JP2003024914A - Method for solidifying incinerated ash and fly ash with pressurized fluidized bed coal ash and method for using solidified body - Google Patents
Method for solidifying incinerated ash and fly ash with pressurized fluidized bed coal ash and method for using solidified bodyInfo
- Publication number
- JP2003024914A JP2003024914A JP2001219184A JP2001219184A JP2003024914A JP 2003024914 A JP2003024914 A JP 2003024914A JP 2001219184 A JP2001219184 A JP 2001219184A JP 2001219184 A JP2001219184 A JP 2001219184A JP 2003024914 A JP2003024914 A JP 2003024914A
- Authority
- JP
- Japan
- Prior art keywords
- ash
- fly ash
- fluidized bed
- pressurized fluidized
- fly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010881 fly ash Substances 0.000 title claims abstract description 62
- 239000002956 ash Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000010883 coal ash Substances 0.000 title claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 20
- 239000004568 cement Substances 0.000 claims abstract description 20
- 238000007711 solidification Methods 0.000 claims abstract description 20
- 230000008023 solidification Effects 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000011790 ferrous sulphate Substances 0.000 claims abstract description 10
- 235000003891 ferrous sulphate Nutrition 0.000 claims abstract description 10
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 10
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims abstract description 10
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 8
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims abstract description 7
- 238000011282 treatment Methods 0.000 claims description 13
- 238000004898 kneading Methods 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 abstract description 28
- 150000002500 ions Chemical class 0.000 abstract description 15
- 238000010828 elution Methods 0.000 abstract description 14
- 239000002699 waste material Substances 0.000 abstract description 14
- 239000003245 coal Substances 0.000 abstract description 11
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 11
- 239000002440 industrial waste Substances 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 5
- 239000003818 cinder Substances 0.000 abstract 3
- 239000012530 fluid Substances 0.000 abstract 2
- 239000011343 solid material Substances 0.000 abstract 1
- 238000002844 melting Methods 0.000 description 18
- 230000008018 melting Effects 0.000 description 18
- 239000000126 substance Substances 0.000 description 15
- 238000009841 combustion method Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000004056 waste incineration Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 239000010813 municipal solid waste Substances 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000007922 dissolution test Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、都市ごみ焼却灰、
飛灰、溶融炉飛灰等の廃棄物の固化方法および得られた
固化体の利用方法に関する。TECHNICAL FIELD The present invention relates to municipal waste incineration ash,
The present invention relates to a method for solidifying wastes such as fly ash and melting furnace fly ash, and a method for using the obtained solidified body.
【0002】[0002]
【従来の技術】都市ごみ、産業廃棄物等が焼却処理され
る際に発生する焼却灰、飛灰にはPb、Cd等の重金属
が含まれており、直接埋め立て処分することができな
い。これら焼却灰、飛灰は特別管理一般廃棄物として、
溶融固化、セメント固化、薬剤(キレート)処理、およ
び溶媒抽出の何れかによる中間処理が義務づけられてい
る。しかしながら、たとえば薬剤処理による場合、高価
なキレート剤が処理すべき灰に対して数%(重量)必要
である。また、溶融固化処理によるときは、設備費なら
びに溶融固化のための多大なエネルギーを必要とする。
而してこれらの中間処理は、廃棄物処理費用増大の要因
となっている。2. Description of the Related Art Incinerator ash and fly ash generated when incinerating municipal solid waste and industrial waste contain heavy metals such as Pb and Cd and cannot be directly landfilled. These incinerated ash and fly ash are specially controlled general waste,
Intermediate treatment by any of melt solidification, cement solidification, drug (chelate) treatment, and solvent extraction is obligatory. However, for example, in the case of chemical treatment, expensive chelating agent requires several% (by weight) with respect to the ash to be treated. Further, when the melting and solidifying process is performed, a large amount of equipment cost and a large amount of energy for melting and solidifying are required.
Thus, these intermediate treatments cause an increase in waste treatment cost.
【0003】従って、都市ごみ焼却灰、飛灰、溶融炉飛
灰等の廃棄物は、その殆どがセメントを主とする固化剤
を用いて固化され、埋め立て処分されている。Therefore, most of wastes such as incinerated ash, fly ash, and melting furnace fly ash are solidified by using a solidifying agent mainly composed of cement, and are landfilled.
【0004】[0004]
【発明が解決使用とする課題】しかしながら、セメント
を主とする固化剤を用いる都市ごみ焼却灰、飛灰、溶融
炉飛灰等の廃棄物固化方法によるときは、固化体の強度
が比較的低くまた、長期間放置すると重金属イオン等の
溶出を生じる虞があった。而して、従来技術によって処
理された固化体を、路盤材、埋戻し材として活用し難い
問題があった。However, the strength of the solidified body is relatively low when the waste solidification method such as municipal solid waste incineration ash, fly ash, melting furnace fly ash and the like which uses a solidifying agent mainly composed of cement is used. Further, when left for a long period of time, there is a possibility that heavy metal ions and the like may be eluted. Thus, there is a problem that it is difficult to utilize the solidified body treated by the conventional technique as a roadbed material or a backfill material.
【0005】本発明は、強度が高く、重金属イオンの溶
出のない固化体を得ることができる廃棄物固化方法を提
供することまた、これまで、産業廃棄物としてその処分
にコストを要していた石炭火力発電所から発生する石炭
灰を固化剤として利用できる都市ごみ焼却灰、飛灰、溶
融炉飛灰等の廃棄物固化方法を提供することを目的とす
る。The present invention provides a waste solidification method capable of obtaining a solidified product having high strength and free of elution of heavy metal ions, and until now, it has been costly to dispose of it as industrial waste. An object of the present invention is to provide a method for solidifying wastes such as municipal waste incineration ash, fly ash, and melting furnace fly ash that can use coal ash generated from a coal-fired power plant as a solidifying agent.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
の請求項1に記載の発明は、ごみ焼却灰、飛灰に、加圧
流動床石炭灰と適当量の水を加えて混練し、固化処理を
行うことを要旨とする加圧流動床石炭灰による焼却灰、
飛灰の固化方法である。The invention according to claim 1 for solving the above-mentioned problems is to knead refuse incineration ash and fly ash by adding pressurized fluidized bed coal ash and an appropriate amount of water, and kneading. Incinerated ash by pressurized fluidized bed coal ash, which is characterized by performing solidification treatment,
It is a method of solidifying fly ash.
【0007】請求項2に記載の発明は、ごみ焼却灰、飛
灰に、加圧流動床石炭灰とセメントおよび炭酸ナトリウ
ム、ポリ塩化アルミニウム、硫酸アルミニウム、硫酸第
一鉄の1種又は2種以上、さらに適当量の水を加えて混
練し、固化処理を行うことを特徴とする加圧流動床石炭
灰による焼却灰、飛灰の固化方法である。According to the second aspect of the present invention, incineration ash, fly ash, pressurized fluidized bed coal ash and cement, and one or more of sodium carbonate, polyaluminum chloride, aluminum sulfate and ferrous sulfate are used. A method for solidifying incineration ash and fly ash by pressurized fluidized bed coal ash, which further comprises adding an appropriate amount of water, kneading, and solidifying the mixture.
【0008】請求項3に記載の発明は、ごみ焼却灰、飛
灰に対し、内分(重量)で、加圧流動床石炭灰:5%〜
10%、セメント:0%〜5%、炭酸ナトリウム:1.
0%〜1.5%、ポリ塩化アルミニウム:0%〜0.5
%、硫酸アルミニウム0%〜0.5%、硫酸第一鉄:0
%〜0.5%の1種又は2種以上、さらに適当量の水を
加えて混練し、固化処理を行うことを特徴とする加圧流
動床石炭灰による焼却灰、飛灰の固化方法である。According to the third aspect of the invention, the content (weight) of the incinerated ash and fly ash is as follows: pressurized fluidized bed coal ash: 5% to
10%, cement: 0% to 5%, sodium carbonate: 1.
0% to 1.5%, polyaluminum chloride: 0% to 0.5
%, Aluminum sulfate 0% to 0.5%, ferrous sulfate: 0
% To 0.5% of 1 or 2 or more, and an appropriate amount of water is further added and kneaded to perform solidification treatment, which is a method for solidifying incineration ash and fly ash by pressurized fluidized bed coal ash. is there.
【0009】請求項4に記載の発明は、請求項1乃至請
求項3の何れかに記載の焼却灰、飛灰の固化方法によっ
て得られた固化体を、路盤材、埋戻し材として活用する
焼却灰、飛灰固化体の利用方法である。The invention according to claim 4 uses the solidified body obtained by the method for solidifying incinerated ash or fly ash according to any one of claims 1 to 3 as a roadbed material or a backfill material. It is a method of using incinerated ash and fly ash solidified material.
【0010】[0010]
【作用】本発明は叙上の構成になるから、強度が高く、
重金属イオンの溶出のない都市ごみ焼却灰、飛灰、溶融
炉飛灰等の廃棄物の固化体を得ることができる。また、
これまで、産業廃棄物としてその処分にコストを要して
いた石炭火力発電所から発生する石炭灰を固化剤として
利用できる。本発明においては、加圧流動床燃焼方式の
石炭火力発電所からの石炭灰を用いる。加圧流動床燃焼
方式の石炭火力発電所は、低NOX、低SOXでかつボ
イラーからの排ガスによるガスタービン発電を利用でき
ることもあって発電効率が非常に高いから、今後増加す
るものと考えられる。この石炭火力発電所からの石炭灰
を、コンクリート二次製品用添加材としてのみでなく、
産業廃棄物や一般廃棄物の焼却灰、飛灰等の固化剤とし
て活用できる。The present invention has a high strength because of the above constitution.
It is possible to obtain a solidified product of wastes such as municipal waste incineration ash, fly ash, and melting furnace fly ash without elution of heavy metal ions. Also,
Up to now, coal ash generated from a coal-fired power plant, which has been costly to dispose of as industrial waste, can be used as a solidifying agent. In the present invention, coal ash from a pressurized fluidized bed combustion type coal-fired power plant is used. Pressurized fluidized bed combustion type coal-fired power plants have low NO X , low SO X and can utilize gas turbine power generation from exhaust gas from boilers, and their power generation efficiency is very high. To be The coal ash from this coal-fired power plant is not only used as an additive for secondary concrete products,
It can be used as a solidifying agent for incinerated ash and fly ash of industrial waste and general waste.
【0011】[0011]
【発明の実施の形態】以下、本発明をその好ましい実施
形態に則して説明する。本発明において、固化処理と
は、都市ごみ焼却灰、飛灰、溶融炉飛灰等の廃棄物に、
加圧流動床石炭灰と必要に応じてセメントを配合して適
当量の水を加えて混練し、プレス成形、製団、造粒等の
処理を施して塊を造ることをいう。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to its preferred embodiments. In the present invention, the solidification treatment refers to waste such as municipal waste incineration ash, fly ash, and melting furnace fly ash.
Pressurized fluidized bed coal ash and cement as required, an appropriate amount of water is added and kneaded, and press molding, production, granulation, and other treatments are performed to form a lump.
【0012】[0012]
【実施例】A市の連続ストーカー式燃焼炉から発生した
飛灰、B市の連続ストーカー式燃焼炉で発生した焼却灰
を電気炉方式の溶融炉で処理したときに集塵した飛灰、
およびC市の直接溶融炉で集塵した飛灰を各々40kg
採取した。これらの飛灰は、石灰ミルクまたは石灰粉末
を煙道で散布した後バグフィルターで集塵した乾燥状態
の物であった。[Examples] Fly ash generated from a continuous stalker type combustion furnace in City A and fly ash collected when the incinerated ash generated in a continuous stalker type combustion furnace in City B was treated in an electric furnace type melting furnace,
40 kg each of fly ash collected in the direct melting furnace of C and C
It was collected. These fly ash were in a dry state in which lime milk or lime powder was sprayed on the flue and then dust was collected by a bag filter.
【0013】前記飛灰を、105℃〜110℃に保たれ
た恒温乾燥機中、約24時間乾燥して測定試料とした。
これらの試料の化学分析をJIS R 5202に規定
する方法で、含有鉱物を粉末X線回折によって行った。
また、溶出試験を、環境庁告示3号ロおよびアベラビリ
ティ試験(オランダNEN7345)に則って行った。
溶出溶液の分析は、原子吸光分析装置8日本ジャーレル
アッシュ社、フレーム原子吸光、AA−880 Mar
k2)によって行った。本発明の焼却灰、飛灰の固化方
法によって得られた固化体の元素分析を、走査型電子顕
微鏡(SEM)、EPMAなどで行った。The fly ash was dried for about 24 hours in a constant temperature dryer kept at 105 ° C to 110 ° C to obtain a measurement sample.
The chemical analysis of these samples was carried out by powder X-ray diffraction on the contained minerals by the method specified in JIS R5202.
In addition, the elution test was carried out in accordance with the Environmental Agency Notification No. 3B and the availability test (NEN 7345 in the Netherlands).
Atomic absorption spectrometer 8 Japan Jarrell Ash Co., Flame atomic absorption, AA-880 Mar
k2). Elemental analysis of the solidified body obtained by the method for solidifying incinerated ash and fly ash of the present invention was carried out by a scanning electron microscope (SEM), EPMA and the like.
【0014】試料のうち、陰イオン(Cr6+、Asな
ど)を溶出するものは、硫酸第一鉄を併用して、燐酸
(H3PO4)、普通セメント、加圧流動床燃焼方式の
石炭火力発電所からの集塵ダストなどを、JIS A
5201に規定するモルタル練り鉢に所定量計量して入
れ、練り棒で混ぜ、所定量の薬品を各々練り水に溶かし
て添加、混合し、水の不足分はイオン交換水を加えて混
練した。混練物をビニール袋の中に入れて硬化させ、約
24時間後ビニール袋から取り出し、恒温室(20℃±
1℃、湿度(RH):80%±1%)内で48時間養生
した後、自然養生した。なお、使用した市販のポルトラ
ンドセメントおよび加圧流動床燃焼方式の石炭火力発電
所から発生の石炭灰の化学分析値、含有鉱物などを表1
に示す。さらに、粉末X線回折図および測定条件を図1
に示す。また、化学薬品は市販の特級試薬を、練り水、
溶出水としては市販のイオン交換水を用いた。Among the samples, those which elute anions (Cr 6+ , As, etc.) are phosphoric acid (H 3 PO 4 ), ordinary cement, and pressurized fluidized bed combustion type coal in combination with ferrous sulfate. The dust collected from the thermal power plant, etc.
A predetermined amount was put into a mortar kneading bowl specified by 5201, mixed with a kneading rod, and a predetermined amount of each chemical was dissolved in kneading water and added to the mixture, and the mixture was kneaded by adding ion-exchanged water. Put the kneaded product in a plastic bag to harden it, and after about 24 hours, remove it from the plastic bag and store it in a thermostatic chamber (20 ° C ± 20 ° C).
After curing at 1 ° C. and humidity (RH): 80% ± 1% for 48 hours, it was cured naturally. Table 1 shows the chemical analysis values of coal ash generated from the commercial Portland cement used and the coal-fired power plant of the pressurized fluidized bed combustion system, the minerals contained, etc.
Shown in. Furthermore, the powder X-ray diffraction diagram and the measurement conditions are shown in FIG.
Shown in. For chemicals, use commercially available special grade reagents, kneading water,
Commercially available ion-exchanged water was used as the elution water.
【0015】[0015]
【表1】 [Table 1]
【0016】所定期間(7日間、28日間)経過後、固
化体をジョークラッシャーで破砕し、105℃〜110
℃に保たれた恒温乾燥機中、約48時間乾燥し、環境庁
告示の方法による溶出試験試料としてまた、粉末X線回
折測定試料とした。After the lapse of a predetermined period (7 days, 28 days), the solidified body is crushed by a jaw crusher, and the temperature is 105 ° C to 110 ° C.
It was dried for about 48 hours in a constant temperature dryer kept at ° C, and used as a dissolution test sample according to the method announced by the Environment Agency and also as a powder X-ray diffraction measurement sample.
【0017】石炭火力発電所における石炭の燃焼方式に
は、微粉炭燃焼方式、流動床燃焼方式、加圧流動床燃焼
方式がある。微粉炭燃焼方式や流動床燃焼方式による石
炭灰は、少量の石灰、石膏を加えないと、セメントを配
合しても硬化強度は低い。これに対し、加圧流動床燃焼
方式による石炭灰は、燃焼過程で、石炭に石灰石が混合
された状態で燃焼し、石炭に含まれる硫黄が酸化して生
じるSO2と石灰石(CaCO3)が反応して石膏(C
aSO4)を生成しこれを含有しているので、石炭灰単
味でもかなりの硬化強度を示し、セメントを若干併用す
ると非常によく硬化する。加圧流動床燃焼方式による石
炭燃焼過程では、層内で石炭と石灰石を混合して燃焼さ
せることで、炉内脱硫反応を生じる。即ち、
CaCO3→CaO+CO2
S+O2→SO2
CaO+SO2+1/2O2→CaSO4
また、加圧下では、
CaCO3+SO2+1/2O2→CaSO4
の反応によって、石灰石による直接脱硫が進行し、石炭
灰と共に石膏(CaSO 4)を生成する。For the combustion method of coal in a coal-fired power plant
Is pulverized coal combustion system, fluidized bed combustion system, pressurized fluidized bed combustion
There is a method. Stones produced by pulverized coal combustion method or fluidized bed combustion method
For coal ash, cement should be distributed unless a small amount of lime or gypsum is added.
Even if combined, the curing strength is low. In contrast, pressurized fluidized bed combustion
In the combustion process, coal ash is mixed with limestone in the combustion process.
It burns in the state of being burned, and the sulfur contained in the coal is oxidized and raw.
Ji SOTwoAnd limestone (CaCOThree) Reacts and plaster (C
aSOFour) Is produced and contained,
It also shows a considerable hardening strength in taste and uses a little cement in combination.
It cures very well. Stone by pressurized fluidized bed combustion method
In the charcoal combustion process, coal and limestone are mixed and burned in the formation.
By doing so, an in-furnace desulfurization reaction occurs. That is,
CaCOThree→ CaO + COTwo
S + OTwo→ SOTwo
CaO + SOTwo+ 1 / 2OTwo→ CaSOFour
Also, under pressure,
CaCOThree+ SOTwo+ 1 / 2OTwo→ CaSOFour
The direct reaction of limestone to promote desulfurization
Plaster with ash (CaSO Four) Is generated.
【0018】これら微粉炭燃焼方式、流動床燃焼方式、
および加圧流動床燃焼方式各々の石炭灰を比較するため
に、表5に示す配合割合の各試料を、それぞれの試料に
ついてJISに規定する型枠(モールド:10cmφ×
12.7cm長さ)に3層に分けて、各層毎にランマー
を25回落下させて詰めスリーブで脱型後、12日間湿
容養生後、1日間水中養生して、コンクリート一軸圧縮
強さを測定した(n=3)。その結果を表7に示す。These pulverized coal combustion systems, fluidized bed combustion systems,
In order to compare the coal ash of each of the pressurized fluidized bed combustion method and the pressurized fluidized bed combustion method, each sample having a mixing ratio shown in Table 5 is a mold (mold: 10 cmφ ×) specified in JIS for each sample.
(12.7 cm length) divided into 3 layers, each layer dropped the rammer 25 times, demolded with a stuffing sleeve, cured for 12 days in moisture and cured for 1 day in water to give concrete uniaxial compressive strength. It was measured (n = 3). The results are shown in Table 7.
【0019】[0019]
【表5】 [Table 5]
【0020】[0020]
【表7】 [Table 7]
【0021】さらに、各々の原料を、表5に示す配合比
率で配合した後、ペレタイザー(50cmφ×10cm
深さ、18rpm〜20rpm)で撒水しながら造粒
し、得られたペレットをビニール袋の中で養生し、7日
後にビニール袋から取り出して圧裂強度を測定した(n
=5)。その結果を、表7に示す。なお、比較試験に供
した石炭灰の性状を、表1−1に示す。Furthermore, after mixing the respective raw materials in the mixing ratio shown in Table 5, a pelletizer (50 cmφ × 10 cm) was used.
Granulation while sprinkling water at a depth of 18 rpm to 20 rpm), the pellets obtained were cured in a plastic bag, and after 7 days, taken out from the plastic bag and measured for crush strength (n
= 5). The results are shown in Table 7. The properties of the coal ash used in the comparative test are shown in Table 1-1.
【0022】[0022]
【表1−1】 [Table 1-1]
【0023】都市ごみ焼却灰、飛灰、溶融炉灰がアルミ
ニウムを含有している場合、これをセメントによって固
化処理すると、約3カ月〜6カ月で水素ガスを発生し、
固化体が膨張、崩壊する。この膨張、崩壊を防止するに
は、金属アルミニウムをアルカリ溶液などで処理して水
酸化アルミニウムなどに変化させた後、硫酸第一鉄、ポ
リ塩化アルミニウムなどの薬品類を併用して固化処理す
る。When municipal incineration ash, fly ash, and melting furnace ash contain aluminum, when solidified by cement, hydrogen gas is generated in about 3 to 6 months,
The solidified body expands and collapses. In order to prevent the expansion and the disintegration, the metallic aluminum is treated with an alkaline solution or the like to be converted into aluminum hydroxide or the like, and then solidified with chemicals such as ferrous sulfate and polyaluminum chloride.
【0024】都市ごみ焼却炉(連続ストーカー式炉)で
発生した飛灰、焼却炉灰および飛灰を電気炉によって溶
融固化処理する際に発生した飛灰ならびに都市ごみを直
接、溶融炉で溶融化処理したときに発生した飛灰、およ
び溶融炉で溶融固化(水滓化)したときの飛灰の化学分
析値を表2に、主たる含有鉱物を表3に示す。Fly ash generated in the municipal solid waste incinerator (continuous stalker type furnace), fly ash generated when the incinerator ash and fly ash are melted and solidified by an electric furnace, and the municipal solid waste are directly melted in the melting furnace. Table 2 shows the chemical analysis values of the fly ash generated during the treatment, and the fly ash when melted and solidified (water slag) in the melting furnace, and Table 3 shows the main contained minerals.
【0025】[0025]
【表2】 [Table 2]
【0026】表2から明らかなように、都市ごみ焼却炉
飛灰および溶融炉飛灰の化学成分は、Ig・Loss、SiO
2、CaO、Na2O、K2O、Clが主体で、Cl、
Pb、Znなどの揮発物質は飛灰に濃縮し、特に、溶融
炉飛灰に濃縮している。As is clear from Table 2, the chemical composition of the municipal solid waste incinerator fly ash and the melting furnace fly ash is Ig · Loss, SiO.
2 , CaO, Na 2 O, K 2 O and Cl are the main components, and Cl,
Volatile substances such as Pb and Zn are concentrated in fly ash, especially in the melting furnace fly ash.
【0027】[0027]
【表3】 [Table 3]
【0028】先に述べた石炭灰試料を、環境庁告示13
号ロ法およびアベラビリティ法によって重金属イオン等
の溶出試験を行った。その結果を、表4に示す。The above-mentioned coal ash sample was tested by the Environment Agency Notification 13
The elution test of heavy metal ions etc. was carried out by the No. B method and the availability method. The results are shown in Table 4.
【0029】[0029]
【表4】 [Table 4]
【0030】表4から明らかなように、Cl、Pb、Z
nなどが溶出し、環境庁告示13号ロ法での規制値をオ
ーバーする。また、アベラビリティ法による溶出試験結
果は、溶出溶液のpHが4と低いことに起因して規制値
を大きく超えている。一方、含有鉱物は、表3に示すよ
うに、Ca(OH)2、NaCl、KCl、CaC
O3、CaClOH、Ca(ClO)2・4H2O、2
CaO・Al2O3・SiO2などである。As is clear from Table 4, Cl, Pb, Z
n, etc. elutes and exceeds the regulation value under the Environmental Agency Notification No. 13B Law. Further, the dissolution test results by the availability method greatly exceed the regulation value due to the pH of the dissolution solution being as low as 4. On the other hand, as shown in Table 3, contained minerals are Ca (OH) 2 , NaCl, KCl, and CaC.
O 3, CaClOH, Ca (ClO ) 2 · 4H 2 O, 2
Examples thereof include CaO / Al 2 O 3 / SiO 2 .
【0031】本発明においては、ごみ焼却灰、飛灰に対
し、内分(重量)で、加圧流動床燃焼石炭灰:5%〜1
0%、セメント:0%〜5%、炭酸ナトリウム:1%〜
1.5%、ポリ塩化アルミニウム:0%〜0.5%、硫
酸アルミニウム:0%〜0.5%、硫酸第一鉄:0%〜
0.5%の配合比率で添加している。これは、以下に説
明する理由による。前記加圧流動床燃焼石炭灰、セメン
トならびに薬品類の配合比率の下限に満たない配合比率
では、添加効果を発現できない。一方、上限は、この配
合量で添加効果が飽和するからである。In the present invention, the pressure fluidized bed combustion coal ash: 5% to 1 in terms of internal content (weight) with respect to refuse incineration ash and fly ash
0%, cement: 0% -5%, sodium carbonate: 1%-
1.5%, polyaluminum chloride: 0% to 0.5%, aluminum sulfate: 0% to 0.5%, ferrous sulfate: 0% to
It is added at a compounding ratio of 0.5%. This is for the reason explained below. If the blending ratio of the pressurized fluidized bed combustion coal ash, cement and chemicals is less than the lower limit, the additive effect cannot be exhibited. On the other hand, the upper limit is because the addition effect is saturated at this blending amount.
【0032】加圧流動床燃焼石炭灰の化学成分および主
たる含有鉱物は、表1に示すように、CaSO4、Si
O2、Al2O3、CaO、SO3が主体でCaSO4
の含有量が多い。而して、加圧流動床燃焼石炭灰をその
まま或いはセメントを配合して水を加えて混練すると、
非常に早く固化する特性を有する。As shown in Table 1, the chemical components and main minerals contained in the pressurized fluidized bed combustion coal ash are CaSO 4 , Si.
O2, Al 2 O 3, CaO , SO 3 is in principal CaSO 4
Is high in content. Then, when the pressurized fluidized bed combustion coal ash is mixed as it is or with cement and water is added and kneaded,
It has the property of solidifying very quickly.
【0033】一方、Ca、Na、Cl等の水に対する溶
解度を小さくする方法として、
硫化物を生成させる(硫化ソーダ、硫酸第一鉄等の
添加)
酢塩を生成させる(ジチオカルバミン酸等の添加)
炭酸塩を生成させる(炭酸ソーダ、ポリ塩化アルミ
ニウム、硫酸アルミニウム等の添加)
燐酸塩を生成させる(燐酸(H3PO4)の添加)
などがある。On the other hand, as a method for reducing the solubility of Ca, Na, Cl or the like in water, sulfides are formed (sodium sulfide, ferrous sulfate, etc. are added), and acetyl salts are formed (dithiocarbamic acid, etc. are added). There is a method of forming a carbonate (addition of sodium carbonate, polyaluminum chloride, aluminum sulfate, etc.), a generation of a phosphate (addition of phosphoric acid (H 3 PO 4 )) and the like.
【0034】そこで、焼却炉飛灰、溶融炉飛灰に、加圧
流動床燃焼石炭灰、セメント、薬品類(薬品類はイオン
交換水で溶解後に配合)を配合し、不足する水分はイオ
ン交換水を加えて混練した後固化させ、固化後の経過時
間を変えて、環境庁告示法、アベラビリティ法に則って
溶出試験および溶出水のCa、Na、Cl、SO4イオ
ン量などを測定した。その結果を、表6−1〜表6−4
に示す。Therefore, pressurized fluidized bed combustion coal ash, cement and chemicals (chemicals are blended after being dissolved with ion exchange water) are mixed with incinerator fly ash and melting furnace fly ash, and the insufficient water is ion exchanged. Water was added and kneaded, and then solidified, the elapsed time after solidification was changed, and the elution test and the amounts of Ca, Na, Cl, SO 4 ions, etc. in the eluted water were measured in accordance with the Environmental Agency Notification Method and the Availability Method. . The results are shown in Table 6-1 to Table 6-4.
Shown in.
【0035】[0035]
【表6−1】 [Table 6-1]
【0036】[0036]
【表6−2】 [Table 6-2]
【0037】[0037]
【表6−3】 [Table 6-3]
【0038】[0038]
【表6−4】 [Table 6-4]
【0039】上記結果を要するに、
a)硫化物の生成、酢塩および燐酸塩の生成に比し、薬
品類の使用量(価格も含めたコスト)から考えると、炭
酸塩の生成が有効かつ固化体からのCaイオンの溶出量
も低減できる。炭酸ソーダを0.5%〜1.5%といっ
た比較的少量添加することで、効果が得られる。
b)加圧流動床燃焼石炭灰は、CaSO4を多く含み、
単独で或いはセメントを配合し水を加えて混練すると、
非常に早く固化するとともに、重金属のうちCr 3+と
いった陽イオンの溶出を防止することができる。薬品類
を併用して固化処理を行えば、Cr6+といった陰イオ
ンの溶出も防止することができる。即ち、飛灰中の陰イ
オン(Cr6+など)を溶出するものは、硫酸第一鉄を
併用して固化処理すると有効である。なお、溶出イオン
の量によって薬品類の添加量の増減はある。
c)溶出溶液中のCa、Na、K、Cl、SO4イオン
のうち、特にスケールの発生源として問題になる、C
a、SO4イオンの溶出量は、飛灰等の固化処理に際し
て炭酸ソーダを0.5%〜1.5%添加することによっ
て著しく減少する。しかし、Clイオンの溶出に対する
減少効果は小さい。炭酸ソーダは、水に溶解すると炭酸
ガスを発生して炭酸塩化物を生成し、重金属イオンの溶
出防止に役立つ。即ち、Ca2++NaCO3→CaC
O3+2Na2+ の反応が起こって、Caイオンが減
少するものと思われる。
d)加圧流動床燃焼方式の石炭灰は、微粉炭燃焼方式や
流動床燃焼方式の石炭灰よりも石膏の含有率が25%〜
27%と高く、セメントを配合しなくとも固化強度が大
きく発現する。セメントを少量配合することによって、
さらに固化強度が増す。加圧流動床燃焼方式の石炭灰を
配合して都市ごみ焼却炉灰や飛灰、溶融炉飛灰を固化処
理すると、重金属イオンの溶出も防止でき、得られる固
化体を下層路盤材、埋戻し材等として活用することがで
きる。In summary of the above results,
a) Compared to the formation of sulfides, acetates and phosphates,
Considering the amount of goods used (cost including price), charcoal
Effective generation of acid salt and elution amount of Ca ion from solidification
Can also be reduced. Sodium carbonate is 0.5% to 1.5%
The effect can be obtained by adding a relatively small amount.
b) Pressurized fluidized bed combustion coal ash is CaSOFourContains a lot of
Kneading alone or compounding cement and adding water,
It solidifies very quickly and also contains Cr among heavy metals. 3+When
It is possible to prevent elution of such cations. Chemicals
If solidification treatment is performed by using6+Such as Yio
It is also possible to prevent the elution of ions. That is, the shadow in the fly ash
On (Cr6+Etc.) is ferrous sulfate.
It is effective to use them together for solidification. The eluted ions
The amount of chemicals added may increase or decrease depending on the amount.
c) Ca, Na, K, Cl, SO in the elution solutionFourion
Of these, C becomes a problem especially as a source of scale, C
a, SOFourThe amount of ions eluted is determined by the solidification treatment of fly ash.
By adding 0.5% to 1.5% of sodium carbonate
Significantly reduced. However, for the elution of Cl ions
The reduction effect is small. Sodium carbonate is carbonated when dissolved in water.
Generates gas to produce carbonate, which dissolves heavy metal ions
Useful for prevention. That is, Ca2++ NaCOThree→ CaC
OThree+ 2Na2+ Reaction occurs, Ca ion decreases
It seems to be less.
d) Coal ash of the pressurized fluidized bed combustion system is pulverized coal combustion system or
Gypsum content is 25% more than fluidized bed combustion type coal ash
High as high as 27%, with high solidification strength without the addition of cement
Expresses. By adding a small amount of cement,
Further, the solidification strength is increased. Pressurized fluidized bed combustion type coal ash
Solidified by mixing and assembling municipal waste incinerator ash and fly ash, and melting furnace fly ash.
Therefore, the elution of heavy metal ions can be prevented, and the obtained solid
It is possible to use the fossilized material as a lower roadbed material, backfill material, etc.
Wear.
【0040】[0040]
【発明の効果】本発明によれば、これまで産業廃棄物と
してその処分にコストを要していた石炭火力発電所から
発生する石炭灰を活用して、路盤材、埋戻し材等として
活用できる、強度が高く、重金属イオンの溶出のない都
市ごみ焼却灰、飛灰、溶融炉飛灰等の固化体を得ること
ができる。According to the present invention, coal ash generated from a coal-fired power plant, which has been costly to dispose of as industrial waste, can be utilized as a roadbed material, a backfill material, etc. It is possible to obtain a solidified product such as municipal waste incineration ash, fly ash, and melting furnace fly ash that has high strength and does not elute heavy metal ions.
【0041】請求項2および請求項3に記載の発明によ
るときは、重金属イオンの溶出をより確実に防止でき、
産業廃棄物や一般廃棄物の焼却灰、飛灰などの固化体
を、信頼性の高い下層路盤材や埋戻し材等として活用で
きる。According to the inventions of claims 2 and 3, the elution of heavy metal ions can be prevented more reliably,
Solidified materials such as incineration ash and fly ash of industrial waste and general waste can be utilized as highly reliable lower roadbed materials and backfill materials.
【0042】請求項4に記載の発明によれば、産業廃棄
物や一般廃棄物の焼却灰、飛灰などの固化体を有効に活
用できる。According to the invention described in claim 4, solidified bodies such as incineration ash and fly ash of industrial waste and general waste can be effectively utilized.
【図1】加圧流動床燃焼方式の石炭灰の粉末X線回折結
果を示すグラフFIG. 1 is a graph showing a powder X-ray diffraction result of coal ash in a pressurized fluidized bed combustion system.
Claims (4)
と適当量の水を加えて混練し、固化処理を行うことを特
徴とする加圧流動床石炭灰による焼却灰、飛灰の固化方
法。1. An incineration ash, fly ash by a pressurized fluidized bed coal ash, characterized in that the incineration ash and fly ash are kneaded by adding pressurized fluidized bed coal ash and an appropriate amount of water and solidified. Ash solidification method.
とセメントおよび炭酸ナトリウム、ポリ塩化アルミニウ
ム、硫酸アルミニウム、硫酸第一鉄の1種又は2種以
上、さらに適当量の水を加えて混練し、固化処理を行う
ことを特徴とする加圧流動床石炭灰による焼却灰、飛灰
の固化方法。2. Incinerator ash and fly ash are mixed with pressurized fluidized bed coal ash, cement and one or more of sodium carbonate, polyaluminum chloride, aluminum sulfate and ferrous sulfate, and an appropriate amount of water. A method for solidifying incineration ash and fly ash by pressurized fluidized bed coal ash, which is characterized by additionally kneading and solidifying.
で、加圧流動床石炭灰:5%〜10%、セメント:0%
〜5%、炭酸ナトリウム:1.0%〜1.5%、ポリ塩
化アルミニウム:0%〜0.5%、硫酸アルミニウム0
%〜0.5%、硫酸第一鉄:0%〜0.5%の1種又は
2種以上、さらに適当量の水を加えて混練し、固化処理
を行うことを特徴とする加圧流動床石炭灰による焼却
灰、飛灰の固化方法。3. Internal content (weight) for refuse incineration ash and fly ash
Then, pressurized fluidized bed coal ash: 5% to 10%, cement: 0%
~ 5%, sodium carbonate: 1.0% to 1.5%, polyaluminum chloride: 0% to 0.5%, aluminum sulfate 0
% -0.5%, ferrous sulfate: 1% or more of 0% -0.5%, and an appropriate amount of water is added and kneaded to perform solidification treatment. Solidification method of incineration ash and fly ash by floor coal ash.
焼却灰、飛灰の固化方法によって得られた固化体を、路
盤材、埋戻し材として活用する焼却灰、飛灰固化体の利
用方法。4. An incineration ash and a fly ash solidified body, wherein the solidified body obtained by the solidification method of the incineration ash or fly ash according to any one of claims 1 to 3 is utilized as a roadbed material or a backfill material. How to use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001219184A JP2003024914A (en) | 2001-07-19 | 2001-07-19 | Method for solidifying incinerated ash and fly ash with pressurized fluidized bed coal ash and method for using solidified body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001219184A JP2003024914A (en) | 2001-07-19 | 2001-07-19 | Method for solidifying incinerated ash and fly ash with pressurized fluidized bed coal ash and method for using solidified body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003024914A true JP2003024914A (en) | 2003-01-28 |
Family
ID=19053227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001219184A Pending JP2003024914A (en) | 2001-07-19 | 2001-07-19 | Method for solidifying incinerated ash and fly ash with pressurized fluidized bed coal ash and method for using solidified body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003024914A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011245404A (en) * | 2010-05-26 | 2011-12-08 | Central Res Inst Of Electric Power Ind | Method for producing solidified body |
JP2012076009A (en) * | 2010-09-30 | 2012-04-19 | Nippon Paper Industries Co Ltd | Method of producing granulated and solidified body from biomass incineration ash |
CN105150581A (en) * | 2015-10-08 | 2015-12-16 | 同济大学 | Method for achieving stabilization of solidified fly ash and protogenous fly ash through static-pressure pressing |
JP2016175030A (en) * | 2015-03-20 | 2016-10-06 | 三菱製紙株式会社 | Ash granulated solidified body |
JP2017113730A (en) * | 2015-12-25 | 2017-06-29 | 国立大学法人山口大学 | Method for solidification of low calcium fluidized bed coal ash and solidified substance |
CN115477494A (en) * | 2022-06-13 | 2022-12-16 | 重庆交通大学 | Anti-freezing material for household garbage incineration fly ash and preparation method thereof |
-
2001
- 2001-07-19 JP JP2001219184A patent/JP2003024914A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011245404A (en) * | 2010-05-26 | 2011-12-08 | Central Res Inst Of Electric Power Ind | Method for producing solidified body |
JP2012076009A (en) * | 2010-09-30 | 2012-04-19 | Nippon Paper Industries Co Ltd | Method of producing granulated and solidified body from biomass incineration ash |
JP2016175030A (en) * | 2015-03-20 | 2016-10-06 | 三菱製紙株式会社 | Ash granulated solidified body |
CN105150581A (en) * | 2015-10-08 | 2015-12-16 | 同济大学 | Method for achieving stabilization of solidified fly ash and protogenous fly ash through static-pressure pressing |
JP2017113730A (en) * | 2015-12-25 | 2017-06-29 | 国立大学法人山口大学 | Method for solidification of low calcium fluidized bed coal ash and solidified substance |
CN115477494A (en) * | 2022-06-13 | 2022-12-16 | 重庆交通大学 | Anti-freezing material for household garbage incineration fly ash and preparation method thereof |
CN115477494B (en) * | 2022-06-13 | 2023-11-07 | 重庆交通大学 | A domestic waste incineration fly ash anti-icing material and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111620575B (en) | Solid waste solidification and stabilization material for waste incineration fly ash and its solidification method | |
CN101291888B (en) | Cement additive and cement composition | |
KR100464666B1 (en) | Solidificator Manufacturing Method with Waste Oyster Shell | |
JP5807349B2 (en) | Detoxification method for solid waste containing heavy metals | |
CN111777344B (en) | Method for treating waste incineration fly ash as admixture by cooperation of cement kiln | |
JP2011036846A (en) | Method of manufacturing moisture adsorbent, and moisture adsorbent | |
JP2008273994A (en) | Hazardous substance insolubilizing composition | |
CN104338730B (en) | The detoxification method of solid waste containing heavy metal classes | |
JP2008143740A (en) | Coal ash granulation | |
HUT58216A (en) | Method for reutilizing waste originating in the form of dust or sludge | |
JP4694434B2 (en) | By-product processing method | |
JP4048351B2 (en) | Structural material using pressurized fluidized bed boiler ash | |
KR101120058B1 (en) | Manufacturing method of soil cement composition for landfill facility cover soil using sludge of sewage and waste water | |
JP2003024914A (en) | Method for solidifying incinerated ash and fly ash with pressurized fluidized bed coal ash and method for using solidified body | |
JP5768293B2 (en) | Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material | |
JPH11157890A (en) | Production of fired body | |
JP5976437B2 (en) | Earthwork materials | |
JP4475995B2 (en) | Sludge treatment using gypsum waste | |
JP2002086121A (en) | Method of treating steel making slag and sand-washing sludge | |
JP2004337677A (en) | Method for producing heavy metal elution inhibitor | |
JPH1029841A (en) | Production of artificial aggregate | |
JPH04118087A (en) | Method for treating dust containing salt from incineration field | |
JPH08301641A (en) | Production of artificial lightweight aggregate | |
JP5877049B2 (en) | Anti-elution agent for harmful substances | |
JP5836096B2 (en) | Earthwork materials |