スラリー供給速度、加熱気体流温度等によって
制御することができるが、レーザー回折/散乱式粒度分
布測定装置により測定した値として、好ましくは50μ
m以下、更に好ましくは30μm以下とし、通常4μm
以上、好ましくは5μm以上とする。
By this spray drying, a spherical powder as a pulverized mixture of the above-mentioned compounds is obtained. The average particle diameter of the powder can be controlled by the above-mentioned spraying method, nozzle shape, pressurized gas injection rate, slurry supply rate, heated gas flow temperature, etc., but with a laser diffraction / scattering particle size distribution measuring device. The measured value is preferably 50μ
m or less, more preferably 30 μm or less, usually 4 μm
Or more, preferably 5 μm or more.

【0031】前記噴霧乾燥により得られた粉体は、例え
ば、箱型炉、管状炉、トンネル炉、ロータリーキルン等
の装置内で、空気等の酸素含有ガス或いは酸素ガス雰囲
気下、又は、窒素、アルゴン等の不活性ガス雰囲気下、
好ましくは酸素含有ガス或いは酸素ガス雰囲気下、加熱
処理し焼成される。
The powder obtained by the spray drying is, for example, in an apparatus such as a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln or the like, in an oxygen-containing gas such as air or in an oxygen gas atmosphere, or nitrogen, argon. In an inert gas atmosphere such as
Preferably, it is heat-treated and baked in an oxygen-containing gas or oxygen gas atmosphere.

【0032】その際の焼成温度としては、反応性を確保
する上で、通常700℃以上、好ましくは750℃以
上、更に好ましくは800℃以上とし、又、欠陥のない
層状複合酸化物を形成する上で、通常1050℃以下、
好ましくは1000℃以下、更に好ましくは950℃以
下とする、尚、その際の加熱時間としては、0.5〜5
0時間程度とし、加熱処理後、5℃/分以下の速度で徐
冷するのが好ましい。
The firing temperature at that time is usually 700 ° C. or higher, preferably 750 ° C. or higher, more preferably 800 ° C. or higher in order to ensure reactivity, and a layered composite oxide having no defects is formed. Above, usually below 1050 ° C,
The temperature is preferably 1000 ° C. or lower, more preferably 950 ° C. or lower, and the heating time at that time is 0.5 to 5
It is preferable that the heating time is about 0 hours, and after the heat treatment, the material is gradually cooled at a rate of 5 ° C./minute or less.

【0033】本発明の電極における電極活物質含有層を
構成する(B)成分の導電剤としては、従来公知のもの
が用いられ、具体的には、例えば、天然黒鉛、人造黒鉛
等の黒鉛、アセチレンブラック、ケッチェンブラック等
のカーボンブラック、ニードルコークス等の無定形炭素
等の炭素質微粒子が挙げられる。
As the conductive agent of the component (B) which constitutes the electrode active material-containing layer in the electrode of the present invention, a conventionally known one is used, and specifically, for example, graphite such as natural graphite or artificial graphite, Examples thereof include carbon black such as acetylene black and Ketjen black, and carbonaceous fine particles such as amorphous carbon such as needle coke.

【0034】又、本発明の電極における電極活物質含有
層を構成する(C)成分の結着剤としても、従来公知の
ものが用いられ、具体的には、例えば、例えば、ポリビ
ニリデンフルオライド、ポリテトラフルオロエチレン、
ポリメチルメタクリレート、ポリエチレン等の樹脂、ス
チレンブタジエンゴム、アクリロニトリルブタジエンゴ
ム、エチレンプロピレンゴム、弗素ゴム等のゴム、その
他、ポリ酢酸ビニル、セルロース等の高分子物質等が挙
げられる。
Further, as the binder of the component (C) which constitutes the electrode active material-containing layer in the electrode of the present invention, conventionally known binders are used, and specifically, for example, polyvinylidene fluoride. , Polytetrafluoroethylene,
Examples thereof include resins such as polymethylmethacrylate and polyethylene, styrene-butadiene rubber, acrylonitrile-butadiene rubber, rubber such as ethylene-propylene rubber and fluorine rubber, and polymeric substances such as polyvinyl acetate and cellulose.

【0035】尚、電極活物質含有層における前記(A)
成分の層状リチウム系複合酸化物、前記(B)成分の導
電剤、及び、前記(C)成分の結着剤の各含有割合は、
前記(A)成分としては、電池容量等の電池特性を確保
する上で、通常10重量%以上、好ましくは30重量%
以上、更に好ましくは50重量%以上、特に好ましくは
60重量%以上とし、電極としての機械的強度等を確保
する上で、通常99重量%以下、好ましくは97重量%
以下、更に好ましくは95重量%以下とする。又、前記
(B)成分としては、導電性等の電池特性を確保する上
で、通常0.01重量%以上、好ましくは0.1重量%
以上、更に好ましくは1重量%以上とし、電池容量等の
電池特性を確保する上で、通常50重量%以下、好まし
くは30重量%以下、更に好ましくは20重量%以下と
する。又、前記(C)成分としては、電極としての機械
的強度等を確保する上で、通常0.1重量%以上、好ま
しくは1重量%以上、更に好ましくは3重量%以上、特
に好ましくは5重量%以上とし、電池容量や導電性等の
電池特性を確保する上で、通常80重量%以下、好まし
くは60重量%以下、更に好ましくは30重量%以下、
特に好ましくは20重量%以下とする。尚、本発明にお
いて、この正極活物質含有組成物中には、正極活物質と
して、更に、LiFePO4 等のリチウムイオンを吸蔵
・放出し得る活物質を含有してもよい。
The above (A) in the electrode active material-containing layer
The respective content ratios of the layered lithium-based composite oxide of the component, the conductive agent of the component (B), and the binder of the component (C) are
The component (A) is usually 10% by weight or more, preferably 30% by weight in order to secure battery characteristics such as battery capacity.
The above is more preferably 50% by weight or more, particularly preferably 60% by weight or more, and usually 99% by weight or less, preferably 97% by weight in order to secure the mechanical strength of the electrode.
Hereafter, it is more preferably 95% by weight or less. The component (B) is usually 0.01% by weight or more, preferably 0.1% by weight in order to secure battery characteristics such as conductivity.
As described above, more preferably 1% by weight or more, and usually 50% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less in order to secure battery characteristics such as battery capacity. Further, the component (C) is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 3% by weight or more, particularly preferably 5% in order to secure the mechanical strength of the electrode. In order to secure battery characteristics such as battery capacity and conductivity, the content is usually 80% by weight or less, preferably 60% by weight or less, more preferably 30% by weight or less,
It is particularly preferably 20% by weight or less. In the present invention, the positive electrode active material-containing composition may further contain, as the positive electrode active material, an active material capable of inserting and extracting lithium ions such as LiFePO 4 .

【0036】本発明の電極は、従来公知の方法により、
電極活物質としての前記(A)成分の層状リチウム系複
合酸化物と、前記(B)成分の導電剤と、前記(C)成
分の結着剤とを、溶媒に分散させた塗布液となし、該塗
布液を集電体表面に塗布し、乾燥させた後、好ましくは
一軸プレスやロールプレス等により圧密化処理を行い電
極活物質含有層を形成することにより作製され、リチウ
ム二次電池の正極として好適に用いられる。
The electrode of the present invention is prepared by a conventionally known method.
No coating liquid in which the layered lithium-based composite oxide of the component (A) as an electrode active material, the conductive agent of the component (B), and the binder of the component (C) are dispersed in a solvent. The coating solution is applied to the surface of the current collector, dried, and then preferably subjected to consolidation treatment by a uniaxial press or a roll press to form an electrode active material-containing layer. It is preferably used as a positive electrode.

【0037】ここで、用いられる溶媒としては、例え
ば、エチレンオキシド、テトラヒドロフラン等のエーテ
ル系溶媒、メチルエチルケトン、シクロヘキサノン等の
ケトン系溶媒、酢酸メチル、アクリル酸メチル等のエス
テル系溶媒、ジエチルトリアミン、N,N−ジメチルア
ミノプロピルアミン等のアミン系溶媒、N−メチルピロ
リドン、ジメチルホルムアミド、ジメチルアセトアミド
等の非プロトン性極性溶媒等が挙げられる。
Examples of the solvent used here include ether solvents such as ethylene oxide and tetrahydrofuran, ketone solvents such as methyl ethyl ketone and cyclohexanone, ester solvents such as methyl acetate and methyl acrylate, diethyltriamine, N, N. -Amine-based solvents such as dimethylaminopropylamine, aprotic polar solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, and the like.

【0038】又、集電体としては、アルミニウム、ステ
ンレス鋼、ニッケルメッキ鋼等の、厚みが、通常1〜1
000μm、好ましくは5〜500μm、更に好ましく
は5〜100μmの箔が挙げられ、正極の集電体として
はアルミニウム箔が好ましい。尚、正極における電極活
物質含有層の厚みは、通常1〜1000μm、好ましく
は5〜200μmとされる。
The current collector is usually made of aluminum, stainless steel, nickel-plated steel or the like and has a thickness of 1 to 1.
A foil having a thickness of 000 μm, preferably 5 to 500 μm, and more preferably 5 to 100 μm can be used, and an aluminum foil is preferable as a current collector for the positive electrode. The thickness of the electrode active material-containing layer in the positive electrode is usually 1 to 1000 μm, preferably 5 to 200 μm.

【0039】本発明の電極における電極活物質含有層
は、前記(A)成分の層状リチウム系複合酸化物、前記
(B)成分の導電剤、及び前記(C)成分の結着剤を含
有してなり、その密度が2.0〜2.7g/cm3 であ
ることを必須とし、密度が2.2〜2.7g/cm3
あるのが好ましく、2.3〜2.7g/cm3 であるの
が更に好ましい。密度が前記範囲未満では、低電流密度
での放電容量が低下することとなり、一方、前記範囲超
過では、高電流密度での放電容量が低下することとな
る。
The electrode active material-containing layer in the electrode of the present invention contains the layered lithium-based composite oxide of the component (A), the conductive agent of the component (B), and the binder of the component (C). Te becomes, as essential that the density of 2.0~2.7g / cm 3, it is preferable density of 2.2~2.7g / cm 3, 2.3~2.7g / cm More preferably, it is 3 . If the density is less than the above range, the discharge capacity at low current density will decrease, while if it exceeds the above range, the discharge capacity at high current density will decrease.

【0040】尚、前記電極活物質含有層の密度は、前記
(A)〜(C)成分の種類や形状、含有割合の外、集電
体表面への形成条件等によって制御することができる。
例えば、前述のように、塗布液を集電体表面に塗布、乾
燥後、圧密化処理を行って電極活物質含有層を形成する
場合、電極活物質含有層の厚みや圧密化の条件、特に圧
密化の際のプレス圧によって容易に制御でき、プレス圧
が大きい程、密度は上昇する傾向となり、又、一般に、
層の厚みが大きい程、同じプレス圧でも密度は低下する
傾向となる。尚、プレス圧と密度の関係は必ずしも線形
ではないので、層の構成成分において予めプレス圧と密
度の関係を把握しておき、所望の密度を得るプレス圧を
定めるのが好ましい。
The density of the electrode active material-containing layer can be controlled by the type and shape of the components (A) to (C), the content ratio, and the forming conditions on the surface of the current collector.
For example, as described above, when the electrode active material-containing layer is formed by applying the coating liquid on the surface of the current collector, drying, and then performing the consolidation treatment, the conditions of the electrode active material-containing layer and the consolidation, particularly It can be easily controlled by the pressing pressure at the time of consolidation, and the higher the pressing pressure, the higher the density tends to be.
As the layer thickness increases, the density tends to decrease even with the same pressing pressure. Since the relationship between the pressing pressure and the density is not necessarily linear, it is preferable to previously grasp the relationship between the pressing pressure and the density in the constituent components of the layer and determine the pressing pressure for obtaining the desired density.

【0041】本発明において、以上により得られる電極
を正極とし、負極、及び電解質からリチウム二次電池が
構成される。
In the present invention, the electrode obtained as described above serves as a positive electrode, and a negative electrode and an electrolyte constitute a lithium secondary battery.

【0042】ここで、負極は、従来公知の方法により、
負極活物質を、結着剤と共に溶媒に分散させた塗布液と
なし、該塗布液を集電体表面に塗布し、乾燥させた後、
好ましくは一軸プレスやロールプレス等により圧密化処
理を行うことにより、集電体表面に負極活物質含有層を
形成し、負極とされる。
Here, the negative electrode is formed by a conventionally known method.
The negative electrode active material is used as a coating liquid in which a binder is dispersed in a solvent, and the coating liquid is applied to the surface of the current collector and dried,
Preferably, a negative electrode is formed by forming a negative electrode active material-containing layer on the surface of the current collector by performing a consolidation treatment by a uniaxial press, a roll press or the like.

【0043】ここで、用いられる負極活物質としては、
例えば、リチウム、リチウムアルミニウム合金、黒鉛、
石炭系や石油系コークスの炭化物、石炭系や石油系ピッ
チの炭化物、ニードルコークス、ピッチコークス、フェ
ノール樹脂や結晶セルロース等の炭化物、ファーネスブ
ラックやアセチレンブラック等のカーボンブラック、及
び、SnO、SnO2 、Sn1-x x O(MはHg、
P、B、Si、Ge、又はSbであり、xは0≦x<1
である。)、Sn3 2 (OH)2 、Sn3-x x 2
(OH)2 (MはMg、P、B、Si、Ge、Sb、又
はMnであり、xは0≦x<3である。)、LiSiO
2 、SiO2 、LiSnO2 等が挙げられ、又、結着
剤、溶媒等は前記正極の形成におけると同様のものが挙
げられる。又、集電体としては、銅、ニッケル、ステン
レス鋼、ニッケルメッキ鋼等の箔が挙げられ、負極の集
電体としては銅箔が好ましい。
Here, as the negative electrode active material used,
For example, lithium, lithium aluminum alloy, graphite,
Coal and petroleum coke carbides, coal and petroleum
Ji carbide, needle coke, pitch coke, feather
Carbides such as knoll resin and crystalline cellulose, furnace
Carbon black such as rack and acetylene black, and
, SnO, SnO2, Sn1-xMxO (M is Hg,
P, B, Si, Ge, or Sb, and x is 0 ≦ x <1
Is. ), Sn3O2(OH)2, Sn3-xM xO2
(OH)2(M is Mg, P, B, Si, Ge, Sb, or
Is Mn and x is 0 ≦ x <3. ), LiSiO
2, SiO2, LiSnO2Etc., and also binding
The same agents and solvents as those used for forming the positive electrode are listed.
You can The current collectors are copper, nickel, stainless steel.
Foils such as stainless steel, nickel-plated steel, etc.
Copper foil is preferable as the electric body.

【0044】又、電解質としては、従来公知の、例え
ば、電解質を有機溶媒に溶解させた有機電解液、又は、
高分子固体電解質、ゲル状電解質、無機固体電解質等が
用いられ、中で、有機電解液が好ましい。
As the electrolyte, a conventionally known organic electrolyte solution, for example, an electrolyte dissolved in an organic solvent, or
Polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes and the like are used, among which organic electrolytes are preferred.

【0045】その有機電解液に用いられる電解質として
は、例えば、LiCl、LiBr、LiClO4 、Li
AsF6 、LiPF6 、LiBF4 、LiB(C
6 5 4、LiCH3 SO3 、LiCF3 SO3 、L
iN(SO2 CF3 2 、LiN(SO2
2 5 2 、LiN(SO3 CF3 2 、LiC(SO
2 CF3 3 等が挙げられる。
Examples of the electrolyte used for the organic electrolytic solution include LiCl, LiBr, LiClO 4 , Li
AsF 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , L
iN (SO 2 CF 3 ) 2 , LiN (SO 2 C
2 F 5 ) 2 , LiN (SO 3 CF 3 ) 2 , LiC (SO
2 CF 3 ) 3 and the like.

【0046】、又、用いられる有機溶媒としては、例え
ば、ジエチルエーテル、1,2−ジメトキシエタン、
1,2−ジエトキシエタン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,4−ジオキサン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラン
等のエーテル類、4−メチル−2−ペンタノン等のケト
ン類、メチルホルメート、メチルアセテート、メチルプ
ロピオネート等のエステル類、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート、エ
チレンカーボネート、プロピレンカーボネート、ブチレ
ンカーボネート、ビニレンカーボネート等のカーボネー
ト類、γ−ブチロラクトン、γ−バレロラクトン等のラ
クトン類、1,2−ジクロロエタン等のハロゲン化炭化
水素類、スルホラン、メチルスルホラン等のスルホラン
系化合物類、アセトニトリル、プロピオニトリル、ブチ
ロニトリル、バレロニトリル、ベンゾニトリル等のニト
リル類、ジエチルアミン、エチレンジアミン、トリエタ
ノールアミン等のアミン類、リン酸トリメチル、リン酸
トリエチル等のリン酸エステル類、N,N−ジメチルホ
ルムアミド、N−メチルピロリドン、ジメチルスルホキ
シド等の非プロトン性極性溶媒等が挙げられる。
The organic solvent used is, for example, diethyl ether, 1,2-dimethoxyethane,
1,2-diethoxyethane, tetrahydrofuran, 2-
Methyl tetrahydrofuran, 1,4-dioxane, 1,
Ethers such as 3-dioxolane and 4-methyl-1,3-dioxolane, ketones such as 4-methyl-2-pentanone, esters such as methyl formate, methyl acetate and methyl propionate, dimethyl carbonate,
Carbonates such as diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate, lactones such as γ-butyrolactone and γ-valerolactone, halogenated hydrocarbons such as 1,2-dichloroethane and sulfolane. , Sulfolane compounds such as methylsulfolane, nitriles such as acetonitrile, propionitrile, butyronitrile, valeronitrile and benzonitrile, amines such as diethylamine, ethylenediamine and triethanolamine, phosphorus such as trimethyl phosphate and triethyl phosphate. Examples thereof include aprotic polar solvents such as acid esters, N, N-dimethylformamide, N-methylpyrrolidone and dimethylsulfoxide.

【0047】尚、有機溶媒としては、以上挙げた中で、
25℃における比誘電率が20以上の高誘電率溶媒、例
えば、エチレンカーボネート、プロピレンカーボネー
ト、及びそれらの水素原子がハロゲン原子或いはアルキ
ル基等で置換された化合物等、が好ましく、有機溶媒中
に占める高誘電率溶媒の割合を20重量%以上とするの
が好ましく、30重量%以上とするのが更に好ましく、
40重量%以上とするのが特に好ましい。
Among the organic solvents mentioned above,
A high-dielectric-constant solvent having a relative dielectric constant of 20 or more at 25 ° C., such as ethylene carbonate, propylene carbonate, and a compound in which a hydrogen atom thereof is substituted with a halogen atom, an alkyl group, or the like, is preferable, and it occupies in the organic solvent. The proportion of the high dielectric constant solvent is preferably 20% by weight or more, more preferably 30% by weight or more,
It is particularly preferable that the amount is 40% by weight or more.

【0048】又、リチウム二次電池としては、必要に応
じて前記正極と前記負極の間にセパレータを介在させて
もよく、そのセパレータとしては、ポリエチレン、ポリ
プロピレン等のポリオレフィン、ポリビニリデンフルオ
ライド、ポリテトラフルオロエチレン、ポリエステル、
ポリアミド、ポリスルホン、ポリアクリロニトリル、セ
ルロース、セルロースアセテート等の高分子の微多孔性
フィルム、これらの高分子繊維やガラス繊維等の不織布
フィルター等が用いられる。
In the lithium secondary battery, if necessary, a separator may be interposed between the positive electrode and the negative electrode. The separator may be a polyolefin such as polyethylene or polypropylene, polyvinylidene fluoride, or poly (vinylidene fluoride). Tetrafluoroethylene, polyester,
Microporous films of polymers such as polyamide, polysulfone, polyacrylonitrile, cellulose and cellulose acetate, and non-woven fabric filters such as polymer fibers and glass fibers thereof are used.

【0049】中で、本発明においては、ポリエチレン微
多孔性フィルムが好ましく、そのポリエチレンとして
は、高温での形状維持性を確保する上で、分子量が好ま
しくは50万以上、更に好ましくは100万以上、特に
好ましくは150万以上であり、高温での微多孔の閉塞
性を確保する上で、好ましくは500万以下、更に好ま
しくは400万以下、特に好ましくは300万以下の超
高分子量ポリエチレンが好ましい。
Among them, in the present invention, a polyethylene microporous film is preferable, and the polyethylene has a molecular weight of preferably 500,000 or more, and more preferably 1,000,000 or more in order to secure shape retention at high temperature. Particularly preferably, it is 1.5 million or more, and in order to secure the microporous occluding property at high temperature, preferably 5 million or less, more preferably 4 million or less, particularly preferably 3 million or less, ultra high molecular weight polyethylene is preferable. .

【0050】[0050]

【実施例】以下、本発明を実施例によりさらに具体的に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0051】<(A)層状リチウム系複合酸化物の製造
例>リチウム源化合物としての水酸化リチウム一水和物
〔LiOH・H2 O〕、ニッケル源化合物としての水酸
化ニッケル〔Ni(OH)2 〕、マンガン源化合物とし
ての三二酸化マンガン〔Mn2 3 〕、及び、コバルト
源化合物として水酸化コバルト〔Co(OH)2 〕を、
最終的に得られる層状リチウムニッケルマンガンコバル
ト複合酸化物における各原子のモル比で、リチウム原子
〔Li〕:ニッケル原子〔Ni〕:マンガン原子〔M
n〕:コバルト原子〔Co〕=1.00:0.45:
0.45:0.10となる量を、純水に加えて固形分濃
度12.5重量%のスラリーを調製し、このスラリー
を、循環式媒体攪拌型湿式粉砕機(シンマルエンタープ
ライゼス社製「ダイノーミルKD−20B型」)を用い
て混合すると共に、スラリー中の各化合物の平均粒子径
が、レーザー回折/散乱式粒度分布測定装置により測定
した値として0.3μmになるまで、約6時間湿式粉砕
した。
<(A) Production Example of Layered Lithium Composite Oxide> Lithium hydroxide monohydrate [LiOH.H 2 O] as a lithium source compound, nickel hydroxide [Ni (OH) as a nickel source compound. 2 ], manganese trioxide [Mn 2 O 3 ] as a manganese source compound, and cobalt hydroxide [Co (OH) 2 ] as a cobalt source compound,
The molar ratio of each atom in the finally obtained layered lithium nickel manganese cobalt composite oxide is lithium atom [Li]: nickel atom [Ni]: manganese atom [M
n]: cobalt atom [Co] = 1.00: 0.45:
An amount of 0.45: 0.10 was added to pure water to prepare a slurry having a solid content concentration of 12.5% by weight, and this slurry was circulated medium agitation type wet pulverizer (manufactured by Shinmaru Enterprises Co., Ltd.). "Dyno-mill KD-20B type") and mixed until about 6 hours until the average particle size of each compound in the slurry reaches 0.3 μm as a value measured by a laser diffraction / scattering particle size distribution analyzer. Wet milled.

【0052】次いで、得られたスラリーを、スプレード
ライヤー(藤崎電機社製「四流体ノズル型スプレードラ
イヤー」)を用いて、1.2m3 /分の導入量でダウン
フローさせた90℃の加熱空気流に対して直交方向に
1.3m3 /分の加圧空気によりノズルから噴出させ、
噴霧乾燥により乾燥させた後、得られた粉体粒子を空気
中で900℃で10時間焼成することにより、モル比
で、リチウム原子〔Li〕:ニッケル原子〔Ni〕:マ
ンガン原子〔Mn〕:コバルト原子〔Co〕=1.0
0:0.45:0.45:0.10の層状リチウムニッ
ケルマンガンコバルト複合酸化物粉体を製造した。
Then, the obtained slurry was down-flowed with a spray dryer ("Four fluid nozzle type spray dryer" manufactured by Fujisaki Electric Co., Ltd.) at a flow rate of 1.2 m 3 / min and heated to 90 ° C. Jetted from the nozzle with 1.3 m 3 / min of pressurized air in a direction orthogonal to the flow,
After drying by spray drying, the obtained powder particles are calcined in air at 900 ° C. for 10 hours to give a molar ratio of lithium atom [Li]: nickel atom [Ni]: manganese atom [Mn]: Cobalt atom [Co] = 1.0
A layered lithium nickel manganese cobalt-based composite oxide powder of 0: 0.45: 0.45: 0.10 was produced.

【0053】得られた層状リチウムニッケルマンガンコ
バルト複合酸化物粉体は、ほゞ球形を有する粒子であ
り、粉末X線回折を測定したところ、菱面体晶の層状リ
チウムニッケルマンガンコバルト複合酸化物であること
が確認された。又、全自動粉体比表面積測定装置(大倉
理研製「AMS8000型」)を用いてBET法による
比表面積を測定したところ、3.4m2 /gであった。
The obtained layered lithium nickel manganese cobalt-based composite oxide powder was a particle having a substantially spherical shape, and when powder X-ray diffraction was measured, it was a rhombohedral layered lithium nickel-manganese-cobalt composite oxide. It was confirmed. Further, the specific surface area measured by the BET method using a fully automatic powder specific surface area measuring device (“AMS8000 type” manufactured by Okura Riken) was 3.4 m 2 / g.

【0054】実施例1〜2、比較例1〜2 前記製造例で得られた層状リチウムニッケルマンガンコ
バルト複合酸化物粉体、導電剤としてのアセチレンブラ
ック(電気化学工業社製「デンカブラック」)、及び、
結着剤としてのポリビニリデンフルオライド粉体を、9
0重量%:5重量%:5重量%の割合となる量でN−メ
チルピロリドンに加え、混合して塗布液となし、この塗
布液をアルミニウム箔(厚さ20μm)の片面に塗布
し、乾燥させた後、直径12mmの円形に打ち抜き、プ
レスにて圧力を変えて圧密化処理を施すことにより、電
極活物質含有層としての密度が、1.76g/cm3
2.23g/cm3 、2.34g/cm3 、及び2.7
2g/cm3 の4種の正極を作製した。
Examples 1-2, Comparative Examples 1-2 Layered lithium nickel manganese cobalt composite oxide powders obtained in the above production examples, acetylene black as a conductive agent ("Denka Black" manufactured by Denki Kagaku Kogyo KK), as well as,
Polyvinylidene fluoride powder as a binder is
An amount of 0% by weight: 5% by weight: 5% by weight was added to N-methylpyrrolidone and mixed to form a coating solution. The coating solution was applied to one side of an aluminum foil (thickness 20 μm) and dried. After that, it was punched out into a circle having a diameter of 12 mm, and the density as an electrode active material-containing layer was 1.76 g / cm 3 , by performing a consolidation treatment by changing the pressure with a press.
2.23 g / cm 3 , 2.34 g / cm 3 , and 2.7
Four kinds of positive electrodes of 2 g / cm 3 were prepared.

【0055】引き続いて、正極缶の上に、直径16mm
のアルミエキスパンドメタルを載置し、その上に、エチ
レンカーボネートとジエチルカーボネートの混合溶媒
(容積比3:7)に電解質として1モル/リットルの六
弗化燐酸リチウム(LiPF6)を溶解させた有機電解
液を減圧下で十分に滲み込ませた前記正極を、電極活物
質含有層を上側として載置し、その上にセパレータとし
ての微多孔性ポリエチレンフィルム(厚さ25μm)を
載置し、ポリプロピレン製ガスケットで押さえ、その上
に、負極として径16mm、厚さ0.5mmの金属リチ
ウムを載置し、更に厚み調整用のスペーサーを載置した
後、前記有機電解液を電池内に加えて十分に滲み込ま
せ、次いで、負極缶を載置して封口することによりコイ
ン型セルを作製した。
Subsequently, a diameter of 16 mm was placed on the positive electrode can.
An aluminum expanded metal was placed thereon, and 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was dissolved as an electrolyte in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 3: 7). The positive electrode in which the electrolytic solution was sufficiently impregnated under reduced pressure was placed with the electrode active material-containing layer on the upper side, and a microporous polyethylene film (thickness 25 μm) as a separator was placed on the positive electrode. After pressing with a gasket made of metal, a negative electrode having a diameter of 16 mm and a thickness of 0.5 mm of metallic lithium was placed thereon, and a spacer for adjusting the thickness was further placed thereon. Then, a negative electrode can was placed on the container and the container was sealed to prepare a coin cell.

【0056】得られたコイン型セルについて、0.5m
A/cm2 の定電流で、充電上限電圧を4.3V、放電
下限電圧を3.0Vとして、充放電2サイクルの試験を
行い、引き続いて、3〜8サイクル目を、0.5mA/
cm2 の定電流充電、1mA/cm2 、3mA/c
2 、5mA/cm2 、7mA/cm2 、9mA/cm
2、及び11mA/cm2 の放電での試験を行った。こ
のときの1サイクル目の0.5mA/cm2 での放電容
量(mAh/g)、及び、8サイクル目の11mA/c
2 での放電容量(mAh/g)を測定し、結果を表1
に示した。
0.5 m for the obtained coin type cell
With a constant current of A / cm 2 , a charge upper limit voltage of 4.3 V, a discharge lower limit voltage of 3.0 V, a charge / discharge 2 cycle test was conducted, and then the 3rd to 8th cycles were conducted at 0.5 mA /
constant current charging cm 2, 1mA / cm 2, 3mA / c
m 2, 5mA / cm 2, 7mA / cm 2, 9mA / cm
2 and a discharge of 11 mA / cm 2 were tested. At this time, the discharge capacity (mAh / g) at 0.5 mA / cm 2 in the first cycle, and 11 mA / c in the eighth cycle
The discharge capacity (mAh / g) at m 2 was measured, and the results are shown in Table 1.
It was shown to.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【発明の効果】本発明によれば、集電体表面に層状リチ
ウム系複合酸化物の電極活物質含有層として形成され、
リチウム二次電池の正極として好適に用いられる電極で
あって、初期放電容量の低下がなく、レート特性に優れ
た電極、及び該電極を正極として用いたリチウム二次電
池を提供することを目的とする。
According to the present invention, a layered lithium-based composite oxide is formed on the surface of a current collector as an electrode active material-containing layer,
An electrode that is preferably used as a positive electrode of a lithium secondary battery, does not have a reduction in initial discharge capacity, is excellent in rate characteristics, and an object thereof is to provide a lithium secondary battery using the electrode as a positive electrode. To do.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AA05 AC06 AD06 5H029 AJ02 AJ03 AK03 AL02 AL03 AL06 AL07 AL08 AL12 AM00 AM02 AM03 AM04 AM05 AM07 AM12 AM16 DJ08 DJ17 EJ04 EJ12 EJ14 HJ01 HJ02 HJ08 5H050 AA02 AA08 BA16 BA17 CA08 CA09 CB02 CB03 CB07 CB08 CB09 CB12 DA10 DA11 EA10 EA24 HA01 HA02 HA08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G048 AA04 AA05 AC06 AD06                 5H029 AJ02 AJ03 AK03 AL02 AL03                       AL06 AL07 AL08 AL12 AM00                       AM02 AM03 AM04 AM05 AM07                       AM12 AM16 DJ08 DJ17 EJ04                       EJ12 EJ14 HJ01 HJ02 HJ08                 5H050 AA02 AA08 BA16 BA17 CA08                       CA09 CB02 CB03 CB07 CB08                       CB09 CB12 DA10 DA11 EA10                       EA24 HA01 HA02 HA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 集電体表面に電極活物質含有層が形成さ
れてなる電極であって、該電極活物質含有層が、下記の
(A)成分、(B)成分、及び(C)成分を含有し、そ
の密度が2.0〜2.7g/cm3 であることを特徴と
する電極。 (A)リチウム(Li)原子と、ニッケル(Ni)、マ
ンガン(Mn)、及びコバルト(Co)からなる遷移金
属原子群から選択される少なくとも2種とを含んでなる
層状リチウム系複合酸化物 (B)導電剤 (C)結着剤
1. An electrode comprising an electrode active material-containing layer formed on the surface of a current collector, wherein the electrode active material-containing layer comprises the following components (A), (B) and (C): And an electrode having a density of 2.0 to 2.7 g / cm 3 . (A) A layered lithium-based composite oxide containing lithium (Li) atoms and at least two kinds selected from a transition metal atom group consisting of nickel (Ni), manganese (Mn), and cobalt (Co) ( B) Conductive agent (C) Binder
【請求項2】 (A)成分の層状リチウム系複合酸化物
が、下記一般式(I)で表される複合酸化物である請求
項1に記載の電極。 【化1】 Liv Niw Mnx Coy z 2 (I) 〔式(I)中、vは、0.8≦v≦1.2の数であり、
w、x、y、及びzは、w、x、及びyのうち少なくと
も2つは0より大きく、0≦z≦0.3、及び、0.8
≦w+x+y+z≦1.2の関係を満たす数であり、Q
は、Be、B、Mg、Al、Ca、Sc、Ti、V、C
r、Fe、Cu、Zn、及びGaからなる原子群から選
択されるいずれかを示す。〕
2. The electrode according to claim 1, wherein the layered lithium-based composite oxide of the component (A) is a composite oxide represented by the following general formula (I). Embedded image Li v Ni w Mn x Co y Q z O 2 (I) [In the formula (I), v is a number of 0.8 ≦ v ≦ 1.2,
w, x, y, and z are such that at least two of w, x, and y are greater than 0, and 0 ≦ z ≦ 0.3 and 0.8.
Is a number that satisfies the relationship of ≦ w + x + y + z ≦ 1.2, and Q
Is Be, B, Mg, Al, Ca, Sc, Ti, V, C
Any one selected from the atomic group consisting of r, Fe, Cu, Zn, and Ga is shown. ]
【請求項3】 前記一般式(I)におけるw及びxが0
より大きく、且つ、0.7≦w/x≦9.0の関係を満
たす請求項2に記載の電極。
3. The w and x in the general formula (I) are 0.
The electrode according to claim 2, which is larger and satisfies the relationship of 0.7 ≦ w / x ≦ 9.0.
【請求項4】 全組成物に対して、(A)成分が10〜
99重量%、(B)成分が0.01〜50重量%、
(C)成分が0.1〜80重量%の含有割合である請求
項1乃至3のいずれかに記載の電極。
4. The total amount of component (A) is 10 to 10.
99% by weight, 0.01 to 50% by weight of component (B),
The electrode according to claim 1, wherein the content of the component (C) is 0.1 to 80% by weight.
【請求項5】 請求項1乃至4のいずれかに記載の電極
からなる正極、負極、及び電解質から構成されているこ
とを特徴とするリチウム二次電池。
5. A lithium secondary battery comprising a positive electrode comprising the electrode according to any one of claims 1 to 4, a negative electrode, and an electrolyte.
JP2001227002A 2001-07-27 2001-07-27 Electrode and lithium secondary battery using the same Pending JP2003045414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227002A JP2003045414A (en) 2001-07-27 2001-07-27 Electrode and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227002A JP2003045414A (en) 2001-07-27 2001-07-27 Electrode and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2003045414A true JP2003045414A (en) 2003-02-14

Family

ID=19059725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227002A Pending JP2003045414A (en) 2001-07-27 2001-07-27 Electrode and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2003045414A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
WO2004082046A1 (en) * 2003-03-14 2004-09-23 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
JP2005050582A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemicals Corp Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2006127923A (en) * 2004-10-29 2006-05-18 Shin Kobe Electric Mach Co Ltd Cathode active material for lithium secondary battery and lithium secondary battery
US20100209776A1 (en) * 2009-02-13 2010-08-19 Jin-Bum Kim Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
JP2010282979A (en) * 2010-09-15 2010-12-16 Nippon Zeon Co Ltd Slurry composition for positive electrode of non-aqueous electrolyte secondary battery
CN103080011A (en) * 2010-09-06 2013-05-01 住友化学株式会社 Lithium composite metal oxide and method for producing same
JPWO2019187994A1 (en) * 2018-03-28 2021-04-08 新東工業株式会社 Roll press device, roll press device control system, and roll press device control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JPWO2003044881A1 (en) * 2001-11-22 2005-03-24 株式会社ユアサコーポレーション Positive electrode active material for lithium secondary battery and lithium secondary battery
JP4956883B2 (en) * 2001-11-22 2012-06-20 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery
JPWO2004082046A1 (en) * 2003-03-14 2006-06-15 セイミケミカル株式会社 Positive electrode active material powder for lithium secondary battery
WO2004082046A1 (en) * 2003-03-14 2004-09-23 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
JP2005050582A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemicals Corp Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2006127923A (en) * 2004-10-29 2006-05-18 Shin Kobe Electric Mach Co Ltd Cathode active material for lithium secondary battery and lithium secondary battery
US20100209776A1 (en) * 2009-02-13 2010-08-19 Jin-Bum Kim Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
US10381126B2 (en) * 2009-02-13 2019-08-13 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
CN103080011A (en) * 2010-09-06 2013-05-01 住友化学株式会社 Lithium composite metal oxide and method for producing same
JP2010282979A (en) * 2010-09-15 2010-12-16 Nippon Zeon Co Ltd Slurry composition for positive electrode of non-aqueous electrolyte secondary battery
JPWO2019187994A1 (en) * 2018-03-28 2021-04-08 新東工業株式会社 Roll press device, roll press device control system, and roll press device control method
JP7020541B2 (en) 2018-03-28 2022-02-16 新東工業株式会社 Roll press device, roll press device control system, and roll press device control method

Similar Documents

Publication Publication Date Title
KR101858763B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4301875B2 (en) Lithium nickel manganese cobalt-based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP5135843B2 (en) Lithium transition metal composite oxide, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same
CN104011911B (en) Active positive electrode material and non-aqueous lithium secondary battery for non-aqueous secondary batteries
EP2865647A1 (en) Anode active material and method for manufacturing same
WO2011083861A1 (en) Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
WO2013047569A1 (en) Lithium-rich lithium metal complex oxide
JP4617717B2 (en) Lithium transition metal composite oxide and production method thereof, positive electrode for lithium secondary battery and lithium secondary battery
JP2011108554A (en) Lithium transition metal based compound powder, its manufacturing method, and positive electrode material for lithium secondary battery and lithium secondary battery using it
JP2003092108A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6010902B2 (en) Lithium transition metal-based compound powder, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2001196063A (en) Active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP4461685B2 (en) Positive electrode active material composite particles, and electrode and lithium secondary battery using the same
JP7707301B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery including the same
JP7607776B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode and lithium secondary battery including the same
JP2002338250A (en) Method for producing layered lithium nickel manganese composite oxide
JP2016072179A (en) Positive electrode active material, mixture electrode having the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4591716B2 (en) Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2021508912A (en) Positive electrode active material for lithium secondary battery and its manufacturing method, lithium secondary battery
JP2005251717A (en) Layered lithium nickel composite oxide powder for positive electrode material of lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP2003089526A (en) Lithium nickel manganese composite oxide, positive electrode material for lithium secondary battery using the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2005141983A (en) Layered lithium nickel composite oxide powder for positive electrode material of lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP4951824B2 (en) Electrode active material-containing composition, and electrode and lithium secondary battery using the same
JP2003034536A (en) Method for producing layered lithium nickel manganese composite oxide powder