JP2003037288A - Semiconductor crystal film growth method - Google Patents
Semiconductor crystal film growth methodInfo
- Publication number
- JP2003037288A JP2003037288A JP2001225534A JP2001225534A JP2003037288A JP 2003037288 A JP2003037288 A JP 2003037288A JP 2001225534 A JP2001225534 A JP 2001225534A JP 2001225534 A JP2001225534 A JP 2001225534A JP 2003037288 A JP2003037288 A JP 2003037288A
- Authority
- JP
- Japan
- Prior art keywords
- growth
- layer
- gan
- plane
- ingan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000012010 growth Effects 0.000 title claims abstract description 112
- 239000013078 crystal Substances 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 20
- 239000010980 sapphire Substances 0.000 claims abstract description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 13
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 12
- 239000002243 precursor Substances 0.000 claims description 11
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 8
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 7
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 6
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 150000002736 metal compounds Chemical class 0.000 claims description 6
- 238000001741 metal-organic molecular beam epitaxy Methods 0.000 claims description 6
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 5
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical group [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 claims description 3
- FCFMCMQSDFZKHQ-UHFFFAOYSA-N 9-(dimethylamino)-2,3-dihydrobenzo[f]phthalazine-1,4-dione Chemical compound O=C1NNC(=O)C2=C1C1=CC(N(C)C)=CC=C1C=C2 FCFMCMQSDFZKHQ-UHFFFAOYSA-N 0.000 claims description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims 1
- 229910017171 MNH2 Inorganic materials 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 9
- 238000000354 decomposition reaction Methods 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 15
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 229910052984 zinc sulfide Inorganic materials 0.000 description 7
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 2
- 240000002329 Inga feuillei Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 241000594113 Cyathopoma micron Species 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009647 facial growth Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 238000012932 thermodynamic analysis Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
(57)【要約】
【課題】 従来と同様のpn接合型のLEDにおいて、
その結晶構造を改善し、成長速度を高め、格子欠陥を低
減してその品質を高めることができる半導体結晶膜の成
長方法を提供する。
【解決手段】 サファイヤ基板上にバッファ層を介して
GaN層を成長させ、次いで、その上にInGaN層又
はInN層を成長させる半導体結晶膜の成長方法におい
て、GaN層の成長を約820℃以下,約500℃以上
で行い、InGaN層又はInN層の成長を約800℃
以下で行う。
(57) [Problem] To provide a pn junction type LED similar to the conventional one,
A method of growing a semiconductor crystal film capable of improving its crystal structure, increasing the growth rate, reducing lattice defects, and improving the quality. SOLUTION: In a method for growing a semiconductor crystal film in which a GaN layer is grown on a sapphire substrate via a buffer layer, and then an InGaN layer or an InN layer is grown thereon, the GaN layer is grown at about 820 ° C. or less. Performed at about 500 ° C. or more, and grown the InGaN layer or InN layer at about 800 ° C.
This is done below.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、基板上に半導体結
晶膜を成長させる半導体結晶膜の成長方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor crystal film growth method for growing a semiconductor crystal film on a substrate.
【0002】[0002]
【従来の技術】図4は、非対称ダブルヘテロ構造のpn
接合型青色LEDの断面構造図である。この図に示すよ
うに、サファイア基板の表面にAlNバッファ層を介し
てGaN層を成長させ、さらにその上にInGaNの半
導体被膜を成長させることにより青(B)を発光する青
色LEDを形成することができる。また、この図におい
て、InGaN中のInNの成分比率を変えることによ
り、赤(R)、緑(G)、青(B)の3原色を発光させ
ることができ、そのうち緑(G)、青(B)の2原色の
LEDは既に実現している。すなわち、一般にInGa
NはGaNとのダブルヘテロ構造あるいはInGaN/
GaNのマルチ量子井戸構造によりレーザや発光ダイオ
ード素子が作製される。2. Description of the Related Art FIG. 4 shows a pn having an asymmetric double hetero structure.
It is a section construction drawing of a junction type blue LED. As shown in this figure, a GaN layer is grown on the surface of a sapphire substrate via an AlN buffer layer, and a semiconductor film of InGaN is further grown thereon to form a blue LED that emits blue (B). You can Further, in this figure, three primary colors of red (R), green (G), and blue (B) can be emitted by changing the component ratio of InN in InGaN, among which green (G) and blue ( The two primary color LEDs of B) have already been realized. That is, in general, InGa
N is a double heterostructure with GaN or InGaN /
Lasers and light-emitting diode devices are manufactured with the multi-quantum well structure of GaN.
【0003】図5は、主な半導体のバンドギャップと格
子定数の関係図である。この図において、バンドギャッ
プ(eV)と波長(μm)が対応しており、赤(R)、
緑(G)、青(B)の順で波長が短くなり、かつInG
aN中のInNの成分比率が低くなる。すなわち、既に
実現している緑(G)、青(B)の2原色のLEDに比
較して、約650μmの波長の赤(R)を発光する赤色
LEDでは、InGaN中のInNのモル分率を約0.
7以上に高める必要がある。FIG. 5 is a diagram showing the relationship between the band gap and the lattice constant of main semiconductors. In this figure, the band gap (eV) corresponds to the wavelength (μm), and red (R),
The wavelength becomes shorter in the order of green (G) and blue (B), and InG
The component ratio of InN in aN becomes low. That is, in comparison with the already realized LEDs of the two primary colors of green (G) and blue (B), in the red LED which emits red (R) having a wavelength of about 650 μm, the molar fraction of InN in InGaN is To about 0.
It needs to be increased to 7 or higher.
【0004】図6は、InGaN中のInNのモル分率
yと平衡温度との関係図である。この図に示すように、
約650μmの波長の赤(R)を発光する赤色LEDを
形成するために、InGaN中のInNのモル分率yを
約0.7以上に高めると、その平衡温度は約500℃以
下となる。そのため、GaN層の表面にInGaNの半
導体被膜を成長させる過程で、GaN層や形成されたI
nGaNを約500℃以上に加熱すると、InGaNが
熱分解してしまう問題点があった。なお、図6は原料分
圧が低い真空中で加熱した場合の関係であり、気相成長
の場合にはこの図に従わない。例えば、日亜化学では約
750℃から約800℃でInが0.2程度のInGa
Nを成長している。FIG. 6 is a diagram showing the relationship between the molar fraction y of InN in InGaN and the equilibrium temperature. As shown in this figure,
When the molar fraction y of InN in InGaN is increased to about 0.7 or more to form a red LED emitting red (R) having a wavelength of about 650 μm, the equilibrium temperature becomes about 500 ° C. or lower. Therefore, in the process of growing the InGaN semiconductor film on the surface of the GaN layer, the GaN layer and the formed I
There is a problem that InGaN is thermally decomposed when nGaN is heated to about 500 ° C. or higher. Note that FIG. 6 shows the relationship in the case of heating in a vacuum in which the raw material partial pressure is low, and this case is not followed in the case of vapor phase growth. For example, in Nichia, InGa of about 0.2 at about 750 ° C to about 800 ° C
Growing N.
【0005】サファイア基板の表面にInGaNの半導
体被膜を成長させる手段として、「半導体結晶膜の成長
方法」が開示されている(特開平04−164895
号)。この方法は、図7に模式的に示す装置を用い、M
OVPE法(有機金属化合物気相成長法)で基板1の上
面に半導体被膜を成長させるものである。すなわち、こ
の方法は、サファイア基板1をサセプター4の上に載
せ、反応容器6内をH2で置換し、基板1の温度を約5
50℃に保持し、副噴射管3から水素と窒素を、反応ガ
ス噴射管2からアンモニアガスと水素とTMG(トリメ
チルガリウム)ガスとTMI(トリメチルインジウム)
ガスを供給して、サファイア基板1の表面にInGaN
の半導体被膜を成長させるものである。なお、この図に
おいて、5はシャフト、7はヒータ、8は排気口、9は
放射温度計である。また、MOVPE(有機金属化合物
気相成長法)の代わりに、MOMBE法(有機金属分子
ビームエピタキシー法)を適用することもできる。As a means for growing an InGaN semiconductor film on the surface of a sapphire substrate, a "semiconductor crystal film growth method" is disclosed (Japanese Patent Laid-Open No. 04-164895).
issue). This method uses an apparatus schematically shown in FIG.
A semiconductor film is grown on the upper surface of the substrate 1 by the OVPE method (organic metal compound vapor deposition method). That is, in this method, the sapphire substrate 1 is placed on the susceptor 4, the inside of the reaction vessel 6 is replaced with H 2 , and the temperature of the substrate 1 is set to about 5 ° C.
The temperature is maintained at 50 ° C., hydrogen and nitrogen are supplied from the auxiliary injection pipe 3, and ammonia gas, hydrogen, TMG (trimethylgallium) gas and TMI (trimethylindium) are supplied from the reaction gas injection pipe 2.
By supplying gas, InGaN is formed on the surface of the sapphire substrate 1.
To grow the semiconductor film of. In this figure, 5 is a shaft, 7 is a heater, 8 is an exhaust port, and 9 is a radiation thermometer. Further, instead of MOVPE (organic metal compound vapor phase epitaxy), MOMBE method (organic metal molecule beam epitaxy method) can be applied.
【0006】この方法により、Ga0.94In0.06Nの半
導体被膜を2インチ基板全面にわたって、膜厚2μmで
均一に成長させることに成功している。しかし、この方
法では、成長させたInGaN中のInNのモル分率y
が低く(0.06)、赤(R)を発光する赤色LEDを
形成することができない欠点があった。すなわち、この
例では窒素の前駆体としてアンモニアを用いているが、
アンモニアはN−Hの結合エネルギーが大きいため、基
板上で反応させるためには、基板温度をできるだけ上げ
る必要がある。ところが、赤を発光させるInGaN
は、InNの組成が高く、上述したように、InNのモ
ル分率yが高くなると、分解温度が約500℃程度まで
下がっているため、この方法では、基板温度が高すぎ、
赤発光のInGaNは成長させることができなかった。
しかし、例えば、日亜化学、その他では0.2〜0.3
のIn組成のInGaNが成長している。By this method, a Ga 0.94 In 0.06 N semiconductor film has been successfully grown to a uniform thickness of 2 μm over the entire surface of a 2-inch substrate. However, according to this method, the molar fraction y of InN in the grown InGaN is y.
Has a low value (0.06), and a red LED that emits red (R) cannot be formed. That is, although ammonia is used as the precursor of nitrogen in this example,
Since ammonia has a large N—H bond energy, it is necessary to raise the substrate temperature as much as possible in order to cause the reaction on the substrate. However, InGaN that emits red light
Has a high composition of InN, and as described above, when the mole fraction y of InN is high, the decomposition temperature is lowered to about 500 ° C. Therefore, in this method, the substrate temperature is too high,
Red-emitting InGaN could not be grown.
However, for example, in Nichia and others, 0.2-0.3
InGaN of In composition is growing.
【0007】図8は、低温堆積層を用いたGaNのMO
VPE(有機金属化合物気相成長法)の基板温度プログ
ラムの概略図である。この図に示すように、従来、サフ
ァイヤ基板上にAlN(又はGaN)のバッファ層は約
500℃で形成され、次いでGaNが約1100℃で形
成されている。更にその上のInGaN層は、上述した
例では約750℃で成長させている。FIG. 8 shows the MO of GaN using a low temperature deposited layer.
It is the schematic of the substrate temperature program of VPE (organic metal compound vapor phase epitaxy). As shown in this figure, conventionally, a buffer layer of AlN (or GaN) is formed on a sapphire substrate at about 500 ° C., and then GaN is formed at about 1100 ° C. Further, the InGaN layer thereabove is grown at about 750 ° C. in the above example.
【0008】図9は、アンモニアがIII族原料に対して
供給過剰で成長が行われていると仮定したときの、2元
化合物InN,GaM,AlNの成長速度の基板温度依
存性の概略を示す。成長速度一定の温度領域があり、そ
れより高温でも低温でも成長速度は減少する。低温で成
長速度が減少するのは、原料ガスの分解効率が低下する
ためである。また、高温で成長速度が減少するのは、昇
華が多くなるためである。高温では、水素のエッチング
反応も顕著になるので、成長速度の低下はより低い温度
で生じる。FIG. 9 shows the outline of the substrate temperature dependence of the growth rate of the binary compounds InN, GaM, and AlN when it is assumed that ammonia is overgrown with respect to the group III raw material. . There is a temperature region where the growth rate is constant, and the growth rate decreases at higher and lower temperatures. The growth rate decreases at low temperatures because the decomposition efficiency of the raw material gas decreases. Further, the growth rate decreases at high temperature because sublimation increases. At high temperature, the etching reaction of hydrogen becomes significant, so that the decrease in the growth rate occurs at a lower temperature.
【0009】[0009]
【発明が解決しようとする課題】上述したように、従
来、pn接合型のLEDは、サファイヤ基板上にバッフ
ァ層を介して約1000℃でGaN層を成長させ、次い
で、その上にInGaN層を約750℃で成長させてい
た。しかし、この方法によるLED構造は、InGaN
層の結晶成長速度が遅く、格子欠陥が発生しやすく、そ
の品質が低い問題点があった。As described above, in the conventional pn junction type LED, a GaN layer is grown on a sapphire substrate through a buffer layer at about 1000 ° C., and then an InGaN layer is grown thereon. It was grown at about 750 ° C. However, the LED structure by this method is InGaN
There is a problem that the crystal growth rate of the layer is slow, lattice defects are likely to occur, and the quality is low.
【0010】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、従来
と同様のpn接合型のLEDにおいて、その結晶構造を
改善し、成長速度を高め、格子欠陥を低減してその品質
を高めることができる半導体結晶膜の成長方法を提供す
ることにある。The present invention was created to solve such problems. That is, an object of the present invention is to provide a semiconductor crystal film growth method capable of improving the crystal structure, increasing the growth rate, reducing lattice defects and improving the quality of the pn junction type LED similar to the conventional one. To provide.
【0011】[0011]
【課題を解決するための手段】上記問題点を解決するた
めに、本発明の発明者等は、ウルツ鉱型構造のGaNの
格子極性に着目し、その分解速度と成長速度に及ぼす温
度の影響を鋭意研究した。その結果、従来の約1000
℃におけるGaN層の成長極性は、(0001)面(G
a極)が支配的であり、その上のInGaN層の成長
も、極性が同じ(0001)面となる。一方、約820
℃以下の低温における成長では、この(0001)面の
成長は、逆の(000−1)面(N極)の成長に比べ成
長速度が遅く、分解速度が速くなるため、格子欠陥が発
生しやすく、その品質が低下するものとの知見を得た。
本発明はかかる新規の知見に基ずくものである。In order to solve the above problems, the inventors of the present invention focused on the lattice polarity of GaN having a wurtzite structure, and the effect of temperature on its decomposition rate and growth rate. I studied hard. As a result, about 1000
The growth polarity of the GaN layer at ℃ is (0001) plane (G
The (a-pole) is dominant, and the growth of the InGaN layer thereon is also the (0001) plane having the same polarity. On the other hand, about 820
In the growth at a low temperature of ℃ or less, the growth of this (0001) plane is slower than the growth of the opposite (000-1) plane (N pole) and the decomposition rate is faster, so that lattice defects occur. It was found that the quality is easy and the quality is deteriorated.
The present invention is based on this novel finding.
【0012】すなわち、本発明によれば、サファイヤ基
板上にバッファ層を介してGaN層を成長させ、次い
で、その上にInGaN層又はInN層を成長させる半
導体結晶膜の成長方法において、GaN層の成長を約8
20℃以下,約500℃以上で行い、InGaN層又は
InN層の成長を約800℃以下で行う、ことを特徴と
する半導体結晶膜の成長方法が提供される。That is, according to the present invention, a GaN layer is grown on a sapphire substrate via a buffer layer, and then an InGaN layer or an InN layer is grown on the GaN layer. Growth about 8
There is provided a method for growing a semiconductor crystal film, which is performed at 20 ° C. or lower and about 500 ° C. or higher, and the InGaN layer or the InN layer is grown at about 800 ° C. or lower.
【0013】本発明の方法によれば、GaN層を従来よ
り低温の約820℃以下、約500℃以上で行うので、
この温度領域では、GaN層の成長極性は、(000−
1)面(N極)が支配的となる。次いで、GaN層の上
のInGaN層又はInN層は、約800℃以下で行う
ため、InNのモル分率yを高め(例えば約0.7以
上)、InGaNの熱分解を防止することができる。ま
た、このInGaN層又はInN層は、その下地となる
GaN層が(000−1)面に成長しているので、In
GaN層又はInN層の成長極性も、下地層と同じ(0
00−1)面となる。According to the method of the present invention, the GaN layer is formed at a temperature of about 820 ° C. or lower and about 500 ° C. or higher, which is lower than the conventional temperature.
In this temperature range, the growth polarity of the GaN layer is (000-
1) The surface (N pole) becomes dominant. Next, since the InGaN layer or the InN layer on the GaN layer is performed at about 800 ° C. or lower, the molar fraction y of InN can be increased (for example, about 0.7 or more) to prevent thermal decomposition of InGaN. In addition, in this InGaN layer or InN layer, the GaN layer as the base of the InGaN layer or InN layer grows on the (000-1) plane.
The growth polarity of the GaN layer or the InN layer is the same as that of the underlayer (0
It becomes the 0-1) plane.
【0014】更に、約800℃以下,約400℃以上の
低温領域では、InGaN層又はInN層の(000−
1)面の成長は、上述の研究の結果から、従来の(00
01)面の成長に比べ成長速度が速く、分解速度が遅
く、さらに、エネルギー的に安定な成長方向であること
から結晶原子配置のズレが起こりにくいことから、高品
質のInGaN層又はInN層が得られることが確認さ
れた。従って、成長極性が(000−1)面となるIn
GaN層又はInN層は、(0001)面の成長の場合
に比較して、格子欠陥が低減されるため、その品質は従
来より優れたものとなる。Further, in the low temperature region of about 800 ° C. or lower and about 400 ° C. or higher, the InGaN layer or the InN layer (000-
From the results of the above research, the growth of 1) plane is
The growth rate is faster and the decomposition rate is slower than the growth of the (01) plane, and further because the crystal atom arrangement is less likely to shift due to the energetically stable growth direction, a high-quality InGaN layer or InN layer can be obtained. It was confirmed that it was obtained. Therefore, In having a growth polarity of (000-1) plane
Since the GaN layer or the InN layer has a reduced lattice defect as compared with the case of growing the (0001) plane, the quality thereof is superior to the conventional one.
【0015】本発明の好ましい実施形態によれば、前記
各層の成長は、MOVPE(有機金属化合物気相成長
法)、HVPE(ハイドライド気相成長法)又はMOM
BE法(有機金属分子ビームエピタキシー法)による。
これらの成長法により、基板温度を所定の温度に設定し
ながら、効率よく各層を成長させることができる。According to a preferred embodiment of the present invention, the growth of each layer is performed by MOVPE (organic metal compound vapor phase epitaxy), HVPE (hydride vapor phase epitaxy) or MOM.
According to the BE method (organic metal molecular beam epitaxy method).
By these growth methods, each layer can be efficiently grown while setting the substrate temperature at a predetermined temperature.
【0016】また、前記Gaの前駆体はGaCl、Ga
(CH3)3又はGa(C2H5)3であり、Inの前駆体
はIn(CH3)3又はIn(C2H5)3であり、Nの前
駆体はアンモニア、MNH2(メチルアミン)、DMN
H(ジメチルアミン)、TMN(トリメチルアミン)、
N2H2(ヒドラジン)、(CH3)NH-NH2(モノメ
チルヒドラジン)、又は(CH3)2N-NH2(ジメチル
ヒドラジン)である。これらの前駆体を励起・分解する
ことにより、GaN層、InGaN層およびInN層の
成長を効率よく行うことができる。The Ga precursors are GaCl and Ga.
(CH 3 ) 3 or Ga (C 2 H 5 ) 3 , the precursor of In is In (CH 3 ) 3 or In (C 2 H 5 ) 3 , and the precursor of N is ammonia, MNH 2 ( Methylamine), DMN
H (dimethylamine), TMN (trimethylamine),
It is N 2 H 2 (hydrazine), (CH 3 ) NH—NH 2 (monomethylhydrazine), or (CH 3 ) 2 N—NH 2 (dimethylhydrazine). By exciting and decomposing these precursors, the GaN layer, the InGaN layer and the InN layer can be efficiently grown.
【0017】[0017]
【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付し、重複した説明を省略す
る。BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the common part is denoted by the same reference numeral, and the duplicated description will be omitted.
【0018】図1は、ウルツ鉱型結晶構造(A)と四面
体クラスタ(B)の模式図である。GaN、InGaN
およびInN等のIII族窒化物結晶は通常、ウルツ鉱型
結晶構造かジンクブレンド型構造となるが、ここではウ
ルツ鉱型結晶構造の場合を説明する。ウルツ鉱型結晶構
造は、対称中心をもたず、(0001)面(Ga極)と
(000−1)面(N極)を持つ。図1から明らかなよ
うに、III族原子(Ga,In等)とV族原子(N)と
を入れ替えた構造は、元の結晶の向きを反転させたもの
である。この2種類の方向では最外表面に出ている原子
種やまわりの原子との結合配置が異なり、従って表面再
構成構造が違ってくる。III族窒化物結晶では、どちら
の極性の向きに成長するかは、基板の種類、その他の成
長条件に依存する。極性によって表面構造が異なるので
結晶成長過程にも差が出てくる。その結果、得られるエ
ピタキシャル層の微細組織や成長面形状にも大きな差が
現れる。FIG. 1 is a schematic diagram of a wurtzite crystal structure (A) and a tetrahedral cluster (B). GaN, InGaN
Group III nitride crystals such as InN and In usually have a wurtzite type crystal structure or a zinc blend type structure. Here, the case of the wurtzite type crystal structure will be described. The wurtzite crystal structure does not have a center of symmetry and has a (0001) plane (Ga pole) and a (000-1) plane (N pole). As is apparent from FIG. 1, the structure in which the group III atom (Ga, In, etc.) and the group V atom (N) are exchanged has the original crystal orientation reversed. In these two directions, the atomic species appearing on the outermost surface and the bonding arrangement with the surrounding atoms are different, and therefore the surface reconstruction structure is different. Which polarity the group III nitride crystal grows in depends on the type of substrate and other growth conditions. Since the surface structure differs depending on the polarity, the crystal growth process also differs. As a result, a large difference appears in the microstructure and growth surface shape of the obtained epitaxial layer.
【0019】図2は、後述する実施例で得られたGaN
層の分解速度と温度の関係図である。この図において、
横軸は温度(上軸)とその逆数(下軸)、縦軸はGaN
層の分解速度、図中の●は(0001)面(Ga極)、
○は(000−1)面(N極)である。この図から、約
820℃において、(0001)面と(000−1)面
の分解速度が逆転しており、高温側では(000−1)
面の分解速度が大きく、低温側では(0001)面の分
解速度が大きいことがわかる。なお、図中の縦軸は対数
表示(指数関数表示)であるため、実際の差は、2倍以
上あることに留意する必要がある。FIG. 2 shows GaN obtained in an example described later.
It is a relationship diagram of the decomposition rate of a layer and temperature. In this figure,
The horizontal axis is temperature (upper axis) and its reciprocal (lower axis), and the vertical axis is GaN.
Layer decomposition rate, ● in the figure is the (0001) plane (Ga pole),
◯ is the (000-1) plane (N pole). From this figure, at about 820 ° C., the decomposition rates of the (0001) plane and the (000-1) plane are reversed, and at the high temperature side, (000-1)
It can be seen that the decomposition rate of the (0001) plane is high on the low temperature side. It should be noted that the vertical axis in the figure is logarithmic display (exponential function display), and therefore the actual difference is two times or more.
【0020】図3は、同様に後述する実施例で得られた
GaN層の成長速度と温度の関係図である。この図にお
いて、横軸は温度、縦軸はGaN層の成長速度、図中の
●は(0001)面(Ga極)、○は(000−1)面
(N極)である。この図から、成長速度も約820℃に
おいて、(0001)面と(000−1)面が逆転して
おり、高温側では(0001)面の成長速度が大きく、
低温側では(000−1)面の成長速度が大きいことが
わかる。FIG. 3 is a graph showing the relationship between the growth rate and the temperature of the GaN layer obtained in the examples described below. In this figure, the horizontal axis represents temperature, the vertical axis represents the growth rate of the GaN layer, ● in the figure represents the (0001) plane (Ga pole), and ○ represents the (000-1) plane (N pole). From this figure, at a growth rate of about 820 ° C., the (0001) plane and the (000-1) plane are reversed, and the growth rate of the (0001) plane is high on the high temperature side.
It can be seen that the growth rate of the (000-1) plane is high on the low temperature side.
【0021】図2と図3から、約820℃を境にして、
それより低い約750℃までの温度範囲において、(0
001)面の成長速度が低く、かつその分解速度が大き
いことがわかる。すなわち、この温度領域では、Ga極
のエッチングが激しく行われており、一方で成長速度も
遅いため、結果として品質の劣るGaN層が成長するも
のと考えられる。なお、InNおよびInGaNの成長
においても、InNおよびInGaNがGaNと同じ結
晶構造を持つIII-V族化合物半導体であることから、G
aNの成長と同様に約820℃付近に安定な表面の境が
あると類推される。しかし、InGaNおよびInNの
場合は約820℃以上の高温では分解蒸気圧が高く、通
常のMOVPE、MOMBEの成長条件では成長ができ
ない。従って、本来のInGaNおよびInNの安定な
成長方向は(000−1)方向であり、現在、通常行わ
れているInGaNおよびInNの成長方向(000
1)は安定な成長方向とはいえない。From FIG. 2 and FIG. 3, at about 820 ° C. as a boundary,
In the lower temperature range up to about 750 ° C, (0
It can be seen that the growth rate of the (001) plane is low and its decomposition rate is high. That is, in this temperature region, the Ga electrode is violently etched, and the growth rate is slow, and as a result, it is considered that a poor quality GaN layer grows. Even in the growth of InN and InGaN, since InN and InGaN are III-V group compound semiconductors having the same crystal structure as GaN,
Similar to the growth of aN, it is assumed that there is a stable surface boundary around about 820 ° C. However, in the case of InGaN and InN, the decomposition vapor pressure is high at a high temperature of about 820 ° C. or higher, and growth cannot be performed under normal MOVPE and MOMBE growth conditions. Therefore, the original stable growth direction of InGaN and InN is the (000-1) direction, and the growth direction of InGaN and InN that is usually performed at present (000) is
1) is not a stable growth direction.
【0022】上述した新規の知見に基ずき、本発明の方
法では、図4に示したサファイヤ基板上にバッファ層を
介してGaN層を成長させる温度を、従来の約1000
℃から大幅に低温化して、その成長を約800℃以下で
行う。この結果、図2と図3から、この温度領域では、
GaN層の成長極性は(000−1)面が支配的とな
る。また、本発明では、その上のInGaN層の成長
は、約500℃以下,約400℃以上で行う。これによ
り、InGaN層の成長極性も同じ(000−1)面と
なる。Based on the above-mentioned novel knowledge, in the method of the present invention, the temperature at which the GaN layer is grown on the sapphire substrate shown in FIG.
The temperature is drastically lowered from ℃, and the growth is performed at about 800 ℃ or less. As a result, from FIG. 2 and FIG. 3, in this temperature range,
The growth polarity of the GaN layer is dominated by the (000-1) plane. Further, in the present invention, the growth of the InGaN layer thereon is performed at about 500 ° C. or lower and about 400 ° C. or higher. Thereby, the growth polarity of the InGaN layer also becomes the same (000-1) plane.
【0023】すなわち、GaN層を従来より低温の約8
20℃以下、約500℃以上で行い、GaN層を(00
0−1)面に成長させ、次いで、GaN層の上のInG
aN層又はInN層は、約800℃以下で行う。これに
より、InGaN層又はInN層の成長の際に、その下
地となるGaN層が(000−1)面に形成されている
ので、InGaN層又はInN層の成長極性は、下地層
と同じ(000−1)面となる。また、約800℃以下
の温度範囲では、(000−1)面の成長は、従来の
(0001)面の成長に比べ成長速度が速く、分解速度
が遅いため、その品質は従来より優れたものとなる。That is, the GaN layer has a temperature of about 8
The GaN layer (00
0-1) plane and then InG on the GaN layer
The aN layer or the InN layer is formed at about 800 ° C. or lower. As a result, when the InGaN layer or InN layer is grown, the underlying GaN layer is formed on the (000-1) plane, so the growth polarity of the InGaN layer or InN layer is the same as that of the underlying layer (000). -1) It becomes the surface. Further, in the temperature range of about 800 ° C. or lower, the growth rate of the (000-1) plane is higher than that of the conventional (0001) plane, and the decomposition rate is slower. Becomes
【0024】本発明の方法において、各層の成長は、H
VPE(ハイドライド気相成長法)、MOVPE(有機
金属化合物気相成長法)、又はMOMBE(有機金属分
子ビームエピキタシー法)による。すなわち、例えば、
サファイア基板を反応容器内で温度調節手段(例えばヒ
ータ)により調節し、GaN層の成長を約820℃以
下、約500℃以上で行う。また、InGaN層および
InN層は、InGaNが熱分解しない温度(例えば約
800℃以下)で行う。In the method of the present invention, the growth of each layer is
By VPE (hydride vapor phase epitaxy), MOVPE (organic metal compound vapor phase epitaxy), or MOMBE (metalorganic molecular beam epitaxy). That is, for example,
The sapphire substrate is adjusted in the reaction vessel by a temperature adjusting means (for example, a heater), and the GaN layer is grown at about 820 ° C. or lower and about 500 ° C. or higher. Further, the InGaN layer and the InN layer are formed at a temperature (for example, about 800 ° C. or lower) at which InGaN is not thermally decomposed.
【0025】また、反応容器内にIn,Ga,Nの前駆
体をガス導入部より順次又は同時に供給する。Gaの前
駆体はGaClであり、Nの前駆体はアンモニア、MN
H2(メチルアミン)、DMNH(ジメチルアミン)、
TMN(トリメチルアミン)、N2H2(ヒドラジン)、
(CH3)NH-NH2(モノメチルヒドラジン)、又は
(CH3)2N-NH2(ジメチルヒドラジン)であるのが
よい。Further, precursors of In, Ga and N are sequentially or simultaneously supplied from the gas introduction section into the reaction vessel. The precursor of Ga is GaCl, the precursor of N is ammonia, MN
H 2 (methylamine), DMNH (dimethylamine),
TMN (trimethylamine), N 2 H 2 (hydrazine),
It may be (CH 3 ) NH-NH 2 (monomethylhydrazine) or (CH 3 ) 2 N-NH 2 (dimethylhydrazine).
【0026】[0026]
【実施例】以下、本発明の実施例を説明する。ウルツ鉱
型構造のGaNは、そのc軸方向に沿った極性、すなわ
ち(0001)面(Ga極)と(000−1)面(N
極)を有する。それゆえ、クリーニング又はエッチング
面に対するGaNの分解メカニズムを研究することは非
常に重要である。この実施例では、その場重力測定モニ
ター法(GM法)を用いてサファイア基板(0001)
面上のGaN単結晶の面極性に対する分解速度を試験し
た。EXAMPLES Examples of the present invention will be described below. GaN having a wurtzite structure has a polarity along the c-axis direction, that is, a (0001) plane (Ga pole) and a (000-1) plane (N
Poles). Therefore, it is very important to study the decomposition mechanism of GaN on the cleaning or etching surface. In this embodiment, a sapphire substrate (0001) is formed by using an in-situ gravity measurement monitor method (GM method).
The decomposition rate of the GaN single crystal on the plane with respect to the plane polarity was tested.
【0027】試験装置は、縦型反応管と微少重量記録装
置とからなる。この微少重量記録装置は、0.004μ
g(2.0cm2の面積のGaNの3.3×10-6μm
にほぼ相当する)の感度を有する。キャリアガスはH2
とイナートガスを用い、イナートガスとしてHeを用い
た。キャリアガス中の水素分圧(PH2)はH2+Heに
対するH2の比率の変化により変化する。鏡面仕上げし
たGaN基板(0001)の片面を1000Å厚のSi
O2層で覆い、シリカ繊維でマイクロバランスから吊り
下げた。これにより、GaN基板(0001)表面の極
性依存性を計測することができる。The test device comprises a vertical reaction tube and a micro weight recording device. This micro weight recorder is 0.004μ
g (3.3 × 10 −6 μm of GaN with an area of 2.0 cm 2
Has almost the same sensitivity as Carrier gas is H 2
And inert gas were used, and He was used as the inert gas. The hydrogen partial pressure (P H2 ) in the carrier gas changes depending on the change in the ratio of H2 to H 2 + He. One side of mirror-finished GaN substrate (0001) has a thickness of 1000Å
Covered with a layer of O 2 and suspended from microbalance with silica fibers. Thereby, the polarity dependence of the GaN substrate (0001) surface can be measured.
【0028】図2は、この試験で得られたGaN層の分
解速度と温度の関係図である。この図から明らかなよう
に、H2キャリアガス環境(PH2=1)における分解速
度は、650℃から950℃の温度範囲において、面極
性にかかわらず、温度の上昇により指数関数的に増加す
る。また、分解速度自体は格子極性に依存して相違する
ことが明らかになった。820℃以下の低温範囲におい
て、GaNの(0001)面の分解速度は(000−
1)面よりも速い。反対に、850℃から950℃まで
の高温領域では、GaNの(000−1)面の分解速度
が(0001)面より速い。この結果の理由は、GaN
の(0001)面と(000−1)面の分解プロセスに
おける活性化エネルギーの相違による。FIG. 2 is a graph showing the relationship between the decomposition rate and the temperature of the GaN layer obtained in this test. As is clear from this figure, the decomposition rate in the H 2 carrier gas environment (P H2 = 1) increases exponentially with increasing temperature in the temperature range of 650 ° C. to 950 ° C. regardless of the plane polarity. . It was also revealed that the decomposition rate itself differs depending on the lattice polarity. In the low temperature range of 820 ° C or lower, the decomposition rate of the (0001) plane of GaN is (000-
1) faster than face. On the contrary, in the high temperature range from 850 ° C. to 950 ° C., the decomposition rate of the (000-1) plane of GaN is faster than that of the (0001) plane. The reason for this result is GaN
This is due to the difference in activation energy in the decomposition process of the (0001) plane and the (000-1) plane.
【0029】更に、GaN面(0001)および(00
0−1)面の分解速度と水素分圧の関係を600℃から
950℃まで調べた。その結果、850℃以下の低温領
域ではGaNの分解速度は面極性に関係なく水素分圧の
3/2乗に比例することが明らかになった。一方、85
0℃以上の高温領域では、やはり、分解速度は両極性に
関係なく水素分圧の1/2乗に比例することが明らかに
なった。このことは、低温領域と高温領域で分解速度を
制御する律速反応が異なることを意味している。一方、
GaN(s)とH2(g)との反応の熱力学解析から、
この反応で生じる主な気相分子種はNH3およびGaH
であることが明らかになっており、低温領域と高温領域
の水素との反応による律速反応は各々式(1)および式
(2)で示されることが明らかである。
GaN(表面)+3/2H2(g)→Ga(表面)+NH3(g)・・・(1)(
低温領域)
GaN(表面)+1/2H2(g)→N(表面)+GaH(g)・・・(2)(
高温領域)Further, GaN planes (0001) and (00
The relationship between the decomposition rate of the 0-1) plane and the hydrogen partial pressure was examined from 600 ° C to 950 ° C. As a result, it was clarified that in the low temperature region of 850 ° C. or lower, the decomposition rate of GaN is proportional to the 3/2 power of the hydrogen partial pressure regardless of the plane polarity. On the other hand, 85
In the high temperature region of 0 ° C. or higher, it was revealed that the decomposition rate is proportional to the 1/2 partial power of hydrogen partial pressure regardless of the polarity. This means that the rate-determining reaction that controls the decomposition rate differs between the low temperature region and the high temperature region. on the other hand,
From the thermodynamic analysis of the reaction between GaN (s) and H 2 (g),
The main gas-phase molecular species generated in this reaction are NH 3 and GaH.
It is clear that the rate-determining reaction by the reaction between hydrogen in the low temperature region and the hydrogen in the high temperature region is represented by the formula (1) and the formula (2), respectively. GaN (surface) + 3 / 2H 2 (g) → Ga (surface) + NH 3 (g) (1) (low temperature region) GaN (surface) + 1 / 2H 2 (g) → N (surface) + GaH (g ) ・ ・ ・ (2) (High temperature area)
【0030】一方、GaNの成長時においてもキャリヤ
ガスとして水素ガスが用いられていること、さらにGa
Nの成長反応により水素が生成されることから、GaN
表面と水素との反応が同時に起こっていると考える必要
がある。さらに、実際に得られる成長速度は析出反応と
分解反応との差と考えられる。このことは図3の成長と
温度の関係からも明らかである。On the other hand, hydrogen gas is used as a carrier gas even during the growth of GaN.
Since hydrogen is generated by the growth reaction of N, GaN
It is necessary to consider that the reaction between the surface and hydrogen is occurring at the same time. Furthermore, the growth rate actually obtained is considered to be the difference between the precipitation reaction and the decomposition reaction. This is also clear from the relationship between growth and temperature in FIG.
【0031】上記の結果から、分解および成長におい
て、低温領域ではGaN(000−1)面が支配的にな
り、高温領域ではGaN(0001)面が支配的になる
ことが明らかである。From the above results, it is clear that, in decomposition and growth, the GaN (000-1) plane becomes dominant in the low temperature region and the GaN (0001) plane becomes dominant in the high temperature region.
【0032】このような発明により、下記のような事実
が明らかになるとともに、InGaNおよびInNの高
品質結晶が得られる成長条件が明らかになった。According to the invention as described above, the following facts were clarified, and the growth conditions for obtaining high-quality InGaN and InN crystals were clarified.
【0033】事実1:サファイヤなどの無極性の基板結
晶を用いた成長では、特に、成長温度によりサファイヤ
上に成長するGaNの成長面方位が決定される。温度と
成長面方位の関係は、低温領域では(000−1)面、
高温領域では(0001)面である。一般にGaNは1
000℃付近の高温領域が用いられており、(000
1)面成長が支配的になることが予想され、事実、(0
001)Ga終端面が成長面であることが明らかにされ
ている。Fact 1: In the growth using a nonpolar substrate crystal such as sapphire, the growth plane orientation of GaN grown on sapphire is determined by the growth temperature. The relationship between the temperature and the growth plane orientation is as follows:
In the high temperature region, it is the (0001) plane. Generally GaN is 1
A high temperature region near 000 ° C is used, and (000
1) Face growth is expected to become dominant, and in fact (0
It has been clarified that the 001) Ga termination surface is the growth surface.
【0034】事実2:GaAs(111)結晶を基板結
晶に用いた場合、GaAs(111)A面はGaN(0
001)面と、GaAs(111)B面は(Gan(0
00−1)面とIII族およびV族およびV族原子の結合
状態が等価である。このために、GaAs(111)A
面を用いた場合、約500℃でのバッファー層成長後の
1000℃以上の成長により良好なGaN成長が可能で
あるとともに、表面が(0001)面である事実と一致
する。一方、GaAs(111)B面を用いて、約50
0℃でのバッファー層成長後の850℃以上の成長にお
いては、良好なGaN成長が得られなく、さらに、1ミ
クロン以上の成長表面は(0001)となっており、成
長の初期に成長方向が反転していることが明らかであ
る。Fact 2: When a GaAs (111) crystal is used as the substrate crystal, the GaAs (111) A plane is GaN (0
The (001) plane and the GaAs (111) B plane are (Gan (0
The 0-1) plane is equivalent to the bonding state of the III, V, and V atoms. To this end, GaAs (111) A
When the plane is used, good GaN growth is possible by growth at 1000 ° C. or higher after the growth of the buffer layer at about 500 ° C., and this is consistent with the fact that the surface is the (0001) plane. On the other hand, using the GaAs (111) B plane, about 50
In the growth at 850 ° C. or higher after the growth of the buffer layer at 0 ° C., good GaN growth is not obtained, and the growth surface of 1 μm or more is (0001), and the growth direction is early in the growth. It is clear that it is reversed.
【0035】(注1)GaAs(111)A面上の成長
は、Y.Kumagai et al. Jpn.J.
Appl.Phys.,39(2000)L149およ
びY.Kumagai et al. Jpn.J.A
ppl.Phys.,39(2000)L703.から
明らかです。(Note 1) The growth on the GaAs (111) A plane was carried out according to Y. Kumagai et al. Jpn. J.
Appl. Phys. 39 (2000) L149 and Y. Kumagai et al. Jpn. J. A
ppl. Phys. , 39 (2000) L703. Is clear from
【0036】(注2)成長面の測定については、我々の
サンプルを用いた、下記の発表から明らかです。200
1年春季 応用物理学関係連合講演会29a-L-2 小
川他(名古屋大学工学部秋本先生のグループ)
(内容:GaAs(111)AおよびGaAs(11
1)B面上へのGaN成長において、100nm以下の
GaNバッファー層の表面は各々(0001)および
(000−1)面であるが、その上に920から100
0℃でGaNを1ミクロン以上成長後の表面はどちらも
(0001)面であった。)(Note 2) The measurement of the growth plane is clear from the following presentation using our sample. 200
Spring 1st Annual Joint Lecture on Applied Physics 29a-L-2 Ogawa et al. (Group of Professor Akimoto, Faculty of Engineering, Nagoya University) (Content: GaAs (111) A and GaAs (11)
1) In GaN growth on the B-plane, the surface of the GaN buffer layer of 100 nm or less is the (0001) and (000-1) planes, respectively, and 920 to 100
Both surfaces were (0001) planes after growth of GaN of 1 micron or more at 0 ° C. )
【0037】事実3:図3に示した単結晶GaN基板を
用いた成長実験により得られた表面はGaN(000
1)面およびGaN(000−1)面上には各々GaN
(0001)面およびGaN(000−1)面が成長膜
厚に関係なく得られた。Fact 3: The surface obtained by the growth experiment using the single crystal GaN substrate shown in FIG.
GaN is on the 1) plane and GaN (000-1) plane, respectively.
The (0001) plane and the GaN (000-1) plane were obtained regardless of the grown film thickness.
【0038】事実4:従来InGaNおよびInNはサ
ファイヤ基板結晶上に約500℃でバッファー層を成長
後、約1000℃程度で成長させたGaN結晶上に、8
00℃以下の低温領域で成長がされている。このため
に、(0001)成長面上に(000−1)成長面が安
定なInGaNあるいはInNを(0001)成長面で
成長することになり、原子配置の不安定性にともなう欠
陥やその欠陥に誘発された組成分離が起こる。このた
め、高品質の結晶成長が難しく、特にIn組成が大きな
InGaNあるいはInNは光学特性が得られる結晶が
得られていない。Fact 4: Conventional InGaN and InN have a buffer layer grown at about 500 ° C. on a sapphire substrate crystal, and then a GaN crystal grown at about 1000 ° C.
It is grown in a low temperature region of 00 ° C. or lower. For this reason, InGaN or InN having a stable (000-1) growth surface is grown on the (0001) growth surface, which induces defects due to instability of atomic arrangement and defects thereof. The resulting compositional separation occurs. For this reason, it is difficult to grow a high-quality crystal, and in particular, for InGaN or InN having a large In composition, a crystal having optical characteristics has not been obtained.
【0039】事実5:レーザ素子などを目的にしたIn
GaNあるいはInNの成長において、高圧法や昇華法
により作成したGaN単結晶基板あるいはサファイヤ基
板又はGaAs基板などを用いた厚膜成長で製造したG
aN単結晶基板が用いられている。この場合も、初期に
GaNやAINの成長が約1000℃付近で成長させら
れるために、GaN(0001)面が成長面に用いられ
ており、上記の事実4と同様な現象が出ている。Fact 5: In for the purpose of laser device
In the growth of GaN or InN, G produced by thick film growth using a GaN single crystal substrate, a sapphire substrate, a GaAs substrate or the like prepared by a high pressure method or a sublimation method.
An aN single crystal substrate is used. In this case as well, since GaN and AIN are initially grown at about 1000 ° C., the GaN (0001) plane is used as the growth plane, and the same phenomenon as the above-mentioned fact 4 occurs.
【0040】実施例1:
(1)サファイヤ基板を用いたMOVPE成長で、バッ
ファー層を約500℃で成長後、1000℃で約2ミク
ロンのGaNを成長後、780℃で0.5ミクロンのI
n0.2Ga0.8Nの成長を行った。一方、(2)同
様にサファイヤ基板を用いてMOVPE成長で、バッフ
ァー層を約500℃で成長後、800℃で約2ミクロン
のGaNを成長後、780℃で0.5ミクロンのIn
0.2Ga0.8Nの成長を行った。成長表面の面分析
により、(1)で得られた表面は(0001)面で、
(2)は(000−1)面であった。室温でのPL(フ
ォトルミネッセンス)測定の結果、高温GaN成長の試
料の半値幅が165meVであったのに対して、低温G
aN成長の試料では77meVと半減し結晶品質が向上
した。Example 1 (1) In MOVPE growth using a sapphire substrate, a buffer layer was grown at about 500 ° C., then about 2 μm GaN was grown at 1000 ° C., and then 0.5 μm I at 780 ° C.
n0.2Ga0.8N was grown. On the other hand, in the same manner as (2), MOVPE growth was performed using a sapphire substrate, after the buffer layer was grown at about 500 ° C., about 2 μm GaN was grown at 800 ° C., and 0.5 μm In at 780 ° C.
The growth was 0.2 Ga 0.8 N. By surface analysis of the growth surface, the surface obtained in (1) is the (0001) plane,
(2) was the (000-1) plane. As a result of PL (photoluminescence) measurement at room temperature, the full width at half maximum of the sample grown at high temperature was 165 meV, whereas the low temperature G was measured.
The aN grown sample halved to 77 meV and the crystal quality was improved.
【0041】実施例2:GaAs(111)B面を基板
結晶に用いて、MOVPE成長によりバッファー層を約
500℃で成長後、780℃でGaNを1.5ミクロン
成長し、その上に、780℃で0.6ミクロンのIn
0.3Ga0.7Nの成長をした。成長表面は(000−1)
面であることを確認した。また、成長したInGaN混
晶中には、(0001)成長面の場合に良くみられるI
n組成が大きなクラスターも見られず均一な混晶が得ら
れることが明らかになった。Example 2 Using the GaAs (111) B plane as a substrate crystal, a buffer layer was grown by MOVPE growth at about 500 ° C., and then GaN was grown at 1.5 μm at 780 ° C. and 780 thereon. 0.6 micron In at ℃
The growth was 0.3 Ga 0.7 N. Growth surface is (000-1)
It was confirmed that the surface. Further, in the grown InGaN mixed crystal, I which is often observed in the case of (0001) growth plane
It was clarified that clusters having a large n composition were not observed and a uniform mixed crystal was obtained.
【0042】実施例3:GaAs(111)B面を基板
結晶に用いて、MOVPE成長によりバッファー層を約
500℃で成長後、780℃でGaNを1.5ミクロン
成長し、その上に、650℃で0.2ミクロンのIn
0.6Ga0.4Nの成長をした。成長表面は(000−1)
面であることが確認された。また、成長したInGaN
混晶は相分離も見られず、均一な混晶が得られることが
明らかになった。X線回折の結果、約2.1minの半
値幅のIN0.6Ga0.4Nが得られたことが分かった。一
方、サファイヤ基板またはGaAs(111)A面基板
を用いてMOVPE成長で約500℃でバッファー層を
成長後、約950℃でGaNを成長後、650℃でIn
0.6Ga0.4Nの成長を試みたが、相分離を起こし均一な
InGaN混晶が得られなかった。Example 3: GaAs (111) B plane as substrate
It is used for crystallization, and the buffer layer is grown by MOVPE.
After growing at 500 ℃, GaN at 1.5 ℃ at 780 ℃
Grown on top of 0.2 micron In at 650 ° C.
0.6Ga0.4The growth of N. Growth surface is (000-1)
It was confirmed to be a face. Also, grown InGaN
The mixed crystal does not show phase separation, and a uniform mixed crystal can be obtained.
It was revealed. As a result of X-ray diffraction, about 2.1 min half
IN of price range0.6Ga0.4It was found that N was obtained. one
, Sapphire substrate or GaAs (111) A-plane substrate
Buffer layer at about 500 ° C by MOVPE growth using
After the growth, GaN is grown at about 950 ° C. and then In is grown at 650 ° C.
0.6Ga0.4We tried to grow N, but caused phase separation
No InGaN mixed crystal was obtained.
【0043】実施例4:GaN単結晶基板(000−
1)面を基板に用いて、750℃でGaNを2ミクロン
成長後、In0.2Ga0.8N混晶を0.15ミクロン成長
した。InGaN混晶中の組成の不安定性もなく均一な
組成が得られている。一方GaN(0001)面を基盤
にした成長では、混晶中にIn組成が大きなクラスター
の存在が明らかになった。また、フォトルミネッセンス
測定によりGaN(000−1)面成長の半値幅が小さ
く品質が良いことが分かった。Example 4: GaN single crystal substrate (000-
Using the 1) plane as a substrate, GaN was grown to 2 μm at 750 ° C., and then an In 0.2 Ga 0.8 N mixed crystal was grown to 0.15 μm. A uniform composition was obtained without instability of the composition in the InGaN mixed crystal. On the other hand, in the growth based on the GaN (0001) plane, it was revealed that clusters having a large In composition existed in the mixed crystal. In addition, it was found by photoluminescence measurement that the FWHM of GaN (000-1) plane growth was small and the quality was good.
【0044】実施例5:GaN(000−1)面を基板
結晶に用いて、MOVPE成長により780℃でGaN
を1.5ミクロン成長し、その上に、650℃で0.2
ミクロンのInGaNの成長をした。成長表面(000
−1)面であることが確認された。また、成長したIn
GaN混晶は相分離も見られず、均一な混晶が得られる
ことが明らかになった。X線回折およびフォトルミネッ
センスから確認した。Example 5: GaN (000-1) plane was used as a substrate crystal and GaN was grown at 780 ° C. by MOVPE growth.
, 1.5 micron, and 0.2 at 650 ° C.
Micron InGaN was grown. Growth surface (000
It was confirmed that it was a (-1) plane. Also, grown In
No phase separation was observed in the GaN mixed crystal, which revealed that a uniform mixed crystal was obtained. It was confirmed by X-ray diffraction and photoluminescence.
【0045】上述した本発明の方法によれば、GaN層
を従来より低温の約820℃以下、約500℃以上で行
うので、この温度領域では、GaN層の成長極性は、
(000−1)面(N極)が支配的となる。次いで、G
aN層の上のInGaN層又はInN層は、約800℃
以下で行うため、InNのモル分率yを高め(例えば約
0.7以上)、InGaNの熱分解を防止することがで
きる。また、このInGaN層又はInN層は、その下
地となるGaN層が(000−1)面に成長しているの
で、InGaN層又はInN層の成長極性も、下地層と
同じ(000−1)面となる。更に、約800℃以下,
約400℃以上の低温領域では、InGaN層又はIn
N層の(000−1)面の成長は、上述の研究の結果か
ら、従来の(0001)面の成長に比べ成長速度が速
く、分解速度が遅いことが確認された。従って、成長極
性が(000−1)面となるInGaN層又はInN層
は、(0001)面の成長の場合に比較して、格子欠陥
が低減されるため、その品質は従来より優れたものとな
る。According to the above-described method of the present invention, the GaN layer is formed at a temperature lower than that of the prior art at about 820 ° C. or lower and about 500 ° C. or higher. Therefore, in this temperature region, the growth polarity of the GaN layer is
The (000-1) plane (N pole) becomes dominant. Then G
The InGaN layer or InN layer on the aN layer has a temperature of about 800 ° C.
Since it is carried out below, the molar fraction y of InN can be increased (for example, about 0.7 or more) to prevent thermal decomposition of InGaN. Further, in this InGaN layer or InN layer, the underlying GaN layer grows on the (000-1) plane, so the growth polarity of the InGaN layer or InN layer is the same as that of the underlayer (000-1) plane. Becomes Furthermore, about 800 ℃ or less,
In the low temperature region of about 400 ° C. or higher, the InGaN layer or In
From the results of the above-mentioned research, it was confirmed that the growth rate of the (000-1) plane of the N layer was higher and the decomposition rate was slower than the conventional growth of the (0001) plane. Therefore, the InGaN layer or the InN layer whose growth polarity is the (000-1) plane has a lattice defect reduced as compared with the case of the growth of the (0001) plane, and therefore its quality is superior to the conventional one. Become.
【0046】なお、本発明は上述した実施例および実施
形態に限定されず、本発明の要旨を逸脱しない範囲で種
々変更できることは勿論である。The present invention is not limited to the above-described examples and embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
【0047】[0047]
【発明の効果】上述したように、本発明の半導体結晶膜
の成長方法は、従来と同様のpn接合型のLEDにおい
て、その結晶構造を改善し、成長速度を高め、格子欠陥
を低減してその品質を高めることができる等の優れた効
果を有する。As described above, according to the method for growing a semiconductor crystal film of the present invention, in a pn junction type LED similar to the conventional one, the crystal structure is improved, the growth rate is increased, and lattice defects are reduced. It has an excellent effect that its quality can be improved.
【図1】ウルツ鉱型結晶構造(A)と四面体クラスタ
(B)の模式図である。FIG. 1 is a schematic diagram of a wurtzite crystal structure (A) and a tetrahedral cluster (B).
【図2】GaN層の分解速度と温度の関係図である。FIG. 2 is a graph showing the relationship between the decomposition rate of a GaN layer and temperature.
【図3】GaN層の成長速度と温度の関係図である。FIG. 3 is a graph showing the relationship between the growth rate of a GaN layer and temperature.
【図4】InGaNを用いた青色LEDの断面構造図で
ある。FIG. 4 is a sectional structural view of a blue LED using InGaN.
【図5】主な半導体のバンドギャップと格子定数の関係
図である。FIG. 5 is a relationship diagram of a band gap and a lattice constant of main semiconductors.
【図6】InGaN中のInNのモル分率yと平衡温度
との関係図である。FIG. 6 is a diagram showing a relationship between a molar fraction y of InN in InGaN and an equilibrium temperature.
【図7】従来の半導体結晶膜の成長方法の模式図であ
る。FIG. 7 is a schematic view of a conventional method for growing a semiconductor crystal film.
【図8】低温堆積層を用いたGaNのMOVPE(有機
金属化合物気相成長法)の基板温度プログラムの概略図
である。FIG. 8 is a schematic diagram of a MOVPE (metal organic chemical vapor deposition) substrate temperature program for GaN using a low temperature deposited layer.
【図9】2元化合物InN,GaM,AlNの成長速度
の基板温度依存性の概略図である。FIG. 9 is a schematic diagram of substrate temperature dependence of growth rate of binary compounds InN, GaM, and AlN.
1 サファイア基板、2 反応ガス噴射管、3 副噴射
管、4 サセプター、5 シャフト、6 反応容器、7
ヒータ、8 排気口、9 放射温度計1 sapphire substrate, 2 reaction gas injection tube, 3 auxiliary injection tube, 4 susceptor, 5 shaft, 6 reaction vessel, 7
Heater, 8 exhaust ports, 9 radiation thermometer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河口 紀仁 東京都江東区豊洲3丁目1番15号 石川島 播磨重工業株式会社東京エンジニアリング センター内 (72)発明者 正木 みゆき 東京都江東区豊洲3丁目1番15号 石川島 播磨重工業株式会社東京エンジニアリング センター内 Fターム(参考) 4G077 AA03 BE11 DA05 DB05 DB08 ED06 EF01 HA02 SC02 TB03 TB05 TC06 TC13 5F041 AA40 CA04 CA34 CA40 CA64 CA65 CA66 5F045 AA04 AA05 AB14 AB17 AC08 AC09 AC12 AD09 AD10 AD11 AD12 AF09 BB09 BB12 CA11 DA53 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Norihito Kawaguchi 3-1-15-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Tokyo Engineering Co., Ltd. In the center (72) Inventor Miyuki Masaki 3-1-15-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Tokyo Engineering Co., Ltd. In the center F term (reference) 4G077 AA03 BE11 DA05 DB05 DB08 ED06 EF01 HA02 SC02 TB03 TB05 TC06 TC13 5F041 AA40 CA04 CA34 CA40 CA64 CA65 CA66 5F045 AA04 AA05 AB14 AB17 AC08 AC09 AC12 AD09 AD10 AD11 AD12 AF09 BB09 BB12 CA11 DA53
Claims (3)
GaN層を成長させ、次いで、その上にInGaN層又
はInN層を成長させる半導体結晶膜の成長方法におい
て、 GaN層の成長を約820℃以下,約500℃以上で行
い、InGaN層又はInN層の成長を約800℃以下
で行う、ことを特徴とする半導体結晶膜の成長方法。1. A method for growing a semiconductor crystal film comprising growing a GaN layer on a sapphire substrate via a buffer layer and then growing an InGaN layer or an InN layer thereon, wherein the growth of the GaN layer is about 820 ° C. or less. A method for growing a semiconductor crystal film, wherein the growth is performed at about 500 ° C. or higher, and the growth of the InGaN layer or the InN layer is performed at about 800 ° C. or lower.
属化合物気相成長法)、HVPE(ハイドライド気相成
長法)又はMOMBE法(有機金属分子ビームエピタキ
シー法)による、ことを特徴とする請求項1に記載の半
導体結晶膜の成長方法。2. The growth of each layer is carried out by MOVPE (organic metal compound vapor phase epitaxy), HVPE (hydride vapor phase epitaxy) or MOMBE (metalorganic molecular beam epitaxy). 1. The method for growing a semiconductor crystal film according to 1.
H3)3又はGa(C 2H5)3であり、Inの前駆体はI
n(CH3)3又はIn(C2H5)3であり、Nの前駆体
はアンモニア、MNH2(メチルアミン)、DMNH
(ジメチルアミン)、TMN(トリメチルアミン)、N
2H2(ヒドラジン)、(CH3)NH-NH 2(モノメチ
ルヒドラジン)、又は(CH3)2N-NH2(ジメチルヒ
ドラジン)である、ことを特徴とする請求項1に記載の
半導体結晶膜の成長方法。3. The Ga precursor is GaCl or Ga (C).
H3)3Or Ga (C 2HFive)3And the precursor of In is I
n (CH3)3Or In (C2HFive)3And the precursor of N
Is ammonia, MNH2(Methylamine), DMNH
(Dimethylamine), TMN (trimethylamine), N
2H2(Hydrazine), (CH3) NH-NH 2(Monomechi
(Hydrazine), or (CH3)2N-NH2(Dimethylhi
Drazin) according to claim 1.
Method for growing semiconductor crystal film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001225534A JP5093740B2 (en) | 2001-07-26 | 2001-07-26 | Semiconductor crystal film growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001225534A JP5093740B2 (en) | 2001-07-26 | 2001-07-26 | Semiconductor crystal film growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003037288A true JP2003037288A (en) | 2003-02-07 |
JP5093740B2 JP5093740B2 (en) | 2012-12-12 |
Family
ID=19058510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001225534A Expired - Fee Related JP5093740B2 (en) | 2001-07-26 | 2001-07-26 | Semiconductor crystal film growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5093740B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004327655A (en) * | 2003-04-24 | 2004-11-18 | Sharp Corp | Nitride semiconductor laser device, method of manufacturing the same, and semiconductor optical device |
JP2005197668A (en) * | 2003-12-11 | 2005-07-21 | Matsushita Electric Ind Co Ltd | Heat dissipation structure for electronic equipment |
JP2008053640A (en) * | 2006-08-28 | 2008-03-06 | Kanagawa Acad Of Sci & Technol | III-V nitride layer and method for producing the same |
US7462882B2 (en) | 2003-04-24 | 2008-12-09 | Sharp Kabushiki Kaisha | Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus |
JP2009147271A (en) * | 2007-12-18 | 2009-07-02 | Tohoku Univ | Substrate manufacturing method and group III nitride semiconductor crystal |
JP2010016191A (en) * | 2008-07-03 | 2010-01-21 | Sumitomo Electric Ind Ltd | Method of producing group-iii nitride-based light-emitting element and method of producing epitaxial wafer |
JP2010018516A (en) * | 2009-07-14 | 2010-01-28 | Sumitomo Electric Ind Ltd | GaN SUBSTRATE |
US7791103B2 (en) | 2007-02-16 | 2010-09-07 | Hitachi Cable, Ltd. | Group III nitride semiconductor substrate |
US8476086B2 (en) | 2006-11-30 | 2013-07-02 | Sumitomo Electric Industries, Ltd. | Semiconductor device and method of its manufacture |
JP2014090169A (en) * | 2012-10-16 | 2014-05-15 | Soraa Inc | Indium gallium nitride light-emitting device |
JP2018516448A (en) * | 2014-12-23 | 2018-06-21 | インテグレイテッド ソーラー | Epitaxial growth method of material interface between III-V material and silicon wafer canceling residual strain |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06177059A (en) * | 1992-12-10 | 1994-06-24 | Nichia Chem Ind Ltd | Method for growing indium gallium nitride |
JPH09186403A (en) * | 1995-12-27 | 1997-07-15 | Sharp Corp | Semiconductor light emitting element and manufacture thereof |
JPH09283799A (en) * | 1996-04-09 | 1997-10-31 | Mitsubishi Cable Ind Ltd | Semiconductor light-emitting element |
JPH10316498A (en) * | 1997-03-14 | 1998-12-02 | Sumitomo Electric Ind Ltd | Epitaxial wafer and manufacturing method thereof |
JPH11340510A (en) * | 1998-03-27 | 1999-12-10 | Sharp Corp | Semiconductor element and manufacture thereof |
JP2000311865A (en) * | 1993-03-15 | 2000-11-07 | Toshiba Corp | Compound semiconductor element and manufacture thereof |
JP2000332364A (en) * | 1999-05-17 | 2000-11-30 | Matsushita Electric Ind Co Ltd | Nitride semiconductor device |
JP2001148532A (en) * | 1999-11-19 | 2001-05-29 | Pioneer Electronic Corp | Nitride semiconductor laser and manufacturing method therefor |
JP2001185487A (en) * | 1999-12-24 | 2001-07-06 | Ulvac Japan Ltd | Method of forming group III nitride thin film |
-
2001
- 2001-07-26 JP JP2001225534A patent/JP5093740B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06177059A (en) * | 1992-12-10 | 1994-06-24 | Nichia Chem Ind Ltd | Method for growing indium gallium nitride |
JP2000311865A (en) * | 1993-03-15 | 2000-11-07 | Toshiba Corp | Compound semiconductor element and manufacture thereof |
JPH09186403A (en) * | 1995-12-27 | 1997-07-15 | Sharp Corp | Semiconductor light emitting element and manufacture thereof |
JPH09283799A (en) * | 1996-04-09 | 1997-10-31 | Mitsubishi Cable Ind Ltd | Semiconductor light-emitting element |
JPH10316498A (en) * | 1997-03-14 | 1998-12-02 | Sumitomo Electric Ind Ltd | Epitaxial wafer and manufacturing method thereof |
JPH11340510A (en) * | 1998-03-27 | 1999-12-10 | Sharp Corp | Semiconductor element and manufacture thereof |
JP2000332364A (en) * | 1999-05-17 | 2000-11-30 | Matsushita Electric Ind Co Ltd | Nitride semiconductor device |
JP2001148532A (en) * | 1999-11-19 | 2001-05-29 | Pioneer Electronic Corp | Nitride semiconductor laser and manufacturing method therefor |
JP2001185487A (en) * | 1999-12-24 | 2001-07-06 | Ulvac Japan Ltd | Method of forming group III nitride thin film |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7858992B2 (en) | 2003-04-24 | 2010-12-28 | Sharp Kabushiki Kaisha | Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus |
JP2004327655A (en) * | 2003-04-24 | 2004-11-18 | Sharp Corp | Nitride semiconductor laser device, method of manufacturing the same, and semiconductor optical device |
US7462882B2 (en) | 2003-04-24 | 2008-12-09 | Sharp Kabushiki Kaisha | Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus |
US7579627B2 (en) | 2003-04-24 | 2009-08-25 | Sharp Kabushiki Kaisha | Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus |
JP2005197668A (en) * | 2003-12-11 | 2005-07-21 | Matsushita Electric Ind Co Ltd | Heat dissipation structure for electronic equipment |
JP2008053640A (en) * | 2006-08-28 | 2008-03-06 | Kanagawa Acad Of Sci & Technol | III-V nitride layer and method for producing the same |
US8476086B2 (en) | 2006-11-30 | 2013-07-02 | Sumitomo Electric Industries, Ltd. | Semiconductor device and method of its manufacture |
US7791103B2 (en) | 2007-02-16 | 2010-09-07 | Hitachi Cable, Ltd. | Group III nitride semiconductor substrate |
JP2009147271A (en) * | 2007-12-18 | 2009-07-02 | Tohoku Univ | Substrate manufacturing method and group III nitride semiconductor crystal |
JP2010016191A (en) * | 2008-07-03 | 2010-01-21 | Sumitomo Electric Ind Ltd | Method of producing group-iii nitride-based light-emitting element and method of producing epitaxial wafer |
JP2010018516A (en) * | 2009-07-14 | 2010-01-28 | Sumitomo Electric Ind Ltd | GaN SUBSTRATE |
JP2014090169A (en) * | 2012-10-16 | 2014-05-15 | Soraa Inc | Indium gallium nitride light-emitting device |
US9978904B2 (en) | 2012-10-16 | 2018-05-22 | Soraa, Inc. | Indium gallium nitride light emitting devices |
JP2018516448A (en) * | 2014-12-23 | 2018-06-21 | インテグレイテッド ソーラー | Epitaxial growth method of material interface between III-V material and silicon wafer canceling residual strain |
JP2021073721A (en) * | 2014-12-23 | 2021-05-13 | インテグレイテッド ソーラー | Epitaxial growth method of material interface between group iii-v material and silicon wafer which cancels residual strain |
Also Published As
Publication number | Publication date |
---|---|
JP5093740B2 (en) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5099763B2 (en) | Substrate manufacturing method and group III nitride semiconductor crystal | |
US7560296B2 (en) | Process for producing an epitalixal layer of galium nitride | |
US7847313B2 (en) | Group III-V nitride-based semiconductor substrate and group III-V nitride-based light emitting device | |
US6733591B2 (en) | Method and apparatus for producing group-III nitrides | |
JP4187175B2 (en) | Method for producing gallium nitride material | |
JP4801315B2 (en) | Method for producing group III nitride crystal | |
US8142566B2 (en) | Method for producing Ga-containing nitride semiconductor single crystal of BxAlyGazIn1-x-y-zNsPtAs1-s-t (0<=x<=1, 0<=y<1, 0<z<=1, 0<s<=1 and 0<=t<1) on a substrate | |
JP2003077847A (en) | Method for producing group 3-5 compound semiconductor | |
US20070215901A1 (en) | Group III-V nitride-based semiconductor substrate and method of fabricating the same | |
JP4597534B2 (en) | Method for manufacturing group III nitride substrate | |
JP2008179536A (en) | Gallium nitride-based material and manufacturing method thereof | |
JP4340866B2 (en) | Nitride semiconductor substrate and manufacturing method thereof | |
JP5093740B2 (en) | Semiconductor crystal film growth method | |
JP2005213063A (en) | Nitride semiconductor free-standing substrate, manufacturing method thereof, and nitride semiconductor light-emitting device using the same | |
US10411154B2 (en) | RAMO4 substrate and nitride semiconductor apparatus | |
US7338555B2 (en) | Highly crystalline aluminum nitride multi-layered substrate and production process thereof | |
JP2000252217A (en) | Method for manufacturing compound semiconductor | |
JP6159245B2 (en) | Method for producing aluminum nitride crystal | |
JP4551203B2 (en) | Group III nitride crystal manufacturing method | |
JP2010222187A (en) | Method for manufacturing group III nitride semiconductor layer | |
JP2006298744A (en) | Ga-containing nitride semiconductor single crystal, method for producing the same, and substrate and device using the crystal | |
US20050066885A1 (en) | Group III-nitride semiconductor substrate and its manufacturing method | |
JP2005104829A (en) | High crystalline aluminum nitride laminated substrate and manufacturing method thereof | |
JP2677221B2 (en) | Method for growing nitride-based III-V compound semiconductor crystal | |
JP2002193699A (en) | Group III nitride film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080507 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101117 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111004 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20111025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111025 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111025 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120827 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120909 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |