JP2003007336A - Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor - Google Patents
Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used thereforInfo
- Publication number
- JP2003007336A JP2003007336A JP2001188963A JP2001188963A JP2003007336A JP 2003007336 A JP2003007336 A JP 2003007336A JP 2001188963 A JP2001188963 A JP 2001188963A JP 2001188963 A JP2001188963 A JP 2001188963A JP 2003007336 A JP2003007336 A JP 2003007336A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous electrolyte
- secondary battery
- electrolyte secondary
- carbonate
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【課題】 充放電効率及び保存特性に優れた非水系電解
液二次電池を提供する。
【解決手段】 非水溶媒にリチウム塩を溶解してなり、
かつフッ素化されたニトリル化合物を含有する電解液を
用いる。(57) [Problem] To provide a non-aqueous electrolyte secondary battery excellent in charge / discharge efficiency and storage characteristics. SOLUTION: A lithium salt is dissolved in a non-aqueous solvent,
An electrolytic solution containing a fluorinated nitrile compound is used.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水系電解液二次
電池に関する。詳しくは特定の非水系電解液を使用する
ことにより、充放電効率を向上させ、高温下でも充放電
効率及び保存特性に優れている非水系電解液二次電池に
関する。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery that improves charge / discharge efficiency by using a specific non-aqueous electrolyte and has excellent charge / discharge efficiency and storage characteristics even at high temperatures.
【0002】[0002]
【従来の技術】近年の電気製品の軽量化、小型化にとも
ない、高いエネルギー密度を持つリチウム二次電池の開
発が以前にもまして望まれており、また、リチウム二次
電池の適用分野の拡大に伴い電池特性の改善も要望され
ている。現在、正極にLiCoO2、LiMnO2、Li
NiO2等の金属酸化物塩、負極に金属リチウムの他、
コークス、人造黒鉛、天然黒鉛等の炭素材料や、Sn、
Si等の金属酸化物材料といったリチウムイオンを吸蔵
及び放出することが可能な化合物を用いた非水系電解液
二次電池が提案されている。2. Description of the Related Art With the recent lightening and downsizing of electric products, the development of lithium secondary batteries having a high energy density has been desired more than ever, and the application fields of lithium secondary batteries are expanding. Accordingly, improvement of battery characteristics is also demanded. Currently, the positive electrode has LiCoO 2 , LiMnO 2 , Li
In addition to metallic oxide salts such as NiO 2 and metallic lithium for the negative electrode,
Carbon materials such as coke, artificial graphite and natural graphite, Sn,
A non-aqueous electrolyte secondary battery using a compound capable of inserting and extracting lithium ions such as a metal oxide material such as Si has been proposed.
【0003】しかしながら、これらリチウム二次電池に
おいては、正極及び/又は負極上において、電解液の溶
媒の分解が起こることが知られており、このことが充放
電効率や保存特性の低下の原因となっている。例えば、
黒鉛を単独で、又はリチウムを吸蔵及び放出することが
可能な他の材料と混合して負極とした非水系電解液二次
電池では、リチウム一次電池で一般に好んで使用される
プロピレンカーボネートを主溶媒とする電解液を用いる
と、黒鉛表面で溶媒の分解反応が激しく進行して黒鉛へ
のスムーズなリチウムの吸蔵及び放出が不可能になる。However, in these lithium secondary batteries, it is known that the solvent of the electrolytic solution is decomposed on the positive electrode and / or the negative electrode, which causes the deterioration of charge / discharge efficiency and storage characteristics. Has become. For example,
In a non-aqueous electrolyte secondary battery in which graphite is used alone or as a negative electrode by mixing with another material capable of inserting and extracting lithium, propylene carbonate, which is generally preferred in lithium primary batteries, is the main solvent. When the electrolyte solution is used, the decomposition reaction of the solvent progresses vigorously on the surface of graphite, and smooth insertion and release of lithium into graphite becomes impossible.
【0004】一方、エチレンカーボネートはこのような
分解が少ないので、非水系電解液二次電池の電解液の主
溶媒として多用されている。しかしながら、エチレンカ
ーボネートを主溶媒としても、充放電過程において電極
表面で電解液が少量づつ分解を起こすために充放電効率
の低下が起こるという問題がある。On the other hand, since ethylene carbonate is less likely to be decomposed like this, it is often used as the main solvent of the electrolytic solution of the non-aqueous electrolytic solution secondary battery. However, even if ethylene carbonate is used as the main solvent, there is a problem that the charge / discharge efficiency is lowered because the electrolytic solution is decomposed little by little on the electrode surface during the charge / discharge process.
【0005】[0005]
【発明が解決しようとする課題】非水系電解液二次電池
においては、電解液の分解を最小限に抑え、充放電効率
が高く、かつ高温下でも保存特性の優れた高エネルギー
密度のものを実現する為に、電極上にリチウムイオン透
過性で安定性のよい保護被膜を生成させることが提案さ
れており、このような保護被膜を生成させる材料を含む
電解液が望まれている。本発明は、このような要望に応
えようとするものである。In a non-aqueous electrolyte secondary battery, a high energy density battery having a high degree of charge / discharge efficiency, which has a minimum decomposition of the electrolyte solution, and has excellent storage characteristics even at high temperatures, should be used. In order to realize it, it has been proposed to form a lithium ion permeable and stable protective film on the electrode, and an electrolytic solution containing a material that forms such a protective film is desired. The present invention seeks to meet these needs.
【0006】[0006]
【課題を解決するための手段】本発明者等は、非水系電
解液二次電池の電解液として、フッ素化されたニトリル
化合物を含有するものを使用することにより、初期の充
電時から電極表面にリチウムイオン透過性で安定性のよ
い被膜が効率よく生成し、過度の電解液の分解が抑制さ
れるので、充放電効率及び保存特性を向上させ得ること
を見いだし、本発明を完成させるに至った。Means for Solving the Problems The present inventors have used an electrolyte containing a fluorinated nitrile compound as an electrolyte of a non-aqueous electrolyte secondary battery so that the surface of the electrode can be charged from the initial charge. In addition, a lithium ion permeable and stable film is efficiently formed, and excessive decomposition of the electrolyte solution is suppressed. Therefore, it was found that charge and discharge efficiency and storage characteristics can be improved, and the present invention has been completed. It was
【0007】すなわち本発明は、金属リチウム、リチウ
ム合金、又はリチウムを吸蔵及び放出することが可能な
材料を含む負極、リチウムを吸蔵及び放出することが可
能な材料を含む正極、並びに非水溶媒にリチウム塩を溶
解してなる電解液を含む非水系電解液二次電池におい
て、電解液としてフッ素化されたニトリル化合物を含有
するものを用いることを特徴とするものである。That is, the present invention relates to a negative electrode containing metallic lithium, a lithium alloy, or a material capable of inserting and extracting lithium, a positive electrode containing a material capable of inserting and extracting lithium, and a non-aqueous solvent. A non-aqueous electrolyte secondary battery containing an electrolyte solution in which a lithium salt is dissolved is characterized in that an electrolyte solution containing a fluorinated nitrile compound is used.
【0008】[0008]
【発明の実施の形態】本発明で用いる電解液の非水溶媒
の主体をなすものとしては、環状カーボネート、鎖状カ
ーボネート、ラクトン化合物、鎖状エステル、環状エー
テル、鎖状エーテル、含硫黄有機溶媒など、二次電池用
非水電解液の溶媒として知られているもののなかから、
適宜選択して用いることができる。これらの溶媒は単独
で用いても、二種類以上を混合して用いても良い。好適
な溶媒としては、炭素数が3〜9の環状カーボネート、
ラクトン化合物、鎖状カーボネート、鎖状カルボン酸エ
ステル及び鎖状エーテルが挙げられる。これらの溶媒の
好ましい具体例のいくつかを下記に示す。BEST MODE FOR CARRYING OUT THE INVENTION Cyclic carbonates, chain carbonates, lactone compounds, chain esters, cyclic ethers, chain ethers, sulfur-containing organic solvents are the main components of the non-aqueous solvent of the electrolytic solution used in the present invention. Among the known solvents for non-aqueous electrolytes for secondary batteries,
It can be appropriately selected and used. These solvents may be used alone or in combination of two or more. Suitable solvents include cyclic carbonates having 3 to 9 carbon atoms,
Examples thereof include lactone compounds, chain carbonates, chain carboxylic acid esters and chain ethers. Some preferred specific examples of these solvents are shown below.
【0009】環状カーボネート:エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ビニレンカーボネート、ビニルエチレンカーボネート。
これらのなかでもエチレンカーボネート、プロピレンカ
ーボネートがより好ましい。ラクトン化合物:γ−ブチ
ロラクトン、γ−バレロラクトン、δ−バレロラクト
ン。なかでもγ−ブチロラクトンがより好ましい。Cyclic carbonates: ethylene carbonate, propylene carbonate, butylene carbonate,
Vinylene carbonate, vinyl ethylene carbonate.
Among these, ethylene carbonate and propylene carbonate are more preferable. Lactone compound: γ-butyrolactone, γ-valerolactone, δ-valerolactone. Among them, γ-butyrolactone is more preferable.
【0010】鎖状カーボネート:ジメチルカーボネー
ト、ジエチルカーボネート、ジ−n−プロピルカーボネ
ート、ジイソプロピルカーボネート、n−プロピルイソ
プロピルカーボネート、ジ−n−ブチルカーボネート、
ジイソブチルカーボネート、ジ−t−ブチルカーボネー
ト、n−ブチルイソブチルカーボネート、n−ブチル−
t−ブチルカーボネート、イソブチル−t−ブチルカー
ボネート、エチルメチルカーボネート、メチル−n−プ
ロピルカーボネート、n−ブチルメチルカーボネート、
イソブチルメチルカーボネート、t−ブチルメチルカー
ボネート、エチル−n−プロピルカーボネート、n−ブ
チルエチルカーボネート、イソブチルエチルカーボネー
ト、t−ブチルエチルカーボネート、n−ブチル−n−
プロピルカーボネート、イソブチル−n−プロピルカー
ボネート、t−ブチル−n−プロピルカーボネート、n
−ブチルイソプロピルカーボネート、イソブチルイソプ
ロピルカーボネート、t−ブチルイソプロピルカーボネ
ート。これらのなかでもジメチルカーボネート、ジエチ
ルカーボネート、エチルメチルカーボネートがより好ま
しい。Chain carbonate: dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, di-n-butyl carbonate,
Diisobutyl carbonate, di-t-butyl carbonate, n-butyl isobutyl carbonate, n-butyl-
t-butyl carbonate, isobutyl-t-butyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, n-butyl methyl carbonate,
Isobutyl methyl carbonate, t-butyl methyl carbonate, ethyl-n-propyl carbonate, n-butyl ethyl carbonate, isobutyl ethyl carbonate, t-butyl ethyl carbonate, n-butyl-n-
Propyl carbonate, isobutyl-n-propyl carbonate, t-butyl-n-propyl carbonate, n
-Butyl isopropyl carbonate, isobutyl isopropyl carbonate, t-butyl isopropyl carbonate. Among these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are more preferable.
【0011】鎖状カルボン酸エステル:酢酸メチル、酢
酸エチル、酢酸−n−プロピル、酢酸−イソプロピル、
酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチ
ル、プロピオン酸メチル、プロピオン酸エチル、プロピ
オン酸−n−プロピル、プロピオン酸−イソプロピル、
プロピオン酸−n−ブチル、プロピオン酸イソブチル、
プロピオン酸−t−ブチル。これらのなかでも酢酸エチ
ル、プロピオン酸メチル、プロピオン酸エチルがより好
ましい。Chain carboxylic acid ester: methyl acetate, ethyl acetate, acetic acid-n-propyl, acetic acid-isopropyl,
-N-butyl acetate, isobutyl acetate, -t-butyl acetate, methyl propionate, ethyl propionate, -n-propyl propionate, isopropyl propionate,
-N-butyl propionate, isobutyl propionate,
T-Butyl propionate. Among these, ethyl acetate, methyl propionate and ethyl propionate are more preferable.
【0012】鎖状エーテル:ジメトキシメタン、1,2
−ジメトキシエタン、ジエトキシメタン、1,2−ジエ
トキシエタン、エトキシメトキシメタン、1−エトキシ
−2−メトキシエタン。これらのなかでもジメトキシエ
タン、ジエトキシエタンがより好ましい。
環状エーテル;テトラヒドロフラン、テトラヒドロピラ
ン、1,3−ジオキソラン、1,3−ジオキサン、1,
4−ジオキサン。
含硫黄有機溶媒;テトラメチレンスルホン、3−メチル
テトラメチレンスルホン、テトラメチレンスルホキシ
ド、1,3−プロパンスルトン、1,3,2−ジオキサ
チオラン−2,2−ジオキシド。
本発明で用いる電解液の非水溶媒として特に好ましいの
は、炭素数3〜9のラクトン化合物又は環状カーボネー
トが20容量%以上を占めており、かつこれを含めて炭
素数3〜9のラクトン化合物、環状カーボネート、鎖状
カーボネート、鎖状エーテル及び鎖状カルボン酸エステ
ルよりなる群から選ばれたものが70容量%以上を占め
る混合溶媒である。Chain ether: dimethoxymethane, 1,2
-Dimethoxyethane, diethoxymethane, 1,2-diethoxyethane, ethoxymethoxymethane, 1-ethoxy-2-methoxyethane. Among these, dimethoxyethane and diethoxyethane are more preferable. Cyclic ether; tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,3-dioxane, 1,
4-dioxane. Sulfur-containing organic solvent; tetramethylene sulfone, 3-methyltetramethylene sulfone, tetramethylene sulfoxide, 1,3-propane sultone, 1,3,2-dioxathiolane-2,2-dioxide. Particularly preferred as the non-aqueous solvent of the electrolytic solution used in the present invention is a lactone compound having 3 to 9 carbon atoms or a cyclic carbonate occupying 20% by volume or more, and including this, a lactone compound having 3 to 9 carbon atoms. , A cyclic carbonate, a chain carbonate, a chain ether, and a chain carboxylic acid ester are mixed solvents which account for 70% by volume or more.
【0013】本発明で使用される電解液の溶質として
は、リチウム塩が用いられる。リチウム塩としては非水
電解液の溶質として用い得ることが知られているものの
なかから適宜選択して用いることができる。そのいくつ
かを例示すると、
無機リチウム塩:LiPF6、LiAsF6、LiB
F4、LiAlF4等の無機フッ化物塩、LiClO4、
LiBrO4、LiIO4、等の過ハロゲン酸塩
有機リチウム塩:LiCF3SO3等の有機スルホン酸
塩、LiN(CF3SO2)2、LiN(C2F5S
O2)2、LiN(CF3SO2)(C4F9SO2)等のパ
ーフルオロアルキルスルホン酸イミド塩、LiC(CF
3SO2)3等のパーフルオロアルキルスルホン酸メチド
塩、LiPF(CF3)5、LiPF2(CF3)4、Li
PF3(CF3)3、LiPF2(C2F5)4、LiPF
3(C2F5)3、LiPF(n−C3F7)5、LiPF
2(n−C3F7)4、LiPF3(n−C3F7)3、LiP
F(iso−C3F7)5、LiPF2(iso−C3F7)
4、LiPF3(iso−C3F7)3、LiB(C
F3)4、LiBF(CF3)3、LiBF2(CF3)2、
LiBF3(CF3)、LiB(C2F5)4、LiBF
(C2F5)3、LiBF2(C2F5)2、LiBF3(C2
F5)、LiB(n−C3F7)4、LiBF(n−C
3F7)3、LiBF2(n−C3F7)2、LiBF3(n−
C3F7)、LiB(iso−C3F7)4、LiBF(i
so−C3F7)3、LiBF2(iso−C3F 7)2、L
iBF3(iso−C3F7)等の、フッ素の一部をパー
フルオロアルキル基で置換した無機フッ化物塩フルオロ
ホスフェート及びパーフルオロアルキルの含フッ素有機
リチウム塩。As a solute of the electrolytic solution used in the present invention
Is a lithium salt. Non-water as lithium salt
Although it is known that it can be used as a solute in the electrolyte,
Among them, it can be appropriately selected and used. How many
As an example,
Inorganic lithium salt: LiPF6, LiAsF6, LiB
FFour, LiAlFFourInorganic fluoride salts such as LiClOFour,
LiBrOFour, LiIOFourPerhalogenates such as
Organolithium salt: LiCF3SO3Organic sulfonic acid such as
Salt, LiN (CF3SO2)2, LiN (C2FFiveS
O2)2, LiN (CF3SO2) (CFourF9SO2) Etc.
-Fluoroalkyl sulfonic acid imide salt, LiC (CF
3SO2)3Perfluoroalkyl sulfonic acid methide, etc.
Salt, LiPF (CF3)Five, LiPF2(CF3)Four, Li
PF3(CF3)3, LiPF2(C2FFive)Four, LiPF
3(C2FFive)3, LiPF (n-C3F7)Five, LiPF
2(N-C3F7)Four, LiPF3(N-C3F7)3, LiP
F (iso-C3F7)Five, LiPF2(Iso-C3F7)
Four, LiPF3(Iso-C3F7)3, LiB (C
F3)Four, LiBF (CF3)3, LiBF2(CF3)2,
LiBF3(CF3), LiB (C2FFive)Four, LiBF
(C2FFive)3, LiBF2(C2FFive)2, LiBF3(C2
FFive), LiB (n-C3F7)Four, LiBF (n-C
3F7)3, LiBF2(N-C3F7)2, LiBF3(N-
C3F7), LiB (iso-C3F7)Four, LiBF (i
so-C3F7)3, LiBF2(Iso-C3F 7)2, L
iBF3(Iso-C3F7) Etc.
Inorganic fluoride salt fluoro substituted with fluoroalkyl group
Fluorine-containing organic compounds of phosphate and perfluoroalkyl
Lithium salt.
【0014】これらのなかでもLiPF6、LiBF4、
LiCF3SO3、LiN(CF3SO2)2、LiN(C2
F5SO2)2、LiN(CF3SO2)(C4F9SO2)、
LiPF3(C2F5)3、LiBF2(CF3)2及びLiB
F2(C2F5)2がより好ましい。なおこれらの溶質は2
種類以上を混合して用いても良い。電解液中の溶質のリ
チウム塩モル濃度は、0.5〜3モル/リットルである
ことが好ましい。濃度が低すぎると、電解液の電気伝導
率が低すぎて好ましくなく、逆に濃度が高すぎても、粘
度が上昇して電気伝導率が低下し、また低温での析出が
起こりやすくなるため、電池の性能が低下し好ましくな
い。Among these, LiPF 6 , LiBF 4 ,
LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN (C 2
F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2),
LiPF 3 (C 2 F 5 ) 3 , LiBF 2 (CF 3 ) 2 and LiB
F 2 (C 2 F 5 ) 2 is more preferable. Note that these solutes are 2
You may use it in mixture of 2 or more types. The lithium salt molar concentration of the solute in the electrolytic solution is preferably 0.5 to 3 mol / liter. If the concentration is too low, the electrical conductivity of the electrolytic solution is too low, which is not preferable. Conversely, even if the concentration is too high, the viscosity increases and the electrical conductivity decreases, and precipitation at low temperatures easily occurs. However, the battery performance is deteriorated, which is not preferable.
【0015】本発明で用いる電解液は、上述の溶媒及び
溶質に加えて、フッ素化されたニトリル化合物、すなわ
ちシアノ基で置換された炭化水素化合物の水素原子の少
なくとも一個が、フッ素原子で更に置換された構造の化
合物を含有している。この化合物には更に他の置換基が
存在していてもよい。本発明で用いるのに好適な、フッ
素原子で置換されたニトリル化合物としては、次のよう
なものが挙げられる。In the electrolytic solution used in the present invention, in addition to the above-mentioned solvent and solute, at least one hydrogen atom of a fluorinated nitrile compound, that is, a hydrocarbon compound substituted with a cyano group is further substituted with a fluorine atom. Containing a compound of the indicated structure. Other substituents may be present on this compound. Examples of the nitrile compound substituted with a fluorine atom suitable for use in the present invention include the following.
【0016】鎖状ニトリル化合物;フルオロアセトニト
リル、ジフルオロアセトニトリル、トリフルオロアセト
ニトリル、α−フルオロプロピオニトリル、β−フルオ
ロプロピオニトリル、α,α−ジフルオロプロピオニト
リル、α,β−ジフルオロプロピオニトリル、β,β−
ジフルオロプロピオニトリル、α,α,β−トリフルオ
ロプロピオニトリル、α,β,β−トリフルオロプロピ
オニトリル、β,β,β−トリフルオロプロピオニトリ
ル、α,α,β,β−テトラフルオロプロピオニトリ
ル、α,β,β,β−テトラフルオロプロピオニトリ
ル、ペンタフルオロプロピオニトリルChain nitrile compound; fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, α-fluoropropionitrile, β-fluoropropionitrile, α, α-difluoropropionitrile, α, β-difluoropropionitrile, β, β-
Difluoropropionitrile, α, α, β-trifluoropropionitrile, α, β, β-trifluoropropionitrile, β, β, β-trifluoropropionitrile, α, α, β, β-tetrafluoropropionitrile Nitrile, α, β, β, β-tetrafluoropropionitrile, pentafluoropropionitrile
【0017】脂環式ニトリル化合物;2−フルオロシク
ロヘキサンカルボニトリル、3−フルオロシクロヘキサ
ンカルボニトリル、4−フルオロシクロヘキサンカルボ
ニトリル、2,3−ジフルオロシクロヘキサンカルボニ
トリル、2,4−ジフルオロシクロヘキサンカルボニト
リル、2,5−ジフルオロシクロヘキサンカルボニトリ
ル、2,6−ジフルオロシクロヘキサンカルボニトリ
ル。
芳香族ニトリル化合物;2−フルオロベンゾニトリル、
3−フルオロベンゾニトリル、4−フルオロベンゾニト
リル、2,3−ジフルオロベンゾニトリル、2,4−ジ
フルオロベンゾニトリル、2,5−ジフルオロベンゾニ
トリル、2,6−ジフルオロベンゾニトリル。Alicyclic nitrile compound; 2-fluorocyclohexanecarbonitrile, 3-fluorocyclohexanecarbonitrile, 4-fluorocyclohexanecarbonitrile, 2,3-difluorocyclohexanecarbonitrile, 2,4-difluorocyclohexanecarbonitrile, 2, 5-difluorocyclohexanecarbonitrile, 2,6-difluorocyclohexanecarbonitrile. Aromatic nitrile compound; 2-fluorobenzonitrile,
3-fluorobenzonitrile, 4-fluorobenzonitrile, 2,3-difluorobenzonitrile, 2,4-difluorobenzonitrile, 2,5-difluorobenzonitrile, 2,6-difluorobenzonitrile.
【0018】なお、ニトリル化合物は、一般にフッ素化
の程度が大きくなると不安定になりやすく、製造も困難
になること、さらに、パーフルオロ化すると溶解度の低
下を招きやすいことから、フルオロアセトニトリル、α
−フルオロプロピオニトリル、β−フルオロプロピオニ
トリル、2−フルオロベンゾニトリル、3−フルオロベ
ンゾニトリル、4−フルオロベンゾニトリル等のモノフ
ルオロニトリル化合物を用いるのが好ましい。なかでも
フルオロアセトニトリル、2−フルオロベンゾニトリ
ル、3−フルオロベンゾニトリル、4−フルオロベンゾ
ニトリルがより好ましい。In general, the nitrile compound tends to be unstable when the degree of fluorination is large, and is difficult to manufacture. Further, when it is perfluorinated, the solubility is liable to be lowered.
It is preferable to use monofluoronitrile compounds such as -fluoropropionitrile, β-fluoropropionitrile, 2-fluorobenzonitrile, 3-fluorobenzonitrile and 4-fluorobenzonitrile. Among them, fluoroacetonitrile, 2-fluorobenzonitrile, 3-fluorobenzonitrile and 4-fluorobenzonitrile are more preferable.
【0019】フッ素化されたニトリル化合物は二種類以
上を併用してもよく、例えば分離困難な異性体混合物を
分離せずに用いることができる。フッ素化されたニトリ
ル化合物は電解液の0.01〜10重量%を占めるのが
好ましく、0.1〜5重量%を占めるのがより好まし
い。含有量が少なすぎると電極上に十分な被膜を形成す
ることができず、逆に多すぎると被膜生成に余剰となる
分が電池特性に悪影響を及ぼす。なお、電解液中には、
上述の溶媒の主体をなすカーボネート、エステル又はエ
ーテル、溶質、及びフッ素化されたニトリル化合物以外
に、常用の種々の化合物を含有させることもできる。Two or more kinds of fluorinated nitrile compounds may be used in combination, and for example, isomer mixtures which are difficult to separate can be used without separation. The fluorinated nitrile compound preferably constitutes 0.01 to 10% by weight of the electrolytic solution, more preferably 0.1 to 5% by weight. If the content is too small, a sufficient coating cannot be formed on the electrode. On the contrary, if the content is too large, the surplus for forming the coating adversely affects the battery characteristics. In the electrolytic solution,
In addition to the carbonate, ester or ether, the solute, and the fluorinated nitrile compound which are the main components of the solvent, various commonly used compounds may be contained.
【0020】負極の材料としては、金属リチウム、リチ
ウム合金のほかリチウムを吸蔵及び放出し得るものであ
れば特に限定されない。例えば様々な熱分解条件での有
機物の熱分解物や、人造黒鉛、天然黒鉛等の炭素材料、
金属酸化物材料などが挙げられる。The material of the negative electrode is not particularly limited as long as it can occlude and release lithium in addition to metallic lithium and lithium alloys. For example, thermal decomposition products of organic substances under various thermal decomposition conditions, carbon materials such as artificial graphite and natural graphite,
Examples thereof include metal oxide materials.
【0021】これらのうち、炭素材料、特に種々の原料
から得た易黒鉛性ピッチの高温熱処理によって製造され
た人造黒鉛、精製天然黒鉛、又はこれらにピッチを含む
種々の表面処理を施した黒鉛材料を用いるのが好まし
い。なかでも学振法によるX線回折で求めた格子面(0
02面)のd値(層間距離)が0.335〜0.34n
m、特に0.335〜0.337nmであるものを用い
るのが好ましい。黒鉛材料は灰分の少ないものを用いる
のが好ましく、通常は灰分が1重量%以下のものを用い
る。灰分が0.5重量%以下、特に0.1重量%以下
で、かつ学振法によるX線回折で求めた結晶サイズ(L
c)が30nm以上のものを用いるのが好ましい。更に
結晶子サイズ(Lc)は、50nm以上であるのが好ま
しく、100nm以上であるものが最も好ましい。ま
た、黒鉛材料は、レーザー回折・散乱法によるメジアン
径が1μm〜100μm、特に3μm〜50μmのもの
を用いるのが好ましい。メジアン径が5μm〜40μ
m、特に7μm〜30μmのものを用いるのが最も好ま
しい。黒鉛材料のBET法比表面積は、通常0.5m2
/g〜25.0m2/gであり、好ましくは0.7m2/
g〜20.0m2/gである。BET法比表面積が1.
0m2/g〜15.0m2/g、特に1.5m2/g〜1
0.0m2/gのものを用いるのが最も好ましい。また
黒鉛材料は、アルゴンイオンレーザー光を用いたラマン
スペクトル分析において、1580〜1620cm-1の
範囲にピークPA(ピーク強度IA)、及び1350〜1
370cm-1の範囲にピークPB(ピーク強度IB)を有
し、かつその強度比R=IB/IAが0〜0.5であり、
1580〜1620cm-1の範囲のピークの半値幅が2
6cm-1以下、1350〜1370cm-1の範囲のピー
クの半値幅が25cm-1以下であれば更に好ましい。Of these, carbon materials, especially artificial graphite produced by high-temperature heat treatment of graphitizable pitch obtained from various raw materials, purified natural graphite, or graphite materials obtained by subjecting these to various surface treatments containing pitch. Is preferably used. Among them, the lattice plane (0
02 surface) has a d value (interlayer distance) of 0.335 to 0.34n
m, particularly 0.335 to 0.337 nm is preferably used. It is preferable to use a graphite material having a low ash content, and usually, a graphite material having an ash content of 1% by weight or less is used. The ash content is 0.5% by weight or less, particularly 0.1% by weight or less, and the crystal size (L
It is preferable to use one having c) of 30 nm or more. Further, the crystallite size (Lc) is preferably 50 nm or more, and most preferably 100 nm or more. As the graphite material, it is preferable to use one having a median diameter of 1 μm to 100 μm, particularly 3 μm to 50 μm as measured by the laser diffraction / scattering method. Median diameter is 5μm-40μ
It is most preferable to use a resin having a thickness of m, particularly 7 μm to 30 μm. BET specific surface area of graphite material is usually 0.5 m 2
/ G to 25.0 m 2 / g, preferably 0.7 m 2 / g
It is g-20.0 m < 2 > / g. BET specific surface area is 1.
0m 2 /g~15.0m 2 / g, especially 1.5m 2 / g~1
It is most preferable to use the one having 0.0 m 2 / g. Further, the graphite material has a peak P A (peak intensity I A ) in the range of 1580 to 1620 cm −1 and 1350 to 1 in a Raman spectrum analysis using argon ion laser light.
It has a peak P B (peak intensity I B ) in the range of 370 cm −1 and its intensity ratio R = I B / I A is 0 to 0.5,
The FWHM of the peak in the range of 1580 to 1620 cm -1 is 2
6 cm -1 or less, a half value width of the peak in the range of 1350 -1 is more preferable if 25 cm -1 or less.
【0022】またこれらの炭素材料にリチウムを吸蔵及
び放出可能な他の負極材を混合して用いることもでき
る。炭素材料以外のリチウムを吸蔵及び放出可能な負極
材としては、Ag、Zn、Al、Ga、In、Si、G
e、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、
Ba等の金属とLiの合金、またはこれら金属の酸化物
等の金属酸化物材料、リチウム金属が挙げられるが、な
かでもSn酸化物、Si酸化物、Al酸化物、Sn、S
i、Alのリチム合金、金属リチウムなどを用いるのが
好ましい。これらの負極材料も2種類以上混合して用い
ても良い。It is also possible to mix these carbon materials with other negative electrode materials capable of inserting and extracting lithium. As the negative electrode material capable of inserting and extracting lithium other than the carbon material, Ag, Zn, Al, Ga, In, Si, G
e, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr,
Examples include alloys of metals such as Ba and Li, metal oxide materials such as oxides of these metals, and lithium metals. Among them, Sn oxides, Si oxides, Al oxides, Sn, S
It is preferable to use a lithium alloy of i, Al, metallic lithium, or the like. Two or more kinds of these negative electrode materials may be mixed and used.
【0023】これらの負極材料を用いて負極を製造する
のは常法により行えばよい。例えば、負極材料に、必要
に応じて結着剤、増粘剤、導電材、溶媒等を加えてスラ
リー状とし、これを集電体の基板に塗布し、乾燥するこ
とにより負極を製造することができる。また、負極材料
に結着剤等を加えたものをそのままロール成形してシー
ト電極としたり、圧縮成形によりペレット電極とするこ
ともできる。A negative electrode may be manufactured using these negative electrode materials by a conventional method. For example, a negative electrode is manufactured by adding a binder, a thickener, a conductive material, a solvent and the like to a negative electrode material to form a slurry, applying the slurry to a substrate of a current collector, and drying the slurry. You can Alternatively, a negative electrode material to which a binder or the like is added may be roll-formed as it is to form a sheet electrode, or a pellet electrode may be formed by compression molding.
【0024】電極の製造に用いる結着剤、増粘剤、導電
材などとしては、電極製造時に使用する溶媒に安定であ
り、かつ電解液及び電池に用いる他の材料に対して安定
な材料であれば特に限定されない。結着剤としては、通
常はポリフッ化ビニリデン、ポリテトラフルオロエチレ
ン、スチレン・ブタジエンゴム、イソプレンゴム、ブタ
ジエンゴム等が用いられる。Binders, thickeners, conductive materials, etc. used in the production of electrodes are stable to the solvent used in the production of electrodes and stable to the electrolyte and other materials used in batteries. There is no particular limitation as long as it exists. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber, etc. are usually used.
【0025】また増粘剤としては通常は、カルボキシル
メチルセルロース、メチルセルロース、ヒドロキシメチ
ルセルロース、エチルセルロース、ポリビニルアルコー
ル、酸化スターチ、リン酸化スターチ、ガゼイン等が用
いられる。導電材としては、銅やニッケル等の金属材
料、グラファイト、カーボンブラック等のような導電性
炭素材料が用いられる。負極用集電体には、銅、ニッケ
ル、ステンレス等の金属が使用され、これらの中でも薄
膜に加工しやすいという点とコストの点から銅箔が好ま
しい。As the thickener, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, etc. are usually used. As the conductive material, a metal material such as copper or nickel, or a conductive carbon material such as graphite or carbon black is used. Metals such as copper, nickel, and stainless are used for the negative electrode current collector, and among these, copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
【0026】本発明の電池を構成する正極の材料として
は、通常はリチウムコバルト酸化物、リチウムニッケル
酸化物、リチウムマンガン酸化物等のリチウム遷移金属
複合酸化物材料が用いられる。正極も上記の負極の製造
方法に準じて製造することができる。As the material of the positive electrode constituting the battery of the present invention, lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide and lithium manganese oxide are usually used. The positive electrode can also be manufactured according to the above-described manufacturing method of the negative electrode.
【0027】正極用集電体には、アルミニウム、チタ
ン、タンタル等の金属又はその合金が用いられる。これ
らの中でも、特にアルミニウムまたはその合金が軽量で
あるためエネルギー密度の点で好ましい。負極と正極と
を離隔するセパレータは、電解液に対して安定で、保液
性の優れたものを選ぶのが好ましく、ポリエチレン、ポ
リプロピレン等のポリオレフィンを原料とする多孔性シ
ート又は不織布等を用いるのが好ましい。A metal such as aluminum, titanium, tantalum or an alloy thereof is used for the positive electrode current collector. Among these, aluminum or its alloy is particularly preferable in terms of energy density because it is lightweight. As the separator for separating the negative electrode and the positive electrode, it is preferable to select one that is stable to the electrolytic solution and has excellent liquid retention, and a porous sheet or nonwoven fabric made of polyolefin such as polyethylene or polypropylene is used. Is preferred.
【0028】本発明に係る非水系電解液二次電池は、フ
ッ素化されたニトリル化合物を含む電解液を用いる以外
は、常法により製作することができる。電池の形状も、
シート電極及びセパレータをスパイラル状にしたシリン
ダータイプ、ペレット電極及びセパレータを組み合わせ
たインサイドアウト構造のシリンダータイプ、ペレット
電極及びセパレータを積層したコインタイプなど、任意
の形状とすることができる。The non-aqueous electrolyte secondary battery according to the present invention can be manufactured by a conventional method except that an electrolyte containing a fluorinated nitrile compound is used. The shape of the battery
The sheet electrode and the separator may have a spiral shape, a cylinder type having an inside-out structure in which the pellet electrode and the separator are combined, a coin type in which the pellet electrode and the separator are laminated, and the like.
【0029】[0029]
【実施例】以下に、実施例及び比較例を挙げて本発明を
更に具体的に説明するが、本発明は、その要旨を越えな
い限りこれらの実施例に限定されるものではない。な
お、正極、負極及びこれを用いたコイン型電池の作製、
並びにその評価は下記により行った。The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded. In addition, a positive electrode, a negative electrode, and a coin-type battery using the same,
The evaluation was performed as follows.
【0030】正極の作製;正極活物質としてのLiCo
O2 85重量%に、カーボンブラック6重量%及びポリ
フッ化ビニリデンKF−1000(呉羽化学社製、商品
名)9重量%を加えて混合し、これに更にN−メチル−
2−ピロリドンを加えてスラリー状とした。これを正極
集電体である厚さ20μmのアルミニウム箔上に均一に
塗布し、乾燥後、直径12.5mmの円盤状に打ち抜い
て正極とした。Preparation of positive electrode; LiCo as positive electrode active material
The O 2 85% by weight of carbon black 6 wt% and polyvinylidene fluoride KF-1000 (Kureha Chemical Co., Ltd., trade name) 9 wt% were added and mixed, further to N- methyl -
2-Pyrrolidone was added to make a slurry. This was uniformly applied onto an aluminum foil having a thickness of 20 μm, which is a positive electrode current collector, dried, and punched into a disk shape having a diameter of 12.5 mm to obtain a positive electrode.
【0031】負極の作製;X線回折における格子面(0
02面)のd値が0.336nm、結晶子サイズ(L
c)が、264nm、灰分が0.04重量%、レーザー
回折・散乱法によるメジアン径が17μm、BET法比
表面積が8.9m2/g、アルゴンイオンレーザー光を
用いたラマンスペクトル分析において1580〜162
0cm-1の範囲のピークPA(ピーク強度IA)及び13
50〜1370cm-1の範囲のピークPB(ピーク強度
IB)を有していてその強度比R=IB/IAが0.15
であり、1580〜1620cm-1の範囲のピークの半
値幅が22.2cm-1である人造黒鉛粉末KS−44
(ティムカル社製、商品名)94重量%に、蒸留水で分
散させたスチレン−ブタジエンゴムを固形分で6重量%
となるように加えた。これをディスパーザーで混合し、
スラリー状としたものを、負極集電体である厚さ18μ
mの銅箔上に均一に塗布し、乾燥後、直径12.5mm
の円盤状に打ち抜いて負極とした。Preparation of negative electrode; lattice plane (0
The d value of the 02 plane is 0.336 nm, and the crystallite size (L
c) is 264 nm, ash content is 0.04% by weight, median diameter by laser diffraction / scattering method is 17 μm, BET specific surface area is 8.9 m 2 / g, and Raman spectrum analysis using argon ion laser light is 1580- 162
Peak P A (peak intensity I A ) and 13 in the range of 0 cm −1
It has a peak P B (peak intensity I B ) in the range of 50 to 1370 cm −1 and its intensity ratio R = I B / I A is 0.15.
, And the artificial graphite powder KS-44 half-width of the peak in the range of 1580~1620Cm -1 is 22.2Cm -1
(Timcal, trade name) 94% by weight, styrene-butadiene rubber dispersed in distilled water 6% by weight in solid content
Was added. Mix this with a disperser,
The slurry was used as a negative electrode current collector with a thickness of 18μ.
m evenly coated on copper foil, dried and then 12.5 mm in diameter
It was punched into a disk shape to obtain a negative electrode.
【0032】コイン型セルの作製;正極導電体を兼ねる
ステンレス鋼製の缶体に正極を収容し、その上に電解液
を含浸させたポリエチレン製のセパレータを介して負極
を載置した。この缶体と負極導電体を兼ねる封口板と
を、絶縁用のガスケットを介してかしめて密封し、コイ
ン型セルを作製した。Preparation of coin type cell: The positive electrode was housed in a stainless steel can which also functions as a positive electrode conductor, and the negative electrode was placed on the positive electrode via a polyethylene separator impregnated with an electrolytic solution. The can body and the sealing plate which also serves as the negative electrode conductor were caulked and sealed via an insulating gasket to produce a coin cell.
【0033】コイン型セルの評価;25℃において、充
電終止電圧4.2V、放電終止電圧2.5Vで0.5m
A定電流で充放電試験を行い、2サイクル目の放電容量
を2サイクル目の充電容量で割った値を2サイクル目充
放電効率と定義した。また、4サイクル後に同一条件に
て充電したのち充電状態で85℃で72時間保存した
後、放電させ、このときの放電容量を4サイクル目の充
電容量で割った値を保存特性と定義した。Evaluation of coin-type cell: 0.5 m at 25 ° C. at a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V
A charge / discharge test was performed at a constant current A, and a value obtained by dividing the discharge capacity at the second cycle by the charge capacity at the second cycle was defined as the charge / discharge efficiency at the second cycle. Further, after being charged under the same conditions after 4 cycles, after being stored in a charged state at 85 ° C. for 72 hours and then discharged, the value obtained by dividing the discharge capacity at this time by the charge capacity at the 4th cycle was defined as the storage characteristic.
【0034】実施例1
容量比でエチレンカーボネート:ジエチルカーボネート
=1:1の混合液に、フルオロアセトニトリルを2重量
%となるように溶解した。これにLiPF6を1モル/
リットルとなるように溶解して電解液を調製した。なお
LiPF6は乾燥アルゴン雰囲気下で十分に乾燥して用
いた。Example 1 Fluoroacetonitrile was dissolved in a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 in a volume ratio of 2% by weight. LiPF 6 in an amount of 1 mol /
An electrolytic solution was prepared by dissolving so as to have a volume of 1 liter. LiPF 6 was used after being sufficiently dried in a dry argon atmosphere.
【0035】実施例2
容量比でエチレンカーボネート:ジエチルカーボネート
=1:1の混合液に、α−フルオロプロピオニトリルを
2重量%となるように溶解した。これにLiPF6を1
モル/リットルとなるように溶解して電解液を調製し
た。Example 2 α-Fluoropropionitrile was dissolved in a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 in a volume ratio of 2% by weight. Add 1 LiPF 6 to this
An electrolytic solution was prepared by dissolving so as to have a mol / liter.
【0036】実施例3
容量比でエチレンカーボネート:ジエチルカーボネート
=1:1の混合液に、2−フルオロベンゾニトリルを2
重量%となるように溶解した。これにLiPF 6を1モ
ル/リットルとなるように溶解して電解液を調製した。Example 3
Volume ratio of ethylene carbonate: diethyl carbonate
2: 1 of 2-fluorobenzonitrile to a mixed solution of = 1: 1
It dissolved so that it might be a weight%. LiPF 61 mo
The electrolytic solution was prepared by dissolving so as to have a volume of 1 / liter.
【0037】実施例4
容量比でエチレンカーボネート:ジエチルカーボネート
=1:1の混合液に、ビニレンカーボネート及びフルオ
ロアセトニトリルをそれぞれ2重量%となるように溶解
した。これにLiPF6を1モル/リットルとなるよう
に溶解して電解液を調製した。Example 4 Vinylene carbonate and fluoroacetonitrile were dissolved in a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 in a volume ratio of 2% by weight each. LiPF 6 was dissolved in this to a concentration of 1 mol / liter to prepare an electrolytic solution.
【0038】実施例5
プロピレンカーボネートにフルオロアセトニトリルを2
重量%となるように溶解した混合液に、LiPF6を1
モル/リットルとなるように溶解して電解液を調製し
た。Example 5 Propylene carbonate was mixed with 2 parts of fluoroacetonitrile.
1% LiPF 6 was added to the mixed solution which was dissolved so as to become the weight%.
An electrolytic solution was prepared by dissolving so as to have a mol / liter.
【0039】実施例6
容量比でエチレンカーボネート:ジエチルカーボネート
=1:1の混合液に、フルオロアセトニトリルを2重量
%となるように溶解した。これにLiBF4を1モル/
リットルとなるように溶解して電解液を調製した。Example 6 Fluoroacetonitrile was dissolved in a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 in a volume ratio of 2% by weight. 1 mol of LiBF 4
An electrolytic solution was prepared by dissolving so as to have a volume of 1 liter.
【0040】実施例7
γ−ブチロラクトンにフルオロアセトニトリルを2重量
%となるように溶解した混合液に、LiBF4を1モル
/リットルとなるように溶解して電解液を調製した。Example 7 LiBF 4 was dissolved in a mixed solution of γ-butyrolactone dissolved in 2% by weight of fluoroacetonitrile at 1 mol / liter to prepare an electrolytic solution.
【0041】実施例8
γ−ブチロラクトンにフルオロアセトニトリルを2重量
%となるように溶解した混合液に、LiPF6を1モル
/リットルとなるように溶解して電解液を調製した。Example 8 LiPF 6 was dissolved in a mixed solution of γ-butyrolactone in which 2% by weight of fluoroacetonitrile was dissolved to prepare an electrolytic solution of 1 mol / liter.
【0042】比較例1
容量比でエチレンカーボネート:ジエチルカーボネート
=1:1の混合液に、LiPF6を1モル/リットルと
なるように溶解して電解液を調製した。Comparative Example 1 An electrolytic solution was prepared by dissolving LiPF 6 in a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 in a volume ratio of 1 mol / liter.
【0043】比較例2
プロピレンカーボネートに、LiPF6を1モル/リッ
トルとなるように溶解して電解液を調製した。Comparative Example 2 LiPF 6 was dissolved in propylene carbonate to a concentration of 1 mol / liter to prepare an electrolytic solution.
【0044】比較例3
γ−ブチロラクトンに、LiBF4を1モル/リットル
となるように溶解して電解液を調製した。Comparative Example 3 An electrolytic solution was prepared by dissolving LiBF 4 in γ-butyrolactone at 1 mol / liter.
【0045】[0045]
【表1】 [Table 1]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇恵 誠 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 Fターム(参考) 5H029 AJ02 AJ04 AK03 AL07 AM03 AM04 AM05 AM07 HJ01 HJ13 5H050 AA08 BA17 CA08 CB07 HA01 HA13 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Makoto Ue 3-3-1 Chuo 8-chome, Ami Town, Inashiki District, Ibaraki Prefecture Mitsubishi Chemical Corporation Tsukuba Research Center F-term (reference) 5H029 AJ02 AJ04 AK03 AL07 AM03 AM04 AM05 AM07 HJ01 HJ13 5H050 AA08 BA17 CA08 CB07 HA01 HA13
Claims (7)
ウムを吸蔵及び放出することが可能な材料を含む負極、
リチウムを吸蔵及び放出することが可能な材料を含む正
極、並びに非水溶媒にリチウム塩を溶解してなる電解液
を含む非水系電解液二次電池であって、電解液中にフッ
素化されたニトリル化合物を含有することを特徴とする
非水系電解液二次電池。1. A negative electrode comprising metallic lithium, a lithium alloy, or a material capable of inserting and extracting lithium.
A non-aqueous electrolyte secondary battery comprising a positive electrode containing a material capable of inserting and extracting lithium, and an electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent, wherein the secondary battery is fluorinated in the electrolytic solution. A non-aqueous electrolyte secondary battery comprising a nitrile compound.
オロアセトニトリル、α−フルオロプロピオニトリル、
及びβ−フルオロプロピオニトリルよりなる群から選ば
れたものであることを特徴とする請求項1に記載の非水
系電解液二次電池。2. The fluorinated nitrile compound is fluoroacetonitrile, α-fluoropropionitrile,
The non-aqueous electrolyte secondary battery according to claim 1, which is selected from the group consisting of and β-fluoropropionitrile.
物が、電解液の0.01〜10重量%を占めることを特
徴とする請求項1又は2記載の非水系電解液二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the fluorinated nitrile compound in the electrolyte occupies 0.01 to 10% by weight of the electrolyte.
合物又は環状カーボネートが20容量%以上を占め、か
つこれを含めて炭素数3〜9のラクトン化合物、環状カ
ーボネート、鎖状カーボネート、鎖状エーテル、及び鎖
状カルボン酸エステルよりなる群から選ばれたものが7
0容量%以上を占める混合溶媒であることを特徴とする
請求項1ないし3のいずれかに記載の非水系電解液二次
電池。4. The lactone compound or cyclic carbonate having 3 to 9 carbon atoms occupies 20% by volume or more in the non-aqueous solvent, and the lactone compound, cyclic carbonate or chain carbonate having 3 to 9 carbon atoms including the lactone compound or cyclic carbonate, 7 selected from the group consisting of chain ethers and chain carboxylic acid esters
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, which is a mixed solvent occupying 0% by volume or more.
LiCF3SO3、LiN(CF3SO2)2、LiN(C2
F5SO2)2、LiN(CF3SO2)(C4F9SO2)、
LiPF3(C2F5)3、LiBF2(CF3)2、及びL
iBF3(C2F 5)2よりなる群から選ばれたものである
ことを特徴とする請求項1ないし4のいずれかに記載の
非水系電解液二次電池。5. The lithium salt is LiPF6, LiBFFour,
LiCF3SO3, LiN (CF3SO2)2, LiN (C2
FFiveSO2)2, LiN (CF3SO2) (CFourF9SO2),
LiPF3(C2FFive)3, LiBF2(CF3)2, And L
iBF3(C2F Five)2Is selected from the group consisting of
The method according to any one of claims 1 to 4, characterized in that
Non-aqueous electrolyte secondary battery.
な負極材料が、X線回折における格子面(002面)の
d値が0.335〜0.34nmの炭素材料であること
を特徴とする請求項1ないし5のいずれかに記載の非水
系電解液二次電池。6. A negative electrode material capable of inserting and extracting lithium is a carbon material having a d-value of a lattice plane (002 plane) of 0.335 to 0.34 nm in X-ray diffraction. The non-aqueous electrolyte secondary battery according to claim 1.
水系電解液二次電池に用いる非水系電解液。7. A non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001188963A JP4934917B2 (en) | 2001-06-22 | 2001-06-22 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001188963A JP4934917B2 (en) | 2001-06-22 | 2001-06-22 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003007336A true JP2003007336A (en) | 2003-01-10 |
JP2003007336A5 JP2003007336A5 (en) | 2008-07-31 |
JP4934917B2 JP4934917B2 (en) | 2012-05-23 |
Family
ID=19027959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001188963A Expired - Fee Related JP4934917B2 (en) | 2001-06-22 | 2001-06-22 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4934917B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1508934A1 (en) * | 2003-08-20 | 2005-02-23 | Samsung SDI Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising the same |
JP2005071976A (en) * | 2003-04-01 | 2005-03-17 | Sony Corp | Battery |
JP2008277002A (en) * | 2007-04-26 | 2008-11-13 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same |
JP2010238385A (en) * | 2009-03-30 | 2010-10-21 | Kanto Denka Kogyo Co Ltd | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery |
US7846588B2 (en) | 2004-06-30 | 2010-12-07 | Samsung Sdi Co., Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
KR20110014583A (en) * | 2008-05-07 | 2011-02-11 | 히다치 막셀 가부시키가이샤 | Non-aqueous Secondary Battery and Electronic Equipment |
US7943257B2 (en) | 2001-12-21 | 2011-05-17 | Samsung Sdi Co., Ltd. | Electrolyte solvent and rechargeable lithium battery |
WO2012029388A1 (en) * | 2010-09-02 | 2012-03-08 | 日本電気株式会社 | Secondary battery |
WO2012029386A1 (en) * | 2010-09-02 | 2012-03-08 | 日本電気株式会社 | Secondary battery |
WO2014108979A1 (en) * | 2013-01-09 | 2014-07-17 | パナソニック株式会社 | Nonaqueous electrolyte solution for secondary battery, and lithium secondary battery |
WO2014136648A1 (en) * | 2013-03-04 | 2014-09-12 | ダイキン工業株式会社 | Electrolytic solution, electrochemical device, lithium ion secondary battery, and module |
US9093716B2 (en) | 2007-04-05 | 2015-07-28 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same |
CN106104898A (en) * | 2014-03-27 | 2016-11-09 | 大金工业株式会社 | Electrolyte, electrochemical device, lithium rechargeable battery and assembly |
EP3312929A4 (en) * | 2015-06-22 | 2018-04-25 | Soulbrain Co., Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
US10243242B2 (en) | 2013-12-20 | 2019-03-26 | Daikin Industries, Ltd. | Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07320785A (en) * | 1994-05-26 | 1995-12-08 | Sony Corp | Nonaqueous electrolytic secondary battery |
JP2000164249A (en) * | 1998-11-27 | 2000-06-16 | Mitsui Chemicals Inc | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery |
JP2001126762A (en) * | 1999-10-29 | 2001-05-11 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte secondary battery |
JP2001143750A (en) * | 1999-11-15 | 2001-05-25 | Central Glass Co Ltd | Electorlyte for electrochemical device |
JP2002175948A (en) * | 2000-12-08 | 2002-06-21 | Asahi Glass Co Ltd | Electric double layer capacitor and non-aqueous electrolyte |
-
2001
- 2001-06-22 JP JP2001188963A patent/JP4934917B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07320785A (en) * | 1994-05-26 | 1995-12-08 | Sony Corp | Nonaqueous electrolytic secondary battery |
JP2000164249A (en) * | 1998-11-27 | 2000-06-16 | Mitsui Chemicals Inc | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery |
JP2001126762A (en) * | 1999-10-29 | 2001-05-11 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte secondary battery |
JP2001143750A (en) * | 1999-11-15 | 2001-05-25 | Central Glass Co Ltd | Electorlyte for electrochemical device |
JP2002175948A (en) * | 2000-12-08 | 2002-06-21 | Asahi Glass Co Ltd | Electric double layer capacitor and non-aqueous electrolyte |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7943257B2 (en) | 2001-12-21 | 2011-05-17 | Samsung Sdi Co., Ltd. | Electrolyte solvent and rechargeable lithium battery |
JP2005071976A (en) * | 2003-04-01 | 2005-03-17 | Sony Corp | Battery |
US9190666B2 (en) | 2003-04-01 | 2015-11-17 | Sony Corporation | Battery |
US7736794B2 (en) | 2003-04-01 | 2010-06-15 | Sony Corporation | Battery having electrolye with high molecular weight compound |
US8828579B2 (en) | 2003-04-01 | 2014-09-09 | Sony Corporation | Battery |
EP1508934A1 (en) * | 2003-08-20 | 2005-02-23 | Samsung SDI Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising the same |
JP2005072003A (en) * | 2003-08-20 | 2005-03-17 | Samsung Sdi Co Ltd | ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME |
US7718322B2 (en) | 2003-08-20 | 2010-05-18 | Samsung Sdi Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same |
US7846588B2 (en) | 2004-06-30 | 2010-12-07 | Samsung Sdi Co., Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
US11367899B2 (en) | 2007-04-05 | 2022-06-21 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same |
US11616253B2 (en) | 2007-04-05 | 2023-03-28 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same |
US10468720B2 (en) | 2007-04-05 | 2019-11-05 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same |
US9853326B2 (en) | 2007-04-05 | 2017-12-26 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same |
US9590270B2 (en) | 2007-04-05 | 2017-03-07 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same |
US9281541B2 (en) | 2007-04-05 | 2016-03-08 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same |
US9093716B2 (en) | 2007-04-05 | 2015-07-28 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same |
JP2008277002A (en) * | 2007-04-26 | 2008-11-13 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same |
US20110052980A1 (en) * | 2008-05-07 | 2011-03-03 | Hideo Sakata | Nonaqueous secondary battery and electronic device |
US8795884B2 (en) * | 2008-05-07 | 2014-08-05 | Hitachi Maxell, Ltd. | Nonaqueous secondary battery and electronic device |
KR101649260B1 (en) * | 2008-05-07 | 2016-08-19 | 히다치 막셀 가부시키가이샤 | Nonaqueous secondary battery and electronic device |
KR20110014583A (en) * | 2008-05-07 | 2011-02-11 | 히다치 막셀 가부시키가이샤 | Non-aqueous Secondary Battery and Electronic Equipment |
JP2010238385A (en) * | 2009-03-30 | 2010-10-21 | Kanto Denka Kogyo Co Ltd | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery |
JPWO2012029388A1 (en) * | 2010-09-02 | 2013-10-28 | 日本電気株式会社 | Secondary battery |
JPWO2012029386A1 (en) * | 2010-09-02 | 2013-10-28 | 日本電気株式会社 | Secondary battery |
US9466827B2 (en) | 2010-09-02 | 2016-10-11 | Nec Corporation | Secondary battery |
WO2012029388A1 (en) * | 2010-09-02 | 2012-03-08 | 日本電気株式会社 | Secondary battery |
WO2012029386A1 (en) * | 2010-09-02 | 2012-03-08 | 日本電気株式会社 | Secondary battery |
US9653757B2 (en) | 2013-01-09 | 2017-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Nonaqueous electrolyte solution for secondary battery, and lithium secondary battery |
JPWO2014108979A1 (en) * | 2013-01-09 | 2017-01-19 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte for secondary battery and lithium secondary battery |
WO2014108979A1 (en) * | 2013-01-09 | 2014-07-17 | パナソニック株式会社 | Nonaqueous electrolyte solution for secondary battery, and lithium secondary battery |
WO2014136648A1 (en) * | 2013-03-04 | 2014-09-12 | ダイキン工業株式会社 | Electrolytic solution, electrochemical device, lithium ion secondary battery, and module |
US9666905B2 (en) | 2013-03-04 | 2017-05-30 | Daikin Industries, Ltd. | Electrolytic solution, electrochemical device, lithium ion secondary battery, and module |
JP6011713B2 (en) * | 2013-03-04 | 2016-10-19 | ダイキン工業株式会社 | Electrolytic solution, electrochemical device, lithium ion secondary battery, and module |
US10243242B2 (en) | 2013-12-20 | 2019-03-26 | Daikin Industries, Ltd. | Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module |
US10062926B2 (en) | 2014-03-27 | 2018-08-28 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, lithium ion secondary battery, and module |
CN106104898A (en) * | 2014-03-27 | 2016-11-09 | 大金工业株式会社 | Electrolyte, electrochemical device, lithium rechargeable battery and assembly |
EP3312929A4 (en) * | 2015-06-22 | 2018-04-25 | Soulbrain Co., Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
JP2018523270A (en) * | 2015-06-22 | 2018-08-16 | ソウルブレイン シーオー., エルティーディー. | ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME |
US10720665B2 (en) | 2015-06-22 | 2020-07-21 | Soulbrain Co., Ltd. | Lithium secondary battery including a perfluoro nitrile compound |
Also Published As
Publication number | Publication date |
---|---|
JP4934917B2 (en) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4233819B2 (en) | Non-aqueous electrolyte secondary battery | |
US20090311609A1 (en) | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution | |
JP2003282138A (en) | Non-aqueous electrolyte secondary battery and electrolyte used therefor | |
WO2000079632A1 (en) | Nonaqueous electrolytic solution type secondary battery | |
JP2000133304A (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP4934917B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor | |
JP2004014134A (en) | Non-aqueous electrolyte secondary battery and electrolyte used therefor | |
JP2003086248A (en) | Non-aqueous electrolyte secondary battery and electrolyte | |
JP2003132944A (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
JP4197079B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4910239B2 (en) | Non-aqueous electrolyte secondary battery | |
EP1096592A1 (en) | Secondary battery having nonaqueous electrolyte solution | |
JP4211159B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3978960B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003086247A (en) | Non-aqueous electrolyte secondary battery | |
JP2002298912A (en) | Non-aqueous electrolyte secondary battery and electrolyte used therefor | |
JP2004103433A (en) | Non-aqueous electrolyte secondary battery and electrolyte used therefor | |
JP4568920B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor | |
JP4288976B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
WO2017130245A1 (en) | Lithium battery | |
JP2002352851A (en) | Non-aqueous electrolyte secondary battery | |
JP4098997B2 (en) | Non-aqueous electrolyte secondary battery and electrolyte used therefor | |
JP4308477B2 (en) | Non-aqueous electrolyte secondary battery and electrolyte used therefor | |
JP2002198090A (en) | Non-aqueous electrolyte secondary battery | |
JP4706088B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080618 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080618 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20090611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4934917 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees | ||
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |