JP2003005223A - Method for manufacturing liquid crystal display device with high contrast ratio asymmetric electro-optical characteristics - Google Patents
Method for manufacturing liquid crystal display device with high contrast ratio asymmetric electro-optical characteristicsInfo
- Publication number
- JP2003005223A JP2003005223A JP2001230583A JP2001230583A JP2003005223A JP 2003005223 A JP2003005223 A JP 2003005223A JP 2001230583 A JP2001230583 A JP 2001230583A JP 2001230583 A JP2001230583 A JP 2001230583A JP 2003005223 A JP2003005223 A JP 2003005223A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- alignment
- flcd
- crystal display
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000004873 anchoring Methods 0.000 claims abstract description 14
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims abstract description 13
- 239000004990 Smectic liquid crystal Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims description 20
- 230000007547 defect Effects 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims 1
- 230000007704 transition Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 4
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 13
- 210000002858 crystal cell Anatomy 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
(57)【要約】 (修正有)
【課題】 HV−FLCDにおいて、動作電圧の低減、
高コントラスト化、高温時の動作の安定を図る。
【解決手段】 相転移において等方相−カイラルネマテ
ィック液晶相−カイラルスメクティックC液晶相の系列
をとる物質がある。この場合は途中でスメクティックA
相をとらないところが特徴である。このような強誘電性
液晶を用いた電気光学セルは非対称の電気光学特性を示
すことが知られている。これはHalf−V shap
ed switching現象と呼ばれている。このよ
うな強誘電性液晶ディスプレイをHV−FLCDと略記
する。本発明は液晶分子の方位角表面アンカリング強度
をコントロールすることにより、動作電圧の低減および
非対称性の向上、すなわち暗部動作時の光漏れの低減な
ど動作特性の向上を特徴としたHV−FLCDなおかつ
高温において安定動作を示す素子を提供する。
(57) [Summary] (with correction) [PROBLEMS] To reduce the operating voltage in an HV-FLCD,
High contrast and stable operation at high temperatures. SOLUTION: There is a substance that takes a series of phase transition of isotropic phase-chiral nematic liquid crystal phase-chiral smectic C liquid crystal phase. In this case, smectic A
The feature is that it does not take phase. It is known that an electro-optical cell using such a ferroelectric liquid crystal exhibits asymmetric electro-optical characteristics. This is a Half-V shape
This is called the ed switching phenomenon. Such a ferroelectric liquid crystal display is abbreviated as HV-FLCD. The present invention controls an azimuthal surface anchoring strength of liquid crystal molecules to reduce operating voltage and improve asymmetry, that is, an HV-FLCD characterized by an improvement in operating characteristics such as a reduction in light leakage during dark area operation. Provided is an element that exhibits stable operation at high temperatures.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液晶表示素子、特
に強誘電性液晶電気光学または表示素子において高いコ
ントラスト比を実現するための製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method for realizing a high contrast ratio in a liquid crystal display element, particularly in a ferroelectric liquid crystal electro-optic or display element.
【0002】[0002]
【従来の技術】クラーク及びラガーウォルにより提案さ
れた強誘電性液晶表示〔特開昭56−107216号公
報〕は双安定性を示し、且つ高速度応答であるため動画
表示用液晶表示素子として期待されてきた。しかし、ジ
グ−ザグ欠陥という欠陥が生じ易く、そのため光漏れが
生じ高コントラスト比の液晶の表示を実現するのが難し
かった。過去においてもC−1及びC−2一様相の定
義(J.Kanbe et al:Ferroelec
trics,114,3−26,1991;M.Kod
en et al:Jpn.J.Appl.Phys.
31,3632−3635(1992)、プレティル
トの値(Kanbe et al;Koden et
al;P.Watson,P.J.Bos;Phys.
Rev.E56 R3769−R3711(199
7); H. Furue et al: Mol.
Cryst. Liq.Cryst.328,193−
200(1999))、配向膜表面の粗さの関係
(H.Furue et al;Mol.Cryst.
Liq.Cryst.328,193−200(199
9))、光配向技術(R.Kurihara et
al:SID Digestof Tech.Pape
rs30,807−809(2000))についての報
告がある。さらに相転移系列においてスメクティック
A相を欠く系ではいわゆるHalf−V switch
ingを示すことが報告されている(Y.Asano
et al:Jpn.J.Appl.Phys.38
5977−5983(1999))。本発明は〜に
係わる本発明者の研究を基礎に、のHV−FLCDに
おいて在来の技術ではアンカリングについては示されて
いない。アンカリング強度の制御によりH−V−FLC
Dに好ましい電気光学特性を与えることを目的としてい
る。普通の在来法では強いアンカリング(10−3J/
m2)程度となってしまうためアンカリング強度は制御
されていなかった。本発明はアンカリングの強さを制御
することにより好ましい特性を実現し、さらに高分子安
定法の導入により高温特性を安定化する技術を呈示して
いる。2. Description of the Related Art A ferroelectric liquid crystal display proposed by Clark and Lagerwall [JP-A-56-107216] shows bistability and has a high speed response, and is expected as a liquid crystal display device for displaying moving images. Came. However, defects such as zig-zag defects are likely to occur, which causes light leakage, and it has been difficult to realize liquid crystal display with a high contrast ratio. Even in the past, the definition of C-1 and C-2 uniform phases (J. Kanbe et al: Ferreroelec
trics, 114, 3-26, 1991; Kod
en et al: Jpn. J. Appl. Phys.
31,3632-3635 (1992), Pretilt value (Kanbe et al; Koden et al.
al; P. Watson, P.M. J. Bos; Phys.
Rev. E56 R3769-R3711 (199
7); Furue et al: Mol.
Cryst. Liq. Cryst. 328, 193-
200 (1999)), the relationship between the roughness of the alignment film surface (H. Furue et al; Mol. Cryst.
Liq. Cryst. 328, 193-200 (199
9)), photo-alignment technology (R. Kurihara et al.
al: SID Digestof Tech. Paper
There is a report about rs30, 807-809 (2000). Furthermore, in a system lacking the smectic A phase in the phase transition series, the so-called Half-V switch is used.
ing has been reported (Y. Asano
et al: Jpn. J. Appl. Phys. 38
5977-5983 (1999)). The present invention is based on the inventor's research relating to-the anchoring is not shown in the conventional technique in the HV-FLCD. HVFLC by controlling anchoring strength
The purpose is to give D favorable electro-optical characteristics. Strong anchoring (10 -3 J /
The anchoring strength was not controlled because it was about m 2 ). The present invention presents a technique for realizing desirable properties by controlling the strength of anchoring and stabilizing high temperature properties by introducing a polymer stabilization method.
【0003】[0003]
【本発明が解決しようとする課題】HV−FLCDにお
いて、動作電圧の低減、動作時明状態の明るさ(白
さ)の向上、動作時暗状態の暗さ(黒さ)の向上、お
よび高温における動作の安定が求められている。これ
らの事項が解決されるべき課題である。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In an HV-FLCD, the operating voltage is reduced, the brightness (whiteness) of the bright state during operation is improved, the darkness (blackness) of the dark state during operation is improved, and the high temperature is increased. Is required to be stable. These matters are issues to be solved.
【0004】[0004]
【課題を解決するための手段】動作電圧の低減
光配向により飽和動作電圧値を5V(パルス幅1ms)
ぐらいにすることができる。
動作明状態の明るさの向上
光配向によりFLC分子の振れ角をψ=45°とするこ
とができる。明るさと振れ角φはI=I0sin2(2
ψ)の関係で与えられるのでψ=45°とできれば最も
明るい状態が実現できる。
作時暗状態の暗さ(黒さ)の向上
動作時の暗状態で最もよい暗状態(黒)を得るには中程
度のアンカリング強度を与えるようなラビング加工が望
ましい。
高温における動作の安定
高温における動作を安定するには高分子安定化が有効で
ある。しかし最適モノマー添加量として1wt%位が望
ましい。それ以上添加モノマーが多いと高電圧動作と明
状態の明るさの低下が生じる。[Means for Solving the Problems] Saturation operating voltage value is 5 V (pulse width 1 ms) due to reduced photo-alignment of operating voltage.
Can be about Improvement of brightness in bright state of operation The deflection angle of FLC molecules can be set to ψ = 45 ° by photo-alignment. The brightness and the deflection angle φ are I = I 0 sin 2 (2
ψ), the brightest state can be realized if ψ = 45 °. Improving the darkness (blackness) of the dark state during operation In order to obtain the best darkness (black) in the dark state during operation, rubbing that gives a medium degree of anchoring strength is desirable. Stabilization of operation at high temperature Polymer stabilization is effective for stabilizing operation at high temperature. However, about 1 wt% is preferable as the optimum addition amount of the monomer. If the amount of added monomer is more than that, high voltage operation and decrease in brightness in the bright state occur.
【発明の形態】本発明の実施の形態の例を図面を参照に
説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an embodiment of the present invention will be described with reference to the drawings.
【0005】図1に示すように、この発明の形態に係わ
る液晶表示素子は一対の透明基板(たとえばガラス基
板)1a、1bで液晶セル基板を構成し、その内部に液
晶層2(この場合は強誘電性液晶スメクティックC
*相)を保持する。上下の基板には透明電極3a(P
X)、3bを配置し液晶に電圧を印加する。透明導電膜
として通常ITOを用いる。As shown in FIG. 1, in the liquid crystal display element according to the embodiment of the present invention, a pair of transparent substrates (for example, glass substrates) 1a and 1b constitute a liquid crystal cell substrate, and a liquid crystal layer 2 (in this case, a liquid crystal cell substrate) is formed therein. Ferroelectric liquid crystal smectic C
* Phase) is retained. Transparent electrodes 3a (P
X) and 3b are arranged and a voltage is applied to the liquid crystal. ITO is usually used as the transparent conductive film.
【0006】液晶セルの内面壁には液晶配向膜4a、4
bが塗布されている。Liquid crystal alignment films 4a and 4a are formed on the inner wall of the liquid crystal cell.
b is applied.
【0007】カラー表示のためカラーフィルター5を用
いる。フィールドシークェンシャル方式ではカラーフィ
ルターは不要である。アクティブマトリックス表示では
薄膜トランジスター(TFT)Q(7)、ピクセル電極
PX(3a)、ブラックストライプBSが用いられる。
TFTの代わりに結晶シリコントランジスターなどを用
いてもよい。液晶表示として用いるための2枚の基板と
液晶よりなるセルを2枚の偏光板6a、6bに挟んだ形
で用いられる。反射型で用いるときは下側の基板1aの
上に光反射板を配し、偏光板は1枚でよい。A color filter 5 is used for color display. No color filter is required in the field sequential method. In the active matrix display, a thin film transistor (TFT) Q (7), a pixel electrode PX (3a) and a black stripe BS are used.
A crystalline silicon transistor or the like may be used instead of the TFT. It is used in such a manner that a cell composed of two substrates and a liquid crystal for use as a liquid crystal display is sandwiched between two polarizing plates 6a and 6b. When the reflective type is used, a light reflecting plate may be arranged on the lower substrate 1a and one polarizing plate may be used.
【実施例】以下、本発明の実施例を示し、本発明を更に
詳細に説明する。しかしながら、本発明はこれらの実施
例に限定されるものではない。EXAMPLES Hereinafter, the present invention will be described in more detail by showing Examples of the present invention. However, the invention is not limited to these examples.
【0008】(実施例1)ITO透明電極付きのガラス
基板に、日産化学工業(株)製のポリイミド配向膜RN
−1199を約0.03μmの厚さで形成した後、ラビ
ング処理又は光配向処理を施してアンカリングエネルギ
ーの異なるポリイミド配向膜付きガラス基板を得た。こ
こでラビング処理はラビング布とポリイミド膜が触れる
ところから0.02mmの押し込み量でラビングしたも
のと0.15mmの押し込み量でラビングしたものの2
種類を基板2枚ずつ作製した。光配向処理は中心波長3
10nmで強度26mW/cm2の無偏光紫外線斜方を
基板に対して斜め45°から4時間照射して行った。こ
れら3種類の基板2枚ずつをそれぞれ配向膜が形成され
た面が内側になるようにして2μmの間隔をもって対向
させて液晶セルを作製した。この時、液晶セルの2枚の
基板のラビング方向はアンチパラレル配向になるように
設定した。次に強誘電性液晶「R2301(Ps=3.
2nC/cm2)」(クラリアント社製、カイラルスメ
クティックC−カイラルネマティック相転移温度66
℃、カイラルネマティック−等方性液体相転移温度87
〜90℃)を100℃に保ちながら等方性液体相のまま
注入した。このセルにカイラルネマティック相からカイ
ラルスメクティックC相にかけて5Vの直流電圧を印加
し均一配向を確認後、直流電圧の印加を止めて室温まで
温度を下げることにより、強誘電性液晶セルを作製し
た。この液晶セルの一方の表面に、1枚の偏光板の透過
軸を得られた液晶セルに電圧を印加していないときの液
晶分子の配向方向と一致させ、もう一方の表面には、別
のもう1枚の偏光板の透過軸を液晶分子の配向方向と直
交させるように貼合して液晶表示素子を作製した。第2
図にこのようにして製造した液晶表示素子の電気光学特
性を示した。これから分かるようにラビング時の押し込
み量が小さい、つまりアンカリングエネルギーが小さい
と透過率が高くなった。さらに光配向の場合では、ラビ
ングよりもアンカリングエネルギーが小さいために、透
過率がさらに高くなった。透過率Tと振れ角ψはT=I
/I0=sin2(2ψ)の関係で与えられる。光配向
セルでは6V時にψ=45°を確認した。また、電圧無
印加状態から電圧印加状態、電圧印加状態から電圧無印
加状態への応答速度は、1ms以下であり、非常に高速
なスイッチングが可能であることが確かめられた。Example 1 On a glass substrate with an ITO transparent electrode, a polyimide alignment film RN manufactured by Nissan Chemical Industries, Ltd.
After forming -1199 with a thickness of about 0.03 μm, rubbing treatment or photo-alignment treatment was performed to obtain glass substrates with polyimide alignment films having different anchoring energies. Here, the rubbing treatment was carried out by rubbing with a pushing amount of 0.02 mm and rubbing with a pushing amount of 0.15 mm from where the rubbing cloth and the polyimide film touched each other.
Two types of substrates were prepared. Centering wavelength 3 for photo-alignment
This was performed by irradiating the substrate with a non-polarized ultraviolet ray having an intensity of 26 mW / cm 2 at 10 nm from an angle of 45 ° for 4 hours. A liquid crystal cell was produced by facing each of the two substrates of these three types so that the surfaces on which the alignment films were formed faced each other at an interval of 2 μm. At this time, the rubbing directions of the two substrates of the liquid crystal cell were set to be antiparallel alignment. Next, the ferroelectric liquid crystal “R2301 (P s = 3.
2 nC / cm 2 ) ”(Clariant, Chiral Smectic C-Chiral Nematic Phase Transition Temperature 66
C, chiral nematic-isotropic liquid phase transition temperature 87
˜90 ° C.) was maintained at 100 ° C. while being injected as an isotropic liquid phase. A DC voltage of 5 V was applied to the cell from the chiral nematic phase to the chiral smectic C phase to confirm uniform alignment, and then the application of the DC voltage was stopped and the temperature was lowered to room temperature to prepare a ferroelectric liquid crystal cell. On one surface of this liquid crystal cell, the transmission axis of one polarizing plate was made to coincide with the alignment direction of liquid crystal molecules when no voltage was applied to the liquid crystal cell, and on the other surface, another A liquid crystal display device was produced by bonding the other polarizing plate so that the transmission axis thereof was orthogonal to the alignment direction of the liquid crystal molecules. Second
The figure shows the electro-optical characteristics of the liquid crystal display device manufactured as described above. As can be seen from this, the transmittance increased when the pushing amount during rubbing was small, that is, when the anchoring energy was small. Further, in the case of photo-alignment, the anchoring energy was smaller than that of rubbing, and therefore the transmittance was higher. The transmittance T and the deflection angle ψ are T = I
/ I 0 = sin 2 (2ψ). In the photo-alignment cell, ψ = 45 ° was confirmed at 6V. Further, the response speed from the voltage non-application state to the voltage application state and from the voltage application state to the voltage non-application state was 1 ms or less, and it was confirmed that extremely high-speed switching was possible.
【0009】(実施例2)スメクティックA相−ネマテ
ィック相を相系列として有し、かつ36℃でスメクティ
ックA相を呈する液晶性ジアクリレートモノマー「2A
363」(大日本インキ化学工業製)を1質量部、強誘
電性液晶組成物「R2301(Ps=8.9nC/cm
2)」(クラリアント社製、カイラルスメクティックC
−カイラルネマティック相転移温度66℃、カイラルネ
マティック−等方性液体相転移温度85〜87℃)99
質量部及び光重合開始剤「イルガキュアー651」(チ
バスペシャリティケミカルズ製)0.01質量部からな
る液晶性混合物を調整した。次に、この液晶性混合物を
実施例1と同様に作製したセルに注入し、カイラルネマ
ティック相からカイラルスメクティックC相にかけて5
Vの直流電圧を印加し均一配向を確認後、直流電圧の印
加を止めて室温まで温度を下げた。次に、室温で中心波
長365nmで強度2mW/cm2の紫外線を50秒照
射して液晶性ジアクリレートモノマー「2A363」を
光硬化させた。この液晶表示素子の電気光学特性は、実
施例1と同様にアンカリングエネルギーが小さい素子ほ
ど透過率が高いことが確認できた。さらに、高温におけ
る信頼性も問題なかった。Example 2 A liquid crystalline diacrylate monomer "2A" having a smectic A phase-nematic phase as a phase series and exhibiting a smectic A phase at 36 ° C.
363 "(manufactured by Dainippon Ink and Chemicals, Inc.) and a ferroelectric liquid crystal composition" R2301 (P s = 8.9 nC / cm).
2 ) ”(Clariant, Chiral Smectic C
-Chiral nematic phase transition temperature 66 ° C, chiral nematic-isotropic liquid phase transition temperature 85-87 ° C) 99
A liquid crystalline mixture was prepared, which was composed of parts by mass and 0.01 parts by mass of a photopolymerization initiator "Irgacure 651" (manufactured by Ciba Specialty Chemicals). Next, this liquid crystalline mixture was injected into the cell prepared in the same manner as in Example 1, and 5 was charged from the chiral nematic phase to the chiral smectic C phase.
After applying a DC voltage of V to confirm uniform orientation, the application of DC voltage was stopped and the temperature was lowered to room temperature. Next, the liquid crystal diacrylate monomer "2A363" was photo-cured by irradiating with ultraviolet rays having a central wavelength of 365 nm and an intensity of 2 mW / cm 2 for 50 seconds at room temperature. Regarding the electro-optical characteristics of this liquid crystal display device, it was confirmed that the smaller the anchoring energy, the higher the transmittance as in Example 1. Further, there was no problem in reliability at high temperature.
【0010】[0010]
【発明の効果】本発明は以上に説明したような構成によ
り、動作電圧の低減、動作明状態の明るさの向上、動作
時暗状態の暗さの向上、及び高温における動作の安定と
いった効果を奏する。According to the present invention, with the above-described structure, it is possible to reduce the operating voltage, improve the brightness of the operating bright state, improve the darkness of the operating dark state, and stabilize the operation at high temperature. Play.
【図1】 本発明の強誘電性液晶表示セルの概略断面図
である。FIG. 1 is a schematic cross-sectional view of a ferroelectric liquid crystal display cell of the present invention.
【図2】 実施例1において本発明の製造方法により製
造された液晶表示素子の電気光学特性(横軸:印加電
圧、縦軸:透過率)を示した図である。FIG. 2 is a diagram showing electro-optical characteristics (horizontal axis: applied voltage, vertical axis: transmittance) of a liquid crystal display element manufactured by the manufacturing method of the present invention in Example 1.
1a、1b 基板 2 液晶 3a、3b 透明導電膜 4a、4b 液晶配向膜 5 カラーフィルター 6a、6b 偏光板 Q7 トランジスター 3a(PX) 電極 BS ブラックストライプ 1a, 1b substrate 2 liquid crystal 3a, 3b transparent conductive film 4a, 4b Liquid crystal alignment film 5 color filters 6a, 6b Polarizing plate Q7 transistor 3a (PX) electrode BS black stripe
Claims (5)
内の所定の方向にスメクティック液晶、カイラルスメク
ティック液晶、強誘電性液晶、反強誘電性液晶分子を配
向させる積極的配向構造を有する一対の透明基板または
一方が透明基板となる一対の基板と、前記一対の基板間
に挟まれた液晶層とを有し、液晶の配向に極力欠陥が生
じないようにした液晶表示素子。1. A pair having at least one transparent substrate having a positive alignment structure for aligning smectic liquid crystals, chiral smectic liquid crystals, ferroelectric liquid crystals, and antiferroelectric liquid crystal molecules in a predetermined direction within the substrate surface. 2. A liquid crystal display device having the transparent substrate or a pair of substrates, one of which is a transparent substrate, and a liquid crystal layer sandwiched between the pair of substrates, so that defects in the alignment of the liquid crystal are prevented as much as possible.
膜または無機配向膜である。高分子配向膜の場合はラビ
ング加工処理または光配向処理を施す。また、無機配向
膜は通常斜方蒸着で基板上に付けられる。2. The positive alignment structure is a pair of polymer alignment film or inorganic alignment film. In the case of a polymer alignment film, a rubbing process or a photo alignment process is performed. The inorganic alignment film is usually attached on the substrate by oblique vapor deposition.
す強誘電性液晶ディスプレイをHalf−V−FLCD
と略記する。HV−FLCDセル内において、その厚さ
が1μm〜2μm程度である強誘電性液晶のシェブロン
層構造から由来する欠陥を生じないようにするためアン
チパラレルラビングにより生じるプレティルト角の方向
を与える。光配向法を用いた場合でも同様である。3. A Half-V-FLCD which is a ferroelectric liquid crystal display exhibiting such strong asymmetric electro-optical characteristics.
Is abbreviated. In the HV-FLCD cell, the direction of the pretilt angle generated by anti-parallel rubbing is given in order to prevent defects originating from the chevron layer structure of the ferroelectric liquid crystal having a thickness of about 1 μm to 2 μm. The same applies when the photo-alignment method is used.
ティルトを伴う光配向により液晶分子を配向させる。そ
のとき少なくとも方位角アンカリング強度を1〜9×1
0−6(J/m2)程度の強さのアンカリングを与える
ことにより動作電圧を低減する。4. A liquid crystal molecule is aligned by photo-alignment accompanied by pretilt in manufacturing an HV-FLCD cell. At that time, at least the azimuth anchoring strength is 1 to 9 × 1.
The operating voltage is reduced by applying anchoring with a strength of about 0 −6 (J / m 2 ).
いラビング処理を施し、方位角アンカリング強度を1×
10−5(J/m2)〜1×10−4(J/m2)程度
とすることにより低電圧で安定な動作を可能にする。5. A HV-FLCD cell is manufactured by subjecting it to a weak rubbing treatment to obtain an azimuth anchoring strength of 1 ×.
By setting it to about 10 −5 (J / m 2 ) to 1 × 10 −4 (J / m 2 ), stable operation can be performed at a low voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001230583A JP2003005223A (en) | 2001-06-25 | 2001-06-25 | Method for manufacturing liquid crystal display device with high contrast ratio asymmetric electro-optical characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001230583A JP2003005223A (en) | 2001-06-25 | 2001-06-25 | Method for manufacturing liquid crystal display device with high contrast ratio asymmetric electro-optical characteristics |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003005223A true JP2003005223A (en) | 2003-01-08 |
Family
ID=19062763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001230583A Pending JP2003005223A (en) | 2001-06-25 | 2001-06-25 | Method for manufacturing liquid crystal display device with high contrast ratio asymmetric electro-optical characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003005223A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006039519A (en) * | 2004-06-21 | 2006-02-09 | Dainippon Printing Co Ltd | Liquid crystal display element |
JP2006323215A (en) * | 2005-05-19 | 2006-11-30 | Dainippon Printing Co Ltd | Liquid crystal display element and method for manufacturing liquid crystal display element |
WO2008062744A1 (en) * | 2006-11-24 | 2008-05-29 | Dai Nippon Printing Co., Ltd. | Liquid crystal display element |
US7553525B2 (en) | 2004-01-22 | 2009-06-30 | Dai Nippon Printing Co., Ltd. | Liquid crystal display |
US7553521B2 (en) | 2004-01-22 | 2009-06-30 | Dai Nippon Printing Co., Ltd. | Liquid crystal displays |
US7553524B2 (en) | 2004-01-22 | 2009-06-30 | Dai Nippon Printing Co., Ltd. | Liquid crystal display device |
US7892449B2 (en) | 2005-05-19 | 2011-02-22 | Dai Nippon Printing Co., Ltd. | Liquid crystal display and manufacturing method of same |
US7907247B2 (en) | 2005-05-19 | 2011-03-15 | Dai Nippon Printing Co., Ltd. | Liquid crystal display |
JP2012053491A (en) * | 2011-12-12 | 2012-03-15 | Dainippon Printing Co Ltd | Liquid crystal display element and manufacturing method of liquid crystal display element |
EP1715372B1 (en) * | 2004-02-10 | 2013-07-31 | Dai Nippon Printing Co., Ltd. | Method of manufacturing a liquid crystal display device |
US20240019738A1 (en) * | 2022-07-12 | 2024-01-18 | Japan Display Inc. | Display device and manufacturing method thereof |
-
2001
- 2001-06-25 JP JP2001230583A patent/JP2003005223A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7553521B2 (en) | 2004-01-22 | 2009-06-30 | Dai Nippon Printing Co., Ltd. | Liquid crystal displays |
US7553524B2 (en) | 2004-01-22 | 2009-06-30 | Dai Nippon Printing Co., Ltd. | Liquid crystal display device |
US7553525B2 (en) | 2004-01-22 | 2009-06-30 | Dai Nippon Printing Co., Ltd. | Liquid crystal display |
EP1715372B1 (en) * | 2004-02-10 | 2013-07-31 | Dai Nippon Printing Co., Ltd. | Method of manufacturing a liquid crystal display device |
JP2006039519A (en) * | 2004-06-21 | 2006-02-09 | Dainippon Printing Co Ltd | Liquid crystal display element |
JP2011248368A (en) * | 2005-05-19 | 2011-12-08 | Dainippon Printing Co Ltd | Liquid crystal display device |
US7892449B2 (en) | 2005-05-19 | 2011-02-22 | Dai Nippon Printing Co., Ltd. | Liquid crystal display and manufacturing method of same |
US7907247B2 (en) | 2005-05-19 | 2011-03-15 | Dai Nippon Printing Co., Ltd. | Liquid crystal display |
JP2006323215A (en) * | 2005-05-19 | 2006-11-30 | Dainippon Printing Co Ltd | Liquid crystal display element and method for manufacturing liquid crystal display element |
JP2008129529A (en) * | 2006-11-24 | 2008-06-05 | Dainippon Printing Co Ltd | Liquid crystal display element |
WO2008062744A1 (en) * | 2006-11-24 | 2008-05-29 | Dai Nippon Printing Co., Ltd. | Liquid crystal display element |
US8130358B2 (en) | 2006-11-24 | 2012-03-06 | Dai Nippon Printing Co., Ltd. | Liquid crystal display |
JP2012053491A (en) * | 2011-12-12 | 2012-03-15 | Dainippon Printing Co Ltd | Liquid crystal display element and manufacturing method of liquid crystal display element |
US20240019738A1 (en) * | 2022-07-12 | 2024-01-18 | Japan Display Inc. | Display device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100220756B1 (en) | Liquid crystal panel with antiferroelectric liquid crystal and its fabrication method | |
KR101073722B1 (en) | Liquid crystal display device | |
JP2612503B2 (en) | Liquid crystal element | |
JP4537718B2 (en) | Liquid crystal display element | |
JP2003005223A (en) | Method for manufacturing liquid crystal display device with high contrast ratio asymmetric electro-optical characteristics | |
JP2952122B2 (en) | Liquid crystal element and display device using the same | |
JPH05134259A (en) | Ferroelectric liquid crystal element | |
US5568295A (en) | Chiral smetic LCD with small pretilt angle, substrate rubbed in two opposing directions, and no cholesteric phase or tilt angle > the pretilt plus inclination angles | |
JP2614347B2 (en) | Liquid crystal element and liquid crystal display | |
KR100433412B1 (en) | Method of producing FLCD | |
JP2002244138A (en) | Method for manufacturing liquid crystal display element having high contrast ratio | |
JP3080123B2 (en) | Manufacturing method of ferroelectric liquid crystal device | |
KR100802306B1 (en) | Liquid Crystal Display and Manufacturing Method Thereof | |
JPH0862639A (en) | Liquid crystal device | |
JP3083016B2 (en) | Liquid crystal alignment treatment method and liquid crystal element manufacturing method | |
JP2612504B2 (en) | Liquid crystal device | |
JP2681779B2 (en) | Liquid crystal cell | |
JPH07181495A (en) | Ferroelectric liquid crystal element | |
JP3062978B2 (en) | Ferroelectric liquid crystal device | |
JP3094013B2 (en) | Ferroelectric liquid crystal display | |
JPH0869020A (en) | Liquid crystal device | |
EP0271344A2 (en) | Liquid crystal display element and method for driving same | |
JPH0540266A (en) | Liquid crystal element | |
JPH06186568A (en) | Ferroelectric liquid crystal device | |
JPH1152388A (en) | Liquid crystal element and liquid crystal device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Effective date: 20031215 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070315 |