JP2003026483A - High surface area SiC ceramics and manufacturing method thereof - Google Patents
High surface area SiC ceramics and manufacturing method thereofInfo
- Publication number
- JP2003026483A JP2003026483A JP2001212181A JP2001212181A JP2003026483A JP 2003026483 A JP2003026483 A JP 2003026483A JP 2001212181 A JP2001212181 A JP 2001212181A JP 2001212181 A JP2001212181 A JP 2001212181A JP 2003026483 A JP2003026483 A JP 2003026483A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- ceramics
- surface area
- carbon
- high surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 19
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000007809 chemical reaction catalyst Substances 0.000 claims abstract description 4
- 239000003463 adsorbent Substances 0.000 claims abstract 2
- 239000002253 acid Substances 0.000 claims description 4
- 229910021332 silicide Inorganic materials 0.000 abstract description 17
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 abstract description 17
- 238000010828 elution Methods 0.000 abstract description 14
- 239000003610 charcoal Substances 0.000 abstract description 13
- 230000003647 oxidation Effects 0.000 abstract description 7
- 238000007254 oxidation reaction Methods 0.000 abstract description 7
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 229910004077 HF-HNO3 Inorganic materials 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000013078 crystal Substances 0.000 abstract 1
- 238000005137 deposition process Methods 0.000 abstract 1
- 238000004090 dissolution Methods 0.000 abstract 1
- 150000002736 metal compounds Chemical class 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 31
- 229910052742 iron Inorganic materials 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 238000007731 hot pressing Methods 0.000 description 8
- 235000013339 cereals Nutrition 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010903 husk Substances 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 241001062872 Cleyera japonica Species 0.000 description 1
- 101100121112 Oryza sativa subsp. indica 20ox2 gene Proteins 0.000 description 1
- 101100121113 Oryza sativa subsp. japonica GA20OX2 gene Proteins 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はセラミックスに関す
るものである。TECHNICAL FIELD The present invention relates to ceramics.
【0002】[0002]
【従来の技術】従来、高表面積SiCはカルボシラン類
や、あるいはこれらのゲルを熱分解して微粒のSiC粉
体をつくり、外部表面積を利用していた。また、クロス
リンクスを導入して、熱分解して粉体とし高表面積とし
ていた。2. Description of the Related Art Conventionally, for high surface area SiC, carbosilanes or their gels are thermally decomposed to form fine SiC powders, and the external surface area is utilized. In addition, crosslinks were introduced and pyrolyzed into powder to have a high surface area.
【0003】さらに、活性炭とSiO等シリコン源と高
温で反応させ、2mm程度の大きさの顆粒を製造してい
た。Further, activated carbon was reacted with a silicon source such as SiO 2 at a high temperature to produce granules having a size of about 2 mm.
【0004】[0004]
【発明が解決しようとする課題】以上に述べた従来の技
術は直径2mm以下の粉体、特に、カルボシラン類の熱
分解による高表面積SiCは0.01μm程度で、触媒
担体として使用するには圧力損失があるので、2000
℃付近で焼結させ、成形体にする必要があった。しか
し、2000℃で焼結させるとSiCの粒成長が起こり
表面積が減少する。The conventional techniques described above are powders having a diameter of 2 mm or less, and in particular, high surface area SiC due to thermal decomposition of carbosilanes is about 0.01 μm. 2000 because there is a loss
It was necessary to sinter in the vicinity of ° C to obtain a molded body. However, sintering at 2000 ° C. causes grain growth of SiC and reduces the surface area.
【0005】また、これらは低温で製造するため、Si
Cの結晶性が悪く、SiCの積層欠陥が大きい。このた
め、高温における耐酸化性が小さく、SiCの空気中、
高温で酸化により生じたSiO2がガラス状になり表面
積が減少するものであった。Further, since they are manufactured at low temperature, Si
C has poor crystallinity and SiC has a large stacking fault. Therefore, the oxidation resistance at high temperature is small, and in the air of SiC,
The SiO 2 generated by oxidation at high temperature became glassy and the surface area was reduced.
【0006】本発明は、このように再成型する必要な
く、耐酸化性が大きく、かつ高強度で表面積の大きなS
iCセラミックスを提供しようとするものである。According to the present invention, there is no need for re-molding as described above, and S having a large oxidation resistance, a high strength and a large surface area is used.
It aims to provide iC ceramics.
【0007】そこで、耐酸化性を有する高表面積SiC
セラミックを提供するためには、本製造法のごとく、S
iC生成のために金属シリサイドの溶解−析出反応を利
用して、液層反応によりSiCを生成させ、積層欠陥の
小さな多孔質SiCセラミックスを提供する。そして、
HF−HNO3によりSiCを溶出し、細孔を生じさせ
高表面積を実現することを、問題解決のための手段とす
るものである。Therefore, high surface area SiC having oxidation resistance
In order to provide ceramics, as in this manufacturing method, S
By utilizing the dissolution-precipitation reaction of metal silicide to generate iC, SiC is generated by a liquid layer reaction to provide a porous SiC ceramic having a small stacking fault. And
Elution of SiC with HF-HNO 3 to generate pores and realize a high surface area is a means for solving the problem.
【0008】また、高強度高表面積SiCセラミックス
を提供するためには、本製造のごとく、金属シリサイド
の溶解−析出作用を利用して、SiC粒成長を起こしS
iC粒子ネック結合の大きいSiC多孔質SiCセラミ
ックスを製造する。そして、HF−HNO3によりSi
Cを溶出し、細孔を生じさせ、高表面積を実現すること
を問題を解決するための手段とするものである。In order to provide high strength and high surface area SiC ceramics, SiC grain growth is caused by utilizing the dissolution-precipitation action of metal silicide as in the main production.
An SiC porous SiC ceramic having a large iC particle neck bond is produced. Then, HF-HNO 3 is used for Si.
Elution of C, generation of pores, and realization of a high surface area are the means for solving the problem.
【0009】[0009]
【問題を解決するための手段】上記第1の課題解決手段
による作用は次の通りである。SiC焼結体の製造の原
料として、もみがらを炭化したもみがら炭中の炭素とシ
リカの混合物に鉄等遷移金属化合物をSiCへの反応触
媒として加え、ホットプレス条件下で多孔質SiCセラ
ミックスを製造した。この際、鉄はSiC化反応の途中
で、鉄シリサイドになる。この鉄シリサイドが炭素を溶
解し、過飽和になったらSiCとして析出する。このよ
うにして生成されたSiCは積層欠陥が小さいため、耐
酸化性が良い。[Means for Solving the Problem] The operation of the first means for solving the problems is as follows. As a raw material for producing a SiC sintered body, a transition metal compound such as iron is added as a reaction catalyst to SiC to a mixture of carbon and silica in chaffed charcoal obtained by carbonizing chaff to obtain porous SiC ceramics under hot pressing conditions. Manufactured. At this time, iron becomes iron silicide during the SiC formation reaction. When this iron silicide dissolves carbon and becomes supersaturated, it precipitates as SiC. Since the SiC produced in this way has a small stacking fault, it has good oxidation resistance.
【0010】また、第2の問題解決の手段は一旦、生じ
たSiCと溶融したSiC含有鉄シリサイドとが合体
し、太いSiC粒子間ネック結合を作りセラミックスと
なる。従って、HF−HNO3により50wt%程度溶
出してもセラミックスのままで存在していることができ
る。また、ホットプレスの温度が比較的低いと、この鉄
シリサイドはSiC粒子中にはいった状態で多孔質Si
Cセラミックスが生成される。従って、このSiC中の
鉄シリサイドを溶かした後、生じたSiC中の孔をHF
−HNO3で分解溶出することによって高表面積を実現
した。The second means for solving the problem is that once the generated SiC and the molten SiC-containing iron silicide are united, a thick neck bond between the SiC particles is formed to form a ceramic. Therefore, even if it is eluted with HF-HNO 3 in an amount of about 50 wt%, it can still exist as a ceramic. Further, when the temperature of hot pressing is relatively low, this iron silicide enters the SiC particles and becomes porous Si.
C ceramics are generated. Therefore, after melting the iron silicide in this SiC, the generated holes in the SiC are HF
To achieve high surface area by decomposing eluting with-HNO3-3.
【0011】[0011]
【発明実施の形態】本発明の方法においては炭素とシリ
カよりSiCへの反応させる触媒作用と溶解−析出反応
によりSiC粒成長を促進ならしむることが重要であ
る。そのためには、一般的には金属シリサイドの融点が
低い方が有利である。また、SiCへの反応と焼結を同
時にさせることが好ましいため、もみがら炭の如くシリ
カと炭素との混合物であれば良い。あるいは、炭素とシ
リカを人工的に混合物したものを使用しても良い。BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, it is important to promote the SiC grain growth by the catalytic action of the reaction of carbon and silica to SiC and the dissolution-precipitation reaction. For that purpose, it is generally advantageous that the melting point of the metal silicide is low. Further, since it is preferable to simultaneously react with SiC and sinter, a mixture of silica and carbon such as chaff charcoal may be used. Alternatively, an artificial mixture of carbon and silica may be used.
【0012】上記のシリカと炭素の混合物であるもみが
ら炭をホットプレスモ−ルド中でFe2O3やCoOな
どの触媒の共存下で圧力を加えながら熱する(ホットプ
レスする)と炭素とシリカが間接的に反応し、1700
℃以上でSiCとなる。そして、1850℃付近から焼
結しはじめ、多孔質SiCセラミックスとなる。この時
の触媒の量はもみがら炭に対して0.01部以上0.3
0部以下が好ましい。また、C/SiO2比は重量比で
0.3以上2.0以下が好ましい。The above-mentioned chaffed charcoal, which is a mixture of silica and carbon, is heated (hot pressed) in a hot press mold under pressure in the presence of a catalyst such as Fe 2 O 3 or CoO (hot pressing) to give carbon. Silica reacts indirectly, 1700
Becomes SiC at ℃ or above. Then, it begins to sinter at around 1850 ° C. and becomes a porous SiC ceramics. At this time, the amount of the catalyst is 0.01 part or more with respect to the chaff charcoal 0.3
It is preferably 0 part or less. Further, the C / SiO 2 ratio is preferably 0.3 or more and 2.0 or less by weight ratio.
【0013】次に、HF−HNO3の量は、溶出機構か
ら考えると市販HF及びHNO3の0.05部以上が好
ましい。溶出温度は10℃以上が好ましい。Next, the amount of HF-HNO 3 is preferably 0.05 part or more of commercially available HF and HNO 3 in view of the elution mechanism. The elution temperature is preferably 10 ° C or higher.
【0014】[0014]
【実施例】次に、炭素とシリカの混合物であるもみがら
炭を使用した実施例により、本発明をさらに詳細に説明
するが、これらの例によってなんら限定されるものでは
ない。EXAMPLES Next, the present invention will be described in more detail with reference to examples using chaffed charcoal, which is a mixture of carbon and silica, but the present invention is not limited to these examples.
【0015】実施例1
もみがらを炭化した後、300℃以上で空気中で酸化し
た。この酸化もみがら炭、18gにFe2O3を2.2
mMを加え、エタノ−ルスラリ−中で良く混合し、乾燥
した後、図1に示す温度でホットプレスした。この時、
この酸化もみがら炭を1000℃で1時間、窒素気流中
で熱処理して得たもののC/SiO2は重量比で0.4
2であった。次に、図1に示す温度でホットプレスして
得た多孔質SiCセラミックスを5OH2O:25HN
O3:25HF(体積比)の混酸中に浸して、継続的に
表面積を測定した。横軸にその時の溶出量、縦軸に表面
積を示す。このように、表面積はホットプレス温度と、
溶出量に依存することが判明した。これらの溶出後の電
子顕微鏡を観察すると、温度が比悪的に低いところで
は、SiC粒子中に細孔が発達しており、ホットプレス
温度が2050℃になるとSiC粒子の外部が溶出され
ていることがわかった。このことは触媒として加えたF
e2O3が鉄シリサイドとなり、その鉄シリサイド中に
高温で炭素が溶解し、溶解度以上になると、SiCが析
出となり、生じたSiCに鉄シリサイドが合体して粒成
長する、いわゆる“溶解−析出”機構によって、SiC
粒子中に鉄シリサイドが取り込まれる。この鉄シリサイ
ドは、比較的HF−HNO3に溶けやすいため、この細
孔を起点として、さらに細孔が発達することが考えられ
る。高温になると鉄シリサイドはSiC粒子外に出るた
め、SiC粒子の内部は溶出されず、粒子の外部が溶出
される。このため、溶出量に対する表面積の増加は少な
くなると考えられる。同じように、コバルトを触媒とし
た多孔質SiCセラミックスの表面積もホットプレス温
度が上昇するとともに、SiC溶出量に対する表面積の
増加は減少することが判明した。この場合、鉄やコバル
ト等触媒を存在させないと、セラミックスの強度が弱
く、溶出した場合、粉体または塊状になる。さらに、ホ
ットプレス温度が高くなるとSiC同士の繋がりが強く
なり、坑折力は大きくなる。Example 1 Rice husks were carbonized and then oxidized in air at 300 ° C. or higher. This oxidized chaff charcoal, 18 g Fe 2 O 3 2.2
After adding mM, the mixture was thoroughly mixed in an ethanol slurry, dried, and then hot pressed at the temperature shown in FIG. This time,
The oxidized chaff charcoal was heat-treated at 1000 ° C. for 1 hour in a nitrogen stream to obtain C / SiO 2 of 0.4 by weight.
It was 2. Next, the porous SiC ceramics obtained by hot pressing at the temperature shown in FIG. 1 were treated with 5OH 2 O: 25HN.
The surface area was continuously measured by immersing in O 3 : 25HF (volume ratio) mixed acid. The horizontal axis shows the elution amount at that time, and the vertical axis shows the surface area. Thus, the surface area depends on the hot pressing temperature,
It was found to depend on the elution amount. When observing the electron microscope after elution, pores are developed in the SiC particles at a place where the temperature is extremely low, and the outside of the SiC particles is eluted when the hot pressing temperature reaches 2050 ° C. I understood it. This is because F added as a catalyst
When e 2 O 3 becomes iron silicide, carbon is dissolved in the iron silicide at a high temperature and becomes more than the solubility, SiC is precipitated, and the resulting SiC is coalesced with iron silicide, so-called “melt-precipitation”. By the mechanism, SiC
Iron silicide is incorporated into the particles. The iron silicide, since relatively soluble in HF-HNO 3, as a starting point the pores, it is considered that further pores develops. When the temperature becomes high, the iron silicide goes out of the SiC particles, so that the inside of the SiC particles is not eluted but the outside of the particles is eluted. Therefore, it is considered that the increase in the surface area with respect to the elution amount is reduced. Similarly, it was found that the surface area of the porous SiC ceramics using cobalt as a catalyst also decreased with the increase of the hot pressing temperature and the increase of the surface area with respect to the amount of SiC eluted. In this case, unless a catalyst such as iron or cobalt is present, the strength of the ceramic is weak, and when it is eluted, it becomes a powder or a lump. Furthermore, when the hot pressing temperature becomes high, the SiC is strongly connected to each other, and the fold strength becomes large.
【0016】実施例2
次に、もみがら炭を300℃以上で酸化し、C/SiO
2比を変えた酸化もみがら炭18gとFe2O3を2.
2mMをスラリ−で混合物とし、乾燥後、2050℃で
ホットプレスした。この時、もみがら炭中の炭素の酸化
減量が少ないとSiCと炭素の複合した成形体を得られ
た。その後、700℃、空気中で、この複合成形体中の
過剰の炭素を除去した。その後、5OH2O:25HN
O3:25HF(体積比)の混酸中に浸し、継続的に表面
積を測定した。その結果を図2に示す。C/SiO2が
小さくなると、溶出量に対する表面積の増加の割合は小
さくなっている。C/SiO2が0.79,0.65,
0.53の時の残留炭素量はそれぞれ26.2,10.
7,0wt%であった。このことは、残留炭素によりS
iCの粒成長が阻害されることと、脱炭素後は炭素であ
った部分が孔となりHF−HNO3の混酸が効率的に多
孔質SiCセラミックス中に入り込み、SiCの溶出が
進むため、残留炭素が存在していた時がSiCセラミッ
クスの表面積が大きくなるものと見られる。Example 2 Next, chaffed charcoal was oxidized at 300 ° C. or higher to obtain C / SiO 2.
Oxide chaff charcoal 18g and Fe 2 O 3 having different 2 ratio of 2.
A mixture of 2 mM was slurried, dried, and hot pressed at 2050 ° C. At this time, when the amount of carbon loss in the chaff charcoal was small, a composite body of SiC and carbon was obtained. Then, excess carbon in this composite molded body was removed at 700 ° C. in air. After that, 5OH 2 O: 25HN
The sample was dipped in a mixed acid of O 3 : 25HF (volume ratio) and the surface area was continuously measured. The result is shown in FIG. As C / SiO 2 decreases, the rate of increase in surface area with respect to the elution amount decreases. C / SiO 2 is 0.79, 0.65
The residual carbon amount at 0.53 was 26.2, 10.
It was 7.0 wt%. This is due to the residual carbon
Since the grain growth of iC is hindered, and after decarbonization, the portion that was carbon becomes pores, the mixed acid of HF-HNO 3 efficiently enters the porous SiC ceramics, and the elution of SiC progresses, so that residual carbon remains. It is considered that the surface area of the SiC ceramics becomes large when the existence of s.
【0017】実施例3
Coを触媒として各C/SiO2を有するもみがら炭を
2050℃でホットプレスし、700℃で脱炭素した。
次に、5OH2O:25HNO3:25HF(体積比)中
に湿潤し、溶出量が約50wt%の高表面積SiCセラ
ミックスの細孔分布を測定した。細孔分布はメソ孔の存
在を示している。Example 3 Rice husk charcoal having C / SiO 2 with Co as a catalyst was hot pressed at 2050 ° C. and decarbonized at 700 ° C.
Next, the pore distribution of the high surface area SiC ceramics, which was moistened in 5OH 2 O: 25HNO 3 : 25HF (volume ratio) and the elution amount was about 50 wt%, was measured. The pore distribution indicates the presence of mesopores.
【0018】[0018]
【発明の効果】SiCは焼結性が低く、高表面積を有す
るSiCセラミックスの製造は困難であった。しかし、
本発明により、炭素とシリカの混合物に金属触媒を加え
て、ホットプレスすると金属シリサイドによる溶解−析
出作用によりSiCの生成と粒成長が起こり、積層欠陥
の小さな多孔質SiCセラミックスを製造される。その
後、HF−HNO3溶出により、高強度、高表面積Si
Cセラミックスを製造することができる。これは特に、
発熱反応触媒担体や疎水性触媒担体に使用される。EFFECT OF THE INVENTION Since SiC has low sinterability, it has been difficult to produce SiC ceramics having a high surface area. But,
According to the present invention, when a metal catalyst is added to a mixture of carbon and silica and hot-pressed, the generation and grain growth of SiC occur due to the dissolution-precipitation action of the metal silicide, and a porous SiC ceramic having a small stacking fault is manufactured. After that, HF-HNO 3 was eluted to obtain high strength and high surface area Si.
C ceramics can be manufactured. This is especially
It is used for exothermic reaction catalyst carriers and hydrophobic catalyst carriers.
【図1】 Fe触媒時の各ホットプレス温度におけるH
F−HNO3溶出量と表面積の関係を示すグラフ。FIG. 1 H at each hot press temperature with Fe catalyst
Graph showing the relationship between the F-HNO 3 elution volume and surface area.
【図2】 Fe触媒時のもみがら炭中の各C/SiO2
におけるHF−HNO3溶出量と表面積との関係を示す
グラフ。FIG. 2 C / SiO 2 in chaff charcoal with Fe catalyst
3 is a graph showing the relationship between the elution amount of HF-HNO 3 and the surface area in FIG.
【図3】 Co触媒共存下、各C/SiO2における5
0wt%を溶出した時の細孔分布曲線。FIG. 3: 5 in each C / SiO 2 in the presence of Co catalyst
Pore distribution curve when 0 wt% is eluted.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 31/36 601 C01B 31/36 601H 601J C04B 35/565 F01N 3/08 A F01N 3/08 3/10 Z 3/10 3/28 Q 3/28 301S 301 C04B 35/56 101S (72)発明者 恒松 修二 佐賀県鳥栖市宿町字野々下807番地1 独 立行政法人産業技術総合研究所九州センタ −内 (72)発明者 柴田 昌男 佐賀県鳥栖市宿町字野々下807番地1 独 立行政法人産業技術総合研究所九州センタ −内 (72)発明者 坂木 剛 佐賀県鳥栖市宿町字野々下807番地1 独 立行政法人産業技術総合研究所九州センタ −内 Fターム(参考) 3G091 AB01 AB08 BA01 GA16 GA20 GB01X GB01Y GB13X GB13Y GB17X GB17Y 4G001 BA01 BA04 BA60 BB22 BB48 BC03 BC11 BC42 BC47 BC52 BC71 BD11 BD13 BD37 4G046 MA14 MB08 MC01 MC04 4G069 AA01 AA08 BA02C BA08C BA16C BB15A BB15B BD05A BD05B DA05 FA01 FB29 FB49 FC02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C01B 31/36 601 C01B 31/36 601H 601J C04B 35/565 F01N 3/08 A F01N 3/08 3/10 Z 3/10 3/28 Q 3/28 301S 301 C04B 35/56 101S (72) Inventor Shuji Tsunematsu 807 Nonoshita, Nojishita, Yado Town, Tosu City, Saga Prefecture Kyushu Center- 72) Inventor Masao Shibata 807 Nonoshita, Tojuku-cho, Tosu-shi, Saga Prefecture 1 Independent Administrative Agency National Institute of Advanced Industrial Science and Technology Kyushu Center- (72) Inventor Go Sakaki 807, Nojoshita, Tojuku-cho, Tosu-shi, Saga Prefecture Kyushu Center, National Institute of Advanced Industrial Science and Technology F-term (reference) 3G091 AB01 AB08 BA01 GA16 GA20 GB01X GB01Y GB13X GB13Y GB17X GB17Y 4G001 BA01 BA04 BA60 BB22 BB48 BC03 BC11 BC42 BC47 BC52 BC71 BD11 BD13 BD37 4G046 MA14 MB08 MC01 MC04 4G069 AA01 AA08 BA02C BA08C BA16C BB15A BB15B BD05A BD05B DA05 FA01 FB29 FB49 FC02
Claims (4)
iCセラミックス。1. A high surface area S having macropores and mesopores.
iC ceramics.
多孔質SiCセラミックスを製造し、ついで混酸で処理
して得られる高表面積及び高強度を有するSiCセラミ
ックスの製造法。2. A method for producing a SiC ceramic having a high surface area and a high strength, which is obtained by adding a metal catalyst to a mixture of carbon and silica to produce a porous SiC ceramic and then treating it with a mixed acid.
体。3. An adsorbent carrier containing the ceramic according to (1).
担体。4. A reaction catalyst carrier containing the ceramic according to (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001212181A JP3906354B2 (en) | 2001-07-12 | 2001-07-12 | Method for producing high surface area silicon carbide ceramic porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001212181A JP3906354B2 (en) | 2001-07-12 | 2001-07-12 | Method for producing high surface area silicon carbide ceramic porous body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003026483A true JP2003026483A (en) | 2003-01-29 |
JP3906354B2 JP3906354B2 (en) | 2007-04-18 |
Family
ID=19047380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001212181A Expired - Lifetime JP3906354B2 (en) | 2001-07-12 | 2001-07-12 | Method for producing high surface area silicon carbide ceramic porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3906354B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1973329A1 (en) | 2007-03-19 | 2008-09-24 | Ricoh Company, Ltd. | Image processing apparatus and image processing method |
JP2021045748A (en) * | 2020-11-30 | 2021-03-25 | 富士電機株式会社 | Moisture adsorbent |
-
2001
- 2001-07-12 JP JP2001212181A patent/JP3906354B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1973329A1 (en) | 2007-03-19 | 2008-09-24 | Ricoh Company, Ltd. | Image processing apparatus and image processing method |
JP2021045748A (en) * | 2020-11-30 | 2021-03-25 | 富士電機株式会社 | Moisture adsorbent |
Also Published As
Publication number | Publication date |
---|---|
JP3906354B2 (en) | 2007-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5850929B2 (en) | Method for manufacturing silicon carbide powder | |
JPS62197353A (en) | Manufacture of silicon carbide sintered body | |
JPS5983978A (en) | Novel material comprising silicon and manufacture | |
JPH0123403B2 (en) | ||
JP2003026483A (en) | High surface area SiC ceramics and manufacturing method thereof | |
JPS62167212A (en) | Production of beta-type silicon carbide powder | |
JP2585506B2 (en) | Silicon carbide sintered body and method for producing the same | |
JP4958353B2 (en) | Aluminum nitride powder and method for producing the same | |
JP3285621B2 (en) | Method for producing silicon nitride powder | |
CN115925425A (en) | Silicon carbide ball manufacturing process | |
JP2801821B2 (en) | Ceramic composite sintered body and method of manufacturing the same | |
KR102815142B1 (en) | Method of manufacturing silicon carbide powder using low temperature carbonization process and silicon carbide powder manufactured by the method | |
JPH11335172A (en) | Method for producing porous silicon carbide sintered body | |
JPH03213142A (en) | Method for purifying particulate material | |
JP3252624B2 (en) | Silicon nitride powder | |
JP3280059B2 (en) | Method for producing activated silicon carbide | |
JP4111572B2 (en) | Method for producing graphite substrate for β-silicon carbide molded body | |
JPS60226406A (en) | Preparation of beta-silicon carbide | |
JPH01197307A (en) | Silicon nitride fine powder having a low oxygen content and its production | |
JPS61168567A (en) | Manufacture of silicon carbide sintered body | |
JPS61111959A (en) | Material comprising particles containing elementary silicon bonded by reaction under presence of carbon and manufacture | |
JPS6324952B2 (en) | ||
JP4102874B2 (en) | Fabrication of porous silicon carbide porous material by pulse electric current sintering of pyrolysis rice husk | |
JPH01234371A (en) | Production of main raw material for aln sintered body | |
KR100188988B1 (en) | Fabrication method of silicon nitride/silicon carbide nanocomposites from polymer and silicon compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050425 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3906354 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |