JP2003022839A - Multilayer structure and lithium battery using the same - Google Patents
Multilayer structure and lithium battery using the sameInfo
- Publication number
- JP2003022839A JP2003022839A JP2001206457A JP2001206457A JP2003022839A JP 2003022839 A JP2003022839 A JP 2003022839A JP 2001206457 A JP2001206457 A JP 2001206457A JP 2001206457 A JP2001206457 A JP 2001206457A JP 2003022839 A JP2003022839 A JP 2003022839A
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- solid electrolyte
- ion conductive
- conductive solid
- multilayer structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title abstract description 17
- 229910052744 lithium Inorganic materials 0.000 title abstract description 17
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 64
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 64
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 61
- 229920000642 polymer Polymers 0.000 claims abstract description 41
- 239000007788 liquid Substances 0.000 claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 238000009863 impact test Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000011888 foil Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 229910003480 inorganic solid Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000011267 electrode slurry Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 229920002379 silicone rubber Polymers 0.000 description 4
- 239000004945 silicone rubber Substances 0.000 description 4
- 235000007586 terpenes Nutrition 0.000 description 4
- 239000011149 active material Substances 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 150000003505 terpenes Chemical class 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229910018091 Li 2 S Inorganic materials 0.000 description 1
- PPVYRCKAOVCGRJ-UHFFFAOYSA-K P(=S)([O-])([O-])[O-].[Ge+2].[Li+] Chemical compound P(=S)([O-])([O-])[O-].[Ge+2].[Li+] PPVYRCKAOVCGRJ-UHFFFAOYSA-K 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- -1 phenol terpene Chemical class 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000002203 sulfidic glass Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】
【課題】 実用的な特性を有するリチウム電池を提供す
る、
【解決手段】 層状のリチウムイオン伝導性固体電解質
成型体の両主面に電極体設けてなる多層構造体であっ
て、前記リチウムイオン伝導性固体電解質成型体無機リ
チウムイオン伝導性固体電解質と化学架橋性の液状高分
子よりなる架橋とからなる多層構造体。該多層構造体を
用いた電池。無機リチウムイオン伝導性固体電解質と化
学架橋性の液状高分子とを混合し、成型して層状とな
し、前記層の両主面に電極体を加圧接合し、更に前記液
状高分子を架橋体に変換せしめる多層構造体の製造方
法。
【効果】 薄型の全固体リチウム電池を安定して容易に
得ることができる。(57) [Problem] To provide a lithium battery having practical characteristics, and a multilayer structure in which electrodes are provided on both main surfaces of a layered lithium ion conductive solid electrolyte molded body. And a lithium ion conductive solid electrolyte molded article, a multilayer structure comprising an inorganic lithium ion conductive solid electrolyte and a crosslink made of a chemically crosslinkable liquid polymer. A battery using the multilayer structure. An inorganic lithium ion conductive solid electrolyte and a chemically cross-linkable liquid polymer are mixed, molded and formed into a layer, and an electrode body is pressure-bonded to both main surfaces of the layer, and the liquid polymer is further cross-linked. A method for producing a multilayer structure that is converted into a multilayer structure. [Effect] A thin all-solid lithium battery can be stably and easily obtained.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、可動イオン種がリ
チウムイオンであるリチウムイオン伝導性固体電解質成
型体とそれを用いたリチウム電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion conductive solid electrolyte molded body in which a mobile ion species is lithium ion, and a lithium battery using the same.
【0002】[0002]
【従来の技術】近年、パーソナルコンピュータ・携帯電
話等のポータブル機器の開発に伴い、その電源として電
池の需要は非常に大きなものとなっている。特に、リチ
ウム電池は、リチウムの原子量が小さく、かつイオン化
エネルギーが大きな物質であることから、高エネルギー
密度を得ることができる電池として盛んに研究が行わ
れ、現在ではポータブル機器の電源として広範囲に用い
られている。2. Description of the Related Art In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as a power source thereof has become very large. In particular, a lithium battery is a substance that has a small atomic weight of lithium and a large ionization energy, and thus has been actively researched as a battery that can obtain a high energy density, and is now widely used as a power source for portable devices. Has been.
【0003】その一方、リチウム電池の汎用化につれ
て、含有活物質量の増加による内部エネルギーの増加
と、更に電解質に用いられている可燃性物質である有機
溶媒の含有量の増加により、電池の発火などの危険性に
対する関心が近年クローズアップされてきた。On the other hand, as lithium batteries become more and more versatile, the internal energy increases due to the increase in the amount of the active material contained therein, and the content of the organic solvent, which is a combustible substance used in the electrolyte, also increases, causing ignition of the battery. In recent years, interest in such risks has been highlighted.
【0004】リチウム電池の安全性を確保するための方
法としては、有機溶媒電解質に代えて不燃性の物質であ
る固体電解質を用いることが極めて有効であり、種々の
無機リチウムイオン伝導性固体電解質粉末を適用するこ
とで高い安全性を備えた全固体リチウム電池の開発が進
んでいる。As a method for ensuring the safety of lithium batteries, it is extremely effective to use a solid electrolyte, which is a nonflammable substance, instead of the organic solvent electrolyte, and various inorganic lithium ion conductive solid electrolyte powders are used. The development of all-solid-state lithium batteries with high safety is progressing by applying the.
【0005】リチウムイオン伝導性無機固体電解質の開
発においては、前記無機固体電解質中のリチウムイオン
伝導性を高めることを主眼として行われてきたが、電池
等のデバイスへ応用する際には、高いリチウムイオン伝
導性と共に優れた加工性をもつことが重要である。固体
電解質層を薄型化することにより、内部インピーダンス
を低減し出力特性を向上させることができるのみなら
ず、電池内に占める固体電解質層の体積割合が低くなり
電池のエネルギー密度も向上するからである。In the development of the lithium ion conductive inorganic solid electrolyte, the main object has been to increase the lithium ion conductivity in the inorganic solid electrolyte, but when it is applied to a device such as a battery, a high lithium ion conductivity is required. It is important to have excellent processability as well as ionic conductivity. By thinning the solid electrolyte layer, not only the internal impedance can be reduced and the output characteristics can be improved, but the volume ratio of the solid electrolyte layer in the battery is reduced, and the energy density of the battery is also improved. .
【0006】そこで、加工性を付与させるべく高濃度の
リチウムイオン伝導性を有する無機塩とゴム状の高分子
よりなる” ポリマー イン ソルト(polymer
in salt)”型と名付けられた新規な固体電解
質の提案が近年なされている〔C.A.エンジェル、
C.リュー、及びE.サンチェ、「ネーチャー」(C.
A. Angell, C. Liu, and E.
Sanchez, Nature,)第632巻(1
993)第137頁〕が、その伝導度は十分とはいえな
い。Therefore, in order to impart processability, a high concentration of an inorganic salt having a lithium ion conductivity and a rubber-like polymer are used as a "polymer insoler".
In recent years, a proposal of a new solid electrolyte named “in salt)” has been made [CA Angel,
C. Liu, and E. Sanche, "Nature" (C.
A. Angel, C.I. Liu, and E.
Sanchez, Nature,) Volume 632 (1)
993) p. 137], but its conductivity is not sufficient.
【0007】そこで、最近、ゴム状でない高分子を混合
してなる複合リチウムイオン伝導性固体電解質が提案さ
れている(稲田太郎、高田和典、梶山亮尚、高口 勝、
近藤繁雄、渡辺 遵、第26回固体イオニクス討論会要
旨集、p114)。この方法では、主として溶媒を用い
ない乾式混合により複合化したリチウムイオン伝導性固
体電解質が良好な伝導度を示している。Therefore, recently, a composite lithium ion conductive solid electrolyte prepared by mixing a non-rubber-like polymer has been proposed (Taro Inada, Kazunori Takada, Ryohisa Kajiyama, Masaru Takaguchi,
Shigeo Kondo, Tsutomu Watanabe, 26th Annual Meeting of Solid State Ionics Symposium, p114). In this method, the lithium ion conductive solid electrolyte composited mainly by dry mixing without using a solvent shows good conductivity.
【0008】しかし、全固体リチウム電池への応用等を
念頭に量産性を考慮した場合、簡便に薄膜・大面積の電
解質層を連続的に作製することのできるドクターブレー
ド法などに代表される湿式法を採用することが望ましい
が、前記の方法による場合には、高分子が無機リチウム
イオン伝導性固体電解質の粒子表面をフィルム状に覆う
ため、複合体中のイオン拡散が阻害され、イオン伝導性
が低下する問題がある。However, when mass productivity is taken into consideration in consideration of application to an all-solid-state lithium battery, a wet method typified by a doctor blade method or the like that can easily continuously produce a thin film and a large-area electrolyte layer. Although it is desirable to adopt the method, in the case of the above method, the polymer covers the particle surface of the inorganic lithium ion conductive solid electrolyte in a film shape, so that the ion diffusion in the complex is inhibited and the ion conductivity is reduced. There is a problem that
【0009】[0009]
【発明が解決しようとする課題】本発明は、以上の課題
を解決し、特定の高分子を用いることにより無機リチウ
ムイオン伝導性固体電解質の粒子表面が被覆されてリチ
ウムイオン伝導性固体電解質成型体のイオン伝導性が低
下する現象を回避し、その結果、実用的な特性を有する
リチウム電池を提供することを目的としている。DISCLOSURE OF THE INVENTION The present invention solves the above problems, and the surface of particles of an inorganic lithium ion conductive solid electrolyte is coated with a specific polymer to form a lithium ion conductive solid electrolyte molded body. The purpose of the present invention is to provide a lithium battery having practical characteristics by avoiding the phenomenon that the ion conductivity of the lithium ion battery decreases.
【0010】[0010]
【課題を解決するための手段】すなわち、本発明は、層
状のリチウムイオン伝導性固体電解質成型体の両主面に
電極体を設けてなる多層構造体であって、前記リチウム
イオン伝導性固体電解質成型体が無機リチウムイオン伝
導性固体電解質と化学架橋性の液状高分子よりなる架橋
体とからなることを特徴とする多層構造体であり、好ま
しくは、前記化学架橋性の液状高分子よりなる架橋体
が、JIS K‐7111に規定されるシャルピー衝
撃試験で破壊しないことを特徴とする前記の多層構造体
である。そして、本発明は、前記の多層構造体を用いて
なることを特徴とする電池である。That is, the present invention provides a multilayer structure in which electrode bodies are provided on both main surfaces of a layered lithium ion conductive solid electrolyte molded article, wherein the lithium ion conductive solid electrolyte is formed. A multi-layer structure characterized in that the molded body is composed of an inorganic lithium ion conductive solid electrolyte and a crosslinked product of a chemically crosslinkable liquid polymer, and preferably a crosslink of the chemically crosslinkable liquid polymer. The above-mentioned multi-layer structure is characterized in that the body does not break in the Charpy impact test specified in JIS K-7111. The present invention is a battery characterized by using the above-mentioned multilayer structure.
【0011】また、本発明は、無機リチウムイオン伝導
性固体電解質と化学架橋性の液状高分子とを混合し、成
型して層状となし、前記層の両主面に電極体を加圧接合
し、更に前記液状高分子を架橋体に変換せしめることを
特徴とする多層構造体の製造方法である。Further, according to the present invention, an inorganic lithium ion conductive solid electrolyte and a chemically crosslinkable liquid polymer are mixed and molded to form a layer, and electrode bodies are pressure-bonded to both main surfaces of the layer. The method for producing a multilayer structure further comprises converting the liquid polymer into a crosslinked body.
【0012】本発明の多層構造体は、層状のリチウムイ
オン伝導性固体電解質成型体の両主面に電極体を設けて
なる多層構造体であって、前記リチウムイオン伝導性固
体電解質成型体が無機リチウムイオン伝導性固体電解質
と化学架橋性の液状高分子よりなる架橋体とからなり、
イオン伝導性に優れ全固体リチウム電池を容易に得るこ
とができる特徴を有する。The multi-layer structure of the present invention is a multi-layer structure in which electrode bodies are provided on both main surfaces of a layered lithium ion conductive solid electrolyte molded body, wherein the lithium ion conductive solid electrolyte molded body is an inorganic material. A lithium ion conductive solid electrolyte and a crosslinked body made of a chemically crosslinkable liquid polymer,
It has a feature that it is excellent in ion conductivity and that an all-solid-state lithium battery can be easily obtained.
【0013】本発明者らは、リチウムイオン伝導性固体
電解質と高分子とを混合しリチウムイオン伝導性固体電
解質複合体を得るに際し、組成、粒子状態等の色々な条
件について実験的に検討した結果、高分子として化学架
橋性の液状高分子を用いるときに、得られるリチウムイ
オン伝導性固体電解質複合体のイオン伝導性が良好であ
るばかりでなく、加工性、特に薄膜への加工性が優れる
こと、そして、前記リチウムイオン伝導性固体電解質複
合体を成型して得られるリチウムイオン伝導性固体電解
質成型体が薄型の全固体リチウムイオン電池に好適であ
るという知見を得て、本発明に至ったものである。The present inventors have experimentally studied various conditions such as composition and particle state when a lithium ion conductive solid electrolyte and a polymer are mixed to obtain a lithium ion conductive solid electrolyte composite. , When using a chemically crosslinkable liquid polymer as the polymer, not only the ion conductivity of the obtained lithium ion conductive solid electrolyte composite is good, but also the processability, especially the processability into a thin film is excellent. Then, the inventors obtained the finding that the lithium ion conductive solid electrolyte molded body obtained by molding the lithium ion conductive solid electrolyte composite is suitable for a thin all-solid-state lithium ion battery, and arrived at the present invention. Is.
【0014】前記の理由については、明らかでないが、
リチウムイオン伝導性固体電解質複合体内における前記
高分子の分布が仮にリチウムイオン伝導性無機固体電解
質の粒子表面を覆うような状態であったとしても、これ
を一軸プレスやローラー等により加圧処理することによ
り、前記高分子の分布状態はリチウムイオン伝導性無機
固体電解質の粒子同士の接触を妨げない程度まで変化
し、その結果得られたリチウムイオン伝導性固体電解質
成型体内においては、固体電解質粒子同士の接触が良好
なものとなるためと推察される。Although the above reason is not clear,
Even if the distribution of the polymer in the lithium ion conductive solid electrolyte composite is in a state of covering the particle surface of the lithium ion conductive inorganic solid electrolyte, it should be pressure-treated with a uniaxial press or a roller. The distribution state of the polymer is changed to such an extent that the contact between the particles of the lithium ion conductive inorganic solid electrolyte is not hindered, and in the resulting lithium ion conductive solid electrolyte molded body, the solid electrolyte particles are It is presumed that the contact is good.
【0015】上記推察に基づけば、リチウムイオン伝導
性無機固体電解質に未架橋構造の高分子(以下、未架橋
体という)を配合した後に架橋反応を生じさせたとき
に、リチウムイオン伝導性無機固体電解質の粒子表面の
存在状況が変化するもののうち、本発明の目的・効果を
達成できるものが、本発明の化学架橋性の液状高分子と
同等物であることが容易に類推できる。On the basis of the above assumptions, when a lithium ion conductive inorganic solid electrolyte is blended with a polymer having an uncrosslinked structure (hereinafter referred to as an uncrosslinked body) to cause a crosslinking reaction, a lithium ion conductive inorganic solid is obtained. It can be easily inferred that among the substances in which the existence condition of the particle surface of the electrolyte is changed, those which can achieve the object and effect of the present invention are equivalent to the chemically crosslinkable liquid polymer of the present invention.
【0016】[0016]
【発明の実施の形態】以下、本発明を具体的に説明す
る。架橋構造を有する高分子(以下、架橋体という)に
は、大別してスチレンブタジエンブロック共重合体のよ
うにハードセグメントとソフトセグメントが絡み合った
高次構造によってゴム弾性が発現する物理架橋体と、加
硫ゴムのように架橋反応で生じる化学結合によってゴム
弾性が発現する化学架橋体がある。本発明においては、
得られるリチウムイオン伝導性固体電解質複合体の加工
性を確保するために、液状の未架橋体を架橋することに
より得られる高分子架橋体が、従って、後者の化学架橋
体が選択される。なお、高分子が化学架橋体であるか否
かについては、溶解度パラメータが同等である溶媒への
浸漬で膨潤するかどうかにより評価することが可能であ
る。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. Polymers having a cross-linked structure (hereinafter referred to as cross-linked products) are roughly classified into physical cross-linked products such as styrene-butadiene block copolymers that exhibit rubber elasticity due to a higher-order structure in which hard segments and soft segments are entangled, and There is a chemically cross-linked body such as a rubber vulcanizate that exhibits rubber elasticity by a chemical bond generated by a cross-linking reaction. In the present invention,
In order to secure the processability of the obtained lithium ion conductive solid electrolyte composite, a polymer cross-linked product obtained by cross-linking a liquid uncross-linked product, and therefore the latter chemically cross-linked product is selected. Whether or not the polymer is a chemically crosslinked product can be evaluated by whether or not the polymer swells when immersed in a solvent having the same solubility parameter.
【0017】化学架橋性のゴム状高分子としては、シリ
コーンゴム以外に、例えば炭化水素系では天然ゴム、イ
ソプレンやブタジエンなどの合成ゴムが知られている。
これらの未架橋体は室温で様々な粘度のものが知られて
おり、中には固体状に見える場合もあるが、その場合で
も長時間の放置でコールドフローと呼ばれる流動性を示
すが、実際は液状の物質である。これらのうち、高流動
性液体の未架橋体が無機リチウムイオン伝導性固体電解
質粒子への高分子の被覆を低減するためには好ましい。
この点については、後述する実施例で示すとおりに、例
えば0.8〜1.0Pa・s程度の低粘度シリコーンゴ
ム未架橋体が特に好適な高分子の一つといえる。またシ
リコーンゴムの未架橋体は電気化学的安定性及び電子絶
縁性に優れているので、得られる架橋体の特性の上から
も本発明に適当である。As the chemically crosslinkable rubber-like polymer, in addition to silicone rubber, for example, in the hydrocarbon system, natural rubber, synthetic rubber such as isoprene and butadiene are known.
These uncrosslinked materials are known to have various viscosities at room temperature, and some of them may appear solid, but even in that case, they show fluidity called cold flow when left for a long time, but in reality, It is a liquid substance. Among these, the non-crosslinked body of the highly fluid liquid is preferable in order to reduce the coating of the inorganic lithium ion conductive solid electrolyte particles with the polymer.
In this respect, as shown in Examples described later, it can be said that a low-viscosity silicone rubber uncrosslinked body having a viscosity of about 0.8 to 1.0 Pa · s is one of particularly suitable polymers. Further, since the uncrosslinked silicone rubber is excellent in electrochemical stability and electronic insulation, it is suitable for the present invention in view of the characteristics of the obtained crosslinked body.
【0018】また、本発明において、前記化学架橋性の
液状高分子よりなる架橋体が、JIS K‐7111に
規定されるシャルピー衝撃試験で破壊しないことが望ま
しい。しかるに、化学架橋性の液状高分子よりなる架橋
体の存在が、リチウムイオン伝導性固体電解質複合体の
機械的特性を改善して、実使用における応力の付加等に
対して耐性を改善し得るからで、前記要件を満足すると
き、リチウムイオン伝導性固体電解質複合体、惹いては
リチウム電池の機械的、従って電気的信頼性を高めるこ
とができる。Further, in the present invention, it is desirable that the crosslinked body composed of the chemically crosslinkable liquid polymer does not break in the Charpy impact test specified in JIS K-7111. However, the presence of the cross-linked product of the chemically cross-linkable liquid polymer can improve the mechanical properties of the lithium-ion conductive solid electrolyte composite and improve the resistance to stress application in actual use. Then, when the above requirements are satisfied, the mechanical and hence electrical reliability of the lithium ion conductive solid electrolyte composite, and thus the lithium battery, can be improved.
【0019】本発明に用いる無機リチウムイオン伝導性
固体電解質としては、種々の種類が知られているが、例
えば、0.01Li3PO4・0.63Li2S・0.3
6SiS2のような組成を有する硫化物ガラス〔N.ア
オタニ、K.イワモト、K.タカダ、及びS.コンド
ウ、「ソリッド ステート アイオニクス」(N. Aotan
i, K. Iwamoto, K. Takada, and S. Kondo, Solid Stat
e Ionics,)第68巻(1994)第35頁〕や、Li
3.25Ge0.25P0.75S4のような組成を有するリチウム
ゲルマニウムチオ−ホスフェート(以下、チオ−リシコ
ンと記載する)(村山昌宏,菅野了次,河本洋二,神山
崇、電気化学会第68回大会講演要旨集、p183)
が伝導度が高く、適当である。As the inorganic lithium ion conductive solid electrolyte used in the present invention, various kinds are known. For example, 0.01Li 3 PO 4 .0.63Li 2 S.0.3.
Sulfide glass having a composition such as 6SiS 2 [N. Aothani, K.K. Iwamoto, K. Takada, and S.I. Kondou, "Solid State Ionics" (N. Aotan
i, K. Iwamoto, K. Takada, and S. Kondo, Solid Stat
e Ionics,) Volume 68 (1994) p. 35], Li
Lithium germanium thio-phosphate having a composition such as 3.25 Ge 0.25 P 0.75 S 4 (hereinafter referred to as thio-lysicone) (Masayama Murayama, Ryuji Kanno, Yoji Kawamoto, Takashi Kamiyama, 68th Annual Meeting of the Electrochemical Society of Japan) Abstracts, p183)
Is suitable because of its high conductivity.
【0020】本発明において、無機リチウムイオン伝導
性固体電解質に対する化学架橋性の液状高分子よりなる
架橋体の割合については、両者の全体のうちで化学架橋
性の液状高分子よりなる架橋体の体積百分率が2〜10
%であることが好ましい。化学架橋性の液状高分子より
なる架橋体が2体積%未満では、加工性や柔軟性に富む
成型体が得難くなることがあるし、10体積%を超える
と成型、硬化の仕方により時として充分なリチウムイオ
ン伝導性のある成型体を得ることができないことがあ
る。前記範囲内の添加であれば、3×10-4S・cm-1
以上の高いイオン伝導度を有するリチウムイオン伝導性
固体電解質成型体が得られる。In the present invention, the ratio of the crosslinked body made of the chemically crosslinkable liquid polymer to the inorganic lithium ion conductive solid electrolyte is as follows: Percentage is 2-10
% Is preferable. If the cross-linked product of the chemically cross-linkable liquid polymer is less than 2% by volume, it may be difficult to obtain a molded product having excellent workability and flexibility, and if it exceeds 10% by volume, it may sometimes depend on the method of molding and curing. A molded product having sufficient lithium ion conductivity may not be obtained in some cases. If the addition is within the above range, 3 × 10 −4 S · cm −1
The lithium ion conductive solid electrolyte molded body having the above high ionic conductivity can be obtained.
【0021】本発明の多層構造体は、前述の特定のリチ
ウムイオン伝導性固体電解質成型体からなる層状成型体
の両主面に電極体を設けた構造を有している。前記層状
成型体の厚さについては、全固体リチウム電池に対して
は20〜100μm程度の厚さであれば良い。更に、成
型体の機械的特性を向上させるために、電気絶縁性構造
体を利用することもでき、例えばポリエステルメッシュ
を前記リチウムイオン伝導性固体電解質成型体に内在あ
るいは接触配置することができる。The multi-layer structure of the present invention has a structure in which electrode bodies are provided on both main surfaces of a layered molded body made of the specific lithium ion conductive solid electrolyte molded body described above. The thickness of the layered molded body may be about 20 to 100 μm for an all-solid-state lithium battery. Furthermore, in order to improve the mechanical properties of the molded body, an electrically insulating structure can be used, and for example, a polyester mesh can be placed inside or in contact with the lithium ion conductive solid electrolyte molded body.
【0022】本発明における電極体とは、正極体と負極
体とを含んでいる。正極体としては、例えば、正極活物
質、無機リチウムイオン伝導性固体電解質、導電助剤を
含んでなる混合物に、本発明のリチウムイオン伝導性固
体電解質成型体部分に用いたのと同じ化学架橋性の液状
高分子を添加してなるものが、リチウムイオン伝導性固
体電解質複合体との密着性で優れるので、好ましいが、
本発明はこれに限定されない。The electrode body in the present invention includes a positive electrode body and a negative electrode body. Examples of the positive electrode body include, for example, a positive electrode active material, an inorganic lithium ion conductive solid electrolyte, a mixture containing a conductive auxiliary agent, and the same chemical crosslinkability as that used for the lithium ion conductive solid electrolyte molded body portion of the present invention. The one obtained by adding the liquid polymer is preferable because it is excellent in adhesion with the lithium ion conductive solid electrolyte composite.
The present invention is not limited to this.
【0023】前記正極活物質としては、例えばコバルト
酸リチウム、ニッケル酸リチウム、マンガン酸リチウム
のような酸化物又はその遷移金属を一部他の金属に置換
したものが挙げられる。また、導電助剤としては例えば
アセチレンブラックのような炭素粉末、ニッケルや鉄の
ような金属粉末などが挙げられる。Examples of the positive electrode active material include oxides such as lithium cobalt oxide, lithium nickel oxide, and lithium manganate, or those obtained by partially replacing the transition metal with another metal. Examples of the conductive aid include carbon powder such as acetylene black and metal powder such as nickel and iron.
【0024】前記正極体は例えば、これをスラリー化し
たものを集電体の上に塗布することにより、集電性や機
械強度が向上する。正極の集電体としては、アルミニウ
ム箔、ニッケルからなる箔、若しくは、アルミニウム、
ニッケル、又はステンレスからなるメッシュが利用可能
である。シートの良好な加工性を得るためにはアルミニ
ウム箔が最も取扱が容易である。アルミニウム箔に上記
正極スラリーを塗付する際には、その接着性を向上させ
るため、予めアルミニウム箔を粗面化し、及び/又はカ
ーボンと樹脂を含有してなる複合導電性スラリーを塗布
しプライマー層を形成しておくことも有効である。この
複合導電性スラリーとしてはカーボンドータイトなどの
市販品のほか、低融点テルペン系樹脂とカーボンを溶媒
中混合して自作することも可能である。The positive electrode body can be improved in current collecting property and mechanical strength by, for example, applying a slurry of the positive electrode body on a current collector. As the positive electrode current collector, an aluminum foil, a foil made of nickel, or aluminum,
A mesh made of nickel or stainless is available. Aluminum foil is the easiest to handle in order to obtain good workability of the sheet. When applying the positive electrode slurry to an aluminum foil, in order to improve the adhesiveness, the aluminum foil is roughened in advance and / or a composite conductive slurry containing carbon and a resin is applied to form a primer layer. It is also effective to form. This composite conductive slurry may be a commercially available product such as carbon dawtite, or may be self-made by mixing a low melting point terpene resin and carbon in a solvent.
【0025】カーボンドータイトの場合、溶媒がトルエ
ン系であることから、正極スラリーの溶媒はトルエンを
少量含む飽和炭化水素系溶媒が望ましい。少量のトルエ
ンでプライマーの表面が溶けて、良好な接着性が発現す
る。低融点のテルペン系樹脂を用いる場合、例えばフェ
ノール系テルペン樹脂を選べば飽和炭化水素系の溶媒に
は不溶である。そのためこのような樹脂を用いる際に
は、正極スラリーを飽和炭化水素系の溶媒で作製塗付
後、100℃以上に加熱しテルペン樹脂融解を利用して
接着させる。この加熱処理はシリコーンの架橋反応と兼
ねてもよい。その場合150℃程度の加熱温度が望まし
い。In the case of carbon dautite, since the solvent is a toluene type solvent, the solvent of the positive electrode slurry is preferably a saturated hydrocarbon type solvent containing a small amount of toluene. The surface of the primer is melted with a small amount of toluene, and good adhesion is exhibited. When a terpene resin having a low melting point is used, for example, if a phenol terpene resin is selected, it is insoluble in a saturated hydrocarbon solvent. Therefore, when such a resin is used, the positive electrode slurry is prepared and coated with a saturated hydrocarbon solvent and then heated to 100 ° C. or higher to be bonded by utilizing terpene resin melting. This heat treatment may also serve as a crosslinking reaction of silicone. In that case, a heating temperature of about 150 ° C. is desirable.
【0026】負極体としては、例えば、負極活物質、無
機リチウムイオン伝導性固体電解質、導電助剤を含んで
なる混合物に、本発明のリチウムイオン伝導性固体電解
質成型体部分に用いたのと同じ化学架橋性の液状高分子
を添加してなるものが、リチウムイオン伝導性固体電解
質複合体との密着性で優れるので、好ましいが、本発明
はこれに限定されない。本発明の負極体に用いられる活
物質としては、例えばインジウム箔、リチウム箔又はそ
れらの合金箔、あるいは負極集電体上に作製したグラフ
ァイト膜が挙げられる。また、負極体に対しても正極の
場合と同様に集電体の上にスラリー化したものを塗布す
ることが、例えば、負極活物質、無機リチウムイオン伝
導性固体電解質、導電助剤を含んでなる混合物からなる
負極体を用いた時に有効である。負極の集電体としては
銅箔やステンレスメッシュなどが挙げられる。As the negative electrode body, for example, the same as that used for the lithium ion conductive solid electrolyte molded body portion of the present invention in a mixture containing a negative electrode active material, an inorganic lithium ion conductive solid electrolyte, and a conductive auxiliary agent. Those obtained by adding a chemically crosslinkable liquid polymer are preferable because they have excellent adhesion to the lithium ion conductive solid electrolyte composite, but the present invention is not limited thereto. Examples of the active material used for the negative electrode body of the present invention include indium foil, lithium foil or alloy foils thereof, or a graphite film formed on the negative electrode current collector. Further, similarly to the case of the positive electrode, it is also possible to apply a slurry on the current collector to the negative electrode body, for example, a negative electrode active material, an inorganic lithium ion conductive solid electrolyte, a conductive auxiliary agent is included. It is effective when a negative electrode body composed of the following mixture is used. Examples of the current collector for the negative electrode include copper foil and stainless mesh.
【0027】本発明の多層構造体は、例えば、無機リチ
ウムイオン伝導性固体電解質(以下、単に電解質とい
う)と化学架橋性の液状高分子とを混合し、成型して層
状となし、前記層の両主面に電極体を接合し、更に前記
液状高分子を架橋体に変換せしめることで得ることがで
きる。この際に、上述したとおりに、正極、負極のいず
れにも無機リチウムイオン伝導性固体電解質と化学架橋
性の液状高分子とを混合しておけば、リチウムイオン伝
導性固体電解質成型体を得るために架橋化する時に、正
極と負極と中に存在する化学架橋性の液状高分子も併せ
て架橋化でき、しかも電極体とリチウムイオン伝導性固
体電解質成型体との密着が極めて良くなるので、好まし
い。接合の方法は、例えば正極集電体上に、正極体、電
解質の層(以下、単に電解質層という)、負極体、負極
集電体の順に重ねても良いし、又は正極集電体上に正極
体を重ねた正極部品と、負極集電体上に負極体を重ねた
負極部品を別々に作製し、どちらか一方の部品に電解質
層を塗布してから両部品を接合しても良い。負極につい
ては活物質として合金の箔を用いた場合には、負極集電
体の接合は、別途ケースに封じ入れる直前でもよい。接
合の際には各部品を重ねた後で、一軸プレス又はローラ
ーにより加圧してから加熱処理するか、あるいは加圧し
つつ加熱処理することにより、架橋反応を起こさせる。The multilayer structure of the present invention comprises, for example, mixing an inorganic lithium ion conductive solid electrolyte (hereinafter, simply referred to as an electrolyte) and a chemically crosslinkable liquid polymer and molding the mixture to form a layer. It can be obtained by bonding electrode bodies to both main surfaces and converting the liquid polymer into a crosslinked body. At this time, as described above, if the inorganic lithium ion conductive solid electrolyte and the chemically crosslinkable liquid polymer are mixed in both the positive electrode and the negative electrode, a lithium ion conductive solid electrolyte molded body is obtained. At the time of cross-linking, the chemical cross-linking liquid polymer present in the positive electrode and the negative electrode can also be cross-linked, and the adhesion between the electrode body and the lithium ion conductive solid electrolyte molded body becomes extremely good, which is preferable. . The bonding method may be, for example, a positive electrode current collector, an electrolyte layer (hereinafter, simply referred to as an electrolyte layer), a negative electrode body, and a negative electrode current collector stacked in this order, or a positive electrode current collector. It is also possible to separately manufacture a positive electrode component in which the positive electrode body is stacked and a negative electrode component in which the negative electrode body is stacked on the negative electrode current collector, apply the electrolyte layer to one of the components, and then join the both components. When an alloy foil is used as the active material for the negative electrode, the negative electrode current collector may be joined just before it is sealed in a case. In the case of joining, after the respective parts are stacked, a crosslinking reaction is caused by applying pressure with a uniaxial press or roller and then heat-treating, or by performing heat treatment while applying pressure.
【0028】また、本発明は、前記の多層構造体を用い
てなる電池であり、有機溶媒からなる電解液を含まない
ことから、耐引火性など高い安全性能を有する。また、
電解液の分解のような副反応も起こらないことから、保
存特性も優れており、長期保存において自己放電が起こ
らない。本発明の電池は、前述した、本発明の多層構造
体を用い、これに集電体やリード部を設け、更に、ケー
スに封じることで得ることができる。Further, the present invention is a battery using the above-mentioned multilayer structure, which has high safety performance such as fire resistance because it does not contain an electrolytic solution containing an organic solvent. Also,
Since side reactions such as decomposition of the electrolyte do not occur, the storage characteristics are excellent and self-discharge does not occur during long-term storage. The battery of the present invention can be obtained by using the above-mentioned multilayer structure of the present invention, providing a current collector and lead portions on the multilayer structure, and further sealing the case in a case.
【0029】[0029]
【実施例】以下、本発明を実施例により更に具体的に説
明する。無機リチウムイオン伝導性固体電解質はチオ−
リシコンLi3.25Ge0.25P0. 75S4であり、Li2S、
GeS2、P2S5を真空下700℃で加熱することによ
り合成した。前記リチウムイオン伝導性固体電解質の粉
砕、シリコーンゴム等の混合、薄型化、イオン伝導度測
定用の試料調整、及びイオン伝導度測定はすべて乾燥ア
ルゴン雰囲気下で行った。また、前記粉砕操作について
は、走査型電子顕微鏡による観察により粒子径が1〜5
μmとなるまで行った。EXAMPLES The present invention will be described in more detail below with reference to examples. Inorganic lithium ion conductive solid electrolyte is thio-
Rishikon Li 3.25 Ge is 0.25 P 0. 75 S 4, Li 2 S,
It was synthesized by heating GeS 2 and P 2 S 5 at 700 ° C. under vacuum. The pulverization of the lithium ion conductive solid electrolyte, mixing of silicone rubber and the like, thinning, preparation of a sample for measuring ionic conductivity, and measurement of ionic conductivity were all performed in a dry argon atmosphere. Regarding the crushing operation, the particle size is 1 to 5 by observation with a scanning electron microscope.
It carried out until it became (micrometer).
【0030】実施例1〜3
表1に示す重量の、付加反応により硬化する二液タイプ
のシリコーン(粘度0.8Pa・s)を、乾燥ヘプタン
に、室温下で加えた。次いで得られた溶液に、粉砕した
チオ−リシコンを1.47g添加し、スラリーとした。
負極となるインジウムシート(厚み0.1mm)上に、
前記スラリーをキャストし、ヘプタンを留去して電解質
/負極複合シートを得た。Examples 1 to 3 Two-part type silicone (viscosity 0.8 Pa · s), which weighs as shown in Table 1 and cures by an addition reaction, was added to dry heptane at room temperature. Then, 1.47 g of pulverized thio-lysicon was added to the obtained solution to obtain a slurry.
On the indium sheet (thickness 0.1 mm) to be the negative electrode,
The slurry was cast and heptane was distilled off to obtain an electrolyte / negative electrode composite sheet.
【0031】一方、コバルト酸リチウム2.4g、チオ
−リシコン1.4g、アセチレンブラック40mgを乾
式混合して混合粉末を得た。次いで2重量%トルエンを
含有するヘプタン溶液に、電解質スラリーに用いたもの
と同じシリコーン未架橋体を10.3mg溶かし、そこ
に前記混合粉末を1.47g添加して、正極スラリーを
得た。カーボンドータイトを塗付して乾燥したアルミ箔
上に、前記正極スラリーを塗布して正極体シートを得
た。On the other hand, 2.4 g of lithium cobalt oxide, 1.4 g of thio-lysicon and 40 mg of acetylene black were dry-mixed to obtain a mixed powder. Then, 10.3 mg of the same silicone uncrosslinked product used for the electrolyte slurry was dissolved in a heptane solution containing 2 wt% toluene, and 1.47 g of the mixed powder was added thereto to obtain a positive electrode slurry. The positive electrode slurry was applied onto an aluminum foil which had been coated with carbon dauite and dried to obtain a positive electrode sheet.
【0032】得られた正極体シートと前記電解質/負極
複合シートを合せ、0.1GPaで加圧しながら接合
し、そのままの状態で150℃で30分加熱し、未架橋
のシリコーンを架橋させた。The obtained positive electrode sheet and the above-mentioned electrolyte / negative electrode composite sheet were put together, joined while applying a pressure of 0.1 GPa, and heated in that state at 150 ° C. for 30 minutes to crosslink the uncrosslinked silicone.
【0033】上記操作で得られた多層構造体について、
イオン伝導性を評価したところ表1に示す通りに、良好
であった。更に実施例1の多層構造体を用いて全固体リ
チウム電池を作製したところ、何らの異常もなく2次電
池動作特性を示した。また、ブンゼンバーナーの火炎中
に10分間放置したが、引火することはなかった。更
に、60℃で30日放置したが、自己放電が起こらなか
った。Regarding the multilayer structure obtained by the above operation,
When the ionic conductivity was evaluated, it was good as shown in Table 1. Furthermore, when an all-solid-state lithium battery was manufactured using the multilayer structure of Example 1, the secondary battery operating characteristics were shown without any abnormality. Further, it was left for 10 minutes in the flame of the Bunsen burner, but it did not catch fire. Furthermore, it was left at 60 ° C. for 30 days, but no self-discharge occurred.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【発明の効果】本発明の多層構造体はリチウムイオン伝
導性に優れる特徴があり、これを用いて薄型の全固体リ
チウム電池を安定して容易に得ることができるので、産
業上非常に有用である。EFFECTS OF THE INVENTION The multilayer structure of the present invention is characterized by being excellent in lithium ion conductivity, and a thin all-solid-state lithium battery can be stably and easily obtained by using the multilayer structure, which is very useful industrially. is there.
───────────────────────────────────────────────────── フロントページの続き (71)出願人 000003296 電気化学工業株式会社 東京都千代田区有楽町1丁目4番1号 (72)発明者 稲田 太郎 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内 (72)発明者 高田 和典 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 (72)発明者 近藤 繁雄 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 (72)発明者 渡辺 遵 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 (72)発明者 菅野 了次 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 (72)発明者 梶山 亮尚 広島県大竹市明治新開1番4号 戸田工業 株式会社創造本部内 (72)発明者 佐々木 秀樹 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社研究開発本部内 Fターム(参考) 5H029 AJ06 AJ14 AK03 AL07 AL11 AL12 AM12 CJ03 CJ05 CJ06 CJ08 DJ09 EJ03 EJ12 ─────────────────────────────────────────────────── ─── Continued front page (71) Applicant 000003296 Denki Kagaku Kogyo Co., Ltd. 1-4-1 Yurakucho, Chiyoda-ku, Tokyo (72) Inventor Taro Inada 3-5-1, Asahi-cho, Machida-shi, Tokyo Electrification Gakkou Central Research Institute (72) Inventor Kazunori Takada 1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent National Institute for Materials Science (72) Inventor Shigeo Kondo 1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent National Institute for Materials Science (72) Inventor Watanabe 1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent National Institute for Materials Science (72) Inventor Ryuji Kanno 1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent National Institute for Materials Science (72) Inventor Ryohisa Kajiyama Toda Kogyo, 1-4 Meiji Shinkai, Otake City, Hiroshima Prefecture Creative Headquarters Co., Ltd. (72) Inventor Hideki Sasaki Kyoto Prefecture Kyoto City Minami-ku Kichijoin Nishinosho Inono Babacho No. 1 Research & Development Division, Nippon Battery Co., Ltd. F term (reference) 5H029 AJ06 AJ14 AK03 AL07 AL11 AL12 AM12 CJ03 CJ05 CJ06 CJ08 DJ09 EJ03 EJ12
Claims (4)
成型体の両主面に電極体を設けてなる多層構造体であっ
て、前記リチウムイオン伝導性固体電解質成型体が無機
リチウムイオン伝導性固体電解質と化学架橋性の液状高
分子よりなる架橋体とからなることを特徴とする多層構
造体。1. A multilayer structure comprising electrode bodies provided on both main surfaces of a layered lithium ion conductive solid electrolyte molded body, wherein the lithium ion conductive solid electrolyte molded body is an inorganic lithium ion conductive solid electrolyte. And a cross-linked body comprising a chemically cross-linkable liquid polymer.
橋体が、JIS K‐7111に規定されるシャルピー
衝撃試験で破壊しないことを特徴とする請求項1記載の
多層構造体。2. The multi-layer structure according to claim 1, wherein the cross-linked product made of the chemically cross-linkable liquid polymer does not break in the Charpy impact test specified in JIS K-7111.
化学架橋性の液状高分子とを混合し、成型して層状とな
し、前記層の両主面に電極体を加圧接合し、更に前記液
状高分子を架橋体に変換せしめることを特徴とする多層
構造体の製造方法。3. An inorganic lithium ion conductive solid electrolyte and a chemically crosslinkable liquid polymer are mixed and molded to form a layer, and electrode bodies are pressure bonded to both main surfaces of the layer, and the liquid is further formed. A method for producing a multi-layer structure, which comprises converting a polymer into a crosslinked body.
を用いたことを特徴とする電池。4. A battery using the multilayer structure according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001206457A JP5004066B2 (en) | 2001-07-06 | 2001-07-06 | Multilayer structure and lithium battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001206457A JP5004066B2 (en) | 2001-07-06 | 2001-07-06 | Multilayer structure and lithium battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003022839A true JP2003022839A (en) | 2003-01-24 |
JP5004066B2 JP5004066B2 (en) | 2012-08-22 |
Family
ID=19042585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001206457A Expired - Fee Related JP5004066B2 (en) | 2001-07-06 | 2001-07-06 | Multilayer structure and lithium battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5004066B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007324079A (en) * | 2006-06-05 | 2007-12-13 | Mie Univ | Positive electrode material for all-solid-state lithium batteries |
JP2014116164A (en) * | 2012-12-07 | 2014-06-26 | Samsung R&D Institute Japan Co Ltd | Solid-state battery |
WO2016125716A1 (en) * | 2015-02-04 | 2016-08-11 | 富士フイルム株式会社 | All-solid secondary cell, solid electrolyte composition and cell electrode sheet used in same, and method for manufacturing cell electrode sheet and all-solid secondary cell |
WO2016129428A1 (en) * | 2015-02-12 | 2016-08-18 | 富士フイルム株式会社 | All-solid secondary battery, solid electrolyte composition and electrode sheet for battery used therein, and methods of manufacturing electrode sheet for battery and all-solid secondary battery |
CN110100344A (en) * | 2017-03-16 | 2019-08-06 | 株式会社Lg化学 | Electrode assembly for all-solid-state battery and method for manufacturing same |
JP2019527919A (en) * | 2017-03-22 | 2019-10-03 | エルジー・ケム・リミテッド | Electrode for all-solid battery and method for producing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6378405A (en) * | 1986-09-19 | 1988-04-08 | 松下電器産業株式会社 | Anisotropic ion conductor |
JPS63239775A (en) * | 1987-03-27 | 1988-10-05 | Japan Synthetic Rubber Co Ltd | Solid electrolyte cell |
JPH02148656A (en) * | 1988-11-30 | 1990-06-07 | Japan Synthetic Rubber Co Ltd | Body structure |
JPH02301972A (en) * | 1989-05-16 | 1990-12-14 | Japan Synthetic Rubber Co Ltd | Solid electrolyte sheet and battery thereof |
JP2000123874A (en) * | 1998-10-16 | 2000-04-28 | Matsushita Electric Ind Co Ltd | Solid electrolyte molded body, electrode molded body and electrochemical element |
-
2001
- 2001-07-06 JP JP2001206457A patent/JP5004066B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6378405A (en) * | 1986-09-19 | 1988-04-08 | 松下電器産業株式会社 | Anisotropic ion conductor |
JPS63239775A (en) * | 1987-03-27 | 1988-10-05 | Japan Synthetic Rubber Co Ltd | Solid electrolyte cell |
JPH02148656A (en) * | 1988-11-30 | 1990-06-07 | Japan Synthetic Rubber Co Ltd | Body structure |
JPH02301972A (en) * | 1989-05-16 | 1990-12-14 | Japan Synthetic Rubber Co Ltd | Solid electrolyte sheet and battery thereof |
JP2000123874A (en) * | 1998-10-16 | 2000-04-28 | Matsushita Electric Ind Co Ltd | Solid electrolyte molded body, electrode molded body and electrochemical element |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007324079A (en) * | 2006-06-05 | 2007-12-13 | Mie Univ | Positive electrode material for all-solid-state lithium batteries |
JP2014116164A (en) * | 2012-12-07 | 2014-06-26 | Samsung R&D Institute Japan Co Ltd | Solid-state battery |
WO2016125716A1 (en) * | 2015-02-04 | 2016-08-11 | 富士フイルム株式会社 | All-solid secondary cell, solid electrolyte composition and cell electrode sheet used in same, and method for manufacturing cell electrode sheet and all-solid secondary cell |
WO2016129428A1 (en) * | 2015-02-12 | 2016-08-18 | 富士フイルム株式会社 | All-solid secondary battery, solid electrolyte composition and electrode sheet for battery used therein, and methods of manufacturing electrode sheet for battery and all-solid secondary battery |
JPWO2016129428A1 (en) * | 2015-02-12 | 2017-08-03 | 富士フイルム株式会社 | All-solid secondary battery, solid electrolyte composition and battery electrode sheet used therefor, battery electrode sheet and method for producing all-solid secondary battery |
US10411292B2 (en) | 2015-02-12 | 2019-09-10 | Fujifilm Corporation | All solid state secondary battery, solid electrolyte composition used therefor, electrode sheet for battery, and method for manufacturing electrode sheet for battery and all solid state secondary battery |
CN110100344A (en) * | 2017-03-16 | 2019-08-06 | 株式会社Lg化学 | Electrode assembly for all-solid-state battery and method for manufacturing same |
JP2019525427A (en) * | 2017-03-16 | 2019-09-05 | エルジー・ケム・リミテッド | Electrode assembly for all-solid-state battery and manufacturing method thereof |
US11069895B2 (en) | 2017-03-16 | 2021-07-20 | Lg Chem, Ltd. | Electrode assembly for solid state battery and method for manufacturing the same |
JP2019527919A (en) * | 2017-03-22 | 2019-10-03 | エルジー・ケム・リミテッド | Electrode for all-solid battery and method for producing the same |
US11631839B2 (en) | 2017-03-22 | 2023-04-18 | Lg Energy Solution, Ltd. | Electrode for solid state battery and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP5004066B2 (en) | 2012-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aravindan et al. | Best practices for mitigating irreversible capacity loss of negative electrodes in Li‐ion batteries | |
JP3655443B2 (en) | Lithium battery | |
JP6313491B2 (en) | All-solid lithium-sulfur battery and method for producing the same | |
JP2010186682A (en) | Method for producing solid electrolyte layer | |
CN112382793B (en) | Sulfide impregnated solid state battery | |
US11217826B2 (en) | Methods of making sulfide-impregnated solid-state battery | |
JP2018125260A (en) | All solid battery | |
WO2006018921A1 (en) | Organic electrolyte battery, and process for producing positive electrode sheet for use therein | |
CN108232111A (en) | A kind of anode composite pole piece of solid state battery and preparation method thereof | |
CN110444807B (en) | Composite gel polymer electrolyte, preparation method and application thereof | |
JP2013089321A (en) | Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery | |
WO2000024077A1 (en) | Molded solid electrolyte, molded electrode, and electrochemical element | |
CN110661032A (en) | Solid electrolyte film and application thereof | |
WO2017217079A1 (en) | All-solid battery | |
CN107910484A (en) | It is a kind of using fast charge lithium ion battery of ceramic diaphragm and preparation method thereof | |
Hong et al. | Wet‐Processable Binder in Composite Cathode for High Energy Density All‐Solid‐State Lithium Batteries | |
Lee et al. | Exploring the use of butadiene rubbers as a binder in composite cathodes for all-solid-state lithium batteries | |
Hayakawa et al. | Characterization of solid-electrolyte/active-material composite particles with different surface morphologies for all-solid-state batteries | |
CN117691202A (en) | Semi-solid electrode lithium battery and preparation method thereof | |
Sun et al. | The effects of lithium ions and pH on the function of polyacrylic acid binder for silicon anodes | |
JP2003022839A (en) | Multilayer structure and lithium battery using the same | |
Cheng et al. | Polymer-in-ceramic flexible separators for Li-ion batteries | |
JP2016039128A (en) | All-solid battery | |
JP2003022707A (en) | Lithium ion conductive molded solid electrolyte and lithium battery using the same | |
CN118763289A (en) | A method for preparing a solid-state battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080704 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081007 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090406 |
|
A59 | Written plea |
Free format text: JAPANESE INTERMEDIATE CODE: A59 Effective date: 20090528 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120514 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120514 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5004066 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |