JP2003008099A - Magnetic sensing element - Google Patents
Magnetic sensing elementInfo
- Publication number
- JP2003008099A JP2003008099A JP2001188695A JP2001188695A JP2003008099A JP 2003008099 A JP2003008099 A JP 2003008099A JP 2001188695 A JP2001188695 A JP 2001188695A JP 2001188695 A JP2001188695 A JP 2001188695A JP 2003008099 A JP2003008099 A JP 2003008099A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- film
- magnetic
- magnetic film
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Magnetic Variables (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
(57)【要約】
【課題】 簡単な構成で検出感度の高い磁気検出素子を
得ること。
【解決手段】 絶縁基板上に第1の軟磁性膜を形成し、
第1の軟磁性膜の上に絶縁膜を介して第2の軟磁性膜を
形成する。第2の軟磁性膜の一部分に高周波電流を流す
電流路を設ける。第2の磁性膜の上にはさらに絶縁膜を
介して第3の磁性膜を形成する。第1から第3の磁性膜
から成る磁極を外部磁界中におき、前記電流路に高周波
電流を流すと、外部磁界により電流路のインピーダンス
が変化する。このインピーダンス変化から磁界の強さと
方向を検出する。
(57) [Problem] To provide a magnetic detection element having a simple configuration and high detection sensitivity. SOLUTION: A first soft magnetic film is formed on an insulating substrate,
A second soft magnetic film is formed on the first soft magnetic film via an insulating film. A current path for flowing a high-frequency current is provided in a part of the second soft magnetic film. A third magnetic film is further formed on the second magnetic film via an insulating film. When a magnetic pole made of the first to third magnetic films is placed in an external magnetic field and a high-frequency current flows through the current path, the impedance of the current path changes due to the external magnetic field. From the impedance change, the strength and direction of the magnetic field are detected.
Description
【0001】[0001]
【産業上の利用分野】本発明は微弱な磁気及び磁界を検
出する磁気検出素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detecting element for detecting weak magnetism and magnetic field.
【0002】[0002]
【従来の技術】微弱な磁気あるいは磁界を検出する磁気
検出素子(磁気センサ)としては、従来から磁気抵抗効
果型磁気センサ(以下、MRセンサ)が知られている。
MRセンサでは、磁界の強さに応じてMRセンサの抵抗
値が変化する磁気抵抗効果を利用して磁界を検出する。
磁気抵抗効果による抵抗の変化は反転磁界に対して対称
である。従ってMRセンサにより磁界の極性(N又は
S)を検出するためには、MRセンサにバイアス磁界を
与えて、磁界による抵抗の変化が磁界の極性に対して非
対称になるようにする。バイアス磁界を与えるために、
MRセンサの磁極の下もしくは上に導体を設けて、その
導体にバイアス電流を流す方式や永久磁石膜を磁極両端
に配置する方式などがある。MRセンサは外部磁界によ
る導体の直流抵抗の変化により磁界を検出するが、直流
抵抗の変化は磁気材料により大きく影響を受ける。磁界
の検出感度は0.1%〜3%/Oe程度でありあまり高
いとはいえない。MRセンサより高い検出感度を有する
磁気検出素子として、磁気インピーダンス効果を利用す
るものがある。この種の磁気センサでは軟磁性体の透磁
率の変化による磁気回路内の導体のインピーダンスの変
化に基づいて磁界を検出する。この種の磁気センサの典
型的なものの感度は6%/Oe以上である。2. Description of the Related Art As a magnetic detection element (magnetic sensor) for detecting a weak magnetic field or a magnetic field, a magnetoresistive effect type magnetic sensor (hereinafter referred to as MR sensor) has been conventionally known.
The MR sensor detects a magnetic field by utilizing the magnetoresistive effect in which the resistance value of the MR sensor changes according to the strength of the magnetic field.
The change in resistance due to the magnetoresistive effect is symmetrical with respect to the reversal magnetic field. Therefore, in order to detect the polarity (N or S) of the magnetic field by the MR sensor, a bias magnetic field is applied to the MR sensor so that the change in resistance due to the magnetic field is asymmetric with respect to the polarity of the magnetic field. To give a bias field
There are a method in which a conductor is provided below or above the magnetic pole of the MR sensor and a bias current is passed through the conductor, and a method in which a permanent magnet film is arranged at both ends of the magnetic pole. The MR sensor detects a magnetic field by the change in the direct current resistance of the conductor due to the external magnetic field, and the change in the direct current resistance is greatly affected by the magnetic material. The magnetic field detection sensitivity is about 0.1% to 3% / Oe, which is not very high. As a magnetic detection element having a higher detection sensitivity than that of an MR sensor, there is one that utilizes a magnetic impedance effect. This type of magnetic sensor detects a magnetic field based on a change in impedance of a conductor in a magnetic circuit due to a change in magnetic permeability of a soft magnetic material. The sensitivity of a typical magnetic sensor of this type is 6% / Oe or more.
【0003】このような磁気インピーダンス効果利用型
の磁気センサの例が特開平7−63832号公報(以下
従来例という)に示されている。図16は前記従来例の
磁気センサの部分断面図である。図16の(a)の構成
では、2つの磁性体3A、3Bを張り合わせて磁極3を
形成し、磁性体3A、3B間に導体2をはさんでいる。
磁性体3Bには階段状部3Dが存在する。図16の
(b)の構成では、平板状の磁性体4A上に絶縁材5を
設け、絶縁材5の中央部を貫通するように導体2を配置
している。絶縁材5を囲むように磁性体4Bを形成し、
磁性体4Bの上下の端部は磁性体4Aに張り合わせて磁
極4を形成している。前記導体2に高周波電流を流し、
導体2のインピーダンスの外部磁界による変化に基づい
て磁界を検出する。バイアス磁界は導体2に直流バイア
ス電流を流すことにより与えるとしている。An example of such a magnetic sensor utilizing the magnetic impedance effect is disclosed in Japanese Patent Application Laid-Open No. 7-63832 (hereinafter referred to as a conventional example). FIG. 16 is a partial sectional view of the conventional magnetic sensor. In the configuration of FIG. 16A, the two magnetic bodies 3A and 3B are bonded to each other to form the magnetic pole 3, and the conductor 2 is sandwiched between the magnetic bodies 3A and 3B.
The magnetic body 3B has a stepped portion 3D. In the configuration of FIG. 16B, the insulating material 5 is provided on the flat plate-shaped magnetic body 4A, and the conductor 2 is arranged so as to penetrate the central portion of the insulating material 5. The magnetic body 4B is formed so as to surround the insulating material 5,
The upper and lower ends of the magnetic body 4B are bonded to the magnetic body 4A to form the magnetic pole 4. High-frequency current is passed through the conductor 2,
The magnetic field is detected based on the change in the impedance of the conductor 2 due to the external magnetic field. The bias magnetic field is applied by passing a DC bias current through the conductor 2.
【0004】[0004]
【発明が解決しようとする課題】図16の(a)の構成
において、導体2に直流電流を流すと、磁性体3A及び
3Bには矢印6及び7で示す、互いに逆方向の直流バイ
アス磁界が発生する。矢印1で示す外部磁界がある場
合、磁性体3Aの直流バイアス磁界6は外部磁界1と逆
方向のため、弱められてしまう。従って磁極3に有効に
直流バイアス磁界を与えることができない。また、図1
6の(b)に示す構成では、右側の磁性体4Bが絶縁材
5を乗り越えるために山状になされている。そのため山
状の頂部の両側には階段状部4Dが形成される。発明者
の種々の実験の結果、階段状部3Dを有する磁極3や、
階段状部4Dを有する磁極4は透磁率が低く、外部磁化
が印加されたときの導体のインピーダンスも低い。従っ
て磁気センサとしての感度も低いことが判明した。本発
明は上記先行例に比べて感度の高い磁気インピーダンス
効果利用のセンサを得ることを目的とする。In the structure of FIG. 16 (a), when a direct current is applied to the conductor 2, direct current bias magnetic fields indicated by arrows 6 and 7 are applied to the magnetic bodies 3A and 3B. Occur. When there is an external magnetic field indicated by the arrow 1, the DC bias magnetic field 6 of the magnetic body 3A is in the opposite direction to the external magnetic field 1 and is weakened. Therefore, the DC bias magnetic field cannot be effectively applied to the magnetic pole 3. Also, FIG.
In the configuration shown in FIG. 6 (b), the magnetic body 4B on the right side is formed in a mountain shape in order to get over the insulating material 5. Therefore, stepped portions 4D are formed on both sides of the mountain-shaped top. As a result of various experiments by the inventor, the magnetic pole 3 having the stepped portion 3D,
The magnetic pole 4 having the stepped portion 4D has a low magnetic permeability, and the impedance of the conductor when external magnetization is applied is also low. Therefore, it was found that the sensitivity of the magnetic sensor was low. It is an object of the present invention to obtain a sensor using the magneto-impedance effect, which is more sensitive than the above-mentioned prior art.
【0005】[0005]
【課題を解決するための手段】本発明の磁気検出素子
は、電気絶縁性を有する部材上に形成された第1の軟磁
性膜、前記第1の軟磁性膜の上に電気絶縁性の膜を介し
て形成され、1対の電気接続部を有する第2の軟磁性
膜、前記第2の軟磁性膜の上に電気絶縁性の膜を介して
形成された第3の軟磁性膜、及び前記第1対電気接続線
を外部の高周波電源に接続するための電極を有する。本
発明によればその素子は、以下の作用と効果を有する。
3つの軟磁性膜を電気的絶縁膜を介して積み重ねて磁極
を形成し、磁極の中央の軟磁性膜の一部分の電流路に高
周波電流を流す。この高周波電流によって、前記電流路
の周囲の軟磁性膜内に電流路を囲む磁界が生じる。この
状態で磁極を外部磁界中におくと、外部磁界による磁束
が前記電流路の周囲の磁界を変化させ、電流路のインピ
ーダンスを変化させる。インピーダンスは磁界の強さに
逆比例するので、このインピーダンス変化を検出するこ
とにより、外部磁界の大きさを検出することができる。The magnetic sensing element of the present invention comprises a first soft magnetic film formed on an electrically insulating member, and an electrically insulating film on the first soft magnetic film. A second soft magnetic film having a pair of electrical connection portions formed thereon, a third soft magnetic film formed on the second soft magnetic film via an electrically insulating film, and It has an electrode for connecting the first pair of electrical connection lines to an external high frequency power supply. According to the present invention, the device has the following actions and effects.
A magnetic pole is formed by stacking three soft magnetic films via an electrically insulating film, and a high-frequency current is passed through a current path in a part of the soft magnetic film in the center of the magnetic pole. The high frequency current causes a magnetic field surrounding the current path in the soft magnetic film around the current path. When the magnetic pole is placed in the external magnetic field in this state, the magnetic flux due to the external magnetic field changes the magnetic field around the current path and changes the impedance of the current path. Since the impedance is inversely proportional to the strength of the magnetic field, the magnitude of the external magnetic field can be detected by detecting this impedance change.
【0006】外部磁界の方向が電流路を流れる電流の方
向に垂直のときインピーダンス変化は極大となる。従っ
てインピーダンスの極小値を求めることにより、外部磁
界の方向を検出することができる。磁極の磁性膜に大き
な凹凸がないので、透磁率は最も高い状態に保たれ、イ
ンピーダンスの変化も最も大きい状態にある。従って検
出感度の高い磁気検出素子が実現できる。The impedance change becomes maximum when the direction of the external magnetic field is perpendicular to the direction of the current flowing through the current path. Therefore, the direction of the external magnetic field can be detected by obtaining the minimum impedance value. Since the magnetic film of the magnetic pole has no large unevenness, the magnetic permeability is kept at the highest level and the impedance change is also at the highest level. Therefore, a magnetic detection element with high detection sensitivity can be realized.
【0007】本発明の他の観点の磁気検出素子は、電気
絶縁性を有する部材の上に形成された第1の軟磁性膜、
前記第1の軟磁性膜の上の一部分に電気絶縁性の膜を介
して形成された導体、前記第1の軟磁性膜の上の前記導
体が形成された部分を除く他の部分に電気絶縁性の膜を
介して形成された第2の軟磁性膜、前記導体及び第2の
軟磁性膜の上に電気絶縁性の膜を介して形成された第3
の軟磁性膜、及び前記導体の両端に接続部を経て接続さ
れ、前記導体を外部の高周波電源に接続するための電極
を有する。この素子によれば、前記の作用効果に加え
て、電流路が導体であるので直流抵抗が低く電流路を流
れる高周波電流を増加させることができる。これにより
磁気検出の感度が更に向上する。さらに外部磁界によっ
て生じる磁極内の磁束密度が導体周辺で高くなるので、
実質的に実際の磁界よりも強い磁界を与えられることに
なり、検出感度が更に向上する。According to another aspect of the present invention, there is provided a magnetic detection element comprising a first soft magnetic film formed on an electrically insulating member,
A conductor formed on a part of the first soft magnetic film via an electrically insulating film, and a part of the first soft magnetic film other than the part on which the conductor is formed electrically insulated. Second soft magnetic film formed via a conductive film, and a third soft magnetic film formed on the conductor and the second soft magnetic film via an electrically insulating film.
And a soft magnetic film, and electrodes which are connected to both ends of the conductor through connecting portions and which connect the conductor to an external high frequency power source. According to this element, in addition to the above-described effects, since the current path is a conductor, the direct current resistance is low and the high frequency current flowing through the current path can be increased. This further improves the sensitivity of magnetic detection. Furthermore, since the magnetic flux density inside the magnetic pole generated by the external magnetic field becomes higher around the conductor,
A magnetic field that is substantially stronger than the actual magnetic field is given, and the detection sensitivity is further improved.
【0008】本発明の他の観点の磁気検出素子は、電気
絶縁性を有する部材の上に並行して形成された複数の第
1の軟磁性膜、前記第1の軟磁性膜のそれぞれの上に電
気絶縁性の膜を介して所定の離間距離を保って形成され
た少なくとも2つの導体、前記第1の軟磁性膜のそれぞ
れの上の前記導体が形成された部分を除く他の部分に電
気絶縁性の膜を介して形成された第2の軟磁性膜、前記
導体及び第2の軟磁性膜の上に電気絶縁性の膜を介して
形成された第3の軟磁性膜、前記第1の軟磁性膜のそれ
ぞれの上に形成された前記少なくとも2つの導体を直列
に接続する接続部、及び前記接続部の両端末に接続され
高周波電源に接続するための電極を有する。この素子に
よれば、複数の導体が直列に接続されているので、導体
のインピーダンスの変化が、直列に接続された導体の数
に比例して増加する。その結果、外部磁界の検出感度を
大幅に高くすることができる。According to another aspect of the present invention, there is provided a magnetic detecting element comprising: a plurality of first soft magnetic films formed in parallel on an electrically insulating member; At least two conductors formed at a predetermined distance via an electrically insulative film, and electrically connected to other parts except the part where the conductor is formed on each of the first soft magnetic films. A second soft magnetic film formed via an insulating film, a third soft magnetic film formed on the conductor and the second soft magnetic film via an electrically insulating film, the first soft magnetic film A connecting part formed on each of the soft magnetic films for connecting the at least two conductors in series, and electrodes connected to both terminals of the connecting part for connection to a high frequency power source. According to this element, since the plurality of conductors are connected in series, the change in impedance of the conductor increases in proportion to the number of conductors connected in series. As a result, the detection sensitivity of the external magnetic field can be significantly increased.
【0009】本発明の磁気検出素子の製造方法は、絶縁
基板の上に、長方形の第1の軟磁性膜を形成するステッ
プ、前記第1の軟磁性膜の上に電気絶縁膜を形成するス
テップ、前記電気絶縁膜の上面を含む絶縁基板の全面に
軟磁性膜を形成するステップ、前記軟磁性膜にエッチン
グ処理を施して、長方形の第2の軟磁性膜及び前記第2
の軟磁性膜と後のステップで形成される電極との間を接
続するための一対の接続部を残して他の部分を除去する
ステップ、前記第2の軟磁性膜の上に電気絶縁膜を形成
するステップ、前記電気絶縁膜の上に第3の軟磁性膜を
形成するステップ、及び前記絶縁基板の上に所定の距離
を隔てて前記第2の軟磁性膜の接続部にそれぞれ接続さ
れるように一対の電極を形成するステップ、を有する。In the method for manufacturing a magnetic sensing element of the present invention, a step of forming a rectangular first soft magnetic film on an insulating substrate, and a step of forming an electric insulating film on the first soft magnetic film. Forming a soft magnetic film on the entire surface of the insulating substrate including the upper surface of the electrical insulating film; etching the soft magnetic film to form a rectangular second soft magnetic film and the second soft magnetic film;
Removing the other part leaving a pair of connection parts for connecting between the soft magnetic film and the electrode formed in a later step, and forming an electrical insulating film on the second soft magnetic film. Forming, forming a third soft magnetic film on the electrical insulating film, and connecting to the connecting portion of the second soft magnetic film at a predetermined distance on the insulating substrate. So as to form a pair of electrodes.
【0010】本発明の他の観点の磁気検出素子の製造方
法は、絶縁基板の上に、長方形の第1の軟磁性膜を形成
するステップ、前記第1の軟磁性膜の上に電気絶縁膜を
形成するステップ、前記電気絶縁膜の上に導電体の膜を
形成するステップ、前記電気絶縁膜上の中央部にのみ前
記導電体の膜を残し、かつ前記残した中央部の導電体か
ら、前記長方形の第1の軟磁性膜に略垂直に延び、後の
ステップで形成される電極に接続されるための一対の接
続部を残して他をエッチング処理により除去して導体と
一対の接続部を形成するステップ、前記導体の上に電気
絶縁膜を形成するステップ、前記電気絶縁膜の上に軟磁
性膜を形成するステップ、前記導体の近傍の軟磁性膜を
エッチングにより除去するステップ、前記導体及び軟磁
性膜の上に電気絶縁膜を形成するステップ、前記絶縁膜
の上に第3の軟磁性膜を形成するステップ、及び前記絶
縁基板の上に所定距離を隔てて前記一対の接続部にそれ
ぞれ電気的に接続されるように一対の電極を形成するス
テップ、を有する。According to another aspect of the present invention, there is provided a method of manufacturing a magnetic sensing element, which comprises a step of forming a rectangular first soft magnetic film on an insulating substrate, and an electric insulating film on the first soft magnetic film. A step of forming a conductor film on the electrical insulating film, leaving the conductor film only in the central portion on the electrical insulating film, and from the remaining central conductor A conductor and a pair of connecting portions that extend substantially perpendicular to the rectangular first soft magnetic film and are removed by etching to leave a pair of connecting portions for connecting to electrodes formed in a later step. A step of forming an electric insulating film on the conductor, a step of forming a soft magnetic film on the electric insulating film, a step of etching away a soft magnetic film near the conductor, the conductor And no electrical loss on the soft magnetic film A step of forming a film, a step of forming a third soft magnetic film on the insulating film, and a step of electrically connecting to the pair of connection portions at a predetermined distance on the insulating substrate. Forming a pair of electrodes.
【0011】[0011]
【発明の実施の形態】以下、本発明の磁気検出素子の実
施例を図1から図15を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the magnetic sensing element of the present invention will be described below with reference to FIGS.
【0012】《第1実施例》図1は本発明の第1実施例
の磁気検出素子の斜投影図である。図2は図1のII−II
線で示す断面での断面図である。図1において示すよう
に、セラミックとして好ましくはTiNiMgOxの非
磁性物の絶縁基板10の上に、互いに所定距離隔てて並
行する帯状の導電体好ましくは銅系のスパッタ膜の電極
11、12が設けられている。セラミック材料としては
上記TiNiMgOxの他にTiCaOxなども用いう
る。電極11、12としては上記銅系スパッタ膜の他に
アルミニウム(Al)系、または金(Au)系のスパッ
タ膜、メッキ膜、蒸着膜なども用いうる。絶縁基板10
の厚さは約0.5mmであり、電極11、12の厚さは
約2.0μmである。電極11と電極12の間には、本
磁気検出素子の主要部をなす磁極20が設けられてい
る。磁極20は、第1の磁性膜13、第2の磁性膜14
及び第3の磁性膜15の積層構造を有し、各磁性膜13
〜15の間には厚さ0.1μmのSiO2膜の非磁性絶
縁膜21が設けられている。磁性膜13〜15はFeT
aNなどの軟磁性体の膜であり、その厚さは約0.5μ
mである。磁性膜14は、その長手方向に直交する接続
部16、17を有する。接続部16、17は、磁性膜1
4と同じ材料を用いて絶縁基板10の上に設けられてい
る。接続部16、17の基板面10に対して斜めに形成
された部分のそれぞれの端面18は磁性膜14に電気的
に接続されている。また接続部16、17の絶縁基板1
0に接する部分のそれぞれの端面19は電極11、12
にそれぞれ電気的に接続されている。電極11、12間
に高周波電源100により高周波電圧を印加すると、電
極11、接続部16、磁性膜14、接続部17及び電極
12に至る電流路を高周波電流が流れる。この高周波電
流により、図2の断面図において、図1の接続部16に
接続された磁性膜14内の電流路16Aの周囲に矢印で
示す高周波磁界が生じる。<< First Embodiment >> FIG. 1 is a perspective view of a magnetic detection element according to a first embodiment of the present invention. 2 is the II-II of FIG.
It is sectional drawing in the cross section shown by a line. As shown in FIG. 1, a strip-shaped conductor, preferably a copper-based sputtered film electrode 11, 12 parallel to each other at a predetermined distance is provided on an insulating substrate 10 of a non-magnetic material preferably made of TiNiMgOx as a ceramic. ing. As the ceramic material, TiCaOx or the like may be used in addition to the above TiNiMgOx. As the electrodes 11 and 12, an aluminum (Al) -based or gold (Au) -based sputtered film, a plated film, a deposited film, or the like can be used in addition to the copper-based sputtered film. Insulating substrate 10
Has a thickness of about 0.5 mm, and the electrodes 11, 12 have a thickness of about 2.0 μm. Between the electrode 11 and the electrode 12, a magnetic pole 20 which is a main part of the magnetic detection element is provided. The magnetic pole 20 includes the first magnetic film 13 and the second magnetic film 14.
And the third magnetic film 15 has a laminated structure, and each magnetic film 13
A non-magnetic insulating film 21 of a SiO 2 film having a thickness of 0.1 μm is provided between Nos. The magnetic films 13 to 15 are FeT
It is a film of soft magnetic material such as aN, and its thickness is about 0.5μ.
m. The magnetic film 14 has connecting portions 16 and 17 orthogonal to the longitudinal direction thereof. The connecting portions 16 and 17 are the magnetic film 1.
It is provided on the insulating substrate 10 by using the same material as that of No. 4. The end faces 18 of the portions of the connecting portions 16 and 17 formed obliquely with respect to the substrate surface 10 are electrically connected to the magnetic film 14. Also, the insulating substrate 1 of the connecting portions 16 and 17
The respective end faces 19 of the portion in contact with 0 have electrodes 11, 12
Are each electrically connected to. When a high-frequency voltage is applied between the electrodes 11 and 12 by the high-frequency power supply 100, a high-frequency current flows in a current path extending to the electrode 11, the connecting portion 16, the magnetic film 14, the connecting portion 17, and the electrode 12. This high-frequency current causes a high-frequency magnetic field indicated by an arrow around the current path 16A in the magnetic film 14 connected to the connecting portion 16 of FIG. 1 in the cross-sectional view of FIG.
【0013】図1に示す磁気検出素子では、電極11、
12間に1つの磁極20が設けられた形が示されている
が、磁極20は1つに限られるものではない。図3の平
面図で示す本実施例の他の例では、4つの磁極20A、
20B、20C及び20Dを設けている。磁極20の数
は4個に限られるものではなく任意の数にすることがで
きる。4つの磁極20A〜20Dは接続部25によって
電気的に直列に接続されている。直列接続体の両端部は
それぞれ電極11と12に接続されている。本実施例の
図1に示す磁気検出素子に磁気バイアスを与えるために
は、磁極20の近傍に直流バイアス磁界を発生させる導
体(図示省略)等を配置すればよい。In the magnetic sensing element shown in FIG. 1, the electrodes 11,
Although a shape in which one magnetic pole 20 is provided between 12 is shown, the number of the magnetic pole 20 is not limited to one. In another example of this embodiment shown in the plan view of FIG. 3, four magnetic poles 20A,
20B, 20C and 20D are provided. The number of the magnetic poles 20 is not limited to four and can be any number. The four magnetic poles 20A to 20D are electrically connected in series by the connecting portion 25. Both ends of the series connection body are connected to the electrodes 11 and 12, respectively. In order to apply a magnetic bias to the magnetic detection element shown in FIG. 1 of the present embodiment, a conductor (not shown) for generating a DC bias magnetic field may be arranged near the magnetic pole 20.
【0014】本実施例の磁気検出器の電極11と電極1
2間に例えば周波数10MHZの高周波電流を流し、地
磁気などの、矢印30で示す外部磁界におくと、磁性膜
14内の電流路16Aのインピーダンスが変化する。こ
のインピーダンス変化を検出することにより、磁界の強
さを検出することができる。インピーダンスの変化の検
出方法としては、高周波電源100と、電極11又は1
2との間に直列に抵抗を接続し、抵抗の両端子間の高周
波電圧の振幅変化を検出するのが最も簡単である。他の
方法としては電流路16Aの両端の高周波電圧の振幅変
化を検出してもよい。インピーダンスの変化は磁極20
の長手方向が外部磁界の方向と一致するとき最大とな
る。これにより外部磁界の方向を検出することができ
る。Electrodes 11 and 1 of the magnetic detector of this embodiment
When a high-frequency current of, for example, a frequency of 10 MHZ is passed between the two and placed in an external magnetic field such as geomagnetism indicated by the arrow 30, the impedance of the current path 16A in the magnetic film 14 changes. The strength of the magnetic field can be detected by detecting this impedance change. As a method of detecting the change in impedance, the high frequency power supply 100 and the electrode 11 or 1
The simplest method is to connect a resistor in series with 2 and to detect the amplitude change of the high frequency voltage between both terminals of the resistor. As another method, the amplitude change of the high frequency voltage across the current path 16A may be detected. The change of impedance is the magnetic pole 20
It becomes maximum when the longitudinal direction of is coincident with the direction of the external magnetic field. Thereby, the direction of the external magnetic field can be detected.
【0015】本実施例の磁気検出素子では、磁極20の
表面(図1における20の上面)が平坦であり、従来技
術の図16の(b)の階段状部4Dのような段部がない
ので、磁性膜15の磁気特性が悪化することはなく、高
い透磁率を得ることができる。従って外部磁界30の変
化に対する電流路16Aのインピーダンスの変化が大き
く、高い検出感度を有する磁気検出素子が実現できる。
接続部16、17でつながっている磁性膜14の断面形
状と、磁性膜14をはさむ上下の磁性膜13、15の断
面形状が実質的に等しいので、外部磁界30による磁束
は磁性膜13、14、15を均等に通る。そのため、外
部磁界の強さに対するインピーダンスの変化の直線性が
良い磁気検出素子が得られる。In the magnetic sensing element of this embodiment, the surface of the magnetic pole 20 (the upper surface of 20 in FIG. 1) is flat, and there is no step like the stepped portion 4D of FIG. 16 (b) of the prior art. Therefore, the magnetic characteristics of the magnetic film 15 are not deteriorated, and high magnetic permeability can be obtained. Therefore, the change in the impedance of the current path 16A with respect to the change in the external magnetic field 30 is large, and a magnetic detection element having high detection sensitivity can be realized.
Since the cross-sectional shape of the magnetic film 14 connected by the connecting portions 16 and 17 and the cross-sectional shape of the upper and lower magnetic films 13 and 15 that sandwich the magnetic film 14 are substantially equal to each other, the magnetic flux generated by the external magnetic field 30 causes the magnetic films 13 and 14 to cross. , 15 evenly. Therefore, it is possible to obtain the magnetic detection element having a good linearity in the change of the impedance with respect to the strength of the external magnetic field.
【0016】図3の例では4つの磁極20A〜20Dの
接続部25が互いに直列に接続されているので、外部磁
界によるインピーダンスの変化量が、図1のものに比べ
て4倍になる。従って磁気検出素子の検出感度も4倍に
なり、高感度の磁気検出素子を得ることができる。磁極
20A〜20Dの数を増やすほど検出感度が高くなる
が、インピーダンスも高くなるので高周波電流を流す高
周波電源の電圧も高くする必要がある。磁極の数は使用
目的に応じて適当に設定すればよい。In the example of FIG. 3, since the connecting portions 25 of the four magnetic poles 20A to 20D are connected in series with each other, the amount of change in impedance due to the external magnetic field is four times that in FIG. Therefore, the detection sensitivity of the magnetic detection element is also quadrupled, and a highly sensitive magnetic detection element can be obtained. The detection sensitivity increases as the number of the magnetic poles 20A to 20D increases, but the impedance also increases, so that it is necessary to increase the voltage of the high frequency power source for supplying the high frequency current. The number of magnetic poles may be set appropriately according to the purpose of use.
【0017】《第2実施例》本発明の第2実施例の磁気
検出素子について図4及び図5を参照して説明する。図
4は第2実施例の磁気検出素子の斜投影図であり、図5
は図4のV−V断面図である。以下の実施例において実
施例1と同様の部分は同様の材料により構成されてい
る。図4において、セラミック等の非磁性の絶縁基板1
0の上に所定距離離れて並行する帯状の導電体の電極1
1、12が設けられている。絶縁基板10の厚さは約
0.5mmであり、電極11、12の厚さは約2.0μ
mである。電極11と12の間には、磁極40が設けら
れている。磁極40は、絶縁基板10の上に順次形成さ
れた、帯状の磁性膜33、34、35を有している。磁
性膜34は図5の断面図に示すように、中央部が銅等の
導体36により分断されている。導体36と、磁性膜3
3、34、35とはそれぞれ絶縁膜21、21Aにより
電気的に絶縁されている。図4に示す磁性膜34の両側
面において、導体36はそれぞれの斜面部36Aを経
て、絶縁基板10の表面に形成されたそれぞれの平坦部
36Bにつながっている。両平坦部36Bのそれぞれの
端面36Cは電極11と12にそれぞれ接続されてい
る。磁性膜33と34の間、及び磁性膜34と35の間
はそれぞれ絶縁膜21、21Aによって電気的に絶縁さ
れている。磁性膜33及び35は、例えばFeTaNの
膜であり、厚さは共に約0.5μmである。磁性体34
もFeTaNの膜であり、厚さは約1.0μmである。
絶縁膜21、21Aは例えばSiO2の膜であり、厚さ
は約0.1μmである。<Second Embodiment> A magnetic detection element according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 is an oblique projection view of the magnetic detection element of the second embodiment.
FIG. 5 is a sectional view taken along line VV of FIG. 4. In the following examples, the same parts as in Example 1 are made of the same material. In FIG. 4, a non-magnetic insulating substrate 1 such as ceramics is used.
Electrodes 1 made of strip-shaped conductors parallel to each other at a predetermined distance above 0
1, 12 are provided. The insulating substrate 10 has a thickness of about 0.5 mm, and the electrodes 11 and 12 have a thickness of about 2.0 μ.
m. A magnetic pole 40 is provided between the electrodes 11 and 12. The magnetic pole 40 has strip-shaped magnetic films 33, 34, and 35 that are sequentially formed on the insulating substrate 10. As shown in the cross-sectional view of FIG. 5, the magnetic film 34 has a central portion divided by a conductor 36 such as copper. Conductor 36 and magnetic film 3
3, 34 and 35 are electrically insulated from each other by insulating films 21 and 21A. On both side surfaces of the magnetic film 34 shown in FIG. 4, the conductors 36 are connected to the respective flat portions 36B formed on the surface of the insulating substrate 10 via the respective inclined surface portions 36A. The respective end faces 36C of both flat portions 36B are connected to the electrodes 11 and 12, respectively. The magnetic films 33 and 34 and the magnetic films 34 and 35 are electrically insulated by the insulating films 21 and 21A, respectively. The magnetic films 33 and 35 are, for example, FeTaN films, and both have a thickness of about 0.5 μm. Magnetic body 34
Is a film of FeTaN and has a thickness of about 1.0 μm.
The insulating films 21 and 21A are, for example, SiO 2 films and have a thickness of about 0.1 μm.
【0018】本実施例の磁気検出素子の製造方法につい
て、図4、図5及び図6を参照して説明する。図6の
(a)から(d)は、図5と同じ断面で示す製造の各工
程の断面図である。基板10上に軟磁性膜を形成し、エ
ッチングにより、図6の(a)の磁性膜33となる帯状
の部分を残して他を除去する。磁性膜33の上に厚さ約
0.1μmのSiO2の絶縁膜21を形成する。絶縁膜
21の上に銅等の導体の膜36Fを形成し、エッチング
により図6の(b)に示すように導体36を残して他を
除去する。A method of manufacturing the magnetic sensing element of this embodiment will be described with reference to FIGS. 4, 5 and 6. 6A to 6D are cross-sectional views of the respective manufacturing steps shown in the same cross section as FIG. A soft magnetic film is formed on the substrate 10 and is removed by etching, leaving a strip-shaped portion to be the magnetic film 33 in FIG. The SiO 2 insulating film 21 having a thickness of about 0.1 μm is formed on the magnetic film 33. A conductor film 36F made of copper or the like is formed on the insulating film 21, and the conductor 36 is left by etching as shown in FIG.
【0019】導体36の上に絶縁膜21A(好ましくは
SiO2膜)を形成した後、絶縁膜21と21Aの上
に、導体36とほぼ同じ厚さの磁性膜34Aを形成す
る。図6の(c)に示すように、磁性膜34Aの突出部
を除去すると、導体36で分断された磁性膜34が得ら
れる。磁性膜34の上に更にSiO2膜の絶縁膜21A
を形成し、更に絶縁膜21Aの上に図6の(d)に示す
ように磁性膜35を形成する。前記磁性膜35の両端の
少し離れた位置でかつ導体36Bと接続される様に図6
では図示を省略した、図4に示す電極11、12となる
厚さ約2.0μmの銅などの導体膜を形成する。導体膜
のエッチングにより、電極11、12の部分を残して他
の部分を除去して、本実施例の磁気検出素子が完成す
る。After forming the insulating film 21A (preferably a SiO 2 film) on the conductor 36, a magnetic film 34A having substantially the same thickness as the conductor 36 is formed on the insulating films 21 and 21A. As shown in FIG. 6C, when the protruding portion of the magnetic film 34A is removed, the magnetic film 34 divided by the conductor 36 is obtained. An insulating film 21A made of a SiO 2 film is further formed on the magnetic film 34.
And a magnetic film 35 is further formed on the insulating film 21A as shown in FIG. As shown in FIG. 6 so as to be connected to the conductors 36B at positions slightly apart from both ends of the magnetic film 35.
Then, a conductor film (not shown) such as copper having a thickness of about 2.0 μm to be the electrodes 11 and 12 shown in FIG. 4 is formed. By etching the conductor film, the electrodes 11 and 12 are left and the other portions are removed to complete the magnetic sensing element of this embodiment.
【0020】本実施例では、図5に示すように、磁気検
出素子が外部磁界30内にあるとき、磁極40の端部領
域40Aでは、磁束は矢印で示すように磁性膜33、3
4及び35を厚さ方向の断面積当たりの磁束密度が均一
になるように分散して通る。なお矢印の長さは磁束密度
を表示している。磁性膜34の厚さは、磁性膜33及び
35の厚さの2倍であるので、磁性膜34を通る磁束
は、磁性膜33及び35を通る磁束の合計とほぼ同じに
なる。磁極40の中央領域40Bでは、磁性膜34の磁
束は2つに分かれて、磁性膜33と35に流入するの
で、磁性膜33と35の磁束密度は倍増する。すなわち
導体36の近傍においては、外部磁界の強さが見かけ上
倍増する。その結果、電極11、12間に高周波電源1
00により高周波電圧を印加し、導体36に高周波電流
を流したときの外部磁界30によるインピーダンスの変
化が大きくなり、高い検出感度が得られる。In this embodiment, as shown in FIG. 5, when the magnetic detecting element is in the external magnetic field 30, in the end region 40A of the magnetic pole 40, the magnetic flux is the magnetic films 33, 3 as shown by the arrows.
4 and 35 are dispersed and passed so that the magnetic flux density per cross-sectional area in the thickness direction becomes uniform. The length of the arrow indicates the magnetic flux density. Since the thickness of the magnetic film 34 is twice the thickness of the magnetic films 33 and 35, the magnetic flux passing through the magnetic film 34 is almost the same as the total magnetic flux passing through the magnetic films 33 and 35. In the central region 40B of the magnetic pole 40, the magnetic flux of the magnetic film 34 is divided into two and flows into the magnetic films 33 and 35, so that the magnetic flux densities of the magnetic films 33 and 35 are doubled. That is, in the vicinity of the conductor 36, the strength of the external magnetic field apparently doubles. As a result, the high frequency power supply 1 is placed between the electrodes 11 and 12.
00, a high-frequency voltage is applied, and when the high-frequency current is passed through the conductor 36, the change in impedance due to the external magnetic field 30 increases, and high detection sensitivity is obtained.
【0021】第2の実施例の図5の各磁性膜33、34
又は35は、必ずしも図示したような単一層の膜である
必要はない。たとえば使用する周波数の帯域や、望まれ
る磁極の形状によって適宜図7の(a)又は図7の
(b)及び図8で詳細を示すような多層構造を採っても
良い。たとえば図7の(a)のように、絶縁膜21、2
1Aで電気的に絶縁された磁性膜33、34、35を、
例えば厚み5nmの非常に薄い非磁性絶縁膜120(ハ
ッチングを施して示した各磁性膜中の細い水平の線で示
した5nm厚のSiO 2絶縁膜)で厚さ方向(図7の
(a)での上下方向)に磁気的に切断する。こうする
と、切断されてできた磁性膜の上下層間には静磁気的な
結合が生まれ、磁性膜表面に還流磁区が生じにくくな
り、磁区構造が安定するという効果がある。このことに
より、磁極の幅(図7の(a)では紙面の手前から背後
への方向の寸法)を狭めた場合に、単一層の場合より磁
区が乱れないため、安定して高い透磁率が得やすくな
る。その結果反磁界の小さな狭幅磁極においても高い感
度を有する磁気検出素子を得ることができる。The magnetic films 33 and 34 shown in FIG. 5 of the second embodiment.
Or 35 is necessarily a single layer membrane as shown
No need. For example, the frequency band to be used,
Depending on the shape of the magnetic pole
Even if a multilayer structure as shown in detail in (b) and FIG. 8 is adopted
good. For example, as shown in FIG.
The magnetic films 33, 34, and 35 electrically insulated by 1A are
For example, a very thin non-magnetic insulating film 120 (having a thickness of 5 nm)
The thin horizontal line in each magnetic film
5nm thick SiO TwoInsulating film) in the thickness direction (Fig. 7)
Magnetically cut in the vertical direction in (a). do this
Between the upper and lower layers of the magnetic film formed by cutting
Bonds are created, and reflux domains are less likely to occur on the magnetic film surface.
This has the effect of stabilizing the magnetic domain structure. To this
Therefore, the width of the magnetic poles (from (a) in FIG.
When the (dimension in the direction of
Since the area is not disturbed, it is easy to obtain a stable and high magnetic permeability.
It As a result, a high sense is obtained even with a narrow magnetic pole with a small demagnetizing field.
It is possible to obtain a magnetic detection element having a degree.
【0022】一方図7の(b)の変形例のように、上記
構成の上下にさらに厚め(電気的な絶縁が可能な厚み)
の非磁性絶縁膜EI2、EI1を介して、磁性膜33
1、352を設けて、磁性膜331、332、341、
342、351、352による磁極を構成してもよい。
各磁性膜を絶縁膜121で電気的に絶縁することにより
いわゆるエディカレント損失を防ぐことが可能になる。
磁性膜331、332、341、342、351、35
2はそれぞれ、非磁性絶縁膜107b、106b、10
5b、103b、102b、101bで磁気的に分離さ
れている。なお導体104a、104bは図5の導体3
6に相当する。その結果、上記したような反磁界の小さ
な狭幅磁極をより高い周波数で駆動させることができ
る。インピーダンスはその周波数に比例して増大するの
で、この場合は、上記例よりもさらに高い感度を得るこ
とができる。On the other hand, as in the modified example of FIG. 7 (b), the upper and lower parts of the above structure are made thicker (thickness allowing electrical insulation).
Through the non-magnetic insulating films EI2 and EI1 of
1, 352 are provided for the magnetic films 331, 332, 341,
You may comprise the magnetic pole by 342, 351, 352.
By electrically insulating each magnetic film with the insulating film 121, so-called eddy current loss can be prevented.
Magnetic films 331, 332, 341, 342, 351, 35
2 are non-magnetic insulating films 107b, 106b and 10 respectively.
5b, 103b, 102b and 101b are magnetically separated. The conductors 104a and 104b are the conductors 3 of FIG.
Equivalent to 6. As a result, the narrow magnetic pole having a small demagnetizing field as described above can be driven at a higher frequency. Since the impedance increases in proportion to the frequency, higher sensitivity can be obtained in this case than in the above example.
【0023】図8は、図7の(b)にVIIIで示した領域
の部分を拡大して、好適実施例としての各部の寸法の例
を示した。また各部分には図7の(b)に対応する符号
を付して示した。磁性膜33F、34F、35Fは、そ
れぞれ図5の磁性膜33、34、35に対応している。
絶縁膜21E及び21Fはそれぞれ絶縁膜21及び21
Aに対応している。図8に示したように磁性膜33F、
34F及び35Fは、それぞれ非常に薄い5nmのSi
O2の磁区安定用の非磁性絶縁膜101b〜107bで
上下2層に分けられている。また貫通電気導体104b
の上下に追加して設けた、電気的絶縁が可能な厚み
(0.1μm)の上下の非磁性絶縁膜EI2、EI1は
エディカレント損失を防止する効果が大きい。さらに下
から2番目の第1の絶縁膜21と上から2番目の第2の
絶縁膜21Aは何れも0.1μm厚のSiO2 膜で貫
通導体104bの絶縁を行う。本実施例では、図5に示
すように、磁性膜34の厚さと導体36の厚さがほぼ同
じであるので、最上層の磁性膜35の表面には小さな凹
み35Aがある以外はほぼ平坦である。すなわち従来技
術の図16の(b)に示す階段状部4Dのような大きな
凹凸はないので、それによる透磁率の低下を避けること
ができ、透磁率の高い磁気検出素子が実現できる。磁極
40の透磁率が高いほど、同じ外部磁界においても、中
央領域40Bの磁束密度が高くなる。従って導体36の
インピーダンス変化も大きくなり検出感度も高くなる。FIG. 8 shows an example of the dimensions of each part as a preferred embodiment by enlarging the part indicated by VIII in FIG. 7 (b). In addition, each part is shown with a reference numeral corresponding to FIG. The magnetic films 33F, 34F and 35F correspond to the magnetic films 33, 34 and 35 of FIG. 5, respectively.
The insulating films 21E and 21F are insulating films 21 and 21 respectively.
Corresponds to A. As shown in FIG. 8, the magnetic film 33F,
34F and 35F are very thin 5 nm Si, respectively.
It is divided into upper and lower layers by nonmagnetic insulating films 101b to 107b for stabilizing O 2 magnetic domains. In addition, the through electrical conductor 104b
The upper and lower nonmagnetic insulating films EI2 and EI1 additionally provided above and below and having a thickness (0.1 μm) capable of electrical insulation have a great effect of preventing eddy current loss. Further, the second insulating film 21 second from the bottom and the second insulating film 21A second from the top each are SiO 2 films having a thickness of 0.1 μm to insulate the through conductor 104b. In this embodiment, as shown in FIG. 5, since the thickness of the magnetic film 34 and the thickness of the conductor 36 are substantially the same, the surface of the uppermost magnetic film 35 is substantially flat except for a small recess 35A. is there. That is, since there is no large unevenness like the stepped portion 4D shown in FIG. 16B of the prior art, it is possible to avoid a decrease in magnetic permeability due to it, and it is possible to realize a magnetic detection element having high magnetic permeability. The higher the magnetic permeability of the magnetic pole 40, the higher the magnetic flux density in the central region 40B even with the same external magnetic field. Therefore, the impedance change of the conductor 36 becomes large and the detection sensitivity becomes high.
【0024】第2実施例の磁極40を、図3の磁極20
A〜20Dのように、複数個並列して配置してもよい。
このようにすると、複数の磁極40のそれぞれの導体3
6が直列に接続されることになり、外部磁界によるイン
ピーダンス変化が磁極40の数に比例して大きくなる。The magnetic pole 40 of the second embodiment is replaced with the magnetic pole 20 of FIG.
You may arrange | position in parallel like A-20D.
By doing so, the conductors 3 of the plurality of magnetic poles 40 are respectively formed.
Since 6 are connected in series, the impedance change due to the external magnetic field increases in proportion to the number of magnetic poles 40.
【0025】《第3実施例》本発明の第3実施例の磁気
検出素子100について図9及び図10を参照して説明
する。図9は本実施例の磁気検出素子の平面図である。
図10は図9の1つの磁極、例えば磁極51のX−X線
で示す断面での断面図である。図9において示すよう
に、セラミック等の非磁性絶縁基板10の上に厚さ約
2.0μmの導電体の電極43及び44が所定の間隔を
もって設けられている。電極43と44の間には、例え
ば6つの磁極51、52、53、54、55、56が一
定の間隔を保って並行配置されている。磁極51〜56
はすべて実質的に同一の形状を有し、その中の1つ例え
ば磁極51の断面図を図10に示す。<< Third Embodiment >> A magnetic sensor 100 according to a third embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG. 9 is a plan view of the magnetic detection element of this embodiment.
FIG. 10 is a cross-sectional view of one magnetic pole shown in FIG. 9, for example, the magnetic pole 51 taken along the line XX. As shown in FIG. 9, conductive electrodes 43 and 44 having a thickness of about 2.0 μm are provided at a predetermined interval on a non-magnetic insulating substrate 10 such as ceramics. Between the electrodes 43 and 44, for example, six magnetic poles 51, 52, 53, 54, 55, 56 are arranged in parallel with a constant space. Magnetic poles 51-56
All have substantially the same shape, one of which, for example, the magnetic pole 51, is shown in cross-section in FIG.
【0026】図10において、磁極51は2箇所に導体
47A及び48Aを有する。導体47A及び48A及び
その近傍の磁性膜50、57A、57B、57C及び5
8の構造は、図5の導体36及びその近傍の構造と実質
的に同じである。各電極51〜56の右側の導体47A
は接続導体47で数個互いに直列に接続されている。ま
た各電極51〜56の左側の導体48Aは接続導体48
で数個互いに直列に接続されている。電極51の導体4
7Aと電極56の導体48Aは接続導体45により接続
されている。接続導体45、47、48により、電極4
3から電極44に至る電流路が形成される。図9に示し
た磁極51〜56の数は6つに限定されるものではなく
6つより少なくてもよく多くてもよい。In FIG. 10, the magnetic pole 51 has conductors 47A and 48A at two positions. The conductors 47A and 48A and the magnetic films 50, 57A, 57B, 57C and 5 in the vicinity thereof
The structure of 8 is substantially the same as the structure of the conductor 36 of FIG. 5 and its vicinity. The conductor 47A on the right side of each of the electrodes 51 to 56
Are connected to each other in series by connecting conductors 47. The conductor 48A on the left side of each of the electrodes 51 to 56 is the connection conductor 48.
Several are connected in series with each other. Conductor 4 of electrode 51
7A and the conductor 48A of the electrode 56 are connected by the connection conductor 45. The electrode 4 is formed by the connecting conductors 45, 47 and 48.
A current path from 3 to the electrode 44 is formed. The number of the magnetic poles 51 to 56 shown in FIG. 9 is not limited to six, and may be smaller or larger than six.
【0027】本実施例の動作について以下に説明する。
図9において、電極43、44間に高周波電源100か
らの高周波電圧を印加すると、電極43から各導体4
7、各導体47A、接続導体45、各導体48、各導体
48Aを経て電極44に至る電流路を、電流路のインピ
ーダンスに反比例する電流が流れる。The operation of this embodiment will be described below.
In FIG. 9, when a high-frequency voltage from the high-frequency power source 100 is applied between the electrodes 43 and 44, the electrodes 43 are connected to the conductors 4 respectively.
7, a current that is inversely proportional to the impedance of the current path flows through the current path that reaches the electrode 44 through the conductors 47A, the connection conductors 45, the conductors 48, and the conductors 48A.
【0028】本実施例の磁気検出素子110で検出する
磁界を図9に白く太い矢印30で代表して示す。磁気検
出素子110全体をほぼ均一な外部磁界30の中におく
と、磁極51〜56を前記第2実施例の図5に示すもの
と同じように磁束が通る。これにより各磁極51〜56
の導体47A、48Aのインピーダンスが減少する。そ
の結果、電極43と電極44間のインピーダンスが減少
して外部磁界を検出することができる。The magnetic field detected by the magnetic detecting element 110 of this embodiment is shown in FIG. When the entire magnetic detection element 110 is placed in the substantially uniform external magnetic field 30, magnetic flux passes through the magnetic poles 51 to 56 in the same manner as that shown in FIG. 5 of the second embodiment. Thereby, each magnetic pole 51-56
The impedances of the conductors 47A and 48A are reduced. As a result, the impedance between the electrodes 43 and 44 is reduced and the external magnetic field can be detected.
【0029】本実施例では、各磁極51〜56の2箇所
に導体47A、48Aを設け、かつ各磁極51〜56の
導体47A及び導体48Aを直列に接続しているので、
外部磁界30によるインピーダンスの変化が大幅に増加
する。図9の例では、図4のものに比べて12倍(6×
2)になる。その結果、磁気検出の感度も12倍にな
る。In this embodiment, the conductors 47A and 48A are provided at two positions on each of the magnetic poles 51 to 56, and the conductors 47A and 48A of each of the magnetic poles 51 to 56 are connected in series.
The change in impedance due to the external magnetic field 30 is significantly increased. In the example of FIG. 9, 12 times (6 ×
2). As a result, the sensitivity of magnetic detection is increased by 12 times.
【0030】《第4実施例》本発明の第4実施例の磁気
検出素子を図11を参照して説明する。本実施例の磁気
検出素子の実質的な構成は前記第2実施例の図4のもの
と同じである。図11は本実施例の磁気検出素子の磁極
60の断面図であり、図5の断面図に相当する。本実施
例は、磁極60に直流バイアス磁界を与えるために直流
電流を流す方法に関する。図11の(a)に示す方法で
は、導体36の直下の磁性膜33に直流電流を流す。直
流電流を流すために、導体36の直下の磁性膜33の給
電点61を直流電源の正極に接続し、同図では見えない
磁性膜33の裏側(紙の背面の位置)の給電点を負極に
接続する。これにより紙面の手前から奥へ向かって電流
を流す。給電点61に接続する導線は、磁性膜33を形
成するエッチング工程で、給電点61に続く磁性膜の部
分を導体36の図の左右方向の幅と同じ程度の幅で絶縁
基板10の上に残すことにより容易かつ簡単に作ること
ができる。給電点61が磁性膜33に1つのみなので構
造が簡単である。しかし、磁極60に与えられる直流バ
イアス磁界はやや不均一である。<< Fourth Embodiment >> A magnetic sensor according to a fourth embodiment of the present invention will be described with reference to FIG. The substantial structure of the magnetic sensing element of this embodiment is the same as that of the second embodiment shown in FIG. FIG. 11 is a cross-sectional view of the magnetic pole 60 of the magnetic detection element of this embodiment, which corresponds to the cross-sectional view of FIG. The present embodiment relates to a method of passing a DC current to give a DC bias magnetic field to the magnetic pole 60. In the method shown in FIG. 11A, a direct current is passed through the magnetic film 33 immediately below the conductor 36. In order to pass a DC current, the feeding point 61 of the magnetic film 33 directly below the conductor 36 is connected to the positive electrode of the DC power source, and the feeding point on the back side (position on the back side of the paper) of the magnetic film 33 which is not visible in the figure is the negative electrode. Connect to. This causes a current to flow from the front to the back of the paper. The conducting wire connected to the feeding point 61 is formed on the insulating substrate 10 in the same width as the width of the conductor 36 in the left-right direction in the drawing in the portion of the magnetic film following the feeding point 61 in the etching process for forming the magnetic film 33. It can be made easily and easily by leaving it. Since only one feeding point 61 is provided on the magnetic film 33, the structure is simple. However, the DC bias magnetic field applied to the magnetic pole 60 is somewhat non-uniform.
【0031】図11の(b)に示す方法では、磁性膜3
3の、導体36からやや離れた2つの給電点62、63
を直流電源の正極に接続し、図では見えない磁性膜33
の裏側の2つの給電点を負極に接続する。これにより給
電点62、63に紙面の手前から奥に向かって電流を流
す。その結果磁極60に与えられる直流バイアス磁界
は、前記図11の(a)の場合より均一になる。図11
の(c)に示す方法では、図11の(b)の給電点6
2、63に加えて、磁性膜35にも2つの給電点64、
65を設ける。給電点62、63に、紙面の手前から奥
に向かって電流を流し、給電点64、65に紙面の奥か
ら手前に向かって電流を流す。図11の(c)の方法に
よると、直流バイアス磁界は、図11の(b)の方法よ
りもはるかに均一になる。本実施例によると、比較的少
ない直流電流によって大きな直流バイアス磁界を磁極に
与えることができる。In the method shown in FIG. 11B, the magnetic film 3
The two feeding points 62 and 63 of the conductor 3, which are slightly separated from the conductor 36.
Is connected to the positive electrode of the DC power supply, and the magnetic film 33 not visible in the figure
The two feed points on the back side of the are connected to the negative electrode. As a result, an electric current is applied to the feeding points 62 and 63 from the front to the back of the paper surface. As a result, the DC bias magnetic field applied to the magnetic pole 60 becomes more uniform than in the case of FIG. Figure 11
In the method shown in FIG. 11C, the feeding point 6 in FIG.
In addition to 2, 63, the magnetic film 35 also has two feeding points 64,
65 is provided. A current is applied to the feeding points 62 and 63 from the front to the back of the paper, and a current is applied to the feeding points 64 and 65 from the back to the front of the paper. According to the method of FIG. 11C, the DC bias magnetic field becomes much more uniform than that of the method of FIG. 11B. According to this embodiment, a large DC bias magnetic field can be applied to the magnetic pole with a relatively small DC current.
【0032】《第5実施例》本発明の第5実施例の磁気
検出素子を図12、図13を参照して説明する。図12
は本実施例の磁気検出素子の斜投影図であり、図13は
図12のXIII−XIII断面図である。図10及び図11に
おいて、非磁性絶縁基板10の上に所定距離を隔てて電
極11及び12が設けられている。電極11及び12の
間には、磁極70が設けられている。磁極70は、絶縁
基板10の上に形成された厚さ約0.5μmの磁性膜3
3、及び磁性膜33の上に厚さ約0.1μmの絶縁膜2
1を介して形成された厚さ約1.0μmの磁性膜34
A、34Bを有する。磁性膜34Aと磁性膜34Bとの
間に導体36が磁性膜34A、34Bと間に絶縁を保っ
て設けられている。磁性膜34A、34B及び導体36
の上に絶縁膜21Aを介して厚さ約0.5μmの磁性膜
72が設けられている。導体36は、絶縁基板10の上
に形成された接続導体74及び75を経て、それぞれ電
極11及び12に電気的に接続されている。本実施例で
は磁性膜72は導体36の近傍にのみ形成されている。<< Fifth Embodiment >> A magnetic detection element according to a fifth embodiment of the present invention will be described with reference to FIGS. 12
Is an oblique projection view of the magnetic detection element of the present embodiment, and FIG. 13 is a sectional view taken along line XIII-XIII of FIG. 10 and 11, electrodes 11 and 12 are provided on the non-magnetic insulating substrate 10 with a predetermined distance therebetween. A magnetic pole 70 is provided between the electrodes 11 and 12. The magnetic pole 70 is the magnetic film 3 formed on the insulating substrate 10 and having a thickness of about 0.5 μm.
3, and the insulating film 2 having a thickness of about 0.1 μm on the magnetic film 33.
The magnetic film 34 having a thickness of about 1.0 μm formed through
A, 34B. A conductor 36 is provided between the magnetic films 34A and 34B while keeping insulation between the magnetic films 34A and 34B. Magnetic films 34A, 34B and conductor 36
A magnetic film 72 having a thickness of about 0.5 μm is provided on the insulating film 21A via the insulating film 21A. The conductor 36 is electrically connected to the electrodes 11 and 12 via the connection conductors 74 and 75 formed on the insulating substrate 10. In this embodiment, the magnetic film 72 is formed only near the conductor 36.
【0033】一般に、磁気検出素子の磁性膜が外部磁界
中に置かれると、磁性膜に反磁界が生じる。反磁界は磁
性膜の総厚に比例することが知られている。本実施例で
は、最上層の磁性膜72を導体36の近傍にのみ設けた
ことにより、導体36近傍以外の部分では磁性膜33及
び磁性膜34A、34Bのみとなり磁性膜の総厚が前記
の各実施例のものより薄い。これにより、反磁界の強さ
も減少し、外部磁界による導体36近傍の磁束が増加す
る。その結果導体36のインピーダンス変化も大きくな
り、磁気検出の感度が向上する。導体36近傍の磁性膜
72には大きな凹凸がないので、透磁率も高く保たれ、
この点からも検出感度が向上する。Generally, when the magnetic film of the magnetic detecting element is placed in an external magnetic field, a demagnetizing field is generated in the magnetic film. It is known that the demagnetizing field is proportional to the total thickness of the magnetic film. In this embodiment, since the uppermost magnetic film 72 is provided only in the vicinity of the conductor 36, only the magnetic film 33 and the magnetic films 34A and 34B are formed in the portions other than the vicinity of the conductor 36, and the total thickness of the magnetic films is the above-mentioned. It is thinner than that of the example. As a result, the strength of the demagnetizing field also decreases, and the magnetic flux near the conductor 36 due to the external magnetic field increases. As a result, the impedance change of the conductor 36 also increases, and the sensitivity of magnetic detection improves. Since the magnetic film 72 near the conductor 36 does not have large irregularities, the magnetic permeability is also kept high,
From this point as well, the detection sensitivity is improved.
【0034】《第6実施例》本発明の第6実施例の磁気
検出素子を図14を参照して説明する。図14は前記第
5実施例の図13と同じ断面を示す断面図である。図に
おいて、非磁性絶縁基板10の中央領域に厚さ約0.5
μmの磁性膜81を形成している。磁性膜81の上に厚
さ0.1μmの絶縁膜82を形成した後、中央部に導体
36を形成している。絶縁膜82上の、前記導体36の
部分を除く部分に磁性膜83A、83Bを形成し、導体
36及び磁性膜83A、83Bの上に絶縁膜85を形成
している。導体36近傍の絶縁膜85の上に磁性膜86
を形成している。<< Sixth Embodiment >> A magnetic sensor according to a sixth embodiment of the present invention will be described with reference to FIG. FIG. 14 is a sectional view showing the same section as FIG. 13 of the fifth embodiment. In the figure, a thickness of about 0.5 is formed in the central region of the non-magnetic insulating substrate 10.
A magnetic film 81 of μm is formed. After forming the insulating film 82 having a thickness of 0.1 μm on the magnetic film 81, the conductor 36 is formed in the central portion. Magnetic films 83A and 83B are formed on the insulating film 82 except the conductor 36, and an insulating film 85 is formed on the conductor 36 and the magnetic films 83A and 83B. A magnetic film 86 is formed on the insulating film 85 near the conductor 36.
Is formed.
【0035】本実施例によれば、導体36の近傍では、
磁性膜81、83A、83B及び86が積層されている
ので、磁性膜の総厚は約2μmである。しかし、図の左
右両端部では磁性膜83A及び83Bのみなので厚さは
約1μmである。磁極80の大部分で磁性膜の厚さが1
μmと薄いので、反磁界の強さが前記第5実施例のもの
より更に小さくなる。これにより外部磁界が実効的に大
きくなり、磁気検出の感度が向上する。さらに83A及
び83Bの膜厚が磁性膜81と86の膜厚の総和よりも
大きければ磁束密度は導体36近傍で大きくなるので高
感度になる。図15は、本実施例の磁極80に直流バイ
アス磁界を与えるための、直流電流の給電点を示す断面
図である。磁性膜81では、2つの給電点88に、紙面
の手前から奥に向かって電流を流し、磁性膜86では2
つの給電点89に紙面の奥から手前に向かって電流を流
す。これにより磁極80に均一な直流バイアス磁界を与
えることができる。According to this embodiment, in the vicinity of the conductor 36,
Since the magnetic films 81, 83A, 83B and 86 are laminated, the total thickness of the magnetic films is about 2 μm. However, since the magnetic films 83A and 83B are the only left and right ends in the figure, the thickness is about 1 μm. Most of the magnetic pole 80 has a magnetic film thickness of 1
Since the thickness is as thin as μm, the strength of the demagnetizing field becomes smaller than that of the fifth embodiment. This effectively increases the external magnetic field and improves the sensitivity of magnetic detection. Further, if the film thickness of 83A and 83B is larger than the sum of the film thicknesses of the magnetic films 81 and 86, the magnetic flux density becomes large in the vicinity of the conductor 36, resulting in high sensitivity. FIG. 15 is a cross-sectional view showing a direct current feeding point for applying a DC bias magnetic field to the magnetic pole 80 of this embodiment. In the magnetic film 81, an electric current is applied to the two feeding points 88 from the front side to the back side of the paper surface, and the magnetic film 86 is set to 2 points.
An electric current is applied to one feeding point 89 from the back of the paper toward the front. As a result, a uniform DC bias magnetic field can be applied to the magnetic pole 80.
【0036】[0036]
【発明の効果】以上の各実施例で詳細に説明したよう
に、本発明によれば、3つの磁性膜を絶縁膜を介して積
層し磁極を形成する。磁極の中央の磁性膜に形成した電
流路に高周波電流を流し、磁極を外部磁界中におくと、
電流路のインピーダンスが変化する。インピーダンスの
変化は外部磁界の強さに対応しているので外部磁界の強
さを検出することができる。磁極の表面に大きな凹凸が
ないので、透磁率高く保たれ、外部磁界による電流路の
インピーダンス変化が大きくなる。その結果検出感度の
高い磁気検出素子が得られる。As described in detail in each of the above embodiments, according to the present invention, three magnetic films are laminated via an insulating film to form a magnetic pole. When a high frequency current is passed through the current path formed in the magnetic film at the center of the magnetic pole and the magnetic pole is placed in an external magnetic field,
The impedance of the current path changes. Since the change in impedance corresponds to the strength of the external magnetic field, the strength of the external magnetic field can be detected. Since the surface of the magnetic pole has no large unevenness, the magnetic permeability is kept high, and the impedance change of the current path due to the external magnetic field becomes large. As a result, a magnetic detection element having high detection sensitivity can be obtained.
【図1】本発明の第1実施例の磁気検出素子の斜投影図FIG. 1 is a perspective view of a magnetic detection element according to a first embodiment of the present invention.
【図2】図1のII−II断面図FIG. 2 is a sectional view taken along line II-II of FIG.
【図3】前記第1実施例の磁気検出素子の他の例の平面
図FIG. 3 is a plan view of another example of the magnetic detection element of the first embodiment.
【図4】本発明の第2実施例の磁気検出素子の斜投影図FIG. 4 is a perspective view of a magnetic detection element according to a second embodiment of the present invention.
【図5】図4のV−V断面図5 is a sectional view taken along line VV of FIG.
【図6】(a)から(d)は第2実施例の磁気検出素子
の製造工程を示す断面図6A to 6D are cross-sectional views showing a manufacturing process of the magnetic sensing element of the second embodiment.
【図7】(a)図5の実施例の変形実施例の断面図 (b)図の実施例の更に他の変形実施例の断面図FIG. 7 (a) is a sectional view of a modification of the embodiment of FIG. (B) Sectional view of still another modification of the embodiment shown in FIG.
【図8】図7の(b)の実施例の断面の詳細構造を示す
拡大断面図FIG. 8 is an enlarged sectional view showing a detailed structure of a section of the embodiment of FIG. 7 (b).
【図9】本発明の第3実施例の磁気検出素子の平面図FIG. 9 is a plan view of a magnetic detection element according to a third embodiment of the present invention.
【図10】図9のX−X断面図10 is a sectional view taken along line XX of FIG.
【図11】(a)、(b)及び(c)は第4実施例の磁
気検出素子に直流磁気バイアスを与えるための直流電流
の種々の給電方法を示す断面図11 (a), (b) and (c) are cross-sectional views showing various methods of supplying a DC current for applying a DC magnetic bias to the magnetic detection element of the fourth embodiment.
【図12】本発明の第5実施例の磁気検出素子の斜投影
図FIG. 12 is a perspective view of a magnetic detection element according to a fifth embodiment of the present invention.
【図13】図12のXIII−XIII断面図13 is a sectional view taken along line XIII-XIII in FIG.
【図14】第6実施例の変形例を示す断面図FIG. 14 is a sectional view showing a modification of the sixth embodiment.
【図15】第6実施例の更に他の変形例を示す断面図FIG. 15 is a sectional view showing still another modification of the sixth embodiment.
【図16】(a)及び(b)は従来技術の磁気センサの
部分断面図16 (a) and 16 (b) are partial cross-sectional views of a prior art magnetic sensor.
10 絶縁基板
11、12 電極
13、14、15、33、34、35 磁性膜
16、17 電気接続部
20、20A、20B、20C、20D、40、51、
52、53、54、55、56、60、70、80 磁
極
21、21A、21E、21F、82、85、121
絶縁膜
36 導体
36A、36B 接続部
100 高周波電源10 Insulating substrate 11, 12 Electrode 13, 14, 15, 33, 34, 35 Magnetic film 16, 17 Electrical connection part 20, 20A, 20B, 20C, 20D, 40, 51,
52, 53, 54, 55, 56, 60, 70, 80 Magnetic poles 21, 21A, 21E, 21F, 82, 85, 121
Insulating film 36 Conductors 36A, 36B Connection part 100 High frequency power source
───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒江 章郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 高橋 健 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G017 AA01 AB07 AD51 AD65 5E049 BA16 CB01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shoro Kuroe 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. (72) Inventor Ken Takahashi 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. F-term (reference) 2G017 AA01 AB07 AD51 AD65 5E049 BA16 CB01
Claims (13)
第1の軟磁性膜、 前記第1の軟磁性膜の上に第1の電気絶縁性の膜を介し
て形成され、1対の電気接続部を有する第2の軟磁性
膜、 前記第2の軟磁性膜の上に第2の電気絶縁性の膜を介し
て形成された第3の軟磁性膜、及び前記1対の電気接続
部を外部の高周波電源に接続するための1対の電極を有
する磁気検出素子。1. A first soft magnetic film formed on an electrically insulating member, and a pair of first soft magnetic film formed on the first soft magnetic film via a first electrically insulating film. A second soft magnetic film having an electrical connection portion, a third soft magnetic film formed on the second soft magnetic film via a second electrically insulating film, and the pair of electrical connections Detection element having a pair of electrodes for connecting the unit to an external high frequency power supply.
た第1の軟磁性膜、 前記第1の軟磁性膜の上の一部分に第1の電気絶縁性の
膜を介して形成された導体、 前記第1の軟磁性膜の上の前記導体が形成された部分を
除く他の部分に電気絶縁性の膜を介して形成された第2
の軟磁性膜、 前記導体及び第2の軟磁性膜の上に第2の電気絶縁性の
膜を介して形成された第3の軟磁性膜、及び前記導体の
両端に接続部を経て接続され、前記導体を外部の高周波
電源に接続するための1対の電極を有する磁気検出素
子。2. A first soft magnetic film formed on an electrically insulating member, wherein a first electrically insulating film is formed on a part of the first soft magnetic film. A conductor, a second portion formed on the first soft magnetic film other than the portion on which the conductor is formed via an electrically insulating film
A soft magnetic film, a third soft magnetic film formed on the conductor and the second soft magnetic film via a second electrically insulating film, and connected to both ends of the conductor via connecting portions. A magnetic sensing element having a pair of electrodes for connecting the conductor to an external high frequency power supply.
び第3の軟磁性膜を有する磁極の複数のものを、それぞ
れ前記電気接続部で互いに連結して直列に接続したこと
を特徴とする請求項1記載の磁気検出素子。3. A plurality of magnetic poles having the first soft magnetic film, the second soft magnetic film, and the third soft magnetic film are connected to each other in series at the electrical connecting portions. The magnetic detection element according to claim 1, wherein:
導体36及び第3の軟磁性膜を有する磁極の複数のもの
を、それぞれの前記導体を互いに連結して直列に接続し
たことを特徴とする請求項2記載の磁気検出素子。4. The first soft magnetic film, the second soft magnetic film,
3. The magnetic detecting element according to claim 2, wherein a plurality of magnetic poles having a conductor and a third soft magnetic film are connected in series by connecting the conductors to each other.
形成された複数の第1の軟磁性膜、 前記第1の軟磁性膜のそれぞれの上に電気絶縁性の膜を
介して所定の離間距離を保って形成された少なくとも2
つの導体、 前記第1の軟磁性膜のそれぞれの上の前記導体が形成さ
れた部分を除く他の部分に電気絶縁性の膜を介して形成
された第2の軟磁性膜、 前記導体及び第2の軟磁性膜の上に電気絶縁性の膜を介
して形成された第3の軟磁性膜、 前記第1の軟磁性膜のそれぞれの上に形成された前記少
なくとも2つの導体を直列に接続する接続部、及び前記
接続部の両端末に接続された電極を有する磁気検出素
子。5. A plurality of first soft magnetic films formed in parallel on a member having electrical insulation, and a plurality of first soft magnetic films each having a predetermined electrical insulating film on each of the first soft magnetic films. At least 2 formed with a separation distance of
Two conductors, a second soft magnetic film formed on each part of the first soft magnetic film except the part where the conductor is formed via an electrically insulating film, the conductor and the second soft magnetic film. A third soft magnetic film formed on the second soft magnetic film via an electrically insulating film, and the at least two conductors formed on each of the first soft magnetic films are connected in series. A magnetic detection element having a connecting portion and an electrode connected to both terminals of the connecting portion.
近傍のみに形成されていることを特徴とする請求項1記
載の磁気検出素子。6. The magnetic detection element according to claim 1, wherein the third soft magnetic film is formed only in the vicinity of the electrical connection portion.
の近傍のみに形成されていることを特徴とする請求項1
記載の磁気検出素子。7. The first soft magnetic film is formed only in the vicinity of the electrical connection portion.
The magnetic detection element described.
のみ形成されていることを特徴とする請求項2又は5記
載の磁気検出素子。8. The magnetic sensing element according to claim 2, wherein the third soft magnetic film is formed only near the conductor.
にのみ形成されていることを特徴とする請求項2又は5
記載の磁気検出素子。9. The second soft magnetic film is formed only in the vicinity of the conductor.
The magnetic detection element described.
前記第2の軟磁性膜の厚さの約2分の1であることを特
徴とする請求項1、2又は5記載の磁気検出素子。10. The thickness of each of the first and third soft magnetic films is about one half of the thickness of the second soft magnetic film. Magnetic detection element.
が、それぞれ複数の軟磁性膜と電気絶縁性の膜とを交互
に積層した膜であることを特徴とする請求項1、2又は
5記載の磁気検出素子。11. The first, second, and third soft magnetic films are films in which a plurality of soft magnetic films and electrically insulating films are alternately laminated, respectively. 2. The magnetic detection element according to 2 or 5.
性膜を形成するステップ、 前記第1の軟磁性膜の上に電気絶縁膜を形成するステッ
プ、 前記電気絶縁膜の上面を含む絶縁基板の全面に軟磁性膜
を形成するステップ、 前記軟磁性膜にエッチング処理を施して、長方形の第2
の軟磁性膜及び前記第2の軟磁性膜と後のステップで形
成される電極との間を接続するための一対の接続部を残
して他の部分を除去するステップ、 前記第2の軟磁性膜の上に電気絶縁膜を形成するステッ
プ、 前記電気絶縁膜の上に第3の軟磁性膜を形成するステッ
プ、及び前記絶縁基板の上に所定の距離を隔てて前記第
2の軟磁性膜の接続部にそれぞれ接続されるように一対
の電極を形成するステップ、 を有する磁気検出素子の製造方法。12. A step of forming a rectangular first soft magnetic film on an insulating substrate, a step of forming an electric insulating film on the first soft magnetic film, and an upper surface of the electric insulating film. A step of forming a soft magnetic film on the entire surface of the insulating substrate;
Removing the other portion, leaving a pair of connection portions for connecting between the soft magnetic film and the second soft magnetic film and the electrode formed in a later step, Forming an electric insulating film on the film, forming a third soft magnetic film on the electric insulating film, and forming a second soft magnetic film on the insulating substrate at a predetermined distance. And a step of forming a pair of electrodes so as to be respectively connected to the connection portions of.
性膜を形成するステップ、 前記第1の軟磁性膜の上に電気絶縁膜を形成するステッ
プ、 前記電気絶縁膜の上に導電体の膜を形成するステップ、 前記電気絶縁膜上の中央部にのみ前記導電体の膜を残
し、かつ前記残した中央部の導電体から、前記長方形の
第1の軟磁性膜に略垂直に延び、後のステップで形成さ
れる電極に接続されるための一対の接続部を残して他を
エッチング処理により除去して導体と一対の接続部を形
成するステップ、 前記導体の上に電気絶縁膜を形成するステップ、 前記電気絶縁膜の上に軟磁性膜を形成するステップ、 前記導体の近傍の軟磁性膜をエッチングにより除去する
ステップ、 前記導体及び軟磁性膜の上に電気絶縁膜を形成するステ
ップ、 前記絶縁膜の上に第3の軟磁性膜を形成するステップ、
及び前記絶縁基板の上に所定距離を隔てて前記一対の接
続部にそれぞれ電気的に接続されるように一対の電極を
形成するステップ、 を有する磁気検出素子の製造方法。13. A step of forming a rectangular first soft magnetic film on an insulating substrate, a step of forming an electrical insulating film on the first soft magnetic film, and a conductive layer on the electrical insulating film. Forming a body film, leaving the conductor film only in the central portion on the electrical insulating film, and from the remaining conductor in the central portion substantially perpendicular to the rectangular first soft magnetic film. A step of forming a pair of connecting portions with a conductor by removing the other by etching to leave a pair of connecting portions for extending and being connected to electrodes formed in a later step, and an electric insulating film on the conductor A step of forming a soft magnetic film on the electric insulating film, a step of etching away the soft magnetic film near the conductor, and an electric insulating film formed on the conductor and the soft magnetic film. Step of the insulating film Forming a third soft magnetic film,
And a step of forming a pair of electrodes on the insulating substrate so as to be electrically connected to the pair of connecting portions at a predetermined distance from each other, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001188695A JP2003008099A (en) | 2001-06-21 | 2001-06-21 | Magnetic sensing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001188695A JP2003008099A (en) | 2001-06-21 | 2001-06-21 | Magnetic sensing element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003008099A true JP2003008099A (en) | 2003-01-10 |
Family
ID=19027748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001188695A Pending JP2003008099A (en) | 2001-06-21 | 2001-06-21 | Magnetic sensing element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003008099A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7196881B2 (en) | 2004-03-08 | 2007-03-27 | Hitachi Global Storage Technologies Netherlands B.V. | Adaptive domain stabilization for magnetic recording read sensors |
WO2007129359A1 (en) | 2006-04-20 | 2007-11-15 | Mitsubishi Denki Kabushiki Kaisha | Electric motor control apparatus |
-
2001
- 2001-06-21 JP JP2001188695A patent/JP2003008099A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7196881B2 (en) | 2004-03-08 | 2007-03-27 | Hitachi Global Storage Technologies Netherlands B.V. | Adaptive domain stabilization for magnetic recording read sensors |
WO2007129359A1 (en) | 2006-04-20 | 2007-11-15 | Mitsubishi Denki Kabushiki Kaisha | Electric motor control apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7145331B2 (en) | Magnetic sensor having a closed magnetic path formed by soft magnetic films | |
JPH0897488A (en) | Magnetism detector | |
JP2000512763A (en) | Magnetic field sensor with Wheatstone bridge | |
US4754354A (en) | Ferrite film insulating layer in a yoke-type magneto-resistive head | |
WO2003081271A1 (en) | Magnetic sensing element, magnetic sensor, and its manufacturing method | |
JP2002328140A (en) | Current sensor | |
JP2003008099A (en) | Magnetic sensing element | |
US20220196762A1 (en) | Magnetic sensor | |
US6366084B1 (en) | Magnetic sensor having soft magnetic metallic element formed in zigzag shape | |
JP2002511198A (en) | Device with layer structure and current directing means | |
JP2001027664A (en) | Magnetic sensor | |
JP2004184232A (en) | Magnetic detecting element, method of manufacturing the same, and magnetic detecting device and direction sensor using the magnetic detecting element | |
KR940020304A (en) | Magnetoresistance effect thin film magnetic head and bias measurement method | |
JP2003218421A (en) | Magnetic detecting element, method of manufacturing the same, magnetic head and magnetic reproducing device | |
KR100378553B1 (en) | Magnetic reproduction device, magnetic head using the device and method for producing the magnetic head | |
JPH09106913A (en) | Magnetoelectric conversion element | |
JPS58108025A (en) | Magnetoresistance effect type magnetic head | |
JPH0534374A (en) | Current detection by use of current sensor | |
JP2863552B2 (en) | Thin-film magnetic head and recording / reproducing apparatus using this thin-film magnetic head | |
JP3529668B2 (en) | Magnetic reproducing element, magnetic head using the same, and method of manufacturing the same | |
JP2000200403A (en) | Multilayer magnetic body, magnetic head using the same, method of manufacturing magnetic head, and magnetic reproducing apparatus using this magnetic head | |
JP2001166022A (en) | Magnetic sensor | |
JPH11213339A (en) | Magnetic head and magnetic reproducing apparatus using the same | |
JP2002056510A (en) | Shield type magnetic head and magnetic reproducing device | |
JPH02106837A (en) | Access sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050525 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20061129 |