JP2002371947A - Equipment and method for hybrid power generation - Google Patents
Equipment and method for hybrid power generationInfo
- Publication number
- JP2002371947A JP2002371947A JP2001177502A JP2001177502A JP2002371947A JP 2002371947 A JP2002371947 A JP 2002371947A JP 2001177502 A JP2001177502 A JP 2001177502A JP 2001177502 A JP2001177502 A JP 2001177502A JP 2002371947 A JP2002371947 A JP 2002371947A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- generation facility
- solar cells
- solar
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/70—Waterborne solar heat collector modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ハイブリッド発電
設備、及び、ハイブリッド発電方法に関する。The present invention relates to a hybrid power generation facility and a hybrid power generation method.
【従来の技術】水力発電設備としては、従来から、調整
池式、貯水池式、更に、揚水式といったように様々な形
式のものが知られている。これら各種水力発電設備は、
クリーンかつ更新可能であって、非枯渇性が高い水力エ
ネルギを利用して電力を発生させるものである。従っ
て、比較的安価な運転経費で安定した電力を供給可能と
なることから、水力発電設備は、わが国において幅広く
用いられている。2. Description of the Related Art Conventionally, various types of hydroelectric power generation equipment, such as a regulating pond type, a reservoir type, and a pumping type, are known. These various hydropower facilities are:
It generates electricity using hydro energy that is clean, renewable, and highly non-depleting. Therefore, since stable power can be supplied at relatively low operating costs, hydroelectric power generation equipment is widely used in Japan.
【0002】[0002]
【発明が解決しようとする課題】しかしながら、近年で
は、限られた地球資源等の範囲内で、より効率よく発電
することが望まれている。そして、発電効率を高める上
で、地球環境を汚染させてはならないことはいうまでも
ない。However, in recent years, it has been desired to generate power more efficiently within a limited range of earth resources and the like. Needless to say, in order to enhance the power generation efficiency, the global environment must not be polluted.
【0003】そこで、本発明は、環境を汚染させること
なく、極めて効率よく電力を発生させることができるハ
イブリッド発電設備、及び、ハイブリッド発電方法の提
供を目的とする。[0003] Therefore, an object of the present invention is to provide a hybrid power generation facility and a hybrid power generation method capable of generating electric power extremely efficiently without polluting the environment.
【0004】[0004]
【課題を解決するための手段】請求項1に記載の本発明
によるハイブリッド発電設備は、水力発電設備と、複数
の太陽電池を備える太陽光発電設備とを組み合わせたハ
イブリッド発電設備であって、複数の太陽電池が、水力
発電設備の貯水池の水面を覆うように配置されているこ
とを特徴とする。According to a first aspect of the present invention, there is provided a hybrid power generation facility combining a hydroelectric power generation facility and a photovoltaic power generation facility having a plurality of solar cells. Is disposed so as to cover the water surface of the reservoir of the hydroelectric power plant.
【0005】このハイブリッド発電設備は、水力発電設
備と、太陽光発電設備とを組み合わせたものである。太
陽光発電設備は、複数の太陽電池を備えており、これら
各太陽電池は、調整池、貯水池、上部貯水池、下部貯水
池、或いは、河川といった貯水池の水面を覆うように配
置される。これにより、貯水池に貯留されている水が蒸
発してしまうことを防止できるので、水資源を有効に活
用して発電効率を高めることができる。また、このハイ
ブリッド発電設備では、貯水池の水面を覆うように太陽
電池を多数配置すればするほど、太陽光エネルギを利用
して大量の電力を得ることができる。そして、太陽光発
電設備から得られた電力は、各家庭向け等の一般電力と
して用いてもよく、また、例えば揚水ポンプ駆動用電力
等、水力発電設備の各種電源として用いることも可能で
ある。この結果、本発明によるハイブリッド発電設備に
よれば、環境を汚染させることなく、極めて効率よく電
力を発生させることが可能となる。[0005] This hybrid power generation facility is a combination of a hydropower generation facility and a solar power generation facility. The photovoltaic power generation equipment includes a plurality of solar cells, and each of the solar cells is disposed so as to cover a water surface of a reservoir such as a regulating pond, a reservoir, an upper reservoir, a lower reservoir, or a river. This can prevent the water stored in the reservoir from evaporating, so that water resources can be effectively used and power generation efficiency can be increased. Also, in this hybrid power generation facility, the more solar cells are arranged so as to cover the water surface of the reservoir, the more power can be obtained by using solar energy. The power obtained from the photovoltaic power generation equipment may be used as general power for homes or the like, or may be used as various power supplies of the hydroelectric power generation equipment such as power for driving a pump. As a result, according to the hybrid power generation equipment of the present invention, it is possible to generate power extremely efficiently without polluting the environment.
【0006】この場合、太陽電池が所定数配設されてい
るフロート体を複数備え、各フロート体は、連結部材に
よって互いに連結された状態で貯水池の水面に浮かべら
れていると好ましい。In this case, it is preferable that a plurality of floats in which a predetermined number of solar cells are provided are provided, and the floats are floated on the water surface of the reservoir in a state of being connected to each other by a connecting member.
【0007】また、水力発電設備は、揚水式発電設備で
あり、複数の太陽電池が発生する電力は、水力発電設備
の揚水ポンプを駆動するために利用可能であると好まし
い。[0007] Further, the hydroelectric power generation equipment is a pumping type power generation equipment, and it is preferable that electric power generated by a plurality of solar cells can be used to drive a pump of the hydroelectric power generation equipment.
【0008】請求項4に記載の本発明によるハイブリッ
ド発電方法は、水力発電設備と、複数の太陽電池を備え
る太陽光発電設備との双方から電力を得るハイブリッド
発電方法であって、複数の太陽電池を、水力発電設備の
貯水池の水面を覆うように配置することを特徴とする。According to a fourth aspect of the present invention, there is provided a hybrid power generation method for obtaining electric power from both a hydroelectric power generation facility and a solar power generation facility having a plurality of solar cells. Are arranged so as to cover the water surface of the reservoir of the hydroelectric power generation facility.
【0009】この場合、太陽電池をフロート体上に所定
数配設すると共に、各フロート体を連結部材によって互
いに連結させた状態で貯水池の水面に浮かべると好まし
い。In this case, it is preferable that a predetermined number of solar cells are arranged on the float body, and the float bodies are floated on the water surface of the reservoir with the float bodies connected to each other by a connecting member.
【0010】また、水力発電設備として揚水式発電設備
を適用し、複数の太陽電池が発生する電力を、水力発電
設備に含まれる揚水ポンプの駆動電力として利用すると
好ましい。It is preferable that a pumping type power generation facility is applied as the hydraulic power generation facility, and electric power generated by a plurality of solar cells is used as driving power for a pumping pump included in the hydroelectric power generation facility.
【0011】[0011]
【発明の実施の形態】以下、図面と共に本発明によるハ
イブリッド発電設備、及び、ハイブリッド発電方法の好
適な実施形態について詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a hybrid power generation facility and a hybrid power generation method according to the present invention will be described below in detail with reference to the drawings.
【0012】図1は、本発明によるハイブリッド発電設
備を示す概略構成図である。同図に示すハイブリッド発
電設備1は、水力発電設備10と太陽光発電設備20と
を組み合わせたものである。本実施形態では、水力発電
設備10は、揚水式発電設備として構成されており、上
部貯水池11と下部貯水池との中間に設置された発電所
15を含む。この発電所15には、発電機GEと、この
発電機GEと接続されたポンプ水車PTとが配置されて
いる。図1に示すように、ポンプ水車PTの取水口(ポ
ンプとして用いる場合の吐出口)は、図示しない入口
弁、導水管16等を介して、上部貯水池11と接続され
る。また、ポンプ水車PTの排出口(ポンプとして用い
る場合の吸込口)は、図示しない吸出管、放水路17等
を介して、下部貯水池12と接続される。FIG. 1 is a schematic configuration diagram showing a hybrid power generation facility according to the present invention. The hybrid power generation facility 1 shown in FIG. 1 is a combination of a hydropower generation facility 10 and a solar power generation facility 20. In the present embodiment, the hydroelectric power generation facility 10 is configured as a pumped-storage power generation facility, and includes a power plant 15 installed between the upper reservoir 11 and the lower reservoir. In this power plant 15, a generator GE and a pump turbine PT connected to the generator GE are arranged. As shown in FIG. 1, an intake port (a discharge port when used as a pump) of the pump turbine PT is connected to the upper reservoir 11 via an inlet valve (not shown), a water pipe 16 and the like. Further, an outlet of the pump turbine PT (a suction port when used as a pump) is connected to the lower reservoir 12 via a suction pipe (not shown), a water discharge passage 17 and the like.
【0013】これにより、導水管16を開放して、上部
貯水池11の水をポンプ水車PTに対して供給すれば、
ポンプ水車PTによって発電機GEが駆動され、発電機
GEから電力を得ることができる。発電機GEの出力
は、AC/DC変換器18によって交流から直流に変換
され、家庭向け等の一般電力として利用される。また、
夜間等の電力需要の少ない時間帯に、発電機GEに電力
を供給して逆回転させれば、ポンプ水車PTによって、
下部貯水池12の水が放水路17等を介して汲み出され
る。そして、汲み上げられた水は、導水管16等を介し
て、上部貯水池11まで揚水される。[0013] Thus, if the water pipe 16 is opened and the water in the upper reservoir 11 is supplied to the pump turbine PT,
The generator GE is driven by the pump turbine PT, and electric power can be obtained from the generator GE. The output of the generator GE is converted from AC to DC by the AC / DC converter 18 and used as general power for homes and the like. Also,
If power is supplied to the generator GE and rotated in reverse during a time period when the power demand is small, such as at night, the pump turbine PT
The water in the lower reservoir 12 is pumped out through the discharge channel 17 and the like. Then, the pumped water is pumped to the upper reservoir 11 via the water conduit 16 and the like.
【0014】一方、ハイブリッド発電設備1を構成する
太陽光発電設備20は、図1及び図2に示すように、太
陽電池モジュール21を多数集合させたものである。本
実施形態では、太陽光発電設備20は、例えば992個
の太陽電池モジュール21から構成される。各太陽電池
モジュール21は、強化プラスチック等からなる矩形状
(本実施形態では、例えば、およそ6m×6mの正方形
状)の本体(フロート体)22を備える。また、各本体
22の底面には、図2及び図3に示すように、フロート
23が各辺に沿うように固定されている。On the other hand, as shown in FIGS. 1 and 2, a photovoltaic power generation facility 20 that constitutes the hybrid power generation facility 1 has a large number of solar cell modules 21 assembled. In the present embodiment, the photovoltaic power generation facility 20 includes, for example, 992 solar cell modules 21. Each solar cell module 21 includes a rectangular (in the present embodiment, for example, a square shape of about 6 m × 6 m) main body (float body) 22 made of reinforced plastic or the like. As shown in FIGS. 2 and 3, a float 23 is fixed to the bottom surface of each main body 22 along each side.
【0015】各本体22の表面には、所定数(本実施形
態では、5×5=25個)の太陽電池SBがマトリック
ス状に配置されている。各太陽電池SBには、所定の防
水対策が施される。本実施形態の各太陽電池SBは、一
辺およそ1.0mの正方形状を呈しており、1体あたり
の出力は、およそ100Wである。従って、太陽電池モ
ジュール21の1体あたりの出力は、およそ2.5kW
となり、太陽光発電設備20全体の出力は、およそ24
80kWとなる。On the surface of each main body 22, a predetermined number (5 × 5 = 25 in this embodiment) of solar cells SB are arranged in a matrix. Each solar cell SB is provided with a predetermined waterproofing measure. Each solar cell SB of the present embodiment has a square shape with a side of about 1.0 m, and the output per one body is about 100 W. Therefore, the output per one solar cell module 21 is about 2.5 kW
And the output of the entire photovoltaic power generation system 20 is approximately 24
80 kW.
【0016】各太陽電池モジュール21の本体22は、
図1及び図2に示すように、マトリックス状に並べら
れ、互いに隣り合う本体22同士は、それぞれ2体の連
結部25を介して連結される。連結部25は、図4及び
図5に示すように、固定連結棒26、スライド連結棒2
7、及び、連結ピン28,29とからなる。各固定連結
棒26の一端側は、それぞれ本体22の側部に固定され
る。また、各固定連結棒26の他端側には、連結ピン2
8を介して、スライド連結棒27の一端側が回動自在に
取り付けられる。各スライド連結棒27の他端側には、
それぞれ長穴27aが形成されている。そして、互いに
対応する各スライド連結棒27同士は、各長穴27aに
挿通された連結ピン29によって連結される。このよう
に、伸縮及び上下動を許容する連結部25を利用すれ
ば、水位変化や水面の波打ちが生じても、各太陽電池モ
ジュール21(各太陽電池SB)を略水平に維持可能と
なる。The main body 22 of each solar cell module 21
As shown in FIGS. 1 and 2, the main bodies 22 arranged in a matrix and adjacent to each other are connected to each other via two connecting portions 25. As shown in FIGS. 4 and 5, the connecting portion 25 includes a fixed connecting rod 26 and a sliding connecting rod 2.
7 and connecting pins 28 and 29. One end of each fixed connecting rod 26 is fixed to a side of the main body 22. The other end of each fixed connecting rod 26 has a connecting pin 2
One end side of the slide connecting rod 27 is rotatably attached via 8. On the other end side of each slide connecting rod 27,
Each has a long hole 27a. The slide connection rods 27 corresponding to each other are connected by connection pins 29 inserted into the respective elongated holes 27a. As described above, by using the connecting portion 25 that allows expansion and contraction and up and down movement, each solar cell module 21 (each solar cell SB) can be maintained substantially horizontal even when the water level changes or the water surface undulates.
【0017】そして、フロート23を有すると共に太陽
電池SBが所定数配設されている本体22から各なる太
陽電池モジュール21は、連結部25を介して互いに連
結された状態で上部貯水池11の水面に浮かべられると
共に係留される。そして、各太陽電池モジュール21
(各太陽電池SB)の出力は、集電された後、配電部1
9に送出される。この配電部19は、太陽電池モジュー
ル21(各太陽電池SB)から出力された電力の一部を
発電所15側に振り分けることを可能とするものであ
る。The solar cell modules 21 each composed of a main body 22 having a float 23 and provided with a predetermined number of solar cells SB are connected to each other via a connecting portion 25 on the water surface of the upper reservoir 11. Floated and moored. And each solar cell module 21
The output of each of the solar cells SB is collected by the power distribution unit 1
9 is sent. The power distribution unit 19 is capable of distributing a part of the power output from the solar cell module 21 (each of the solar cells SB) to the power plant 15 side.
【0018】このように構成されたハイブリッド発電設
備1では、太陽光発電設備20を構成する多数の太陽電
池モジュール21が互いに連結された状態で上部貯水池
11に浮かべられる。すなわち、上部貯水池11の水面
は、各太陽電池モジュール21(各太陽電池SB)によ
って覆われる。本実施形態の場合、各太陽電池モジュー
ル21によって、上部貯水池11の水面が、およそ5万
m2にわたって覆われることになる。これにより、上部
貯水池11に貯留されている水が蒸発してしまうことを
防止できるので、水資源を有効に活用して発電効率を高
めることが可能となる。もちろん、各太陽電池モジュー
ル21を下部貯水池12に配置してもよく、上部貯水池
11と下部貯水池12との双方に配置してもよい。In the hybrid power generation facility 1 configured as described above, a large number of solar cell modules 21 constituting the solar power generation facility 20 are floated on the upper reservoir 11 while being connected to each other. That is, the water surface of the upper reservoir 11 is covered by each solar cell module 21 (each solar cell SB). In the case of the present embodiment, each solar cell module 21 covers the water surface of the upper reservoir 11 over approximately 50,000 m 2 . Thereby, since the water stored in the upper reservoir 11 can be prevented from evaporating, it is possible to effectively utilize water resources and increase power generation efficiency. Of course, each solar cell module 21 may be arranged in the lower reservoir 12, or may be arranged in both the upper reservoir 11 and the lower reservoir 12.
【0019】また、ハイブリッド発電設備1では、上部
貯水池11の水面を覆うように太陽電池モジュール21
(太陽電池SB)を多数配置すればするほど、太陽光エ
ネルギを利用して大量の電力を得ることができる。上述
したように、本実施形態のハイブリッド発電設備1の場
合、太陽光発電設備20から、およそ2480kWの電
力を得ることができる。そして、太陽光発電設備20か
ら得られた電力は、配電部19を介して、各家庭に一般
電力として供給可能である。更に、太陽光発電設備20
から得られた電力を、配電部19を介して、水力発電設
備10側に各種電源として供給することも可能である。
この結果、ハイブリッド発電設備1によれば、環境を汚
染させることなく、極めて効率よく電力を発生させるこ
とが可能となる。In the hybrid power generation facility 1, the solar cell module 21 is provided so as to cover the water surface of the upper reservoir 11.
The more the (solar cells SB) are arranged, the more electric power can be obtained by using solar energy. As described above, in the case of the hybrid power generation facility 1 of the present embodiment, approximately 2480 kW of power can be obtained from the solar power generation facility 20. The power obtained from the solar power generation facility 20 can be supplied to each home as general power via the power distribution unit 19. Furthermore, the solar power generation equipment 20
Can be supplied to the hydroelectric power generation facility 10 via the power distribution unit 19 as various power sources.
As a result, according to the hybrid power generation facility 1, it is possible to generate power very efficiently without polluting the environment.
【0020】すなわち、本実施形態では、夜間等の電力
需要が少ない時間帯に、太陽光発電設備20から得られ
た電力が、水力発電設備10のポンプ水車PTを揚水ポ
ンプとして駆動するために用いられる。この場合、太陽
光発電設備20から発生された電力(およそ2480k
W)によって、ポンプ水車PTを揚水ポンプとして駆動
した場合、ポンプ水車PTのポンプ効率を70%、揚程
を200m、液密度1.0kg/lとすると、吐出量を
0.53m3/分とすることができる。That is, in the present embodiment, the power obtained from the photovoltaic power generation equipment 20 is used to drive the pump turbine PT of the hydroelectric power generation equipment 10 as a pump during a time period when the power demand is small, such as at night. Can be In this case, the electric power generated from the photovoltaic power generation facility 20 (about 2480 k
W), when the pump turbine PT is driven as a lifting pump, when the pump efficiency of the pump turbine PT is 70%, the head is 200 m, and the liquid density is 1.0 kg / l, the discharge rate is 0.53 m 3 / min. be able to.
【0021】[0021]
【発明の効果】本発明によるハイブリッド発電設備は、
水力発電設備と複数の太陽電池を備える太陽光発電設備
とを組み合わせたハイブリッド発電設備であって、複数
の太陽電池が水力発電設備の貯水池の水面を覆うように
配置されていることを特徴とする。すなわち、本発明に
よるハイブリッド発電方法のように、水力発電設備と複
数の太陽電池を備える太陽光発電設備とを組み合わせる
と共に、複数の太陽電池を水力発電設備の貯水池の水面
を覆うように配置することにより、環境を汚染させるこ
となく、極めて効率よく電力を発生させることが可能と
なる。The hybrid power plant according to the present invention
A hybrid power generation facility combining a hydroelectric power generation facility and a photovoltaic power generation facility with a plurality of solar cells, wherein the plurality of solar cells are arranged so as to cover a water surface of a reservoir of the hydroelectric power generation facility. . That is, as in the hybrid power generation method according to the present invention, a hydroelectric power generation facility and a photovoltaic power generation facility including a plurality of solar cells are combined, and the plurality of solar cells are arranged so as to cover a water surface of a reservoir of the hydroelectric power generation facility. Accordingly, it is possible to generate electric power extremely efficiently without polluting the environment.
【図1】本発明によるハイブリッド発電設備を示す概略
構成図である。FIG. 1 is a schematic configuration diagram showing a hybrid power generation facility according to the present invention.
【図2】図1のハイブリッド発電設備を構成する太陽光
発電設備を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a solar power generation facility constituting the hybrid power generation facility of FIG.
【図3】図2の太陽光発電設備に含まれる太陽電池モジ
ュールを示す側面図である。FIG. 3 is a side view showing a solar cell module included in the photovoltaic power generation facility of FIG.
【図4】図3に示す太陽電池モジュール同士を連結させ
るための構成を示す平面図である。FIG. 4 is a plan view showing a configuration for connecting the solar cell modules shown in FIG.
【図5】図3に示す太陽電池モジュール同士を連結させ
るための構成を示す側面図である。FIG. 5 is a side view showing a configuration for connecting the solar cell modules shown in FIG.
1…ハイブリッド発電設備、10…水力発電設備、11
…上部貯水池、12…下部貯水池、15…発電所、16
…導水管、17…放水路、18…AC/DC変換器、1
9…配電部、20…太陽光発電設備、21…太陽電池モ
ジュール、22…本体、23…フロート、25…連結
部、26…固定連結棒、27…スライド連結棒、27a
…長穴、28,29…連結ピン、GE…発電機、PT…
ポンプ水車、SB…太陽電池。1: Hybrid power generation equipment, 10: Hydroelectric power generation equipment, 11
... upper reservoir, 12 ... lower reservoir, 15 ... power plant, 16
... water pipe, 17 ... water outlet, 18 ... AC / DC converter, 1
9: power distribution unit, 20: photovoltaic power generation facility, 21: solar cell module, 22: main body, 23: float, 25: connecting part, 26: fixed connecting rod, 27: slide connecting rod, 27a
... Long holes, 28,29 ... Connecting pins, GE ... Generator, PT ...
Pump turbine, SB ... Solar cell.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 入江 雅彦 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 Fターム(参考) 3H074 AA10 AA12 AA20 BB10 BB13 BB19 CC01 CC16 CC28 CC36 CC38 5G066 HA30 HB06 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masahiko Irie 1-1-1 Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo F-term in Kobe Shipyard, Mitsubishi Heavy Industries, Ltd. 3H074 AA10 AA12 AA20 BB10 BB13 BB19 CC01 CC16 CC28 CC36 CC38 5G066 HA30 HB06
Claims (6)
る太陽光発電設備とを組み合わせたハイブリッド発電設
備であって、 前記複数の太陽電池は、前記水力発電設備の貯水池の水
面を覆うように配置されていることを特徴とするハイブ
リッド発電設備。1. A hybrid power generation facility combining a hydroelectric power generation facility and a photovoltaic power generation facility having a plurality of solar cells, wherein the plurality of solar cells cover a water surface of a reservoir of the hydroelectric power generation facility. A hybrid power generation facility, which is arranged.
ロート体を複数備え、前記各フロート体は、連結部材に
よって互いに連結された状態で前記貯水池の水面に浮か
べられていることを特徴とする請求項1に記載のハイブ
リッド発電設備。2. The method according to claim 1, wherein a plurality of floats are provided with the solar cells arranged in a predetermined number, and the floats are floated on the water surface of the reservoir in a state of being connected to each other by a connecting member. The hybrid power generation facility according to claim 1.
あり、前記複数の太陽電池が発生する電力は、前記水力
発電設備の揚水ポンプを駆動するために利用可能である
ことを特徴とする請求項1又は2に記載のハイブリッド
発電設備。3. The hydroelectric power generation facility is a pumped-storage power generation facility, and electric power generated by the plurality of solar cells can be used to drive a water pump of the hydroelectric power generation facility. The hybrid power generation facility according to claim 1.
る太陽光発電設備との双方から電力を得るハイブリッド
発電方法であって、前記複数の太陽電池を、前記水力発
電設備の貯水池の水面を覆うように配置することを特徴
とするハイブリッド発電方法。4. A hybrid power generation method for obtaining electric power from both a hydroelectric power generation facility and a solar power generation facility including a plurality of solar cells, wherein the plurality of solar cells are disposed on a water surface of a reservoir of the hydroelectric power generation facility. A hybrid power generation method characterized by being arranged to cover.
設すると共に、前記各フロート体を連結部材によって互
いに連結させた状態で前記貯水池の水面に浮かべること
を特徴とする請求項4に記載のハイブリッド発電方法。5. The method according to claim 4, wherein a predetermined number of the solar cells are arranged on the float, and the floats are floated on the water surface of the reservoir with the floats connected to each other by a connecting member. Hybrid power generation method.
を適用し、前記複数の太陽電池が発生する電力を、前記
水力発電設備に含まれる揚水ポンプの駆動電力として利
用することを特徴とする請求項4又は5に記載のハイブ
リッド発電方法。6. A pumping type power generation facility is applied as the hydroelectric power generation facility, and electric power generated by the plurality of solar cells is used as driving power of a pump for pumping included in the hydroelectric power generation facility. Item 6. The hybrid power generation method according to item 4 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001177502A JP2002371947A (en) | 2001-06-12 | 2001-06-12 | Equipment and method for hybrid power generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001177502A JP2002371947A (en) | 2001-06-12 | 2001-06-12 | Equipment and method for hybrid power generation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002371947A true JP2002371947A (en) | 2002-12-26 |
Family
ID=19018336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001177502A Withdrawn JP2002371947A (en) | 2001-06-12 | 2001-06-12 | Equipment and method for hybrid power generation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002371947A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITRM20080638A1 (en) * | 2008-12-01 | 2010-06-02 | Caldani S R L | "MODULAR FLOATING STRUCTURE FOR PHOTOVOLTAIC SYSTEM" |
FR2941574A1 (en) * | 2009-01-29 | 2010-07-30 | Fabrice Urban | Electrical energy producing and storing device for isolated dwelling, has accumulator module providing hydraulic energy to energize generator module delivering electrical energy alternative to that of network, based on consumption needs |
FR2968070A1 (en) * | 2010-11-30 | 2012-06-01 | Active Innovation Man | FLOATING SOLAR PANEL AND SOLAR INSTALLATION CONSISTING OF AN ASSEMBLY OF SUCH PANELS. |
WO2014024818A1 (en) * | 2012-08-06 | 2014-02-13 | Ishikawa Yohei | Power generation system and power generation method |
JP2014229888A (en) * | 2013-05-27 | 2014-12-08 | グリーン ソリューション カンパニー,リミテッド | Solar cell module structure |
CN112160861A (en) * | 2020-08-27 | 2021-01-01 | 南方电网电动汽车服务有限公司 | Energy storage power generation system |
JP2021189510A (en) * | 2020-05-26 | 2021-12-13 | 中部電力株式会社 | CO2-free power distribution method |
-
2001
- 2001-06-12 JP JP2001177502A patent/JP2002371947A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITRM20080638A1 (en) * | 2008-12-01 | 2010-06-02 | Caldani S R L | "MODULAR FLOATING STRUCTURE FOR PHOTOVOLTAIC SYSTEM" |
WO2010064271A3 (en) * | 2008-12-01 | 2010-09-16 | Caldani S.R.L. | Modular floating structure for photovoltaic array |
FR2941574A1 (en) * | 2009-01-29 | 2010-07-30 | Fabrice Urban | Electrical energy producing and storing device for isolated dwelling, has accumulator module providing hydraulic energy to energize generator module delivering electrical energy alternative to that of network, based on consumption needs |
FR2968070A1 (en) * | 2010-11-30 | 2012-06-01 | Active Innovation Man | FLOATING SOLAR PANEL AND SOLAR INSTALLATION CONSISTING OF AN ASSEMBLY OF SUCH PANELS. |
WO2012072941A1 (en) * | 2010-11-30 | 2012-06-07 | Active Innovation Management | Buoyant solar panel, and solar power plant consisting of an assembly of said panels |
CN103314262A (en) * | 2010-11-30 | 2013-09-18 | 创新活动公司 | Buoyant solar panel, and solar power plant consisting of an assembly of said panels |
WO2014024818A1 (en) * | 2012-08-06 | 2014-02-13 | Ishikawa Yohei | Power generation system and power generation method |
JP2014229888A (en) * | 2013-05-27 | 2014-12-08 | グリーン ソリューション カンパニー,リミテッド | Solar cell module structure |
JP2021189510A (en) * | 2020-05-26 | 2021-12-13 | 中部電力株式会社 | CO2-free power distribution method |
JP7509579B2 (en) | 2020-05-26 | 2024-07-02 | 中部電力株式会社 | How to allocate CO2-free electricity |
CN112160861A (en) * | 2020-08-27 | 2021-01-01 | 南方电网电动汽车服务有限公司 | Energy storage power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cazzaniga et al. | Compressed air energy storage integrated with floating photovoltaic plant | |
Lata-García et al. | Optimal hydrokinetic turbine location and techno-economic analysis of a hybrid system based on photovoltaic/hydrokinetic/hydrogen/battery | |
CN107407248B (en) | Hydropneumatic energy-storage system and hydropneumatic energy storage component for deep-sea water | |
Serna et al. | Offshore hydrogen production from wave energy | |
US8405241B2 (en) | Seesaw-type wave power generating device | |
Zaibi et al. | Smart power management of a hybrid photovoltaic/wind stand-alone system coupling battery storage and hydraulic network | |
US20110025068A1 (en) | Hydroelectric Power System | |
AU2016234957B2 (en) | A hydroelectric generation system and a method for hydroelectric generation | |
CN109038681A (en) | A kind of sea autonomous power supply system | |
CN103573535B (en) | Air sac type marine power generation platform | |
Gevorkov et al. | Simulation model for efficiency estimation of photovoltaic water pumping system | |
RU2629350C1 (en) | Hydrostorage system | |
JP2002371947A (en) | Equipment and method for hybrid power generation | |
JP2005041253A (en) | Clean cogeneration device using megafloat | |
CN1069119C (en) | Sea wave power generator | |
US20030024238A1 (en) | Habitat hydro scheme | |
CN110578643A (en) | Deep-sea floating wind power generation and pumped storage combined device and working method | |
CN102797616B (en) | Multifunctional independent power plant capable of realizing all-weather stable power supply by comprehensively utilizing various kinds of natural energy | |
CN102214928A (en) | Water photovoltaic grid-connected generating system | |
CN220622064U (en) | Power generation system | |
KR20180027282A (en) | Subsea floating tidal generator | |
CN103066678A (en) | Modularized natural energy power supply system | |
CN105134474A (en) | Pumped storage power station | |
GB2376270A (en) | Hydraulic power generating device | |
JPH0492374A (en) | Energy system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080902 |