[go: up one dir, main page]

JP2003009406A - Rechargeable battery status calculator - Google Patents

Rechargeable battery status calculator

Info

Publication number
JP2003009406A
JP2003009406A JP2001189239A JP2001189239A JP2003009406A JP 2003009406 A JP2003009406 A JP 2003009406A JP 2001189239 A JP2001189239 A JP 2001189239A JP 2001189239 A JP2001189239 A JP 2001189239A JP 2003009406 A JP2003009406 A JP 2003009406A
Authority
JP
Japan
Prior art keywords
secondary battery
state
temperature
charge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001189239A
Other languages
Japanese (ja)
Inventor
Manabu Sasaki
学 佐々木
Susumu Segawa
進 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001189239A priority Critical patent/JP2003009406A/en
Publication of JP2003009406A publication Critical patent/JP2003009406A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge a degradation cause by understanding a usage environment condition in which a secondary battery has actually experienced before its degradation occurs. SOLUTION: Various conditions concerned with a secondary battery's performance are detected from a temperature detection means 18, a voltage detection means 16 and a current detection means 17. Experience time, experienced charge, discharge current volume, or condition detection count is integrated and stored in a storage means 15 through a computing means 14. By storing the information to judge a degradation condition of the secondary battery, variation in a usage environment is known to judge the degradation cause.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素二次
電池、リチウムイオン二次電池等の二次電池に用いられ
る二次電池の状態演算装置に関するものであり、詳しく
は二次電池および二次電池保護回路、二次電池状態演算
回路等から構成されるパック電池における使用状態記憶
を目的とした二次電池の状態演算装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a state calculating device for a secondary battery used in a secondary battery such as a nickel hydrogen secondary battery and a lithium ion secondary battery, and more particularly to a secondary battery and a secondary battery. The present invention relates to a secondary battery state calculation device for storing a use state in a battery pack, which includes a battery protection circuit, a secondary battery state calculation circuit, and the like.

【0002】[0002]

【従来の技術】二次電池及び二次電池状態演算装置(二
次電池保護回路含む)から構成されるパック電池では、
パック電池内に設けられた二次電池状態演算装置はパッ
ク電池の充放電状態における安全性と性能劣化の防止及
び使用状態の記憶を目的としており、安全性・性能劣化
防止及び使用状態記憶機能は重要なものである。
2. Description of the Related Art A battery pack including a secondary battery and a secondary battery state calculation device (including a secondary battery protection circuit)
The secondary battery state calculation device provided in the battery pack is intended to prevent the safety and performance deterioration of the battery pack when it is charged / discharged and to store the usage condition. It's important.

【0003】前述する安全性・性能劣化防止機能として
実現される機能は二次電池の電圧、充電又は放電の電
流、温度の情報及び充電又は放電における電流積算量等
を利用して実現される。但し、温度情報に関しては二次
電池表面の温度を測定して充放電前後の二次電池表面温
度から環境温度を予測する方法と、二次電池表面温度以
外の温度、即ち環境温度測定を目的とする温度検出手段
を別に設け、二次電池表面温度検出手段が検出する温度
とは分けて二次電池の状態演算に用いる方法とがある。
The above-mentioned function realized as the safety / performance deterioration prevention function is realized by utilizing the voltage of the secondary battery, the charging or discharging current, the temperature information, and the integrated current amount in the charging or discharging. However, regarding temperature information, a method of measuring the temperature of the secondary battery surface and predicting the environmental temperature from the secondary battery surface temperature before and after charging and discharging, and a temperature other than the secondary battery surface temperature, that is, the purpose of measuring the environmental temperature. There is a method of separately providing a temperature detecting means to be used and calculating the state of the secondary battery separately from the temperature detected by the secondary battery surface temperature detecting means.

【0004】安全性・性能劣化防止として、電圧による
過充電状態の防止、過放電状態の防止、電流による過放
電電流の防止、過充電電流の防止、温度による使用温度
条件外での使用の防止の他、過度な充電電気量の二次電
池ブロックへの印加の防止等が挙げられる。パック電池
を構成する二次電池ブロック及び充放電電流経路に配置
される各種素子の能力に従って設定される各種検出内容
の検出しきい値は適宜設けられる。
As safety and performance deterioration prevention, prevention of overcharged state due to voltage, prevention of overdischarged state, prevention of overdischarged current due to current, prevention of overcharged current, prevention of use outside operating temperature conditions due to temperature In addition, prevention of application of an excessive amount of charged electricity to the secondary battery block can be mentioned. Detection thresholds of various detection contents set according to the capabilities of various elements arranged in the secondary battery block and the charging / discharging current path constituting the battery pack are appropriately set.

【0005】二次電池状態演算装置は前述の各種安全性
・性能劣化防止の状態を検出すると充電、放電又は充放
電を制限し、安全性・性能劣化の防止を図る。この時パ
ック電池に通信手段または表示手段が構成されている場
合にはパック電池が充電又は放電の実施を禁止している
理由を外部に示すことが可能であるが特に記憶手段に記
憶はしない。
When the secondary battery state calculation device detects the above-mentioned various safety / performance deterioration prevention states, it limits charging, discharging or charging / discharging to prevent safety / performance deterioration. At this time, when the communication means or the display means is configured in the battery pack, it is possible to show the reason why the battery pack prohibits the charging or discharging, but it is not stored in the storage device.

【0006】例外の条件として、パック電池が完全に充
放電を禁止される状態を検出した場合には、その充放電
禁止状態を検出した際の電圧・電流・温度及び充放電禁
止判定理由を記憶手段に記憶する仕様を有する二次電池
の状態演算装置もある。この場合、記憶手段に記憶され
る各種内容は、二次電池の状態演算装置が充放電禁止状
態を判定した時点での各種情報の記憶を実施する。
As an exceptional condition, when a state in which the battery pack is completely prohibited from charging / discharging is detected, the voltage / current / temperature and the reason for determining whether charging / discharging is prohibited are stored. There is also a secondary battery state calculation device having a specification stored in the means. In this case, the various contents stored in the storage means are stored as various information at the time when the state calculation device of the secondary battery determines the charge / discharge prohibited state.

【0007】また使用状態記憶として実現される機能は
一般的にサイクルカウントと呼ばれる二次電池の充電又
は放電の回数を記憶する機能がある。
Further, the function realized as the use state storage has a function called a cycle count for storing the number of times the secondary battery is charged or discharged.

【0008】但し、サイクルカウントと呼ばれる充電又
は放電の回数を記憶する機能は明確な仕様として統一さ
れている機能ではなく、現在種々の仕様が実現されてい
る。
However, the function of storing the number of times of charging or discharging, which is called a cycle count, is not a unified function as a clear specification, and various specifications are currently realized.

【0009】一般的に実現されるサイクルカウント機能
としては、充電又は放電電流量を積算し、設定される電
流量を超える充電又は放電電流量を積算された時にサイ
クルカウントをカウントアップする方法、電流量に関係
無く、充電又は放電開始を検出した回数をカウントアッ
プする方法等が実現されている。
As a cycle counting function which is generally realized, a method of integrating a charging or discharging current amount and counting up a cycle count when a charging or discharging current amount exceeding a set current amount is integrated, a current A method of counting up the number of times the start of charging or discharging is detected has been realized regardless of the amount.

【0010】二次電池の状態演算装置に二次電池ブロッ
クの残存容量を演算する機能を有する場合、記憶手段に
二次電池ブロックが有する、満充電時に放電可能な電気
量を記憶手段に記憶する。満充電状態から放電した場合
に連続して放電可能な電気量を記憶することで、二次電
池の状態演算装置が認識する充放電により逐次変化する
二次電池内に有する充電電気量の%表示が可能となり、
充放電実施による満充電あるいは完全放電までの充放電
時間が演算可能となる。
When the state calculating device for the secondary battery has a function of calculating the remaining capacity of the secondary battery block, the storage means stores the amount of electricity that the secondary battery block can discharge when fully charged in the storage means. . By storing the amount of electricity that can be continuously discharged when discharged from the fully charged state, the percentage display of the amount of electricity charged in the secondary battery that changes sequentially due to charging and discharging recognized by the state calculation device of the secondary battery Is possible,
It is possible to calculate the charge / discharge time until full charge or complete discharge by performing charge / discharge.

【0011】前述する記憶手段に記憶される満充電時に
放電可能な電気量を一般的に学習容量と呼ぶ。学習容量
は、時間の経過と使用条件によって変化する二次電池ブ
ロックの満充電時に放電可能な電気量を更新する機能に
より更新される二次電池ブロックの容量値であり、更新
条件は予め二次電池の状態演算装置に設定される。
The amount of electricity stored in the above-mentioned storage means and which can be discharged at full charge is generally called a learning capacity. The learning capacity is the capacity value of the secondary battery block that is updated by the function that updates the amount of electricity that can be discharged when the secondary battery block is fully charged, which changes with the passage of time and usage conditions. It is set in the battery status calculator.

【0012】一般的に満充電状態から完全放電状態まで
に放電される放電電気量または完全放電状態から満充電
状態までに充電される充電電気量を以って学習容量は更
新される。容量学習が実施される一般的な設定条件は、
満充電が検出された状態から連続して放電を実施し予め
設定される放電電圧値を検出するまでに充電電流を途中
で検出しないことなどが挙げられる。
Generally, the learning capacity is updated with the amount of discharged electricity discharged from the fully charged state to the fully discharged state or the amount of charged electricity charged from the completely discharged state to the fully charged state. General setting conditions for capacity learning are:
For example, it is possible to continuously perform discharging from the state in which full charge is detected and not detect the charging current halfway until the preset discharge voltage value is detected.

【0013】学習が実施される際、記憶手段に記憶され
る内容は二次電池ブロックが放電実施できた容量を学習
容量として記憶するのみである。但し、ニッケル水素電
池の様に、充電停止を指示する各物理変化(dT/d
t、−dV、TCO等)が検出される時点迄に充電され
た充電電気量が各物理変化毎に異なる電池系の場合、学
習容量は満充電判定手段毎に大きく異なることにつなが
る。この時、検出された満充電判定方法を記憶手段に記
憶するのみでなく、各満充電判定方法毎に学習容量を分
けて記憶させる等の演算を用いる事もある。
When learning is carried out, the content stored in the storage means is only to store the capacity in which the secondary battery block has been discharged as the learning capacity. However, like nickel-metal hydride batteries, each physical change (dT / d
In the case of a battery system in which the amount of charged electricity charged by the time when (t, −dV, TCO, etc.) is detected is different for each physical change, the learning capacity is greatly different for each full charge determination means. At this time, not only the detected full charge determination method is stored in the storage means, but also calculation such as storing the learning capacity separately for each full charge determination method may be used.

【0014】[0014]

【発明が解決しようとする課題】前述の通り、パック電
池内の記憶手段に記憶される内容は、二次電池の状態演
算装置が判定する二次電池ブロックの現在の状態を判定
するために必要な情報を記憶するものであるが、二次電
池ブロックがどの様な使用経験をした結果、現在の判定
を二次電池の状態演算装置が判定するに至ったかを判断
することが出来ない。また従来の技術として記述してい
る、唯一使用履歴として考えられるサイクルカウント機
能に関しては、カウントアップされるサイクル数が示す
意味が必ずしも二次電池の劣化状態を判断する使用履歴
として使用できないという問題がある。これは二次電池
の性能に大きく影響する温度、電圧、充放電電流の状態
に関わらず充放電が実施される回数または容量によって
カウントされる為、二次電池の劣化の状態を示す指標に
はならないことを意味する。
As described above, the contents stored in the storage means in the battery pack are necessary for determining the current state of the secondary battery block determined by the state calculating device for the secondary battery. However, it is not possible to determine what kind of experience the secondary battery block has experienced as a result of the current determination made by the secondary battery state calculation device. Further, regarding the cycle counting function described as the conventional technology, which can be considered as the only usage history, there is a problem that the meaning indicated by the number of cycles counted up cannot always be used as the usage history for determining the deterioration state of the secondary battery. is there. Since this is counted by the number of times charging and discharging are performed or the capacity regardless of the temperature, voltage, and charging / discharging current conditions that greatly affect the performance of the secondary battery, it can be used as an indicator of the state of deterioration of the secondary battery. Means not to be.

【0015】更に二次電池の性能劣化に大きく影響する
可能性のある安全性・性能劣化防止機能に関しては、防
止機能動作状態では防止機能が動作していることを記憶
しているが、記憶としてどの様な防止機能が何回検出さ
れたか記憶されない為、過去に使用状態としてどの様な
異常使用状態があったのか検証することが、実質不可能
となっている。
Further, regarding the safety / performance deterioration prevention function which may greatly affect the performance deterioration of the secondary battery, it is stored that the prevention function is operating in the prevention function operating state. Since no protection function is detected and how many times it is detected, it is practically impossible to verify what kind of abnormal use condition was previously used.

【0016】本発明ではこの様な課題を解決するもので
あり、その目的は、二次電池ブロックを内蔵するパック
電池の使用状態履歴を二次電池の状態演算装置が逐次記
憶することで使用履歴を把握出来る機能を提供すること
である。
The present invention is intended to solve such a problem, and an object of the present invention is to store a use state history of a battery pack containing a rechargeable battery block by a rechargeable battery state computing device so that the use history is successively stored. It is to provide the function that can grasp.

【0017】[0017]

【課題を解決するための手段】本発明の二次電池の状態
演算装置を内蔵するパック電池は、一つ或いは複数の二
次電池セルよりなる電池ブロックと接続され、充放電に
より増減する電池ブロックの充電電気量に関して演算し
通信又は表示する二次電池の状態演算装置であって、前
記電池ブロックを構成する各種セル電圧をモニターする
電圧検出手段と、前記電池ブロックの充放電電流を検出
する電流検出手段と、前記電池ブロックの表面温度を検
出する温度検出手段と、前記電圧検出手段及び前記電流
検出手段から得られる電気信号を用いて電池ブロックの
状態を演算する演算手段と、前記演算手段を通じて各種
情報を記憶する記憶手段とから構成され、前記演算手段
は、前記電池ブロックが経験する温度状態に対する充放
電電流毎における経験時間または充放電電流量として、
前記記憶手段へ保存することを特徴とするものである。
A battery pack incorporating a state-of-charge device for a secondary battery according to the present invention is connected to a battery block composed of one or a plurality of secondary battery cells, and the battery block is increased or decreased by charging and discharging. Is a state calculation device for a secondary battery that calculates and communicates or displays the amount of charged electricity of the battery block, and voltage detection means for monitoring various cell voltages constituting the battery block, and current for detecting charge / discharge current of the battery block. Detecting means, temperature detecting means for detecting the surface temperature of the battery block, calculating means for calculating the state of the battery block using electric signals obtained from the voltage detecting means and the current detecting means, and through the calculating means And a storage unit that stores various kinds of information, wherein the calculation unit is for each charge / discharge current with respect to the temperature state experienced by the battery block. As test time or discharge current amount,
The data is stored in the storage means.

【0018】具体的には、電池ブロックの満充電状態検
出回数を記憶手段に記憶する、電池ブロックの満充電状
態を検出判定条件毎に記憶手段に検出回数を記憶する、
放電状態において予め記憶手段に設定される過放電電圧
設定値の検出回数を記憶する、二次電池が満充電時に放
電可能な電気量の更新時に更新前の二次電池が満充電時
に放電可能な電気量を記憶手段に記憶する、満充電検出
毎に満充電検出条件を記憶手段に記憶し、二次電池が満
充電時に放電可能な電気量の更新時に、更新値の要因と
して記憶される満充電検出条件を記憶する、状態演算装
置が判断する安全性又は性能劣化防止機能実施の回数
を、防止機能毎に記憶手段に記憶することなどを行うも
のである。
Specifically, the number of times the battery block is fully charged is detected in the storage means, and the number of times the battery block is fully charged is detected in the storage means for each detection determination condition.
The number of detections of the over-discharge voltage set value set in the storage means in advance in the discharge state is stored, and the secondary battery before update can be discharged when fully charged when the amount of electricity that can be discharged when the secondary battery is fully charged is updated. The amount of electricity is stored in the storage means, the full-charge detection condition is stored in the storage means for each full-charge detection, and when the amount of electricity that can be discharged when the secondary battery is fully charged is updated, it is stored as a factor of the update value. The charging detection condition is stored, and the number of times the safety or performance deterioration prevention function is performed, which is determined by the state calculation device, is stored in the storage unit for each prevention function.

【0019】これにより、二次電池ブロックを内蔵する
パック電池の使用状態履歴を二次電池の状態演算装置が
逐次記憶することで使用履歴を把握することができる。
As a result, the usage history can be grasped by the secondary battery status calculation device sequentially storing the usage status history of the battery pack containing the secondary battery block.

【0020】[0020]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は本発明の実施の形態である二次電池
の状態演算装置を有するパック電池の概略ブロック図で
ある。
FIG. 1 is a schematic block diagram of a battery pack having a state calculating device for a secondary battery according to an embodiment of the present invention.

【0022】二次電池ブロック13は、パック電池11
に内蔵されており、パック電池11内に二次電池の状態
演算装置12が設けられている。二次電池ブロック13
はパック電池11の充放電端子1a及び1bにより外部
への電力供給を可能としている。
The secondary battery block 13 is a battery pack 11
And a secondary battery state calculation device 12 is provided in the battery pack 11. Secondary battery block 13
Allows the power supply to the outside through the charge / discharge terminals 1a and 1b of the battery pack 11.

【0023】二次電池の状態演算装置12は各種制御の
為の設定数値や一時的に二次電池ブロック13の状態を
記憶する記憶手段15と、二次電池ブロック13の各種
電圧を測定する電圧検出手段16、二次電池ブロック1
3の充放電電流を検出する電流検出手段17、二次電池
ブロック13の表面温度を検出する温度検出手段18及
び各種検出手段が検出する情報より二次電池ブロック1
3及びパック電池11の状態を判断する演算手段14に
より構成され、更に、場合によってはパック電池11外
部の機器と二次電池の状態演算装置12とが通信する際
に使用する通信端子1c及び二次電池の状態演算装置1
2が判定した結果を表示することを目的としている表示
手段19をパック電池11内に構成する場合もある。
The secondary battery state calculation device 12 includes a storage means 15 for temporarily storing set values for various controls and the state of the secondary battery block 13, and a voltage for measuring various voltages of the secondary battery block 13. Detecting means 16, secondary battery block 1
The current detecting means 17 for detecting the charging / discharging current of No. 3, the temperature detecting means 18 for detecting the surface temperature of the secondary battery block 13, and the information detected by various detecting means are used for the secondary battery block 1
3 and the operation means 14 for determining the state of the battery pack 11, and, in some cases, communication terminals 1c and two terminals used when the device outside the battery pack 11 and the state operation device 12 of the secondary battery communicate with each other. Secondary battery status calculator 1
In some cases, the display means 19 intended to display the result determined by No. 2 is provided in the battery pack 11.

【0024】二次電池の状態演算装置12は、各種検出
手段からもたらされる情報と記憶手段15に記憶される
情報とを比較し、二次電池ブロック13に対する充電及
び放電の可否を決定する。パック電池11に対する充電
及び放電の実施は外部機器に拠るが、二次電池の状態演
算装置12が充電又は放電を禁止する場合には、通信端
子1cによってパック電池11の外部機器に充電又は放
電を禁止する命令を通信するか、もしくは図2に示すよ
うに、パック電池11の充放電経路上に充放電を制御す
ることを目的に配置されるスイッチ素子21を配置し
て、二次電池の状態演算手段12によってスイッチ素子
21を制御することでパック電池11の充放電を制御す
る構成を有しても良い。
The secondary battery state calculation device 12 compares the information provided from various detection means with the information stored in the storage means 15 to determine whether to charge or discharge the secondary battery block 13. Although the charging and discharging of the battery pack 11 depends on the external device, when the state calculating device 12 of the secondary battery prohibits the charging or discharging, the external device of the battery pack 11 is charged or discharged by the communication terminal 1c. The state of the secondary battery is set by transmitting a command to prohibit or by arranging a switch element 21 arranged for the purpose of controlling charge / discharge on the charge / discharge path of the battery pack 11 as shown in FIG. You may have the structure which controls the charging / discharging of the battery pack 11 by controlling the switch element 21 by the calculating means 12.

【0025】二次電池の状態演算装置12は電圧検出手
段16及び電流検出手段17、温度検出手段18により
二次電池ブロック13の充電状態を把握する機能を有
し、二次電池ブロック13に充電されている充電電気量
を満充電時に予め設定される状態までに放電可能な電気
量を100%として相対演算する機能の他、二次電池ブ
ロックの満充電状態検出機能、安全性及び性能劣化を防
止するための機能を有する。
The secondary battery state calculation device 12 has a function of grasping the charging state of the secondary battery block 13 by the voltage detecting means 16, the current detecting means 17, and the temperature detecting means 18, and charges the secondary battery block 13. In addition to the function that calculates the charged amount of electricity, which is the amount of electricity that can be discharged up to the preset state when fully charged, as 100%, the full charge state detection function of the secondary battery block, safety and performance deterioration It has a function to prevent.

【0026】図3にパック電池の使用状態による充電電
気量の変化の一例を示す。二次電池ブロック13に充電
されている充電電気量を相対演算する機能は、一般的に
学習容量と呼ばれる二次電池ブロック13が満充電状態
から連続して記憶手段15に記憶される条件までに放電
可能な放電電気量を二次電池ブロック13の全充電電気
量として記憶手段15に記憶し、二次電池の状態演算装
置12は二次電池ブロック13が満充電状態であること
を検出した際に、記憶手段に記憶される二次電池ブロッ
ク13の充電電気量を学習容量と同一の値に設定する。
二次電池の状態演算装置12は、充放電により逐次変化
する二次電池ブロック13の充電電気量を電流検出手段
17、電圧検出手段16、温度検出手段18から得られ
る情報をもとに演算し、二次電池ブロック13が記憶手
段15に予め記憶される完全放電条件を検出した時点で
二次電池ブロック13に充電されている電気量を0mA
h(0%)として演算する。
FIG. 3 shows an example of changes in the amount of charge electricity depending on the usage state of the battery pack. The function of performing a relative calculation of the amount of charge electricity charged in the secondary battery block 13 is generally called a learning capacity until the secondary battery block 13 is in a fully charged state and is continuously stored in the storage unit 15. When the amount of discharged electricity that can be discharged is stored in the storage unit 15 as the total amount of charged electricity of the secondary battery block 13, and the state calculation device 12 of the secondary battery detects that the secondary battery block 13 is fully charged. First, the charge amount of the secondary battery block 13 stored in the storage means is set to the same value as the learning capacity.
The state calculating device 12 of the secondary battery calculates the charge electricity amount of the secondary battery block 13 which changes sequentially due to charging and discharging, based on the information obtained from the current detecting means 17, the voltage detecting means 16, and the temperature detecting means 18. The amount of electricity charged in the secondary battery block 13 is 0 mA when the secondary battery block 13 detects the complete discharge condition stored in advance in the storage unit 15.
Calculate as h (0%).

【0027】前述した学習容量は満充電検出状態から連
続して記憶手段15に予め設定される完全放電状態まで
放電を実施し、且つ、記憶手段15に予め設定される条
件を満足する場合に、満充電状態31から完全放電状態
32検出までに放電された積算放電電流を新たな学習容
量として記憶手段15に記憶する(ステップ34)。記
憶手段15に記憶される完全放電状態まで放電が実施さ
れても、部分的な充電が実施されている等の条件によっ
て学習容量の更新が実施されない放電状態33もある。
When the above-mentioned learning capacity is continuously discharged from the full charge detection state to the complete discharge state preset in the storage means 15 and the condition preset in the storage means 15 is satisfied, The integrated discharge current discharged from the full charge state 31 to the detection of the complete discharge state 32 is stored in the storage means 15 as a new learning capacity (step 34). There is also a discharge state 33 in which the learning capacity is not updated even if the discharge is performed up to the complete discharge state stored in the storage unit 15 due to conditions such as partial charging.

【0028】前記学習容量の更新により二次電池ブロッ
クの状態変化による放電可能な電流量の変化に二次電池
の状態演算装置が対応可能となる。
By updating the learning capacity, it becomes possible for the state calculating device of the secondary battery to cope with the change in the dischargeable current amount due to the change in the state of the secondary battery block.

【0029】図4はリチウムイオン二次電池を例とした
充電容量と電圧との関係を示す。但し、使用する図はC
C−CV充電時の二次電池端子間電圧であり充電電流と
温度は特に指定しない。
FIG. 4 shows the relationship between the charge capacity and the voltage of a lithium ion secondary battery as an example. However, the diagram used is C
It is the voltage between the secondary battery terminals during C-CV charging, and the charging current and temperature are not specified.

【0030】リチウムイオン二次電池系においては、二
次電池の充電電気量の増加に伴い二次電池の電圧は上昇
する。二次電池の状態演算装置12は、常に通常使用領
域に電池電圧が在る様に充放電を制御する。リチウムイ
オン二次電池は充電を継続すると電圧が上昇を続け、あ
る時点で危険な状態となるために、二次電池の状態演算
装置の様な、二次電池電圧を監視し、電圧上昇を制御し
て安全性を確保する機構が必要となる。
In the lithium ion secondary battery system, the voltage of the secondary battery rises as the amount of electricity charged in the secondary battery increases. The secondary battery state calculation device 12 controls charging / discharging so that the battery voltage always exists in the normal use region. The voltage of the lithium-ion secondary battery continues to rise as it continues to be charged, and becomes a dangerous state at some point.Therefore, the secondary battery voltage is monitored and the voltage rise is controlled, as in the secondary battery status calculator. Therefore, a mechanism for ensuring safety is required.

【0031】更にリチウムイオン二次電池にとって電圧
の上昇はセル特性の劣化の速度に影響する。つまり電池
電圧が高い状態であるとセル劣化の速度が速まる可能性
が高くなる。その為、過充電領域に二次電池電圧が達す
る前に充電を停止しても、過充電領域に近い通常使用領
域では過放電領域に近い通常使用領域と比較して電池セ
ル劣化速度は速くなる。逆に過放電領域の電圧帯迄放電
される場合、二次電池電圧が低い程電池セルの劣化は通
常状態と比較して早くなる。
Furthermore, for lithium ion secondary batteries, the increase in voltage affects the rate of deterioration of cell characteristics. That is, when the battery voltage is high, there is a high possibility that the speed of cell deterioration will increase. Therefore, even if charging is stopped before the secondary battery voltage reaches the overcharge region, the battery cell deterioration speed becomes faster in the normal use region near the overcharge region than in the normal use region near the overdischarge region. . On the contrary, when the secondary battery is discharged up to the voltage band in the over-discharge region, the lower the secondary battery voltage is, the faster the deterioration of the battery cell is as compared with the normal state.

【0032】よって、100%状態から0%状態までの
間を絶えず充放電され、サイクルカウント数を増加させ
る使用状態と、常に満充電状態に近い状態に充電状態を
維持、又は常に過放電状態を維持し、サイクルカウント
数を全く増加させない使用状態とを比較する場合、単純
にサイクルカウント数を以って電池セルの劣化を判断す
ることは適当ではない。
Therefore, the charge state is constantly charged and discharged from the 100% state to the 0% state and the use state in which the cycle count number is increased, and the charge state is always maintained close to the full charge state, or the overdischarge state is constantly maintained. When comparing the usage state in which the cycle count is maintained and the cycle count is not increased at all, it is not appropriate to simply judge the deterioration of the battery cell by using the cycle count.

【0033】更に、温度状態によっても電池セル劣化速
度は大きく影響する。満充電に近い充電状態で高温環境
中に放置されるリチウムイオン二次電池は充放電電流が
なくても極めて劣化速度が早くなる。温度と充電状態は
劣化速度に大きく影響し、リチウムイオン二次電池の劣
化の状態を検証する場合には二次電池が経験した充電温
度状態を把握することは極めて重要であると言える。
Further, the deterioration rate of the battery cell greatly affects the temperature condition. A lithium ion secondary battery that is left in a high temperature environment in a charged state close to full charge has an extremely high deterioration rate even if there is no charge / discharge current. It can be said that it is extremely important to understand the charging temperature condition experienced by the secondary battery when verifying the deterioration condition of the lithium ion secondary battery, because the temperature and the charging condition have a great influence on the deterioration rate.

【0034】そこで、電池電圧または充電容量と電池温
度状態に対するパック電池の経験時間の積算記憶を表1
に示す形式にて記憶手段15に記憶することによりサイ
クルカウント数では判断できない電池セル劣化状態の判
定を客観的に実施することが可能となる。
Therefore, the cumulative storage of the experience time of the battery pack with respect to the battery voltage or charge capacity and the battery temperature state is shown in Table 1.
By storing in the storage means 15 in the format shown in FIG. 5, it is possible to objectively determine the battery cell deterioration state that cannot be determined by the cycle count number.

【0035】[0035]

【表1】 [Table 1]

【0036】但し、表1に示す温度区分と電圧(または
容量)区分は一例である。
However, the temperature classification and the voltage (or capacity) classification shown in Table 1 are examples.

【0037】例として100%を検出しているパック電
池が25度環境下に放置されているとする。この状態で
1時間放置状態が継続された場合、表2に示す様に対応
する時間積算の表に1時間の加算が実施される。同様
に、同パック電池が外部機器に対して放電を実施する事
で60%状態となり、その後環境温度が60度の状態で
2時間継続された場合には時間積算の表に2時間を示す
記憶が加算される事となる。
As an example, it is assumed that the battery pack which detects 100% is left in an environment of 25 degrees. If the state is left for 1 hour in this state, 1 hour is added to the corresponding time integration table as shown in Table 2. Similarly, when the same battery pack is discharged to an external device to be in a 60% state, and if the environment temperature is kept at 60 degrees for 2 hours, the time accumulation table indicates 2 hours. Will be added.

【0038】[0038]

【表2】 [Table 2]

【0039】また、過放電状態の維持時間が非常に長い
場合にも、電池セルの劣化につながる可能性が無視でき
ないことから、パック電池が過放電状態であると二次電
池の状態演算装置が認識できる場合、二次電池の状態演
算装置の電源である二次電池ブロックの過放電状態の電
圧低下促進を防止するため、二次電池の状態演算装置は
自らの機能を停止(Power Off)させる機能を
有する装置も存在する。
Even if the maintenance time of the over-discharged state is very long, the possibility of deterioration of the battery cell cannot be ignored. Therefore, if the pack battery is in the over-discharged state, the state calculation device for the secondary battery will If it can be recognized, the secondary battery state calculation device stops its function (Power Off) in order to prevent acceleration of the voltage drop in the over-discharged state of the secondary battery block that is the power source of the secondary battery state calculation device. There is also a device having a function.

【0040】図5に上記過放電状態のパック電池に対す
る過放電状態の時間を記憶するシーケンス例を示してい
る。パック電池装置内に有する時計又は通信により電池
パックが接続される外部機器本体に有する時計等を利用
して、二次電池の状態演算装置が機能を停止させる前に
外部接続機器より日時を得て記憶手段に記憶させ、再度
外部からの充電により自己機能が復帰した際の日時を確
認する事でパック電池内の二次電池が過放電状態であっ
た期間を計算させて記憶手段に記憶させる方法を示して
いる。
FIG. 5 shows an example of a sequence for storing the time of the over-discharged state for the battery pack in the over-discharged state. Use the clock in the battery pack or the clock in the external device to which the battery pack is connected by communication to obtain the date and time from the external device before the secondary battery status calculator stops functioning. A method of storing in the storage means and calculating the period during which the secondary battery in the battery pack is over-discharged by checking the date and time when the self-function is restored by external charging again and storing it in the storage means Is shown.

【0041】上記記述から、二次電池の劣化は充放電ま
たは放置される温度条件に大きく左右される。前記記述
は単なる二次電池電圧(または容量)と環境(又は二次
電池表面)温度との関係を時間積算する例を示してい
る。同様に低温状態での高レート放電、高温状態での充
放電等、温度、充放電電流量は二次電池の劣化に大きく
関係するため、二次電池の劣化情報として記憶すること
は劣化判定に重要な情報となり得る。
From the above description, the deterioration of the secondary battery greatly depends on the temperature condition of charging / discharging or leaving. The above description shows an example in which the relationship between the mere secondary battery voltage (or capacity) and the environment (or secondary battery surface) temperature is integrated over time. Similarly, since high rate discharge in low temperature state, charge / discharge in high temperature state, etc., temperature and charge / discharge current amount are greatly related to deterioration of the secondary battery, storing as deterioration information of the secondary battery can be used for deterioration judgment. It can be important information.

【0042】[0042]

【表3】 [Table 3]

【0043】二次電池の経歴として、表3に示す様な環
境温度(二次電池表面温度)と充電または放電電流値区
分による、充放電電流量または充放電時間の記憶手段へ
の記憶は二次電池の劣化状態を判断する情報として有用
である。
As a history of the secondary battery, as shown in Table 3, the charging / discharging current amount or the charging / discharging time is stored in the storage means according to the environmental temperature (secondary battery surface temperature) and the charging / discharging current value classification. It is useful as information for determining the deterioration state of the secondary battery.

【0044】放置時間と比較して充放電実施の時間積算
値自体は記憶手段に記憶される値は小さくなる可能性が
高いが、各種温度条件における充放電の実施は、二次電
池の劣化に大きく影響する事から極めて有効な手段であ
る。具体的な使用の一例を挙げて二次電池の高温状態で
の放電の使用例を説明すると下記の様になる。
Although it is highly possible that the accumulated value of the charging / discharging time itself stored in the storage means will be smaller than that of the standing time, the charging / discharging under various temperature conditions may cause deterioration of the secondary battery. It is a very effective means because it has a great influence. The following is a description of an example of use of discharging a secondary battery in a high temperature state by taking a specific example of use.

【0045】一度、高温状態となった二次電池セルは、
容易にその温度を室温まで下げる事は難しい。その二次
電池を搭載する携帯用ノート型コンピュータを、日本の
夏に、閉め切った車内に放置すると車内温度は90度以
上まで容易に上昇し、更に、直接太陽光を浴びる場所に
放置されている場合には、100度近い温度まで携帯用
ノート型コンピュータの表面温度は上昇してしまう。こ
の様な状態から、車内の換気が実施され、エアコン等に
より車内温度が急激に下げられた状態まで、車内温度が
下げられたとしても、二次電池表面温度が室温まで低下
するには時間が必要となる。二次電池内部に至っては、
その温度が安定するまでには更に時間が必要となる。以
上の様な条件において、車内に放置する携帯用ノート型
コンピュータの電源がON状態である場合、二次電池は
そのDATAを保持するために安全状態を保持しつつ、
放電を維持する必要がある。更に、放電により二次電池
内部でジュール熱が発生することも十分に考慮されるべ
きである。
The rechargeable battery cell that has once reached a high temperature is
It is difficult to easily lower the temperature to room temperature. When a portable notebook computer equipped with the secondary battery is left in a closed car in summer in Japan, the temperature inside the car easily rises to over 90 degrees and is left in a place exposed to direct sunlight. In this case, the surface temperature of the portable notebook computer rises to a temperature close to 100 degrees. Even if the vehicle interior temperature is lowered from such a state to the state where the vehicle interior ventilation is performed and the vehicle interior temperature is drastically lowered by the air conditioner, etc., it takes time for the secondary battery surface temperature to drop to room temperature. Will be needed. When it comes to the inside of the secondary battery,
Further time is required until the temperature stabilizes. Under the above conditions, when the power supply of the portable notebook computer left in the vehicle is in the ON state, the secondary battery holds the safe state for holding the DATA,
It is necessary to maintain the discharge. Furthermore, it should be fully considered that Joule heat is generated inside the secondary battery due to discharge.

【0046】よって、通常生活において、二次電池を使
用する各種機器が使用・放置される環境温度と、二次電
池使用方法による二次電池の温度変化は、非常に変化が
激しく、容易に二次電池が劣化してしまう環境条件が存
在することから、温度条件に対する充放電電流量または
充放電時間を記憶することは望ましい。
Therefore, in normal life, the environmental temperature at which various devices using the secondary battery are used and left and the temperature change of the secondary battery due to the method of using the secondary battery are very drastic and easily changed. It is desirable to store the charging / discharging current amount or the charging / discharging time with respect to the temperature condition because there is an environmental condition in which the secondary battery deteriorates.

【0047】図6に示す様な絶えず充放電を細かく繰り
返す事で放置状態が安定しないパック電池の場合、上記
のような方法による記憶手段への経歴時間の記憶は実施
が難しい。この場合も同様に、サイクルカウント数は二
次電池の劣化速度を推測するには十分な情報とはならな
い。単に満充電検出回数のみを記憶手段に積算させる方
法が簡単、且つ適切である。
In the case of a battery pack in which the state of being left unstabilized by continuously repeating charging and discharging as shown in FIG. 6, it is difficult to store the history time in the storage means by the above method. In this case as well, similarly, the cycle count number is not sufficient information for estimating the deterioration rate of the secondary battery. A method of simply accumulating only the number of times of full charge detection in the storage means is simple and appropriate.

【0048】以上の説明にある通り、リチウムイオン二
次電池等の二次電池の種類によっては満充電状態に近い
ほど、二次電池としての劣化速度が早くなる傾向が見ら
れることから、満充電検出回数を積算、記憶することは
満充電状態近辺に二次電池がどの程度の存在し得たかを
予測するに重要な手掛かりと出来る。
As described above, depending on the type of the secondary battery such as the lithium ion secondary battery, the closer to the full charge state, the faster the deterioration rate of the secondary battery tends to be. Accumulating and storing the number of detections can be an important clue for predicting how much the secondary battery can exist near the fully charged state.

【0049】またリチウムイオン二次電池系において
は、図7に示すように満充電検出状態以後も極めて低レ
ートな充電を維持することで二次電池電圧レベルを常に
高レベルに保持すると、充電積算量としては劣化検討の
必要性がない充放電量であったとしても、二次電池の電
圧が常に高レベルを維持するため劣化速度を早める。こ
の場合、満充電状態の検出回数ではなく、二次電池電圧
から満充電検出可能状態であることを推測できる二次電
池電圧状態の維持時間を記憶することが劣化の程度を判
断するためには適当である。
Further, in the lithium ion secondary battery system, as shown in FIG. 7, if the secondary battery voltage level is always kept at a high level by maintaining the charge at an extremely low rate even after the full charge detection state, the charge integration Even if the amount of charge and discharge is such that there is no need to study deterioration, the deterioration rate is accelerated because the voltage of the secondary battery always maintains a high level. In this case, storing the maintenance time of the secondary battery voltage state in which it can be inferred from the secondary battery voltage that the state of full charge detection is possible, rather than the number of times the full charge state is detected, can be used to determine the degree of deterioration. Appropriate.

【0050】この際、満充電検出以後の充電電流は、二
次電池出力解放時の電圧と充電入力電圧との差が二次電
池電圧上昇により小さくなる。よって、(充電印加電圧
−二次電池解放電圧)/二次電池内部抵抗=充電電流と
なるが、(充電印加電圧−二次電池解放電圧)が小さく
なるため、計算値はきわめて小さくなる。
At this time, the charging current after the detection of full charge becomes smaller due to the difference between the voltage when the secondary battery output is released and the charging input voltage due to the increase in the secondary battery voltage. Therefore, (charge applied voltage-secondary battery release voltage) / secondary battery internal resistance = charge current, but (charge applied voltage-secondary battery release voltage) becomes small, so the calculated value becomes extremely small.

【0051】二次電池を充電実施する時、二次電池ブロ
ックに対して外部電源により電流、電圧を印加するた
め、二次電池電圧は高電圧状態を維持することとなる。
更に、二次電池系によっては、満充電近辺において二次
電池自体が激しく発熱するものもある。よって、二次電
池の満充電状態検出時における、電流、電圧、温度は、
二次電池の劣化状態と二次電池の満充電検出時に放電可
能な電気量に大きく影響することから、その記憶は重要
である。
When the secondary battery is charged, a current and a voltage are applied to the secondary battery block by an external power source, so that the secondary battery voltage is maintained in a high voltage state.
Further, depending on the secondary battery system, the secondary battery itself may generate intense heat in the vicinity of full charge. Therefore, the current, voltage, and temperature at the time of detecting the fully charged state of the secondary battery are
The storage of the secondary battery is important because it significantly affects the state of deterioration of the secondary battery and the amount of electricity that can be discharged when the secondary battery is fully charged.

【0052】リチウムイオン二次電池とは異なる電池系
では、ニッケル水素蓄電池のように満充電検出(または
充電停止)の判断となる二次電池の物理変化が複数存在
する二次電池も存在する。各満充電検出の信号となる物
理変化に対して二次電池の劣化の程度はそれぞれ異な
り、更に満充電検出(または充電停止が必要である物理
変化検出)時における二次電池の充電電気量は満充電検
出の種類によって大きく変化するため、結果的に学習容
量値に大きな影響を与える。
In a battery system different from the lithium-ion secondary battery, there is also a secondary battery such as a nickel-hydrogen storage battery in which there are a plurality of physical changes of the secondary battery which are the judgments of full charge detection (or stop of charging). The degree of deterioration of the secondary battery is different for each physical change that is a signal for full charge detection, and the amount of electricity charged by the secondary battery at the time of full charge detection (or detection of physical change that requires charging stop) is Since it greatly changes depending on the type of full charge detection, the learning capacity value is greatly affected as a result.

【0053】図8(a)〜図8(d)はニッケル水素蓄
電池を使用したパック電池の充電時における電流、電圧
と温度変化の一例を示すグラフである。図8の各種グラ
フに示す通り、一般的に充電を実施すると二次電池温度
は上昇する。二次電池は、充電時の安全性の確保と充電
時の劣化発生の回避を目的に、充電禁止しきい温度が設
定され、充電中に二次電池温度が前記しきい温度以上で
ある状態を検出されると、二次電池の状態演算装置は充
電禁止温度状態を認識して充電を停止または終了させる
(一般にTCO検出方法)。
FIGS. 8A to 8D are graphs showing an example of changes in current, voltage and temperature during charging of a battery pack using a nickel hydrogen storage battery. As shown in various graphs in FIG. 8, generally, when charging is performed, the temperature of the secondary battery rises. The secondary battery has a charge prohibition threshold temperature set for the purpose of ensuring safety during charging and avoiding deterioration during charging, and the state where the secondary battery temperature is equal to or higher than the threshold temperature during charging is set. When detected, the state calculation device for the secondary battery recognizes the charge inhibition temperature state and stops or ends the charge (generally, TCO detection method).

【0054】その他、ニッケル水素蓄電池の満充電検出
方法は、充電開始時からの二次電池温度上昇量による満
充電検出方法(一般に△T検出方法)、定電流充電実施
時での電圧ピーク時からの電圧低下量による満充電検出
方法(一般に−△V検出方法)、温度上昇勾配より満充
電状態を判断する方法(一般にdT/dt検出方法)等
がある。
In addition, the full-charge detection method for the nickel-hydrogen storage battery includes a full-charge detection method (generally ΔT detection method) based on the amount of temperature rise of the secondary battery from the start of charging, and a peak voltage during constant-current charging. There are a full charge detection method (generally -ΔV detection method) based on the amount of voltage decrease, and a method (generally dT / dt detection method) that determines the full charge state from the temperature rise gradient.

【0055】TCO検出方法は、予め二次電池充電にお
ける安全性、劣化等を考慮に入れて充電実施上限温度を
設定し、上限温度検出により充電を停止させる制御を行
う。△T検出方法は、充電開始時からの温度変化が予め
設定された値を超えた時点で満充電を検出する制御を行
う。−△V検出方法は、一定電流での充電実施時におい
て、二次電池電圧が頂点を示した後、予め設定される電
圧ドロップが確認された時点で満充電を検出する制御を
行う。dT/dt検出方法は、予め設定される一定時間
あたりの温度勾配が予め設定される一定値以上を検出し
た時点で満充電を検出する制御を行う。
In the TCO detection method, the charging execution upper limit temperature is set in advance in consideration of safety, deterioration, and the like in charging the secondary battery, and control is performed to stop charging by detecting the upper limit temperature. The ΔT detection method performs control to detect full charge when the temperature change from the start of charging exceeds a preset value. The −ΔV detection method performs control to detect full charge when a preset voltage drop is confirmed after the secondary battery voltage shows a peak during charging with a constant current. In the dT / dt detection method, control is performed to detect full charge when a temperature gradient per preset constant time exceeds a preset constant value.

【0056】その他、満充電検出方法の種類には幾つか
の種類が存在するが、環境温度条件、充電電流値等の諸
条件により使用される満充電検出の方法は選択される必
要がある。
In addition, although there are several types of full charge detection methods, it is necessary to select a full charge detection method to be used depending on various conditions such as environmental temperature conditions and charging current values.

【0057】例えば、二次電池表面温度が60度となっ
た時点で充電を停止させるTCO制御のみを選択、実施
する場合、環境温度が40度の場合と50度である場合
とで当然のこととして充電される電気量に差が生じる。
更に温度変化により充電制御を実施する場合、充電レー
トが二次電池に充電される電気量に極めて大きな影響を
もつこととなる。具体的には1C充電を実施する場合
と、0.1C充電を実施する場合とを比較すると、温度
変化は明らかに1C充電時に大きく確認できる。因み
に、dT/dt満充電検出方法を採用する場合、予め設
定される温度勾配(例として2度/2分)の温度上昇が
確認されないと満充電検出は出来ない為、充電電流は前
記温度上昇が可能となる充電電流値である必要がある。
よってdT/dt満充電検出方法選択時には、充電電流
は満充電時の温度変化が十分見込める量が必要であり、
仮に充電電流が少ない場合、適切な満充電検出が実施で
きず、結果として過充電状態となる。
For example, when only the TCO control for stopping the charging at the time when the surface temperature of the secondary battery reaches 60 degrees is selected and executed, it is natural that the environment temperature is 40 degrees and 50 degrees. As a result, a difference occurs in the amount of electricity charged.
Further, when the charge control is performed by the temperature change, the charge rate has an extremely large effect on the amount of electricity charged in the secondary battery. Specifically, when comparing the case where 1C charging is performed and the case where 0.1C charging is performed, a large temperature change can be clearly confirmed at the time of 1C charging. By the way, when the dT / dt full charge detection method is adopted, the full charge cannot be detected unless a temperature rise of a preset temperature gradient (for example, 2 degrees / 2 minutes) is confirmed. Must be a charging current value that enables
Therefore, when the dT / dt full charge detection method is selected, the charging current needs to have a sufficient amount that a temperature change at full charge can be expected.
If the charging current is small, proper full-charge detection cannot be performed, resulting in an overcharged state.

【0058】以上内容より、環境温度、充電電流等の諸
充電条件は、充電電気量に大きく影響する事が理解でき
るが、更に付け加えるならば、温度、電圧状態に深く関
わりがある事から二次電池劣化状態にも大きく関わりが
ある。
From the above contents, it can be understood that various charging conditions such as the environmental temperature and the charging current have a great influence on the amount of electricity charged, but if further added, it is closely related to the temperature and the voltage state. It is also greatly related to the state of battery deterioration.

【0059】一例を挙げると、充電電流値が極めて小さ
く、満充電を検出できるほどの十分なエネルギーが充電
電流から得ることが出来ない場合、二次電池が満充電状
態である事を検出出来る様な温度変化の検出が出来ず、
充電状態が続き、結果として二次電池の充電状態が過充
電状態を維持し劣化する事などが挙げられる。
As an example, when the charging current value is extremely small and sufficient energy for detecting full charge cannot be obtained from the charging current, it can be detected that the secondary battery is in a fully charged state. Unable to detect a significant temperature change,
The state of charge continues, and as a result, the state of charge of the secondary battery remains overcharged and deteriorates.

【0060】以上内容より、満充電検出時の二次電池充
電状態を記憶手段に記憶することは二次電池の劣化状態
を判断する情報として重要である。
From the above contents, it is important to store the state of charge of the secondary battery when the full charge is detected in the storage means as information for judging the state of deterioration of the secondary battery.

【0061】[0061]

【表4】 [Table 4]

【0062】表4はニッケル水素蓄電池系に代表される
充電状態と二次電池電圧との関係が余り緊密でない電池
系に関しての満充電検出時における条件回数記憶であ
る。1A未満、10度未満での充電停止時においては、
温度変化による満充電の検出が実施できておらず、59
度以上の温度に関してはTCO検出に拠る満充電検出に
より、充電電流に関わらず充電電気量が少なく、更に、
高温での充電により二次電池劣化は進んでいる等の推測
が可能となる。
Table 4 is a condition number storage at the time of full charge detection for a battery system in which the relationship between the state of charge represented by a nickel-hydrogen storage battery system and the secondary battery voltage is not so close. When charging is stopped at less than 1 A and less than 10 degrees,
The full charge due to temperature change could not be detected.
For temperatures above 10 ° C, full charge detection based on TCO detection reduces the amount of electricity charged regardless of the charging current.
It is possible to infer that secondary battery deterioration has progressed due to charging at high temperatures.

【0063】更に、前述の通り、充電環境条件から二次
電池の充電電気量に差が生じる点も考慮する必要があ
る。つまり学習容量に関して更新値の適正を判断するた
めの情報として満充電検出方法の種類判別が必要とな
る。
Further, as described above, it is also necessary to consider that there is a difference in the amount of electricity charged in the secondary battery depending on the charging environmental conditions. That is, it is necessary to determine the type of full-charge detection method as information for determining the appropriateness of the updated value regarding the learning capacity.

【0064】よって、現在の二次電池の状態演算装置が
認識する学習容量が記憶される大きな要因である満充電
検出の方法を記憶することは重要である。
Therefore, it is important to store the full-charge detection method, which is a major factor in storing the learning capacity recognized by the current secondary battery state calculation device.

【0065】[0065]

【表5】 [Table 5]

【0066】また、満充電検出の方法を記憶すること
は、当二次電池を使用した本体機器の使用状況が把握出
来、二次電池の状態判断に役立てることができる。表5
では、ニッケル水素蓄電池の満充電検出の種類毎に検出
回数を記憶する例を示している。
Storing the full-charge detection method can be used to judge the state of use of the main battery device using the secondary battery and to judge the state of the secondary battery. Table 5
In the above, an example is shown in which the number of detections is stored for each type of full-charge detection of the nickel-hydrogen storage battery.

【0067】単純な例として各検出内容毎に使用状態の
推測例を記述すると、TCO検出では、本体機器の電力
消費状態が極めて大きい状態で充電を実施しており、本
体のあおり熱によりパック電池内部の二次電池が熱せら
れている状態で充電する頻度を示し、Timer検出
は、何らかの理由により二次電池が温度変化による満充
電状態を示すに十分なエネルギー(充電電流)を得るこ
とが出来ていない状態で、十分な発熱が出来ないまま充
電時間、または充電入力電流量がしきい値を超えている
事を示す。つまりTimer検出の場合は、過充電状態
に二次電池が至っている可能性が高いことから、検出回
数によっては劣化の程度が懸念されることもあり得る。
As a simple example, an example of estimation of the usage state is described for each detected content. In the TCO detection, charging is performed in a state where the power consumption state of the main body device is extremely large, and the pack battery is caused by the swinging heat of the main body. It shows the frequency of charging the internal secondary battery in a heated state, and Timer detection can obtain sufficient energy (charging current) for the secondary battery to show a fully charged state due to temperature change for some reason. Indicates that the charging time or the charging input current amount exceeds the threshold value without sufficient heat generation in the state where the charging is not performed. In other words, in the case of Timer detection, there is a high possibility that the secondary battery has reached the overcharged state, so there is a possibility that the degree of deterioration may be a concern depending on the number of times of detection.

【0068】以上は二次電池が満充電状態、または満充
電検出可能状態に近い状態に対する劣化情報の記憶を記
憶手段に記憶する事を目的とした実施の形態であるが、
逆に二次電池の放電状態が進み、過放電状態、又は過放
電状態に近い状態を長時間、又は複数回数経験する事も
二次電池の劣化を早める要因として大きい事から、二次
電池の劣化要因の一つである過放電状態に関して記憶手
段に記憶することは、演算装置に接続される二次電池の
状態判断に有効である。
The above is the embodiment for the purpose of storing the storage of the deterioration information in the storage means for the state where the secondary battery is in the fully charged state or the state in which the secondary battery is close to the fully charged detectable state.
Conversely, the progress of the secondary battery's discharge state, and the fact that it experiences an over-discharged state or a state close to an over-discharged state for a long time or multiple times is a major factor in accelerating the deterioration of the secondary battery. Storing the overdischarge state, which is one of the factors of deterioration, in the storage means is effective for determining the state of the secondary battery connected to the arithmetic unit.

【0069】図9は二次電池の状態演算装置の二次電池
電圧に対する放電制御と動作状態を示している。図9に
示される通り、二次電池の状態演算装置は、二次電池電
圧が予め設定される二次電池電圧V91に達すると放電
禁止信号の表示、通信、電圧低下の警告、また、V92
に達すると放電制御を目的とした図2に示す様なスイッ
チ21をOff状態として放電不可の状態とする等の制
御の実施により二次電池電圧の低下を防止する。当状態
においては二次電池の状態演算装置はその機能を停止せ
ず、二次電池状態を監視続ける。
FIG. 9 shows the discharge control and the operating state with respect to the secondary battery voltage of the secondary battery state calculating device. As illustrated in FIG. 9, when the secondary battery voltage reaches a preset secondary battery voltage V91, the secondary battery state calculation device displays a discharge prohibition signal, communicates, warns of a voltage drop, and displays V92.
2 is reached, the secondary battery voltage is prevented from lowering by performing control such that the switch 21 as shown in FIG. In this state, the state calculation device of the secondary battery does not stop its function and continues to monitor the state of the secondary battery.

【0070】更に放置状態が継続されると二次電池の状
態演算装置の消費電力及び二次電池の自己放電等の影響
により二次電池電圧は低下を続け、予め設定される二次
電池電圧V93に達する。この場合、二次電池の状態演
算装置は自らの機能を停止させ、二次電池の消費電流を
更に低減して二次電池電圧の低下を防止する。
When the state of being left unattended further continues, the secondary battery voltage continues to decrease due to the influence of the power consumption of the secondary battery state calculation device and the self-discharge of the secondary battery, and the preset secondary battery voltage V93 Reach In this case, the state calculation device of the secondary battery stops its own function, further reduces the current consumption of the secondary battery, and prevents the secondary battery voltage from decreasing.

【0071】前述の通り、二次電池電圧が低下し、二次
電池の状態演算装置がPowerOff状態である時間
を外部装置の時計等を利用して記憶する他に、過放電状
態の検出回数を記憶方法も二次電池の劣化の程度を判断
する情報として有効である。
As described above, the time during which the secondary battery voltage drops and the secondary battery state calculation device is in the Power Off state is stored using the clock of an external device, and the number of times the over discharge state is detected is stored. The storage method is also effective as information for determining the degree of deterioration of the secondary battery.

【0072】図10は過放電状態に近い二次電池に対す
る環境温度と二次電池の内部抵抗、OCV電圧の静特性
と放電電流との関係を示している。環境温度が大きく異
なる場合においても、使用可能温度範囲にある内におい
ては二次電池に充電されている残存容量には変化がない
はずであるが、一定電圧検出により放電を停止させると
二次電池内部抵抗(IR)の温度による変化量が非常に
大きい為、放電電流が大きい程、二次電池内部に残存容
量を残した状態で過放電を検出されてしまうこととな
る。よって一般的な方法として、環境温度または二次電
池の表面温度を測定して放電電流と併せて過放電検出し
きい値電圧を変化させる技術が使用される。
FIG. 10 shows the relationship between the ambient temperature, the internal resistance of the secondary battery, the static characteristics of the OCV voltage, and the discharge current for the secondary battery close to the over-discharged state. Even when the environmental temperature is significantly different, the remaining capacity charged in the secondary battery should not change within the usable temperature range, but if the discharge is stopped by detecting the constant voltage, the secondary battery Since the amount of change in the internal resistance (IR) with temperature is very large, the larger the discharge current, the more over-discharge is detected with the remaining capacity remaining inside the secondary battery. Therefore, as a general method, a technique of measuring the environmental temperature or the surface temperature of the secondary battery and changing the overdischarge detection threshold voltage together with the discharge current is used.

【0073】よって、二次電池は低温状態では内部抵抗
(IR)が室温状態と比較して非常に高いため、低温で
の過放電検出しきい値電圧は非常に低く設定されないと
二次電池内部の残存容量を他の温度条件と同レベルの放
電容量とすることは出来ない。
Therefore, the internal resistance (IR) of the secondary battery in the low temperature state is much higher than that in the room temperature state. Therefore, unless the overdischarge detection threshold voltage at the low temperature is set to be very low, It is not possible to make the remaining capacity of the discharge capacity of the same level as other temperature conditions.

【0074】現実的には、他の環境温度条件と同レベル
の放電容量を得るまで放電を得るまで放電を継続する前
に、外部接続機器の動作可能電圧を下回るため、同レベ
ルの放電容量とすることは難しい。
In reality, before the discharge is continued until the discharge is obtained until the discharge capacity at the same level as that of other environmental temperature conditions is obtained, the discharge voltage becomes lower than the operable voltage of the externally connected device, so that the discharge capacity at the same level is obtained. Difficult to do.

【0075】しかしながら、低温状態にある二次電池を
通電すると、当然内部においてジュール熱が発生するこ
とになるが、低温状態では内部抵抗値が非常に高いた
め、ジュール熱の発生は他の温度状態時よりも激しく、
しかも、熱の伝達には時間がかかる為、二次電池内部の
中心付近温度と表面の温度との差が大きく生じてしま
う。よって、低温状態では通電電流による内部発熱と二
次電池内部の中心部分周辺にとっては低電圧状態までの
放電実施と言う2種の極めて二次電池の劣化を伴う状態
を作り出す事となる。
However, when the secondary battery in the low temperature state is energized, Joule heat is naturally generated inside. However, since the internal resistance value is very high in the low temperature state, the Joule heat is generated in other temperature states. More intense than time,
Moreover, since it takes time to transfer heat, a large difference occurs between the temperature near the center and the temperature on the surface inside the secondary battery. Therefore, in a low temperature state, two types of extremely secondary battery deteriorations are created, namely, internal heat generation due to the energizing current and discharge of the secondary battery up to a low voltage state around the central portion.

【0076】[0076]

【表6】 [Table 6]

【0077】その為、過放電状態の検出に関して、表6
の様に、二次電池の温度状態と放電電流値とによって過
放電検出回数を分けて記憶することは二次電池劣化状態
を判断する情報として使用可能である。二次電池の状態
演算装置の有する機能の内、学習容量と一般的に呼ばれ
る二次電池が満充電時に放電可能な電気量を測定、記
憶、更新することは、二次電池の充電状態及び劣化状態
を判断する上で極めて重要な機能であり、学習容量自
体、重要な情報である。
Therefore, regarding the detection of the overdischarge state, Table 6
As described above, it is possible to store the number of times of over-discharge detection separately according to the temperature state of the secondary battery and the discharge current value and store the information as the information for determining the state of deterioration of the secondary battery. Among the functions of the secondary battery state calculation device, measuring, storing, and updating the amount of electricity that can be discharged when the secondary battery is fully charged, which is generally called the learning capacity, is the state of charge and deterioration of the secondary battery. It is an extremely important function for judging the state, and the learning capacity itself is important information.

【0078】しかしながら、二次電池の使用条件は多岐
に渡る事から、必ずしも適切な容量学習値であるとは言
えない。下記に不適切な学習容量更新の一例を示す。
However, since the usage conditions of the secondary battery are diverse, it cannot be said that the capacity learning value is an appropriate value. Below is an example of inappropriate learning capacity updates.

【0079】図10に示す様に、低温環境に放置された
リチウムイオン二次電池は通常温度状態と比較して極め
て内部抵抗が高く、その為、通常使用が許容されている
範囲での高レート放電を実施すると直ぐに学習実施電圧
まで二次電池電圧が低下する(t10a)。継続して放
電を実施すると、二次電池内部の温度はジュール熱によ
り上昇し、二次電池内部抵抗も低減する為、二次電池電
圧は再び上昇した後、二次電池内の残存容量が無くなり
再び学習実施電圧を通り放電禁止電圧に至る(t10
b)。よって本来はt11bまで放電可能な充電状態で
あるにも関わらず、二次電池の状態演算装置は電圧検出
によりt10aの時点で学習を実施する事となる。つま
り学習容量が不適切に小さい値で更新されてしまうこと
となる。
As shown in FIG. 10, the lithium-ion secondary battery left in a low temperature environment has an extremely high internal resistance as compared with a normal temperature state, and therefore, a high rate in a range allowed for normal use is obtained. Immediately after discharging, the secondary battery voltage drops to the learning execution voltage (t10a). When discharging is continued, the internal temperature of the secondary battery rises due to Joule heat, and the internal resistance of the secondary battery also decreases.Therefore, after the secondary battery voltage rises again, the remaining capacity in the secondary battery disappears. It passes through the learning execution voltage again and reaches the discharge inhibition voltage (t10
b). Therefore, although the state of charge is such that the battery can be discharged until t11b, the state calculation device for the secondary battery performs learning at time t10a by detecting the voltage. That is, the learning capacity is updated with an inappropriately small value.

【0080】以上の様な学習容量値に対し、一次的な異
常使用状態における更新値であるか、劣化等の二次電池
状態変化により実際に放電できた電気量であるのかを客
観的に判断する方法として、学習容量値の更新時に、更
新前の学習容量値を別途記憶手段に記憶し、学習容量値
の変化量を確認可能とすることは有効である。
With respect to the learning capacity value as described above, it is objectively judged whether it is an updated value in a primary abnormal use state or an amount of electricity actually discharged due to a change in secondary battery state such as deterioration. As a method for doing so, it is effective to separately store the learning capacity value before updating in the storage means when the learning capacity value is updated so that the change amount of the learning capacity value can be confirmed.

【0081】また、徐々に二次電池劣化、即ち二次電池
の内部抵抗増大が進んでいる状態においては、学習容量
値も徐々にその数値を減少させる。よって、その劣化の
状態変化を二次電池の学習容量値の変化量の形で記憶す
ることが可能となる。
Further, when the secondary battery is gradually deteriorated, that is, the internal resistance of the secondary battery is increasing, the learning capacity value is also gradually decreased. Therefore, the deterioration state change can be stored in the form of the change amount of the learning capacity value of the secondary battery.

【0082】以上より、二次電池の劣化状態を判断する
情報として学習容量値の更新履歴を記憶することは有効
である。
From the above, it is effective to store the update history of the learning capacity value as the information for judging the deterioration state of the secondary battery.

【0083】二次電池の経歴の記憶は、記憶手段の記憶
容量を多く必要とすることと、履歴が不明である二次電
池の劣化状態を判断する場合には適応できない。その様
な場合、二次電池の内部抵抗値の測定と共に、学習容量
を測定し、二次電池の初期容量と比較して劣化の程度を
判断する事が一般的な判断方法となる。よって、二次電
池が満充電時に放電可能な電気量を確認、記憶するこ
と、即ち学習容量計測実施は二次電池の劣化の状態を確
認する方法の一つとして使用することが可能である。
The storage of the history of the secondary battery cannot be applied when the storage capacity of the storage means is large and the deterioration state of the secondary battery whose history is unknown is determined. In such a case, a general determination method is to measure the internal resistance value of the secondary battery, measure the learning capacity, and compare the initial capacity of the secondary battery to determine the degree of deterioration. Therefore, it is possible to confirm and store the amount of electricity that the secondary battery can discharge when it is fully charged, that is, the learning capacity measurement can be used as one of the methods for confirming the state of deterioration of the secondary battery.

【0084】以上の記述は二次電池使用状態が通常使用
状態の域を出ない状態を前提として説明している。しか
しながら、二次電池の安全性、信頼性の確保を目的とし
た、充放電の禁止状態検出頻度が多いと二次電池の劣化
の状態も早くなる可能性が懸念される。
The above description is based on the premise that the state of use of the secondary battery does not exceed the range of normal use. However, if the charge / discharge inhibition state detection frequency is high for the purpose of ensuring the safety and reliability of the secondary battery, there is a concern that the state of deterioration of the secondary battery may be accelerated.

【0085】一例として、予め設定されるしきい値以上
の放電電流が二次電池より放電されている事を検出する
と二次電池の状態演算装置は図2に示されるようなスイ
ッチ21等を使用して放電電流を遮断する。スイッチ等
による異常放電電流の遮断速度は数ミリ秒〜数秒程度で
あるが、Short電流のような異常電流の場合には、
通常使用放電電流の数十倍の電流が流れるため、経験回
数が多いと二次電池の劣化に大きく影響する。よって、
異常状態の検出回数を異常状態種類毎に回数を記憶する
ことは二次電池の劣化の程度を検証するに有効である。
As an example, when it is detected that the secondary battery is discharging a discharge current equal to or higher than a preset threshold value, the secondary battery state calculation device uses a switch 21 or the like as shown in FIG. To interrupt the discharge current. The cutoff speed of the abnormal discharge current by the switch is about several milliseconds to several seconds, but in the case of an abnormal current such as the Short current,
Since a current that is several tens of times the discharge current that is normally used flows, a large number of experiences greatly affects the deterioration of the secondary battery. Therefore,
Storing the number of abnormal state detections for each abnormal state type is effective for verifying the degree of deterioration of the secondary battery.

【0086】[0086]

【発明の効果】以上より、本発明の二次電池の状態演算
装置は、接続される二次電池の詳細な使用履歴の記憶を
元に、二次電池の劣化状態の推測に利用できるだけでな
く、現状の二次電池の特性原因を解明する情報を提供す
ることが可能となる。
As described above, the state calculating device for a secondary battery according to the present invention can be used not only for estimating the deterioration state of the secondary battery based on the memory of the detailed usage history of the connected secondary battery. Therefore, it becomes possible to provide information for clarifying the cause of the characteristics of the current secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態である二次電池の状態演算装
置のブロック図
FIG. 1 is a block diagram of a state calculation device for a secondary battery according to an embodiment of the present invention.

【図2】本発明の実施形態である二次電池の状態演算装
置により充放電を制御するパック電池の概略ブロック図
FIG. 2 is a schematic block diagram of a battery pack in which charge / discharge is controlled by a state calculation device for a secondary battery that is an embodiment of the present invention.

【図3】パック電池の充放電状態の一例から、二次電池
の完全放電状態と満充電検出のポイント、及び容量学習
の実施のタイミングを示すグラフ
FIG. 3 is a graph showing an example of the charging / discharging state of the battery pack, the point of full discharge detection of the secondary battery and the point of full charge detection, and the timing of carrying out capacity learning.

【図4】リチウムイオン二次電池の充電容量状態と二次
電池電圧、二次電池状態の一般例を示すグラフ
FIG. 4 is a graph showing a general example of a charge capacity state, a secondary battery voltage, and a secondary battery state of a lithium ion secondary battery.

【図5】(a)二次電池の状態演算装置の機能停止まで
のフローチャート (b)二次電池の状態演算装置の機能停止までの他のフ
ローチャート
FIG. 5A is a flowchart until the function of the secondary battery state calculation device is stopped. FIG. 5B is another flowchart until the function of the secondary battery state calculation device is stopped.

【図6】満充電検出状態近辺に於ける二次電池電圧また
は充電容量と充電制御状態との関係を示すグラフ
FIG. 6 is a graph showing the relationship between the secondary battery voltage or charge capacity and the charge control state near the full charge detection state.

【図7】リチウムイオン二次電池系における定電流定電
圧充電実施時の電流電圧状態変化に関する、満充電検出
以後の充電継続時の電流電圧変化を表すグラフ
FIG. 7 is a graph showing current / voltage changes during continuous charging after detection of full charge, regarding current / voltage changes during constant current / constant voltage charging in a lithium-ion secondary battery system.

【図8】(a)ニッケル水素蓄電池のTCO検出充電制
御を示す図 (b)ニッケル水素蓄電池の△T検出充電制御を示す図 (c)ニッケル水素蓄電池の−△V検出充電制御を示す
図 (d)ニッケル水素蓄電池のdT/dt検出充電制御を
示す図
8A is a diagram showing TCO detection charge control of a nickel-hydrogen storage battery, FIG. 8B is a diagram showing ΔT detection charge control of a nickel-hydrogen storage battery, and FIG. 8C is a diagram showing −ΔV detection charge control of a nickel-hydrogen storage battery. d) Diagram showing dT / dt detection charge control of nickel-hydrogen storage battery

【図9】二次電池の放電電圧特性に対する二次電池状態
演算装置の各種機能動作タイミングを示す図
FIG. 9 is a diagram showing operation timings of various functions of the secondary battery state calculation device with respect to secondary battery discharge voltage characteristics.

【図10】(a)リチウムイオン二次電池に於ける放電
時の温度、放電電流特性を示す図 (b)リチウムイオン二次電池に於ける放電時の温度、
放電電流特性を示す他の図
FIG. 10 (a) is a diagram showing discharge temperature and discharge current characteristics in a lithium ion secondary battery, and (b) is a discharge temperature in a lithium ion secondary battery,
Another figure showing discharge current characteristics

【符号の説明】[Explanation of symbols]

11 パック電池 12 二次電池の状態演算装置 13 二次電池ブロック 14 演算手段 15 記憶手段 16 電圧検出手段 17 電流検出手段 18 温度検出手段 19 表示手段 1a 充放電端子 1b 充放電端子 1c 通信端子 21 充放電制御スイッチ素子 11-pack battery 12 Secondary battery status calculator 13 Secondary battery block 14 Computing means 15 storage means 16 Voltage detection means 17 Current detection means 18 Temperature detection means 19 Display means 1a Charge / discharge terminal 1b Charge / discharge terminal 1c communication terminal 21 Charge / discharge control switch element

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G016 CB12 CB21 CB31 CC01 CC03 CC04 CC06 CC10 CC12 CC21 CF06 5G003 BA01 CA01 CA11 CB01 EA02 EA05 EA06 EA08 GC05 5H030 AS11 BB01 FF24 FF42 FF43 FF44 FF52    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G016 CB12 CB21 CB31 CC01 CC03                       CC04 CC06 CC10 CC12 CC21                       CF06                 5G003 BA01 CA01 CA11 CB01 EA02                       EA05 EA06 EA08 GC05                 5H030 AS11 BB01 FF24 FF42 FF43                       FF44 FF52

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一つ或いは複数の二次電池セルよりなる
電池ブロックと接続され、充放電により増減する電池ブ
ロックの充電電気量に関して演算し通信又は表示する二
次電池の状態演算装置であって、 前記電池ブロックを構成する各種セル電圧をモニターす
る電圧検出手段と、前記電池ブロックの充放電電流を検
出する電流検出手段と、前記電池ブロックの表面温度を
検出する温度検出手段と、前記電圧検出手段及び前記電
流検出手段から得られる電気信号を用いて電池ブロック
の状態を演算する演算手段と、前記演算手段を通じて各
種情報を記憶する記憶手段とから構成され、 前記演算手段は、前記電池ブロックが経験する温度状態
に対する充放電電流毎における経験時間または充放電電
流量として、前記記憶手段へ保存することを特徴とする
二次電池の状態演算装置。
1. A state calculation device for a secondary battery, which is connected to a battery block composed of one or a plurality of secondary battery cells, and which calculates, communicates, or displays the amount of electricity charged in the battery block that increases or decreases due to charging and discharging. A voltage detecting means for monitoring various cell voltages forming the battery block, a current detecting means for detecting a charging / discharging current of the battery block, a temperature detecting means for detecting a surface temperature of the battery block, and the voltage detecting means. Means and means for calculating the state of the battery block using the electric signal obtained from the current detection means, and storage means for storing various information through the calculation means, the calculation means, the battery block The storage time is stored as the experience time or the amount of charge / discharge current for each charge / discharge current for the temperature condition to be experienced. State calculating device for a secondary battery that.
【請求項2】 演算手段は、電圧検出手段、電流検出手
段及び温度検出手段により得られる情報から電池ブロッ
クの満充電状態を検出し、前記電池ブロックの満充電検
出回数を記憶手段に記憶することを特徴とする請求項1
記載の二次電池の状態演算装置。
2. The calculating means detects the full charge state of the battery block from the information obtained by the voltage detecting means, the current detecting means and the temperature detecting means, and stores the full charge detection frequency of the battery block in the storing means. Claim 1 characterized by the above.
The state calculation device for the secondary battery described.
【請求項3】 演算手段は、電圧検出手段、電流検出手
段及び温度検出手段により得られる情報から電池ブロッ
クの満充電状態を検出した際の各種電流、電圧及び温
度、または満充電検出判定条件の種類毎に検出回数を積
算、記憶することを特徴とする請求項1記載の二次電池
の状態演算装置。
3. The computing means is configured to detect various currents, voltages and temperatures, or full charge detection determination conditions when the fully charged state of the battery block is detected from the information obtained by the voltage detection means, the current detection means and the temperature detection means. 2. The state calculating device for a secondary battery according to claim 1, wherein the number of times of detection is accumulated and stored for each type.
【請求項4】 演算手段は、電圧検出手段、電流検出手
段及び温度検出手段により得られる情報から、放電状態
において予め記憶手段に設定される過放電電圧設定値の
検出回数を記憶することを特徴とする請求項1記載の二
次電池の状態演算装置。
4. The arithmetic means stores the number of times of detection of an overdischarge voltage set value preset in the storage means in the discharge state from the information obtained by the voltage detection means, the current detection means and the temperature detection means. The state calculation device for the secondary battery according to claim 1.
【請求項5】 演算手段は、電圧検出手段、電流検出手
段及び温度検出手段により得られる情報から、接続され
る電池ブロックが満充電時に放電可能な電気量を演算及
び更新する機能を有し、前記電池ブロックが満充電時に
放電可能な電気量の更新時に更新前の二次電池が満充電
時に放電可能な電気量を記憶手段に記憶することを特徴
とする請求項1記載の二次電池の状態演算装置。
5. The calculation means has a function of calculating and updating the amount of electricity that can be discharged from the connected battery block when the battery block is fully charged, based on the information obtained by the voltage detection means, the current detection means, and the temperature detection means. 2. The rechargeable battery according to claim 1, wherein the rechargeable secondary battery before updating stores the rechargeable electric amount when the battery block is fully charged in the storage means when the rechargeable electric amount is updated. State calculator.
【請求項6】 演算手段は、満充電検出毎に満充電検出
判定条件を記憶手段に記憶、更新し、接続される二次電
池ブロックが満充電時に放電可能な電気量を演算及び更
新する際、記憶手段に記憶されている満充電検出判定条
件を更新される演算値のもととなった満充電検出方法と
して記憶することを特徴とする請求項1記載の二次電池
の状態演算装置。
6. The calculation means stores and updates the full-charge detection determination condition in the storage means for each full-charge detection, and when calculating and updating the amount of electricity that the connected secondary battery block can discharge when full-charged. 2. The state calculation device for a secondary battery according to claim 1, wherein the full-charge detection determination condition stored in the storage means is stored as a full-charge detection method that is the basis of the updated calculation value.
【請求項7】 演算手段は、電圧検出手段、電流検出手
段及び温度検出手段より得られる情報により、二次電池
の状態演算装置が判断する安全性又は性能劣化防止機能
実施の回数を、防止機能毎に記憶手段に記憶することを
特徴とする請求項1記載の二次電池の状態演算装置。
7. The arithmetic means is a prevention function that determines the number of times the safety or performance deterioration prevention function is performed by the secondary battery state arithmetic device based on information obtained from the voltage detection means, the current detection means and the temperature detection means. The state calculating device for a secondary battery according to claim 1, wherein the state calculating device stores the data in each storage unit.
JP2001189239A 2001-06-22 2001-06-22 Rechargeable battery status calculator Pending JP2003009406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001189239A JP2003009406A (en) 2001-06-22 2001-06-22 Rechargeable battery status calculator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001189239A JP2003009406A (en) 2001-06-22 2001-06-22 Rechargeable battery status calculator

Publications (1)

Publication Number Publication Date
JP2003009406A true JP2003009406A (en) 2003-01-10

Family

ID=19028194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001189239A Pending JP2003009406A (en) 2001-06-22 2001-06-22 Rechargeable battery status calculator

Country Status (1)

Country Link
JP (1) JP2003009406A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032809A (en) * 2001-07-17 2003-01-31 Atex Co Ltd Device for detecting and controlling motor driven vehicle left unused for a long time
EP1500945A2 (en) * 2003-07-22 2005-01-26 Makita Corporation Methods and devices for diagnosing the condition of rechargeable batteries
EP1538724A3 (en) * 2003-12-05 2005-08-24 Matsushita Electric Industrial Co., Ltd. Charging control device with memory for cycle count
WO2008072436A1 (en) * 2006-12-14 2008-06-19 Panasonic Corporation Secondary battery deterioration judging device and backup power supply
JP2008271781A (en) * 2004-09-30 2008-11-06 Toyota Motor Corp Secondary battery charge / discharge controller
CN100449857C (en) * 2003-07-15 2009-01-07 松下电器产业株式会社 Degradation Judgment Circuit for Secondary Battery
US7482779B2 (en) 2003-10-20 2009-01-27 Toyota Jidosha Kabushiki Kaishi Control apparatus of electricity accumulation mechanism
WO2010035567A1 (en) * 2008-09-29 2010-04-01 ミツミ電機株式会社 Mobile device, battery pack, display control method, and display control program
EP2073032A3 (en) * 2007-12-19 2010-12-01 NTT DoCoMo, Inc. Battery testing device and battery testing method
JP2011153952A (en) * 2010-01-28 2011-08-11 Mitsumi Electric Co Ltd Protection module having monitoring function
JP2012252823A (en) * 2011-06-01 2012-12-20 Toyota Industries Corp Device and method of estimating degradation of secondary battery
JP2013516947A (en) * 2009-12-30 2013-05-13 エルジー・ケム・リミテッド Battery pack management apparatus and method
JP2014121147A (en) * 2012-12-14 2014-06-30 Sharp Corp Power supply system
JPWO2015118872A1 (en) * 2014-02-07 2017-03-23 日本電気株式会社 Voltage difference correction device and voltage difference correction method
JP2017113080A (en) * 2015-12-21 2017-06-29 日本ゼオン株式会社 IABP driving device
JP2021034149A (en) * 2019-08-20 2021-03-01 本田技研工業株式会社 Display control device, display control method, and program
CN113169564A (en) * 2018-11-30 2021-07-23 工机控股株式会社 Battery pack and electrical equipment system
JP2023018289A (en) * 2021-07-27 2023-02-08 本田技研工業株式会社 Battery model construction method and battery degradation prediction device
JP2024032759A (en) * 2018-11-26 2024-03-12 株式会社半導体エネルギー研究所 Semiconductor equipment, secondary battery systems

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032809A (en) * 2001-07-17 2003-01-31 Atex Co Ltd Device for detecting and controlling motor driven vehicle left unused for a long time
CN100449857C (en) * 2003-07-15 2009-01-07 松下电器产业株式会社 Degradation Judgment Circuit for Secondary Battery
EP1500945A2 (en) * 2003-07-22 2005-01-26 Makita Corporation Methods and devices for diagnosing the condition of rechargeable batteries
US7482779B2 (en) 2003-10-20 2009-01-27 Toyota Jidosha Kabushiki Kaishi Control apparatus of electricity accumulation mechanism
EP1538724A3 (en) * 2003-12-05 2005-08-24 Matsushita Electric Industrial Co., Ltd. Charging control device with memory for cycle count
US7394224B2 (en) 2003-12-05 2008-07-01 Matsushita Electric Industrial Co., Ltd. Charge control device
JP2008271781A (en) * 2004-09-30 2008-11-06 Toyota Motor Corp Secondary battery charge / discharge controller
US8150642B2 (en) 2006-12-14 2012-04-03 Panasonic Corporation Secondary battery deterioration judging device and backup power supply
WO2008072436A1 (en) * 2006-12-14 2008-06-19 Panasonic Corporation Secondary battery deterioration judging device and backup power supply
EP2073032A3 (en) * 2007-12-19 2010-12-01 NTT DoCoMo, Inc. Battery testing device and battery testing method
US8228039B2 (en) 2007-12-19 2012-07-24 Ntt Docomo, Inc. Battery testing device and battery testing method
WO2010035567A1 (en) * 2008-09-29 2010-04-01 ミツミ電機株式会社 Mobile device, battery pack, display control method, and display control program
JPWO2010035567A1 (en) * 2008-09-29 2012-02-23 ミツミ電機株式会社 Mobile device, battery pack, display control method, display control program
US9031801B2 (en) 2008-09-29 2015-05-12 Mitsumi Electric Co., Ltd. Portable device, battery pack, display controlling method, and display controlling program
JP2013516947A (en) * 2009-12-30 2013-05-13 エルジー・ケム・リミテッド Battery pack management apparatus and method
US8633826B2 (en) 2009-12-30 2014-01-21 Lg Chem, Ltd. Method and apparatus for managing battery pack
US9221348B2 (en) 2009-12-30 2015-12-29 Lg Chem, Ltd. Method and apparatus for managing battery pack
JP2011153952A (en) * 2010-01-28 2011-08-11 Mitsumi Electric Co Ltd Protection module having monitoring function
JP2012252823A (en) * 2011-06-01 2012-12-20 Toyota Industries Corp Device and method of estimating degradation of secondary battery
JP2014121147A (en) * 2012-12-14 2014-06-30 Sharp Corp Power supply system
JPWO2015118872A1 (en) * 2014-02-07 2017-03-23 日本電気株式会社 Voltage difference correction device and voltage difference correction method
JP2017113080A (en) * 2015-12-21 2017-06-29 日本ゼオン株式会社 IABP driving device
JP2024032759A (en) * 2018-11-26 2024-03-12 株式会社半導体エネルギー研究所 Semiconductor equipment, secondary battery systems
CN113169564A (en) * 2018-11-30 2021-07-23 工机控股株式会社 Battery pack and electrical equipment system
JPWO2020110542A1 (en) * 2018-11-30 2021-10-07 工機ホールディングス株式会社 Battery pack and electrical equipment system
JP7192877B2 (en) 2018-11-30 2022-12-20 工機ホールディングス株式会社 electric equipment system
JP2021034149A (en) * 2019-08-20 2021-03-01 本田技研工業株式会社 Display control device, display control method, and program
JP2023018289A (en) * 2021-07-27 2023-02-08 本田技研工業株式会社 Battery model construction method and battery degradation prediction device
JP7299274B2 (en) 2021-07-27 2023-06-27 本田技研工業株式会社 Battery model construction method and battery deterioration prediction device

Similar Documents

Publication Publication Date Title
JP2003009406A (en) Rechargeable battery status calculator
US10534028B2 (en) Methodology for charging batteries safely
US8148950B2 (en) Charging method
KR101998069B1 (en) Method and apparatus for fast charging and maximum discharging with less-degradation of battery for an electric car
EP0440756B1 (en) Battery assembly and charging system
EP2083495B1 (en) Battery pack and method of charging the same
KR102818308B1 (en) Apparatus and method for managing battery
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
KR102633756B1 (en) battery pack and battery pack charging method
JP2014027867A (en) Control method for battery charge parameter and battery charge system
TW201325018A (en) Method of controlling the power status of a battery pack and related smart battery device
US6380717B2 (en) Device and method for controlling charging of secondary battery
JP2008005693A (en) Battery device
KR102358435B1 (en) Battery charging method and battery pack using the method
JP3370047B2 (en) Lithium ion battery capacity estimation method, deterioration determination method, deterioration determination device, and lithium ion battery pack
JP3470098B2 (en) Lithium ion battery capacity estimation method, deterioration judgment method, deterioration judgment device, and lithium ion battery pack having deterioration judgment function
KR20220042963A (en) Method for detecting relay failure, battery management system and battery pack including the same
EP3323665B1 (en) A battery pack balancing system and method
US12308687B2 (en) Battery charge/discharge control device and battery management device
KR20060019766A (en) Battery pack monitoring device and method
JP5425925B2 (en) Battery protection device and method by full charge capacity comparison
JP2001286064A (en) Lithium ion battery capacity estimation method, deterioration determination method, deterioration determination device, and lithium ion battery pack
JP3583926B2 (en) Rechargeable battery charging method
KR20210085713A (en) Battery management system and method for managing battery
EP4105669B1 (en) Method and apparatus for calculating aging degree of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914