[go: up one dir, main page]

JP2003017066A - Electrode surface film forming agent. - Google Patents

Electrode surface film forming agent.

Info

Publication number
JP2003017066A
JP2003017066A JP2001197183A JP2001197183A JP2003017066A JP 2003017066 A JP2003017066 A JP 2003017066A JP 2001197183 A JP2001197183 A JP 2001197183A JP 2001197183 A JP2001197183 A JP 2001197183A JP 2003017066 A JP2003017066 A JP 2003017066A
Authority
JP
Japan
Prior art keywords
battery
lithium
forming agent
electrode
electrode surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001197183A
Other languages
Japanese (ja)
Other versions
JP4951820B2 (en
Inventor
Kenji Adachi
健二 足達
Katsuchika Kuroki
克親 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001197183A priority Critical patent/JP4951820B2/en
Publication of JP2003017066A publication Critical patent/JP2003017066A/en
Application granted granted Critical
Publication of JP4951820B2 publication Critical patent/JP4951820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】電池の熱安定性を向上させる。 【解決手段】式(I): 【化1】 (式中、R1、R2は互いに独立して炭素数1〜5のアルキ
ル基、含フッ素アルキル基のいずれかであり、R1、R2
少なくとも1つはCF3、CF3CH2または(CF3)2CHであ
る。)で表される化合物よりなる群から選ばれた少なく
とも1種を含む電解液および/または電極表面被膜形成
剤。
(57) [Summary] To improve the thermal stability of a battery. SOLUTION: Formula (I): (Wherein, R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms or a fluorine-containing alkyl group, and at least one of R 1 and R 2 is CF 3 , CF 3 CH 2 Or (CF 3 ) 2 CH.) An electrolytic solution and / or an electrode surface film forming agent containing at least one member selected from the group consisting of compounds represented by the following formula:

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、含フッ素炭酸エス
テルを用いた電極表面被膜形成剤に関する。
TECHNICAL FIELD The present invention relates to an electrode surface film forming agent using a fluorine-containing carbonic acid ester.

【0002】[0002]

【従来の技術及びその課題】負極にリチウム金属やその
合金あるいはリチウムイオンを吸蔵・放出できる化合物
を備えたいわゆるリチウムイオン電池はそのエネルギー
密度の高さから需要が大幅に拡大している。
2. Description of the Related Art Demand for so-called lithium-ion batteries having a negative electrode provided with lithium metal, an alloy thereof, or a compound capable of occluding and releasing lithium ions is greatly expanding due to its high energy density.

【0003】一方、リチウムイオン電池は、内部・外部
ショート、外部発熱などがトリガーとなり発熱し、電池
の発火、発煙などが起こることがあり、リチウムイオン
電池安全性の向上のために高温での電解液の安定性の向
上が求められている。
On the other hand, a lithium-ion battery may generate heat due to internal / external short-circuiting, external heat generation, etc., which may cause the battery to ignite or emit smoke. Electrolysis at high temperature may improve the safety of the lithium-ion battery. It is required to improve the stability of the liquid.

【0004】第67回電気化学会(2000年4月4日
〜6日、予稿集24頁、2B21)および第41回電池
討論会(2000年11月20日〜22日、予稿集29
6頁、2C10)において、ジフルオロ酢酸メチルエス
テルがリチウム電池の熱安定性を高めることが報告され
た。また、本発明者は、特願2000−312293号
において、ジメチルジフルオロマロネートがリチウムイ
オン電池の熱安定性の向上に寄与し得ることを報告し
た。それによると、通常、電池に用いられる電解液がリ
チウム金属の融点(180℃)かそれ以下で発熱を開始
するのに対し、ジフルオロ酢酸メチルおよびジメチルジ
フルオロマロネートはリチウム金属共存下にそれぞれ2
50℃、280℃まで発熱が起こらないことが示され
た。これらの化合物においては、フッ素導入によりリチ
ウム金属との反応性が増すことが知られているため、こ
の効果はリチウム金属表面にジフルオロ酢酸メチルまた
はジメチルジフルオロマロネートによる被膜が形成さ
れ、それが安定な保護膜となり熱安定性が向上したと考
えられる。
The 67th Electrochemical Society (April 4-6, 2000, Proceedings 24, 2B21) and the 41st Battery Symposium (November 20-22, 2000, Proceedings 29)
On page 6, 2C10), difluoroacetic acid methyl ester was reported to enhance the thermal stability of lithium batteries. In addition, the present inventor reported in Japanese Patent Application No. 2000-31293 that dimethyldifluoromalonate can contribute to the improvement of thermal stability of a lithium ion battery. According to it, normally, the electrolytic solution used for the battery starts to generate heat at the melting point of lithium metal (180 ° C.) or lower, while methyl difluoroacetate and dimethyldifluoromalonate are mixed with lithium metal in the presence of lithium metal, respectively.
It was shown that an exotherm did not occur up to 50 ° C and 280 ° C. In these compounds, since it is known that the introduction of fluorine increases the reactivity with lithium metal, this effect has the effect that a film of methyl difluoroacetate or dimethyldifluoromalonate is formed on the surface of lithium metal and it is stable. It is considered that the film became a protective film and the thermal stability was improved.

【0005】一般的に高い電池性能を得るためには通常
電解液として用いられている誘電率の高いエチレンカー
ボネート(EC)、γ−ブチロラクトン(GBL)、プロピ
レンカーボネート(PC)および炭酸ジメチル(DMC)な
どといっしょに混合して用いる必要がある。しかしなが
ら、電解液中のジメチルジフルオロマロネートの含有量
が低下すると、発熱を抑制する効果が著しく減少すると
いう問題点が発生した。これはリチウム金属とジメチル
ジフルオロマロネートによって形成した保護膜がEC、GB
L、PCおよびDMCなどの溶媒によって溶かされ、保護膜の
一部または大部分がはがれたためであると考えられる。
In general, in order to obtain high battery performance, ethylene carbonate (EC), γ-butyrolactone (GBL), propylene carbonate (PC) and dimethyl carbonate (DMC), which have a high dielectric constant and are usually used as electrolytes. It is necessary to mix it with such as. However, when the content of dimethyldifluoromalonate in the electrolytic solution is reduced, the effect of suppressing heat generation is significantly reduced. This is a protective film formed by lithium metal and dimethyldifluoromalonate EC, GB
It is considered that it was dissolved by a solvent such as L, PC and DMC, and part or most of the protective film was peeled off.

【0006】また、特開平10−116629において
メチル2,2,2-トリフルオロエチルカーボネートを用いた
電解液と正極活物質であるLiCoO2との熱安定性評価を行
っているが、一般的に負極と電解液の反応が正極との反
応に先んじて起こり、それがトリガーとなって電池温度
が上昇し、電池の発火、発煙が起こると考えられてい
る。
[0006] Further, in JP-A-10-116629, the thermal stability of an electrolytic solution using methyl 2,2,2-trifluoroethyl carbonate and LiCoO 2 as a positive electrode active material is evaluated. It is believed that the reaction between the negative electrode and the electrolytic solution occurs prior to the reaction with the positive electrode, which triggers the temperature rise of the battery, which causes ignition and smoking of the battery.

【0007】そこで、実用化されている電池に用いられ
ているような誘電率の高い有機溶媒系の非水電解液の共
存下でも負極表面上で強固に保護膜として作用し、電池
の熱安定性を高める電極表面被膜形成剤が求められてい
る。
Therefore, even in the coexistence of an organic solvent-based non-aqueous electrolytic solution having a high dielectric constant, which is used in practically used batteries, it strongly acts as a protective film on the surface of the negative electrode, and the thermal stability of the battery is improved. There is a need for an electrode surface film forming agent that enhances the property.

【0008】本発明は高温時、負極の発熱を抑制する表
面保護膜を形成し得る含フッ素化合物に関するものであ
る。
The present invention relates to a fluorine-containing compound capable of forming a surface protective film which suppresses heat generation of a negative electrode at high temperatures.

【0009】また、本発明は、熱安定性の向上した電池
の製造方法を提供することに関するものでもある。
The present invention also relates to a method of manufacturing a battery having improved thermal stability.

【0010】[0010]

【課題を解決するための手段】本発明者らは、実用化さ
れている電池に用いられているような誘電率の高い有機
溶媒系の非水電解液の共存下でも高い電解液の熱安定性
を有する電池を得るべく検討を行った結果、含フッ素炭
酸エステルが、電解液と電極、特にリチウムなどの負極
との反応を抑制し、電池の熱安定性の向上に寄与し得る
ことを見出した。
The present inventors have found that the high thermal stability of an electrolytic solution is obtained even in the presence of an organic solvent-based non-aqueous electrolytic solution having a high dielectric constant as used in practically used batteries. As a result of studying to obtain a battery having high performance, it was found that the fluorinated carbonic acid ester can suppress the reaction between the electrolytic solution and the electrode, particularly the negative electrode such as lithium and contribute to the improvement of the thermal stability of the battery. It was

【0011】本発明は電極表面被膜形成剤、特に負極表
面を保護するための電極表面被膜形成剤として作用する
含フッ素炭酸エステルに関するものであり、それらを用
いた電池製造方法に関するものである。
The present invention relates to an electrode surface film forming agent, particularly to a fluorine-containing carbonic acid ester which acts as an electrode surface film forming agent for protecting the surface of a negative electrode, and to a battery manufacturing method using the same.

【0012】すなわち、本発明は、下記の項1〜項6に
関する。
That is, the present invention relates to the following items 1 to 6.

【0013】項1、式(I):Item 1, Formula (I):

【0014】[0014]

【化2】 [Chemical 2]

【0015】(式中、R1、R2は互いに独立して炭素数1
〜5のアルキル基、含フッ素アルキル基のいずれかであ
り、R1、R2の少なくとも1つはCF3、CF3CH2または(CF3)
2CHである。)で表される化合物よりなる群から選ばれ
た少なくとも1種を含む電解液および/または電極表面
被膜形成剤。
(In the formula, R 1 and R 2 independently of each other have 1 carbon atoms.
~ 5 alkyl group or fluorine-containing alkyl group, at least one of R 1 and R 2 is CF 3 , CF 3 CH 2 or (CF 3 ).
It is 2 CH. ) An electrolytic solution and / or an electrode surface film forming agent containing at least one selected from the group consisting of compounds represented by

【0016】項2、電池作成時および/または電池使用
時に、電極材料表面に保護膜として作用することを特徴
とする項1記載の電極表面被膜形成剤。
Item 2, The electrode surface film forming agent according to Item 1, which acts as a protective film on the surface of the electrode material when the battery is prepared and / or used.

【0017】項3、電極がリチウム金属、リチウムイン
ターカレート化合物またはリチウム合金からなる負極で
ある項2記載の電極表面被膜形成剤。
Item 3, The electrode surface coating forming agent according to Item 2, wherein the electrode is a negative electrode made of lithium metal, a lithium intercalate compound or a lithium alloy.

【0018】項4、項1記載の化合物の少なくとも1種
を含む電解液を使用することを特徴とする電池製造方
法。
A method for producing a battery, which comprises using an electrolytic solution containing at least one compound of items 4 and 1.

【0019】項5、項1記載の化合物の少なくとも1種
を用いて電池の製造前にあるいは製造過程で負極を処理
することを特徴とする電池製造方法。
A method for producing a battery, characterized in that the negative electrode is treated with at least one of the compounds of items 5 and 1 before or during the production of the battery.

【0020】項6、負極がリチウム金属、リチウムイン
ターカレート化合物またはリチウム合金である項4また
は5記載の電池製造方法。
Item 6, The method for producing a battery according to Item 4 or 5, wherein the negative electrode is lithium metal, a lithium intercalate compound or a lithium alloy.

【0021】[0021]

【発明の実施の形態】本発明の電解液および/または電
極被膜形成剤は、リチウム一次電池およびリチウム二次
電池等の一次電池および二次電池のいずれにも用いるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION The electrolytic solution and / or the electrode film forming agent of the present invention can be used in any of primary batteries and secondary batteries such as lithium primary batteries and lithium secondary batteries.

【0022】前記式(I)において、R1、R2は互いに独
立して炭素数1〜5のアルキル基、含フッ素アルキル基
のいずれかであり、R1、R2の少なくとも1つはCF3、CF3
CH2または(CF3)2CHである。
In the above formula (I), R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms or a fluorine-containing alkyl group, and at least one of R 1 and R 2 is CF. 3 , CF 3
CH 2 or (CF 3 ) 2 CH.

【0023】R1およびR2で示されるアルキル基として
は、たとえばメチル、エチル、n−プロピル、イソプロ
ピル、n−ブチル、イソブチル、sec−ブチル、t−
ブチル、n−ペンチル、イソペンチルなどの直鎖又は分
枝を有する炭素数1〜5、好ましくは炭素数1〜4、特
に炭素数1〜3のアルキル基が挙げられる。
Examples of the alkyl group represented by R 1 and R 2 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and t-butyl.
Examples thereof include linear or branched C1-C5, preferably C1-C4, and especially C1-C3 alkyl groups such as butyl, n-pentyl, and isopentyl.

【0024】R1およびR2で示される含フッ素アルキル基
としては、たとえばCH2F, CHF2, CF 3, C2H4F, C2H3F2,
CF3CH2, C2F4H, C2F5, C3H6F, C3F6H, CF3CF2CH2, (C
F3)2CH, C3F7, C4H8F, C4H8Cl, C3F7CH2, C4F9, C5F11
などの直鎖又は分枝を有する炭素数1〜5の含フッ素ア
ルキル基が挙げられる。
R1And R2Fluorinated alkyl group represented by
For example, CH2F, CHF2, CF 3, C2HFourF, C2H3F2,
CF3CH2, C2FFourH, C2FFive, C3H6F, C3F6H, CF3CF2CH2, (C
F3)2CH, C3F7, CFourH8F, CFourH8Cl, C3F7CH2, CFourF9, CFiveF11
Fluorine-containing C 1-5 having straight or branched chain such as
Examples include a rukyl group.

【0025】本発明の好ましい化合物として、メチル
2,2,2−トリフルオロエチルカーボネート(CH3-O-C
O-O-CH2CF3)、2,2,2−トリフルオロエチルカーボ
ネート(CF3CH2-O-CO-O-CH2CF3)が挙げられる。これらの
化合物と比較例であるジメチルジフルオロマロネートの
発熱温度や発熱量をパーキンエルマー社の示差走査カロ
リーメーター(DSC7)を用いて測定した。結果を図1
〜3に示した。
A preferred compound of the present invention is methyl 2,2,2-trifluoroethyl carbonate (CH 3 -OC
OO-CH 2 CF 3), 2,2,2- trifluoroethyl carbonate (CF 3 CH 2 -O-CO -O-CH 2 CF 3) and the like. The exothermic temperature and calorific value of these compounds and Comparative Example dimethyldifluoromalonate were measured using a differential scanning calorimeter (DSC7) manufactured by Perkin Elmer. The result is shown in Figure 1.
~ 3.

【0026】図1〜3は本発明の化合物またはジメチル
ジフルオロマロネートと1M LiPF6/EC+DMC=1:1(vol%)電
解液を体積比1:1とし、リチウム金属1.3 mgと混合
し、DSC測定したものである。これより、ジメチルジフ
ルオロマロネートはリチウム金属の融点である180℃
付近で発熱が開始し、213℃付近で大きな発熱が見ら
れるが、本発明の化合物はそれを上回り、たとえばメチ
ル2,2,2−トリフルオロエチルカーボネートの発熱
はリチウムの融点から穏やかな発熱があるが、大きな発
熱は300℃まで抑制されており、熱安定性の向上が見
られる。これらの結果は、本発明における該化合物がリ
チウムイオン電池の熱安定性を一層向上させることを示
している。
FIGS. 1 to 3 show the compound of the present invention or dimethyldifluoromalonate and 1M LiPF 6 / EC + DMC = 1: 1 (vol%) electrolyte at a volume ratio of 1: 1 and mixed with 1.3 mg of lithium metal. , DSC measurement. Therefore, dimethyldifluoromalonate has a melting point of lithium metal of 180 ° C.
Exothermic heat starts in the vicinity, and large exothermic heat is observed in the vicinity of 213 ° C., but the compound of the present invention exceeds that, for example, the heat generation of methyl 2,2,2-trifluoroethyl carbonate is mild heat generation from the melting point of lithium. However, a large amount of heat generation is suppressed up to 300 ° C., and thermal stability is improved. These results indicate that the compound of the present invention further improves the thermal stability of the lithium ion battery.

【0027】メチル2,2,2−トリフルオロエチルカ
ーボネートなどの含フッ素炭酸エステルはジメチルマロ
ネートよりもさらに強固な保護膜をリチウム金属表面に
形成するため、このようにリチウム金属存在化で高い熱
安定性が得られたと考えられる。負極としてリチウムイ
ンターカレート化合物、すなわち炭素材料あるいは種々
の金属酸化物を用いた場合にも、急速充電あるいは過放
電により、金属リチウムが析出する場合があるので、こ
れらを用いた電池においても本発明における該化合物は
熱安定性、安全性を高める上で有効である。
Fluorine-containing carbonic acid esters such as methyl 2,2,2-trifluoroethyl carbonate form a stronger protective film on the lithium metal surface than dimethyl malonate, and thus high heat is generated in the presence of lithium metal. It is considered that stability was obtained. Even when a lithium intercalate compound, that is, a carbon material or various metal oxides is used as the negative electrode, metallic lithium may be deposited due to rapid charging or overdischarging. The above compound is effective in enhancing the thermal stability and safety.

【0028】本発明の電極表面被膜形成剤に用いられる
含フッ素炭酸エステルは、単独で用いても良いが、通常
用いられている有機溶媒系電解液に対して通常0.1〜80
重量%程度、好ましくは1〜50重量%程度、より好まし
くは5〜30重量%程度含まれる。
The fluorine-containing carbonic acid ester used in the electrode surface coating forming agent of the present invention may be used alone, but is usually 0.1 to 80 relative to the organic solvent type electrolytic solution which is usually used.
It is contained in an amount of about 5% by weight, preferably about 1 to 50% by weight, more preferably about 5 to 30% by weight.

【0029】発明において、含フッ素炭酸エステルとと
もに非水電解液二次電池の電解液として用いられる有機
溶媒系電解液としては、プロピレンカーボネート、エチ
レンカーボネート、ブチレンカーボネート等の環状カー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、メチルエチルカーボネート等の鎖状カーボネート等
が例示できる。さらには、γ−ブチロラクトン、テトラ
ヒドロフラン、ジメトキシエタン、ジエトキシエタン、
ジメチルスルホキシド、スルホラン等も用いることがで
きるがこれらに限定されるわけではない。これらは単独
で含フッ素炭酸エステルと混合して用いても良いし、2
種類以上の有機溶媒系電解液を用いてもよい。
In the present invention, the organic solvent-based electrolyte used as the electrolyte of the non-aqueous electrolyte secondary battery together with the fluorine-containing carbonic acid ester includes cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, diethyl carbonate and dimethyl carbonate. Examples thereof include chain carbonates such as methyl ethyl carbonate and the like. Furthermore, γ-butyrolactone, tetrahydrofuran, dimethoxyethane, diethoxyethane,
Dimethyl sulfoxide, sulfolane and the like can also be used, but are not limited thereto. These may be used alone as a mixture with a fluorine-containing carbonate, or 2
More than one type of organic solvent-based electrolytic solution may be used.

【0030】これら含フッ素炭酸エステルを少なくとも
1種含む有機溶媒系電解液は下記リチウム塩を溶解した
電池の電極表面被膜形成剤として用いてもよいし、特に
負極表面被膜形成剤として電池製造前の段階で、あるい
は電池を製造する過程で、負極を処理することに用いて
も良い。負極の処理方法としては、含フッ素炭酸エステ
ルを少なくとも1種含む有機溶媒に負極を浸す方法、あ
るいは、霧状にして噴霧する方法、ハケなどで負極表面
に塗る方法などが例示される。処理の際には、冷却もし
くは加熱を行っても良い。
The organic solvent-based electrolytic solution containing at least one of these fluorine-containing carbonic acid esters may be used as an electrode surface film-forming agent for a battery in which the following lithium salt is dissolved, and particularly as a negative electrode surface film-forming agent prior to battery production. It may be used to treat the negative electrode at a stage or in the process of manufacturing the battery. Examples of the method for treating the negative electrode include a method of immersing the negative electrode in an organic solvent containing at least one fluorine-containing carbonate, a method of atomizing and spraying, a method of coating the negative electrode surface with a brush or the like. During processing, cooling or heating may be performed.

【0031】リチウムイオン(一次または二次)電池に
用いる場合の好ましい電解液は、含フッ素炭酸エステル
と有機溶媒を含む上記非水溶媒と、その溶媒に溶解する
リチウム塩から構成される。
A preferred electrolyte for use in a lithium ion (primary or secondary) battery is composed of the above non-aqueous solvent containing a fluorine-containing carbonate and an organic solvent, and a lithium salt dissolved in the solvent.

【0032】リチウム塩としては、LiPF6, LiPF4(C
F3)2, LiPF4(C2F5)2, LiPF4(C3F7)2, LiAsF6, LiBF4, L
iClO4, LiCF3SO3, LiC4F9SO3, LiN(CF3SO2)2, LIN(C2F5
SO2)2, LiN(C4F9SO2)2, LiN(CF3SO2)(C4F9SO2), LiC(CF
3SO2)3等を用いることができる。
As the lithium salt, LiPF 6 , LiPF 4 (C
F 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (C 3 F 7 ) 2 , LiAsF 6 , LiBF 4 , L
iClO 4 ,, LiCF 3 SO 3 ,, LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LIN (C 2 F 5
SO 2 ) 2 , LiN (C 4 F 9 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF
3 SO 2 ) 3 etc. can be used.

【0033】上記電解質は、リチウムイオン伝導性を有
する非水溶液用電解質として、およびこれをポリマーマ
トリックスで固定したゲル電解質として用いることがで
きる。
The above-mentioned electrolyte can be used as a non-aqueous electrolyte having lithium ion conductivity and as a gel electrolyte in which it is fixed with a polymer matrix.

【0034】本発明のリチウムイオン電池は、上記電解
液を用いることを特徴としており、その他の条件、例え
ばリチウムイオン電池の形状や構成要素は特に限定され
ず、公知の技術を用いることができる。
The lithium-ion battery of the present invention is characterized by using the above-mentioned electrolytic solution, and other conditions such as the shape and constituent elements of the lithium-ion battery are not particularly limited, and known techniques can be used.

【0035】例えば電池の形状としては、円筒型、角
型、コイン型、フィルム状等を挙げることができる。
Examples of the shape of the battery include a cylindrical shape, a square shape, a coin shape, and a film shape.

【0036】負極材料としては、リチウム金属およびそ
の合金、リチウムをドープ・脱ドープできる炭素材料や
高分子材料、金属酸化物などのリチウムインターカレー
ト化合物が挙げられる。
Examples of the negative electrode material include lithium metal and its alloys, carbon materials and polymer materials capable of doping / dedoping lithium, and lithium intercalating compounds such as metal oxides.

【0037】正極材料としては、LiCoO2, LiNiO2, LiMn
2O4, LiMnO2などのリチウムと遷移金属の複合酸化物
や、高分子材料などが挙げられる。
As the positive electrode material, LiCoO 2 , LiNiO 2 , LiMn
Examples thereof include composite oxides of lithium and transition metals such as 2 O 4 and LiMnO 2 , and polymer materials.

【0038】セパレーターとしては、ポリエチレンやポ
リプロピレン等の高分子材料の多孔膜や、本発明の電解
液を吸蔵して固定化する高分子材料(いわゆるゲル電解
質)として用いることができる。
As the separator, a porous film of a polymer material such as polyethylene or polypropylene, or a polymer material (so-called gel electrolyte) which occludes and immobilizes the electrolytic solution of the present invention can be used.

【0039】集電体の材料としては、銅、アルミ、ステ
ンレススチール、チタン、ニッケル、タングステン鋼、
炭素材料などが用いられ、その形状は箔、網、不織布、
パンチドメタルなどが挙げられる。
The material of the current collector is copper, aluminum, stainless steel, titanium, nickel, tungsten steel,
Carbon material is used, and its shape is foil, mesh, non-woven fabric,
Examples include punched metal.

【0040】[0040]

【実施例】以下、本発明を実施例および比較例を用いて
より詳細に説明するが、本発明はこれら実施例に限定さ
れない。 実施例1 DSC測定はパーキンエルマー製のDSC7を用いた。また、
測定用の試料は、チタン製耐圧密閉容器に1M LiPF6/EC+
DMC=1:1(vol%)電解液5 ml、含フッ素炭酸エステル5 ml
をリチウム金属1.3 mgと混合し調整した。昇温速度は5
℃/minで行い、発熱反応ピーク温度を測定した。種々の
含フッ素炭酸エステルを用いて測定した結果を図1〜3
に示す。
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. Example 1 For the DSC measurement, DSC7 manufactured by Perkin Elmer was used. Also,
The sample for measurement is 1M LiPF 6 / EC + in a titanium pressure tight container.
DMC = 1: 1 (vol%) electrolyte 5 ml, fluorinated carbonate 5 ml
Was mixed with 1.3 mg of lithium metal to prepare a mixture. The heating rate is 5
The reaction was carried out at a temperature of ° C / min to measure the exothermic reaction peak temperature. The results measured using various fluorinated carbonic acid esters are shown in FIGS.
Shown in.

【0041】[0041]

【発明の効果】本発明によれば、電池の熱安定性を向上
させ得る電極表面被膜形成剤および電池製造方法が提供
できる。これにより、急速充電時にも安全性が向上し、
さらに負極にリチウム金属を用いる安全な電池を提供す
ることが可能になる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide an electrode surface film forming agent and a battery manufacturing method capable of improving the thermal stability of a battery. This improves safety even during rapid charging,
Further, it becomes possible to provide a safe battery using lithium metal for the negative electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物との比較例であるジメチルジフ
ルオロマロネートの発熱温度、発熱量の測定結果を示
す。
FIG. 1 shows the measurement results of the exothermic temperature and exothermic amount of dimethyldifluoromalonate, which is a comparative example with the compound of the present invention.

【図2】本発明の化合物であるメチル2,2,2−トリ
フルオロエチルカーボネートの発熱温度、発熱量の測定
結果を示す。
FIG. 2 shows the measurement results of the exothermic temperature and exothermic amount of methyl 2,2,2-trifluoroethyl carbonate which is the compound of the present invention.

【図3】本発明の化合物である2,2,2−トリフルオ
ロエチルカーボネートの発熱温度、発熱量の測定結果を
示す。
FIG. 3 shows the measurement results of exothermic temperature and exothermic amount of 2,2,2-trifluoroethyl carbonate which is a compound of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 6/16 H01M 6/16 A 10/40 10/40 A Fターム(参考) 5H024 AA00 AA02 AA09 AA12 BB07 BB08 BB10 CC20 DD17 EE09 FF14 5H029 AJ12 AK03 AK16 AL02 AL06 AL12 AL16 AM02 AM03 AM04 AM05 AM07 CJ08 CJ13 CJ22 DJ08 EJ11 HJ02 5H050 AA03 AA15 BA06 BA16 BA17 CA08 CA09 CA20 CB02 CB07 CB12 CB20 DA09 EA24 FA04 FA18 GA10 GA13 GA22 HA02─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification symbol FI theme code (reference) H01M 6/16 H01M 6/16 A 10/40 10/40 AF term (reference) 5H024 AA00 AA02 AA09 AA12 BB07 BB08 BB10 CC20 DD17 EE09 FF14 5H029 AJ12 AK03 AK16 AL02 AL06 AL12 AL16 AM02 AM03 AM04 AM05 AM07 CJ08 CJ13 CJ22 DJ08 EJ11 HJ02 5H050 AA03 AA15 BA06 BA16 BA17 CA24 FA22 GA10 FA02 EA07 GA12 CB12 FA20 CB12 FA10 CB12 FA20 EA12 EA07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】式(I): 【化1】 (式中、R1、R2は互いに独立して炭素数1〜5のアルキ
ル基、含フッ素アルキル基のいずれかであり、R1、R2
少なくとも1つはCF3、CF3CH2または(CF3)2CHであ
る。)で表される化合物よりなる群から選ばれた少なく
とも1種を含む電解液および/または電極表面被膜形成
剤。
1. Formula (I): (In the formula, R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms or a fluorine-containing alkyl group, and at least one of R 1 and R 2 is CF 3 , CF 3 CH 2 Or (CF 3 ) 2 CH.) An electrolytic solution and / or electrode surface film forming agent containing at least one selected from the group consisting of compounds represented by the formula:
【請求項2】電池作成時および/または電池使用時に、
電極材料表面に保護膜として作用することを特徴とする
請求項1記載の電極表面被膜形成剤。
2. A battery is produced and / or used,
The electrode surface film forming agent according to claim 1, which acts as a protective film on the surface of the electrode material.
【請求項3】電極がリチウム金属、リチウムインターカ
レート化合物またはリチウム合金からなる負極である請
求項2記載の電極表面被膜形成剤。
3. The electrode surface coating forming agent according to claim 2, wherein the electrode is a negative electrode made of lithium metal, a lithium intercalate compound or a lithium alloy.
【請求項4】請求項1記載の式(I)の化合物の少なく
とも1種を含む電解液を使用することを特徴とする電池
製造方法。
4. A method for producing a battery, which comprises using an electrolytic solution containing at least one compound of the formula (I) according to claim 1.
【請求項5】請求項1記載の式(I)の化合物の少なく
とも1種を用いて電池の製造前にあるいは製造過程で負
極を処理することを特徴とする電池製造方法。
5. A method for producing a battery, which comprises treating a negative electrode with at least one compound of formula (I) according to claim 1 before or during the production of the battery.
【請求項6】負極がリチウム金属、リチウムインターカ
レート化合物またはリチウム合金である請求項4または
5記載の電池製造方法。
6. The battery manufacturing method according to claim 4, wherein the negative electrode is a lithium metal, a lithium intercalate compound or a lithium alloy.
JP2001197183A 2001-06-28 2001-06-28 Electrode surface film forming agent. Expired - Fee Related JP4951820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197183A JP4951820B2 (en) 2001-06-28 2001-06-28 Electrode surface film forming agent.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197183A JP4951820B2 (en) 2001-06-28 2001-06-28 Electrode surface film forming agent.

Publications (2)

Publication Number Publication Date
JP2003017066A true JP2003017066A (en) 2003-01-17
JP4951820B2 JP4951820B2 (en) 2012-06-13

Family

ID=19034833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197183A Expired - Fee Related JP4951820B2 (en) 2001-06-28 2001-06-28 Electrode surface film forming agent.

Country Status (1)

Country Link
JP (1) JP4951820B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630894A1 (en) * 2004-08-27 2006-03-01 Sanyo Component Europe GmbH Lithium secondary battery
JP2009508309A (en) * 2005-09-16 2009-02-26 サンヨー・コンポーネント・ヨーロッパ・ゲーエムベーハー Method for manufacturing lithium secondary battery
JP2012216544A (en) 2011-03-31 2012-11-08 Daikin Ind Ltd Electrochemical device and nonaqueous electrolyte for electrochemical device
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306591A (en) * 1995-03-07 1996-11-22 Asahi Glass Co Ltd Electric double layer capacitor
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JPH10116629A (en) * 1996-10-15 1998-05-06 Mitsui Chem Inc Non-aqueous electrolyte
JPH11307120A (en) * 1998-04-23 1999-11-05 Mitsui Chem Inc Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306591A (en) * 1995-03-07 1996-11-22 Asahi Glass Co Ltd Electric double layer capacitor
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JPH10116629A (en) * 1996-10-15 1998-05-06 Mitsui Chem Inc Non-aqueous electrolyte
JPH11307120A (en) * 1998-04-23 1999-11-05 Mitsui Chem Inc Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630894A1 (en) * 2004-08-27 2006-03-01 Sanyo Component Europe GmbH Lithium secondary battery
WO2006021452A3 (en) * 2004-08-27 2006-12-21 Sanyo Component Europ Gmbh Lithium secondary battery
JP2009508309A (en) * 2005-09-16 2009-02-26 サンヨー・コンポーネント・ヨーロッパ・ゲーエムベーハー Method for manufacturing lithium secondary battery
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
US9406977B2 (en) 2006-12-20 2016-08-02 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
JP2012216544A (en) 2011-03-31 2012-11-08 Daikin Ind Ltd Electrochemical device and nonaqueous electrolyte for electrochemical device
US9455468B2 (en) 2011-03-31 2016-09-27 Daikin Industries, Ltd. Electrochemical device and nonaqueous electrolyte solution for electrochemical device

Also Published As

Publication number Publication date
JP4951820B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP5598873B2 (en) Electrode for lithium secondary battery
JP5738342B2 (en) Method for suppressing reduction in life of redox shuttle agent
JP4725728B2 (en) Secondary battery
JP4918740B2 (en) Electrode surface film forming agent
KR20050075297A (en) Electrochemical device comprising aliphatic nitrile compound
WO2006083099A1 (en) Electrochemical device comprising aliphatic mono-nitrile compound
JP4679064B2 (en) Non-aqueous electrolyte secondary battery
JP4392726B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH08298134A (en) Nonaqueous electrolyte
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4269137B2 (en) Electrode surface film forming agent.
JP5012767B2 (en) Secondary battery
JP5079335B2 (en) Electrode for lithium secondary battery
US20070190412A1 (en) Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery
JP5589984B2 (en) Electrode surface film forming agent
JP2000106209A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH11329496A (en) Nonaqueous electrolyte nonaqueous secondary battery
JP4701601B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4951822B2 (en) Electrolytic solution and / or electrode surface film forming agent.
JP4056278B2 (en) Non-aqueous electrolyte battery
CN108615942A (en) Application containing (fluoro) methylene-disulfonic acid lithium salts and preparation method thereof and in nonaqueous electrolytic solution
JP3856583B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4951820B2 (en) Electrode surface film forming agent.
JP4770053B2 (en) Electrode surface film forming agent
JPH1154133A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R151 Written notification of patent or utility model registration

Ref document number: 4951820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees