[go: up one dir, main page]

JP2002371327A - Manufacturing method of foam metal - Google Patents

Manufacturing method of foam metal

Info

Publication number
JP2002371327A
JP2002371327A JP2001183786A JP2001183786A JP2002371327A JP 2002371327 A JP2002371327 A JP 2002371327A JP 2001183786 A JP2001183786 A JP 2001183786A JP 2001183786 A JP2001183786 A JP 2001183786A JP 2002371327 A JP2002371327 A JP 2002371327A
Authority
JP
Japan
Prior art keywords
molten metal
mold
metal
added
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001183786A
Other languages
Japanese (ja)
Other versions
JP4176975B2 (en
Inventor
Tetsuji Miyoshi
鉄二 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP2001183786A priority Critical patent/JP4176975B2/en
Publication of JP2002371327A publication Critical patent/JP2002371327A/en
Application granted granted Critical
Publication of JP4176975B2 publication Critical patent/JP4176975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】 【課題】 独立気泡の粒径をできるだけ小さく且つ均一
に形成することによって、圧縮強度の向上を図ることの
できる発泡金属を製造する為の有用な方法を提供する。 【解決手段】 融点が550〜670℃で且つ固液2相
域で固相率が35%となる温度が640℃以下である溶
融金属に増粘剤を添加して大気中若しくは酸化性雰囲気
中で攪拌し、これに640〜680℃の温度範囲で発泡
剤としての水素化チタンを0.5〜2%添加し、これを
更に攪拌することによって溶融金属内に水素化チタンを
均一に分散させた後鋳型に注湯し、鋳型内で発泡充満さ
せてから前記溶融金属を急冷凝固する。
PROBLEM TO BE SOLVED: To provide a useful method for producing a foam metal capable of improving the compressive strength by forming the closed cell diameter as small and uniform as possible. SOLUTION: A thickening agent is added to a molten metal having a melting point of 550 to 670 ° C and a solid phase ratio of 35% in a solid-liquid two-phase region of 640 ° C or less, and the resultant is added to the atmosphere or an oxidizing atmosphere , And 0.5 to 2% of titanium hydride as a foaming agent is added thereto in a temperature range of 640 to 680 ° C, and the mixture is further stirred to uniformly disperse the titanium hydride in the molten metal. Then, the molten metal is poured into a mold, filled with foam in the mold, and then rapidly solidified by cooling the molten metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多数の独立気泡の
大きさが均一で且つ内部に引け巣を生じない様な発泡金
属を製造する方法に関し、殊に独立気泡の粒径をできる
だけ小さく且つ均一に形成することによって、圧縮強度
の向上を図ることのできる発泡金属を製造する為の有用
な方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a foamed metal in which a large number of closed cells have a uniform size and do not cause shrinkage cavities therein. The present invention relates to a useful method for producing a foamed metal capable of improving compressive strength by being formed uniformly.

【0002】[0002]

【従来の技術】発泡金属とは、立体的な網状構造を有し
気孔率を著しく大きくした金属多孔体であり、表面積が
大きいことを利用して触媒担体、電極材料の他、フィル
ターや消音剤等への応用が期待されている。
2. Description of the Related Art A foamed metal is a porous metal body having a three-dimensional network structure and a remarkably large porosity. By utilizing its large surface area, it uses a catalyst carrier, an electrode material, a filter and a silencer. Application to such applications is expected.

【0003】こうした発泡金属を製造する方法として
は、(1)溶融金属中にガス発生物質(発泡剤)を添加
する方法や、(2)発泡樹脂の骨格の回りに金属を吹き
付けて焼結する方法等が知られている。これらの方法の
うち、上記(1)の方法では、比較的簡便に製造できる
という利点があることから汎用されている。しかしなが
ら、上記(1)の方法では、気泡の大きさが不揃いとな
り易く、また金属が凝固する際に、内部に引け巣が生じ
易いという問題があった。
[0003] As a method of producing such a foamed metal, there are (1) a method of adding a gas generating substance (a foaming agent) to a molten metal, and (2) sintering by spraying a metal around a skeleton of a foamed resin. Methods and the like are known. Among these methods, the method (1) is widely used because it has an advantage that it can be manufactured relatively easily. However, the method (1) has a problem that the sizes of the bubbles are likely to be irregular, and shrinkage cavities are easily generated inside when the metal is solidified.

【0004】こうした課題を解決する技術として、本発
明出願人は特公平1−51528の様な技術も提案して
いる。この技術では、「鋳型全体が発泡金属の融点以上
の温度となるように加熱し、かつ攪拌を終了して発泡を
開始し、気泡が成長する過程で空気抜き用の放出口を有
する状態で鋳型を密閉し、発泡剤が熱により分解して生
じる多数の気泡が膨張することによって鋳型内の空気を
外部に放出させ、発泡金属が鋳型内部の全体に充満する
ことにより、溶融充満した発泡金属により上記放出口を
閉鎖して鋳型を密閉状態とし、密閉された鋳型内で多数
の気泡の内圧の均衡の下に均一なセル構造を形成させ、
ついで鋳型の加熱を停止して発泡金属を冷却、凝固させ
る」ものである。
As a technique for solving such problems, the present applicant has proposed a technique as disclosed in Japanese Patent Publication No. 1-51528. According to this technology, `` the entire mold is heated to a temperature equal to or higher than the melting point of the foamed metal, and the stirring is terminated to start foaming. Closed, the foam inside the mold is released to the outside by the expansion of a large number of bubbles generated by the decomposition of the foaming agent due to heat, and the foam metal fills the entire inside of the mold. Close the discharge port to close the mold, form a uniform cell structure in the closed mold under the balance of the internal pressure of many bubbles,
Then, the heating of the mold is stopped to cool and solidify the foamed metal. "

【0005】[0005]

【発明が解決しようとする課題】上記の様な技術の開発
によって、均一な気泡を発泡率が高い状態で確保した発
泡金属が実現できたのである。しかしながら、こうした
技術においても、その製造条件によっては若干の解決す
べき問題が生じることがあった。即ち、上記技術では、
比較的小さな製品を製造する場合にはそれほど問題とな
らないのであるが、凝固に長時間(例えば10分以上)
を要する様な大きな発泡金属製品を製造する場合には、
粗大な気泡が多くなって割れ等の欠陥が生じ易いという
問題があった。また、発泡金属中における気泡のバラツ
キが大きくなって、しかも平均粒径が大きくなり、製品
品質が劣化することもある。特に、発泡金属ではその用
途によっては(例えばエネルギー吸収材等に適用する場
合)、強度(圧縮強度)が大きいことも要求されるが、
粗大な気泡が多く存在する発泡金属では所定の強度が得
られないという欠点がある。
SUMMARY OF THE INVENTION By the development of the above-mentioned technology, a foamed metal in which uniform cells are ensured at a high foaming rate has been realized. However, even in such a technique, some problems to be solved may occur depending on the manufacturing conditions. That is, in the above technology,
It does not matter much when producing relatively small products, but it takes a long time to coagulate (for example, 10 minutes or more).
When manufacturing large metal foam products that require
There has been a problem that defects such as cracks are likely to occur due to an increase in coarse bubbles. In addition, the dispersion of air bubbles in the foamed metal is increased, and the average particle diameter is increased, so that the product quality may be deteriorated. In particular, foamed metal is required to have high strength (compression strength) depending on its use (for example, when applied to an energy absorbing material or the like).
There is a drawback that a predetermined strength cannot be obtained with a foamed metal having many coarse cells.

【0006】本発明はこうした状況の下でなされたもの
であって、その目的は、独立気泡の粒径をできるだけ小
さく且つ均一に形成することによって、圧縮強度の向上
を図ることのできる発泡金属を製造する為の有用な方法
を提供することにある。
The present invention has been made under such circumstances, and an object of the present invention is to provide a foam metal capable of improving compressive strength by forming the closed cell diameter as small and uniform as possible. It is to provide a useful method for manufacturing.

【0007】[0007]

【課題を解決するための手段】上記目的を達成し得た本
発明方法とは、金属を溶融させた状態で発泡剤および増
粘剤を加えて攪拌することにより多数の独立気泡を含む
発泡金属を製造する方法において、融点が550〜67
0℃で且つ固液二相域で固相率が35%となる温度が6
40℃以下である溶融金属に増粘剤を添加して大気中若
しくは酸化性雰囲気中で攪拌し、これに640〜680
℃の温度範囲で発泡剤としての水素化チタンを0.5〜
2質量%添加し、これを更に攪拌することによって溶融
金属内に水素化チタンを均一に分散させた後鋳型に注湯
し、鋳型内で発泡充満させてから前記溶融金属を急冷凝
固する点に要旨を有するものである。
The method of the present invention which has attained the above objects is to provide a foamed metal containing a large number of closed cells by adding a foaming agent and a thickener in a molten state of a metal and stirring the mixture. Wherein the melting point is 550-67.
The temperature at which the solid fraction becomes 35% in the solid-liquid two-phase region at 0 ° C. is 6
A thickener is added to a molten metal having a temperature of 40 ° C. or lower, and the mixture is stirred in the air or in an oxidizing atmosphere.
Titanium hydride as a foaming agent in a temperature range of 0.5 ° C.
2% by mass, and further stirred to uniformly disperse titanium hydride in the molten metal, then poured into a mold, filled with foam in the mold, and rapidly cooled and solidified the molten metal. It has a gist.

【0008】この方法では、溶融金属の粘度が比較的高
くなった状態で鋳型内に注湯するものであるが、溶融金
属を鋳型内に円滑に注湯するという観点からして、鋳型
に注湯する際に、(1)溶融金属を1.2気圧以上に加
圧して鋳型内に注湯したり、(2)鋳型内を0.8気圧
以下に減圧することが好ましい。
In this method, the molten metal is poured into the mold in a state where the viscosity of the molten metal is relatively high. From the viewpoint of pouring the molten metal into the mold smoothly, the molten metal is poured into the mold. When hot water is added, it is preferable to (1) pressurize the molten metal to at least 1.2 atm and pour it into the mold, or (2) reduce the pressure inside the mold to 0.8 atm or less.

【0009】上記本発明の目的は、上記の様な溶融金属
に増粘剤を添加して大気中若しくは酸化性雰囲気中で攪
拌して鋳型に注湯し、これに640〜680℃の温度範
囲で発泡剤としての水素化チタンを0.5〜2質量%添
加し、これを更に攪拌することによって水素化チタンを
溶融金属内に均一に分散させ、鋳型内で発泡充満させて
から前記溶融金属を急冷凝固する様にしても達成するこ
とができる。
An object of the present invention is to add a thickening agent to the above-mentioned molten metal, stir the mixture in the air or an oxidizing atmosphere and pour the molten metal into a mold. Then, 0.5 to 2% by mass of titanium hydride as a foaming agent is added, and the mixture is further stirred to uniformly disperse the titanium hydride in the molten metal. Can also be achieved by rapid cooling and solidification.

【0010】上記いずれの構成を採用するにしても、増
粘剤としてはカルシウムが好ましく用いられ、このカル
シウムの添加量は、1.0〜1.8質量%であることが
好ましい。また、上記固液二相域の温度範囲は50℃以
内であることが好ましい。尚、本発明で対象とする溶融
金属としては、上記の要件を満足するものであれば適用
することができるが、好ましい金属としては発泡金属の
素材として汎用されているアルミニウムやアルミニウム
合金が挙げられる。
Regardless of which of the above constitutions is employed, calcium is preferably used as a thickener, and the amount of calcium added is preferably 1.0 to 1.8% by mass. The temperature range of the solid-liquid two-phase region is preferably within 50 ° C. In addition, as the molten metal targeted in the present invention, any one that satisfies the above requirements can be applied, but preferred metals include aluminum and aluminum alloys that are widely used as a foam metal material. .

【0011】[0011]

【発明の実施の形態】微細均一な気泡を形成して高品質
の発泡金属を製造するには、発泡剤を溶融金属に添加し
て均一に分散させた後、希望する発泡体に膨らませ、引
き続きできるだけ短時間で凝固させる必要がある。ま
た、発泡剤を均一に分散させる為には、(1)溶融金属
の粘性を適度に調整すること(低過ぎると気泡が分離
し、高過ぎると発泡剤の分散が困難になる)や、(2)
溶融金属の表面張力が適度に小さいこと、等も重要であ
る。尚、「表面張力が適度に小さい」とは、凝固時間の
短い製品は表面張力が小さいほど細かい気泡が得られる
が、製品が大きくなって凝固時間が長くなると表面張力
が小さ過ぎると逆にばらつきが多くなってしまうからで
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to produce high quality foamed metal by forming fine and uniform cells, a foaming agent is added to a molten metal and uniformly dispersed, then expanded into a desired foam, and then expanded. It must be solidified in as short a time as possible. Further, in order to uniformly disperse the foaming agent, (1) the viscosity of the molten metal is appropriately adjusted (if the temperature is too low, the bubbles are separated, and if the temperature is too high, the foaming agent is difficult to disperse). 2)
It is also important that the surface tension of the molten metal is appropriately small. In addition, "the surface tension is appropriately small" means that a product having a short coagulation time has finer bubbles as the surface tension is smaller, but a product having a larger coagulation time has a smaller dispersion if the surface tension is too small. This is because the number will increase.

【0012】本発明者らは、発泡剤として水素化チタン
を用いることを前提とし、こうした発泡剤との組み合わ
せで最適な溶融金属(発泡金属の骨格を形成する金属)
の物性や製造条件のについて様々な角度から検討した。
その結果、上記のように溶融金属の物性や製造条件を厳
密に規定して、発泡金属を製造すれば、上記目的が見事
に達成されることを見出し、本発明を完成した。
The present inventors presuppose that titanium hydride is used as a foaming agent, and an optimum molten metal (a metal forming a skeleton of a foamed metal) in combination with such a foaming agent.
The physical properties and manufacturing conditions of the material were examined from various angles.
As a result, it has been found that the above object can be achieved satisfactorily if the foamed metal is manufactured by strictly defining the physical properties and manufacturing conditions of the molten metal as described above, and the present invention has been completed.

【0013】本発明方法では後記実施例に示す様に、従
来方法で製造した場合と比べて、気泡を30%以上微細
にすることができ、その結果として圧縮強度を10%以
上高くした発泡金属を製造することができる。以下、本
発明で規定する要件について説明する。
In the method of the present invention, as shown in the examples described later, compared to the case of manufacturing by the conventional method, bubbles can be made finer by 30% or more, and as a result, a foamed metal having a compressive strength higher by 10% or more can be obtained. Can be manufactured. Hereinafter, the requirements specified in the present invention will be described.

【0014】上述の如く、本発明では発泡剤として水酸
化チタンを使用するものであるが、この物質は640℃
以上の温度でガス乖離現象が激しくなり、この温度でガ
スを激しく放出することになる。こうしたことから、発
泡剤を添加して発泡させるときの温度(以下、「発泡温
度」と呼ぶ)は640℃以上とする必要がある。
As described above, in the present invention, titanium hydroxide is used as a foaming agent.
At the above temperature, the gas separation phenomenon becomes intense, and the gas is released at this temperature. For this reason, the temperature at which the foaming agent is added to cause foaming (hereinafter, referred to as “foaming temperature”) needs to be 640 ° C. or higher.

【0015】一方、発泡温度があまり高くなり過ぎる
と、ガス乖離速度が速くなって拡散分散中に大部分が燃
焼し、発泡に利用されるガス量が減少(発泡率が低下)
し、希望する特性を有する発泡金属が得られない。発泡
温度は、溶融金属中に気泡を発泡するときの温度を示し
ただけであり、金属を溶融させるときの温度はこの温度
範囲に限定されるものでなく、後述する融点を有する金
属であれば680℃よりも高い温度で溶融させる様にし
ても良いことは勿論である。但し、増粘剤を添加する段
階では、溶融金属の温度は上記発泡温度にできるだけ近
くすること(例えば、発泡温度+10℃程度)が好まし
い。
On the other hand, if the foaming temperature is too high, the gas separation speed increases, and most of the gas burns during diffusion and dispersion, and the amount of gas used for foaming decreases (the foaming rate decreases).
However, a foamed metal having desired characteristics cannot be obtained. The foaming temperature only indicates the temperature at which bubbles are foamed in the molten metal, and the temperature at which the metal is melted is not limited to this temperature range, as long as the metal has a melting point described below. Of course, it may be made to melt at a temperature higher than 680 ° C. However, at the stage of adding the thickener, the temperature of the molten metal is preferably set as close as possible to the foaming temperature (for example, the foaming temperature + about 10 ° C).

【0016】本発明では上記発泡温度との関係から、対
象とする溶融金属(発泡金属の骨格を構成する金属)に
おける融点等の物性を規定したものである。本発明で用
いる溶融金属は、その融点が550〜670℃のもので
ある。これは上記発泡温度との関係から、融点をできる
だけ高くすることによって発泡温度との差を小さくし、
凝固時間をできるだけ短くするという観点から規定した
ものである。即ち、上記融点が550℃未満になると、
発泡温度との差が大きくなって、凝固時間が長くなり、
凝固前に発泡体の気泡の結合・破壊が繰り返されて粗大
な気泡が形成されることになる。最悪の場合には、発泡
体自体を製造することができなくなってしまう。一方、
溶融金属の融点が670℃を超えると、発泡温度が高く
なり、発泡攪拌時にガスが多量に発生して抜けるため効
率が悪くなる(発泡率が低くなる原因となる)。尚、本
発明を実施するに当たっては、上記発泡温度は溶融金属
の融点よりも高く設定する必要があるのは言うまでもな
いが、上記の温度範囲内で(発泡温度−融点)≦90℃
となる様に設定することが好ましい。また、固液二相域
の温度範囲が大きいと凝固時間が長くなり、重量により
発泡体に割れる易くなるので、金属の固液二相域の温度
範囲は50℃以内であることが好ましい。
In the present invention, the physical properties such as the melting point of the target molten metal (metal constituting the skeleton of the foamed metal) are defined from the relationship with the foaming temperature. The molten metal used in the present invention has a melting point of 550 to 670 ° C. This reduces the difference from the foaming temperature by increasing the melting point as much as possible from the relationship with the foaming temperature,
It is specified from the viewpoint of minimizing the coagulation time. That is, when the melting point is less than 550 ° C,
The difference from the foaming temperature increases and the solidification time increases,
Before solidification, the bubbles of the foam are repeatedly bonded and broken to form coarse cells. In the worst case, the foam itself cannot be manufactured. on the other hand,
If the melting point of the molten metal exceeds 670 ° C., the foaming temperature increases, and a large amount of gas is generated during foaming and stirring, resulting in poor efficiency (causing a low foaming rate). In carrying out the present invention, it goes without saying that the foaming temperature needs to be set higher than the melting point of the molten metal, but within the above temperature range (foaming temperature-melting point) ≦ 90 ° C.
It is preferable to set so that Further, if the temperature range of the solid-liquid two-phase region is large, the solidification time is prolonged and the foam is easily broken by weight. Therefore, the temperature range of the metal solid-liquid two-phase region is preferably within 50 ° C.

【0017】本発明で用いる金属では、固液二相域(固
液共存域)で固相が35%を超えると粘性が必要以上に
高くなり、発泡剤の均一分散が困難になる。こうしたこ
とから、該溶融金属は、固液共存域で固相が35%とな
る温度が発泡温度の下限値(640℃)以下である必要
がある。
In the metal used in the present invention, if the solid phase exceeds 35% in the solid-liquid two-phase region (solid-liquid coexistence region), the viscosity becomes unnecessarily high, and it becomes difficult to uniformly disperse the foaming agent. For this reason, in the molten metal, the temperature at which the solid phase becomes 35% in the solid-liquid coexistence region needs to be equal to or lower than the lower limit of the foaming temperature (640 ° C.).

【0018】発泡金属の素材として用いる溶融金属の種
類については、上記の物性を満足するものであれば使用
でき、例えばアンチモン,アンチモン合金,マグネシウ
ム,マグネシウム合金,アルミニウムおよびアルミニウ
ム合金等が挙げられるが、このうち発泡金属の素材とし
て最も汎用されているのはアルミニウムやアルミニウム
合金であり、またアルミニウム合金のうち上記物性を満
足する好ましいものとして、7003系合金(Al-5%Zn-
1%Mg)や、7N01合金(Al-5%Zn-1%Mg-0.2%Cu)等が
非限定的に例示される。
As the type of the molten metal used as the material of the foamed metal, any one that satisfies the above physical properties can be used, and examples thereof include antimony, an antimony alloy, magnesium, a magnesium alloy, aluminum and an aluminum alloy. Of these, aluminum and aluminum alloys are most commonly used as foam metal materials, and among aluminum alloys, preferred materials satisfying the above physical properties include a 7003 series alloy (Al-5% Zn-
1% Mg), 7N01 alloy (Al-5% Zn-1% Mg-0.2% Cu), and the like.

【0019】本発明方法では、上記の様な溶融金属に対
して、まず粘度調整に為に増粘剤を添加して攪拌する。
溶融金属の粘度調整は、増粘剤を加えずに空気を吹き込
むことによっても可能であるが、この方法では独立気泡
を溶融金属内に保持するのに必要な粘度を溶融金属に与
えるのに長時間を要することになるので、本発明では増
粘剤を添加して溶融金属の粘度調整を行なうものであ
る。また、こうした観点から、増粘剤を添加して攪拌す
るときの雰囲気は、大気中若しくは酸化性雰囲気中とす
る必要がある。
In the method of the present invention, a thickener is first added to the above-mentioned molten metal for viscosity adjustment, followed by stirring.
The viscosity of the molten metal can also be adjusted by blowing air without adding a thickener, but this method requires a long time to give the molten metal the necessary viscosity to keep closed cells in the molten metal. Since it takes time, in the present invention, the viscosity of the molten metal is adjusted by adding a thickener. From such a viewpoint, it is necessary that the atmosphere when the thickener is added and stirred is in the air or an oxidizing atmosphere.

【0020】上記の増粘剤としては、カルシウムが好ま
しいものとして例示される。特に、溶融金属としてアル
ミニウム合金を使用した場合には、増粘剤としてカルシ
ウムを添加することによって、溶融金属の粘度を短時間
に希望する範囲に調整することができる。但し、カルシ
ウムを使用する場合には、その添加量は1.0〜1.8
質量%程度にすることが好ましく、この添加量が1.0
質量%未満になると溶融金属の粘性が不足し、1.8質
量%よりも多くなると粘性が高くなり過ぎる。
As the above-mentioned thickener, calcium is exemplified as a preferable one. In particular, when an aluminum alloy is used as the molten metal, the viscosity of the molten metal can be adjusted to a desired range in a short time by adding calcium as a thickener. However, when calcium is used, the amount of addition is 1.0 to 1.8.
% By mass.
If it is less than mass%, the viscosity of the molten metal is insufficient, and if it is more than 1.8 mass%, the viscosity becomes too high.

【0021】増粘剤が添加された溶融金属には、上述し
た理由によって、640〜680℃の温度範囲で発泡剤
としての水素化チタンが添加されるが、このときの水素
化チタンの添加量は0.5〜2質量%とする必要があ
る。即ち、水素化チタンの添加量が0.5質量%未満に
なると、気泡の発生が不十分になって希望する発泡率が
得られなくなる。一方、水素化チタンの添加量が2質量
%を超えると、気泡の発生が過剰となって長時間の攪拌
が必要となる。
To the molten metal to which the thickener has been added, titanium hydride as a foaming agent is added in the temperature range of 640 to 680 ° C. for the reason described above. Should be 0.5 to 2% by mass. That is, when the amount of titanium hydride is less than 0.5% by mass, the generation of bubbles becomes insufficient, and the desired foaming ratio cannot be obtained. On the other hand, when the addition amount of titanium hydride exceeds 2% by mass, the generation of bubbles becomes excessive, and long-time stirring is required.

【0022】水素化チタンを添加した溶融金属は、更に
攪拌することによって水素化チタンを溶融金属内に均一
に分散させ、その後鋳型に注湯されるが、このとき用い
る鋳型は、前記特公平1−51528号に開示された様
な構成のものが好ましく採用できる。即ち、この鋳型で
は基本的に密閉した容器からなるものであるが、その内
部で発泡剤による発泡が行われるものであるので、こう
した気泡の成長過程で鋳型内に存在していた空気を排出
することが必要となる。従って、本発明で用いる鋳型
は、気泡が成長する過程で空気抜き用の放出口を有する
状態で鋳型が密閉でき、発泡剤が熱によって分解して生
じる多数の気泡が膨張することによって鋳型内の空気を
外部に放出できる構成になっていることが推奨される。
また、この鋳型は、溶融金属を注湯する際に、溶融金属
の温度とほぼ同程度に加熱されている必要があり、例え
ば鋳型が加熱炉内に装入される構成となっている。
The molten metal to which the titanium hydride is added is further stirred to disperse the titanium hydride uniformly in the molten metal, and then poured into a mold. A structure as disclosed in JP-A-51528 can be preferably employed. In other words, although this mold basically consists of a sealed container, since the foaming is performed inside the mold, the air present in the mold in the process of growing such bubbles is discharged. It is necessary. Therefore, in the mold used in the present invention, the mold can be hermetically sealed with a vent for air release in the process of growing the bubbles, and the air in the mold is expanded by the expansion of a large number of bubbles generated by the decomposition of the foaming agent by heat. It is recommended that it be configured so that it can be released to the outside.
Further, when pouring the molten metal, it is necessary that the mold is heated to approximately the same temperature as the temperature of the molten metal. For example, the mold is charged into a heating furnace.

【0023】上記の様に、発泡剤としての水素化チタン
を添加した後に溶融金属を鋳型に注湯するに際しては、
発泡が既に開始している状態であって溶融金属の粘度が
相当に上昇した状態になっているので、そのままの状態
では鋳型への注湯が困難になる場合がある。こうした事
態は、鋳型の注湯口の構造を工夫することによっても回
避できるが、鋳型は構造的に密閉状態を維持する必要性
から注湯口はできるだけ小さく設定されているので、上
記の様な事態を招くことが予想される。この様な場合に
は、溶融金属を鋳型内に円滑に注湯するという観点から
して、鋳型に注湯する際に、(1)溶融金属を1.2気
圧以上に加圧したり、(2)鋳型内を0.8気圧以下に
減圧することが好ましい。
As described above, when pouring a molten metal into a mold after adding titanium hydride as a foaming agent,
Since foaming has already started and the viscosity of the molten metal has risen considerably, it may be difficult to pour the molten metal into the mold in this state. Such a situation can be avoided by devising the structure of the pouring port of the mold.However, since the pouring port is set as small as possible due to the necessity of maintaining the mold in a sealed state, the above-mentioned situation can be avoided. It is expected to invite. In such a case, from the viewpoint of pouring the molten metal into the mold smoothly, when the molten metal is poured into the mold, (1) the molten metal is pressurized to 1.2 atm or more, or (2) It is preferable to reduce the pressure in the mold to 0.8 atm or less.

【0024】尚、溶湯金属を鋳型へ注湯する時期につい
ては、上記の手順では発泡剤を添加した後に行なう構成
を示したが、溶融金属に増粘剤を添加して大気中若しく
は酸化性雰囲気中で攪拌した後(発泡剤を添加する前)
に行なう様にしても良い。こうした状態で溶融金属を鋳
型に注湯すれば、溶湯金属の粘度は多少上がった状態で
注入されることになるが、比較的注湯し易い状態である
ので、溶融金属への加圧や鋳型内の減圧を必ずしも行わ
なくても、鋳型に円滑に注湯することができる。但し、
こうした時期に注湯すれば、その後に溶融金属を攪拌す
る必要があるので、鋳型には攪拌機能を備えたものとす
る必要がある。
The timing of pouring the molten metal into the mold is shown in the above procedure as being performed after the addition of the foaming agent. After stirring in the medium (before adding the blowing agent)
May be performed. If the molten metal is poured into the mold in such a state, the molten metal will be injected with a slightly increased viscosity.However, it is relatively easy to pour the molten metal. The metal can be poured smoothly into the mold without necessarily reducing the pressure inside. However,
If the molten metal is poured at such a time, it is necessary to agitate the molten metal thereafter, so that the mold needs to have a stirring function.

【0025】上記の様にして、溶融金属を鋳型内で発泡
充満させてから急冷凝固させることによって、微細均一
な気泡を有する発泡金属が得られるが、このときの冷却
手段としては、例えば衝風冷却、ミスト冷却、水冷等が
挙げられる。またこのときの冷却速度は2℃/秒以上で
あることが好ましいが、この冷却速度があまり速くなる
と鋳型を損傷する恐れがあるので鋳型に応じて最速に設
計することが好ましい。
As described above, the molten metal is foam-filled in a mold and then rapidly solidified to obtain a foamed metal having fine and uniform cells. Cooling, mist cooling, water cooling and the like can be mentioned. The cooling rate at this time is preferably 2 ° C./sec or more. However, if the cooling rate is too high, the mold may be damaged. Therefore, it is preferable to design the mold at the highest speed according to the mold.

【0026】以下本発明を実施例によってより具体的に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any change in design based on the above and following points is not limited to the present invention. It is included in the technical range of.

【0027】[0027]

【実施例】実施例1 下記表1に示した化学成分組成の各種アルミニウムまた
はアルミニウム合金(32kg)を680℃で溶融さ
せ、これに増粘剤としてのカルシウムを様々な量で添加
し、大気中にて5分間攪拌した。この溶融金属を、後加
熱炉内で加熱された鋳型(63mml×33mmw×63
mmh)に注湯し、下記表1に示す量の水素化チタンを
添加し、更に2分強攪拌することで溶融金属内に水素化
チタンを均一に分散させて発泡させた。そして鋳型内で
溶融金属を発泡充満させた後、加熱炉から鋳型を取り出
し、ファンによって衝風冷却(強制冷却)して鋳型内の
溶融金属を急冷凝固させてから、鋳型から発泡金属を取
り出した。得られた各発泡金属における発泡率、気泡の
平均粒径および圧縮強度を下記の方法で測定した。
Example 1 Various aluminum or aluminum alloys (32 kg) having the chemical composition shown in Table 1 below were melted at 680 ° C., and various amounts of calcium as a thickener were added thereto. For 5 minutes. The molten metal was placed in a mold (63 mm 1 × 33 mm w × 63) heated in a post-heating furnace.
mm h ), titanium hydride in the amount shown in Table 1 below was added, and the mixture was stirred vigorously for 2 minutes to uniformly disperse the titanium hydride in the molten metal and foam it. Then, after the molten metal was filled with foam in the mold, the mold was taken out of the heating furnace and subjected to blast cooling (forced cooling) by a fan to rapidly solidify the molten metal in the mold, and then the foamed metal was taken out of the mold. . The expansion ratio, average particle diameter of the cells, and compressive strength of each of the obtained foamed metals were measured by the following methods.

【0028】(発泡率)下記の式に基づいて、発泡率を
求めた。 [(発泡体体積−金属体積)/発泡体体積]×100
(%) (気泡の平均粒径)300cm2(10cm×30c
m)の測定面積で気泡数を測定し、測定面積を気泡数で
割った値(測定面積/測定面積中の気泡数)を平均断面
積とし、その平方根(平均断面積)1/2を気泡の平均粒
径として求めた。このとき、ヒストグラムを作成するこ
とによって、気泡の不均一性についても調査した。
(Expansion rate) The expansion rate was determined based on the following equation. [(Foam volume-metal volume) / foam volume] x 100
(%) (Average particle size of bubble) 300 cm 2 (10 cm × 30 c)
measuring the number of bubbles in the measuring area m), a value obtained by dividing the measured area by the number of bubbles (the number of bubbles measured area / measured area in) and the average cross-sectional area, the bubbles and the square root (average cross sectional area) 1/2 Was determined as the average particle size. At this time, by making a histogram, the non-uniformity of bubbles was also investigated.

【0029】(圧縮強度)得られた発泡体から50×5
0×50(mm)の試験片を採取し、圧縮試験によって
圧縮荷重(歪速度1×10-3/秒で変形させて歪量が
0.2となるときの荷重)を求め、この値を断面積で割
った値(圧縮荷重/断面積)を圧縮強度とした。
(Compressive strength) From the obtained foam, 50 × 5
A test piece of 0 × 50 (mm) is sampled, and a compression test is performed to determine a compression load (a load at which the strain is 0.2 at a strain rate of 1 × 10 −3 / sec and the amount of strain is 0.2). The value (compressive load / cross-sectional area) divided by the cross-sectional area was defined as the compressive strength.

【0030】その結果を、各金属の融点、凝固温度(液
相が全て固相となるときの温度を意味する)、固液二相
域で固相率が35%となるときの温度Tと共に下記表1
に示すが、本発明で規定する要件を満足する実施例(N
o.1,7)のものでは、独立気泡の粒径が微細で且つ
均一に高い発泡率で形成されており、圧縮強度が一段と
向上していることが分かる。
The results are shown together with the melting point of each metal, the solidification temperature (meaning the temperature when the liquid phase becomes a solid phase), and the temperature T when the solid fraction becomes 35% in the solid-liquid two-phase region. Table 1 below
Examples (N) satisfying the requirements defined in the present invention
o. In the case of (1) and (7), it can be seen that the closed cells have a fine particle size and are uniformly formed with a high foaming ratio, and the compressive strength is further improved.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例2 前記表1のNo.1のアルミニウム(32kg)を68
0℃で溶融させ、これに増粘剤としてのカルシウムを
1.5質量%添加し、大気中にて5分間攪拌した。この
溶融金属に水素化チタンを1.4質量%添加し、更に2
分強攪拌することで溶融金属内に水素化チタンを均一に
分散させて発泡させた。その後直ちに、直径40mmφ
×400mmhの円筒状鋳型、および37mm×37m
m×400mmhの四角柱状鋳型の夫々に注湯し、鋳型
内で溶融金属を発泡充満させた。その後、加熱炉から鋳
型を取り出しファンによって衝風冷却(強制冷却)して
鋳型内の溶融金属を急冷凝固させてから、鋳型から発泡
金属を取り出した。得られた各発泡金属における発泡
率、気泡の平均粒径および圧縮強度を実施例1と同様に
して求めた。尚、圧縮強度測定用の試験片は、各発泡体
を高さが50mmとなるように切断したものを用いた。
その結果を、下記表2に示すが、いずれも独立気泡の粒
径が微細で且つ均一に高い発泡率で形成されており、高
い圧縮強度が得られていることが分かる。
Example 2 One aluminum (32 kg) is 68
The mixture was melted at 0 ° C., and 1.5 mass% of calcium as a thickener was added thereto, followed by stirring in the air for 5 minutes. 1.4 mass% of titanium hydride is added to this molten metal,
Titanium hydride was uniformly dispersed in the molten metal and foamed by vigorous stirring. Immediately thereafter, the diameter is 40 mmφ
X 400mm h cylindrical mold, and 37mm x 37m
Molten metal was poured into each of the square column-shaped molds of mx 400 mm h , and the molten metal was filled with foam in the molds. Thereafter, the mold was taken out of the heating furnace, and subjected to blast cooling (forced cooling) by a fan to rapidly cool and solidify the molten metal in the mold, and then the foamed metal was taken out of the mold. The foaming ratio, the average cell diameter and the compressive strength of each of the obtained foamed metals were determined in the same manner as in Example 1. In addition, the test piece for compressive strength measurement used cut | disconnected each foam so that height might be set to 50 mm.
The results are shown in Table 2 below, and it can be seen that the closed cells have a fine particle size and are uniformly formed at a high foaming rate, and that high compressive strength is obtained.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明は以上の様に構成されており、独
立気泡の粒径をできるだけ小さく且つ均一に形成するこ
とによって、圧縮強度の向上を図ることのできる発泡金
属を製造することができた。
The present invention is constituted as described above, and it is possible to produce a foamed metal capable of improving the compressive strength by forming the closed cell diameter as small and uniform as possible. Was.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 27/20 B22D 27/20 Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) B22D 27/20 B22D 27/20 Z

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 金属を溶融させた状態で発泡剤および増
粘剤を加えて攪拌することにより多数の独立気泡を含む
発泡金属を製造する方法において、融点が550〜67
0℃で且つ固液二相域で固相率が35%となる温度が6
40℃以下である溶融金属に、増粘剤を添加して大気中
若しくは酸化性雰囲気中で攪拌し、これに640〜68
0℃の温度範囲で発泡剤としての水素化チタンを0.5
〜2質量%添加し、これを更に攪拌することによって溶
融金属内に水素化チタンを均一に分散させた後鋳型に注
湯し、鋳型内で発泡充満させてから前記溶融金属を急冷
凝固することを特徴とする発泡金属の製造方法。
1. A method for producing a foamed metal containing a large number of closed cells by adding a foaming agent and a thickener in a molten state of the metal and stirring the mixture, wherein the melting point is 550 to 67.
The temperature at which the solid fraction becomes 35% in the solid-liquid two-phase region at 0 ° C. is 6
A thickener is added to the molten metal having a temperature of 40 ° C. or lower, and the mixture is stirred in the air or in an oxidizing atmosphere.
In a temperature range of 0 ° C., titanium hydride as a foaming agent is added in an amount of 0.5%.
22% by mass, and further stirred to uniformly disperse titanium hydride in the molten metal, then poured into a mold, filled with foam in the mold, and then quenched and solidified with the molten metal. A method for producing a foamed metal, comprising:
【請求項2】 増粘剤がカルシウムである請求項1に記
載の製造方法。
2. The method according to claim 1, wherein the thickener is calcium.
【請求項3】 カルシウムの添加量が1.0〜1.8質
量%である請求項2に記載の製造方法。
3. The method according to claim 2, wherein the amount of calcium added is 1.0 to 1.8% by mass.
【請求項4】 金属の固液二相域の温度範囲が50℃以
内である請求項1〜3のいずれかに記載の製造方法。
4. The production method according to claim 1, wherein the temperature range of the solid-liquid two-phase region of the metal is within 50 ° C.
【請求項5】 溶融金属を鋳型に注湯するに際し、溶融
金属を1.2気圧以上の加圧下に鋳型内へ注湯する請求
項1〜4のいずれかに記載の製造方法。
5. The production method according to claim 1, wherein when pouring the molten metal into the mold, the molten metal is poured into the mold under a pressure of 1.2 atm or more.
【請求項6】 溶融金属を鋳型に注湯するに際し、鋳型
内を0.8気圧以下に減圧する請求項1〜5のいずれか
に記載の製造方法。
6. The method according to claim 1, wherein the pressure inside the mold is reduced to 0.8 atm or less when the molten metal is poured into the mold.
【請求項7】 溶融金属がアルミニウムまたはアルミニ
ウム合金である請求項1〜6のいずれかに記載の製造方
法。
7. The method according to claim 1, wherein the molten metal is aluminum or an aluminum alloy.
【請求項8】 金属を溶融させた状態で発泡剤および増
粘剤を加えて攪拌することにより多数の独立気泡を含む
発泡金属を製造する方法において、融点が550〜67
0℃で且つ固液二相域で固相率が35%となる温度が6
40℃以下である溶融金属に増粘剤を添加して大気中若
しくは酸化性雰囲気中で攪拌して鋳型に注湯し、これに
640〜680℃の温度範囲で発泡剤としての水素化チ
タンを0.5〜2質量%添加し、これを更に攪拌するこ
とによって水素化チタンを溶融金属内に均一に分散さ
せ、鋳型内で発泡充満させてから前記溶融金属を急冷凝
固することを特徴とする発泡金属の製造方法。
8. A method for producing a foamed metal containing a large number of closed cells by adding a foaming agent and a thickener in a molten state of the metal and stirring the mixture, wherein the melting point is 550 to 67.
The temperature at which the solid fraction becomes 35% in the solid-liquid two-phase region at 0 ° C. is 6
A thickener is added to a molten metal having a temperature of 40 ° C. or lower, and the mixture is stirred in the air or an oxidizing atmosphere and poured into a mold. Titanium hydride as a foaming agent is added thereto at a temperature in the range of 640 to 680 ° C. 0.5 to 2% by mass is added, and the mixture is further stirred to uniformly disperse the titanium hydride in the molten metal. After filling the foam in a mold, the molten metal is rapidly solidified. Manufacturing method of foam metal.
【請求項9】 増粘剤がカルシウムである請求項8に記
載の製造方法。
9. The method according to claim 8, wherein the thickener is calcium.
【請求項10】 カルシウムの添加量が1.0〜1.8
質量%である請求項9に記載の製造方法。
10. The amount of calcium added is 1.0 to 1.8.
The method according to claim 9, wherein the content is mass%.
【請求項11】 金属の固液二相域の温度範囲が50℃
以内である請求項8〜10のいずれかに記載の製造方
法。
11. The temperature range of the solid-liquid two-phase region of the metal is 50 ° C.
The production method according to any one of claims 8 to 10, wherein
【請求項12】 溶融金属がアルミニウムまたはアルミ
ニウム合金である請求項8〜11のいずれかに記載の製
造方法。
12. The method according to claim 8, wherein the molten metal is aluminum or an aluminum alloy.
JP2001183786A 2001-06-18 2001-06-18 Manufacturing method of foam metal Expired - Fee Related JP4176975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183786A JP4176975B2 (en) 2001-06-18 2001-06-18 Manufacturing method of foam metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183786A JP4176975B2 (en) 2001-06-18 2001-06-18 Manufacturing method of foam metal

Publications (2)

Publication Number Publication Date
JP2002371327A true JP2002371327A (en) 2002-12-26
JP4176975B2 JP4176975B2 (en) 2008-11-05

Family

ID=19023673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183786A Expired - Fee Related JP4176975B2 (en) 2001-06-18 2001-06-18 Manufacturing method of foam metal

Country Status (1)

Country Link
JP (1) JP4176975B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011686A1 (en) * 2002-07-31 2004-02-05 Kabushiki Kaisha Kobe Seiko Sho Method and apparatus for injection foaming molding
WO2005113179A3 (en) * 2004-05-14 2006-09-08 Jeanette Garr A process and system for manufacturing a metal foam product, and uses thereof
JP2007061865A (en) * 2005-08-31 2007-03-15 Kobe Steel Ltd Metal foam and method for producing the same
JP2007063629A (en) * 2005-08-31 2007-03-15 Kobe Steel Ltd Foam and production method thereof
JP2007100176A (en) * 2005-10-05 2007-04-19 Honda Motor Co Ltd Method for producing foamed aluminum
JP2007224352A (en) * 2006-02-22 2007-09-06 Kobe Steel Ltd Aluminum alloy foam and manufacturing method thereof
JP2007297684A (en) * 2006-05-01 2007-11-15 Kobe Steel Ltd Foam and its continuous production method
JP2008260023A (en) * 2007-04-10 2008-10-30 Mitsui Mining & Smelting Co Ltd Method for producing metallic composite material, and member composed of the metallic composite material
US7754140B2 (en) 2003-03-25 2010-07-13 Alulight International Gmbh Method and device for producing dimensionally accurate foam
WO2011152241A1 (en) 2010-05-31 2011-12-08 住友電気工業株式会社 Current collector for non-aqueous electrolyte battery, electrode for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
WO2012111615A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Air battery and electrode
DE112012000856T5 (en) 2011-02-18 2013-11-14 Sumitomo Electric Industries, Ltd. Electrochemical device
DE112012000878T5 (en) 2011-02-18 2013-11-21 Sumitomo Electric Industries, Ltd. Electrode for electrochemical device and method for its production
CN106119585A (en) * 2016-06-28 2016-11-16 郭迎庆 A kind of preparation method of closed-cell aluminum foam
CN106399739A (en) * 2016-09-21 2017-02-15 芜湖扬展新材料科技服务有限公司 Rare earth foamed aluminium material
WO2018065507A1 (en) * 2016-10-05 2018-04-12 Johnson Controls Autobatterie Gmbh & Co.Kgaa Electrically conductive structure and method for the production thereof
CN115595464A (en) * 2021-06-28 2023-01-13 丹阳市俊晧金属科技有限公司(Cn) Preparation method of cellular aluminum block with large size and uniform pore structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703739B2 (en) 2010-03-26 2015-04-22 住友電気工業株式会社 Method for producing porous aluminum body, battery electrode material using porous aluminum body, and electrode material for electric double layer capacitor
CN103097591B (en) 2010-09-15 2016-06-15 住友电气工业株式会社 The manufacture method of constructed of aluminium body and constructed of aluminium body
WO2012039287A1 (en) 2010-09-20 2012-03-29 住友電気工業株式会社 Method for producing aluminum structure, and aluminum structure

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011686A1 (en) * 2002-07-31 2004-02-05 Kabushiki Kaisha Kobe Seiko Sho Method and apparatus for injection foaming molding
US7754140B2 (en) 2003-03-25 2010-07-13 Alulight International Gmbh Method and device for producing dimensionally accurate foam
WO2005113179A3 (en) * 2004-05-14 2006-09-08 Jeanette Garr A process and system for manufacturing a metal foam product, and uses thereof
JP2007061865A (en) * 2005-08-31 2007-03-15 Kobe Steel Ltd Metal foam and method for producing the same
JP2007063629A (en) * 2005-08-31 2007-03-15 Kobe Steel Ltd Foam and production method thereof
JP2007100176A (en) * 2005-10-05 2007-04-19 Honda Motor Co Ltd Method for producing foamed aluminum
JP2007224352A (en) * 2006-02-22 2007-09-06 Kobe Steel Ltd Aluminum alloy foam and manufacturing method thereof
JP2007297684A (en) * 2006-05-01 2007-11-15 Kobe Steel Ltd Foam and its continuous production method
JP2008260023A (en) * 2007-04-10 2008-10-30 Mitsui Mining & Smelting Co Ltd Method for producing metallic composite material, and member composed of the metallic composite material
WO2011152241A1 (en) 2010-05-31 2011-12-08 住友電気工業株式会社 Current collector for non-aqueous electrolyte battery, electrode for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
DE112012000878T5 (en) 2011-02-18 2013-11-21 Sumitomo Electric Industries, Ltd. Electrode for electrochemical device and method for its production
DE112012000856T5 (en) 2011-02-18 2013-11-14 Sumitomo Electric Industries, Ltd. Electrochemical device
WO2012111615A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Air battery and electrode
DE112012000875T5 (en) 2011-02-18 2013-12-24 Sumitomo Electric Industries, Ltd. Air battery and electrode
CN106119585A (en) * 2016-06-28 2016-11-16 郭迎庆 A kind of preparation method of closed-cell aluminum foam
CN106399739A (en) * 2016-09-21 2017-02-15 芜湖扬展新材料科技服务有限公司 Rare earth foamed aluminium material
WO2018065507A1 (en) * 2016-10-05 2018-04-12 Johnson Controls Autobatterie Gmbh & Co.Kgaa Electrically conductive structure and method for the production thereof
DE102016118863B4 (en) 2016-10-05 2019-07-04 Johnson Controls Autobatterie Gmbh & Co. Kgaa Conducting structure, system having such a structure, and method of manufacturing the same
CN115595464A (en) * 2021-06-28 2023-01-13 丹阳市俊晧金属科技有限公司(Cn) Preparation method of cellular aluminum block with large size and uniform pore structure

Also Published As

Publication number Publication date
JP4176975B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP2002371327A (en) Manufacturing method of foam metal
JP2635817B2 (en) Manufacturing method of metal foam reinforced with particles
Banhart et al. Production methods for metallic foams
Kennedy Porous metals and metal foams made from powders
JP4344141B2 (en) Metal foam manufacturing
US8562904B2 (en) Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material
US20020121157A1 (en) Process for producing metal foam and metal body produced using this process
JP5526938B2 (en) Method for producing porous aluminum sintered body
JP3352584B2 (en) Manufacturing method of metal foam
JP3823024B2 (en) Foamable aluminum alloy and method for producing aluminum foam from foamable aluminum alloy
US5221324A (en) Lightweight metal with isolated pores and its production
EP0545957B1 (en) Lightweight metal with isolated pores and its production
US7396380B2 (en) Method for producing metal foam bodies
US20060118984A1 (en) Method for producing porous sintered bodies
JP4254366B2 (en) Magnesium alloy porous body and method for producing the same
JP2010116623A (en) Metal foamed body and method for producing metal foamed body
JP2005344153A (en) Method for producing member made of foamed aluminum alloy
JP2004156092A (en) Porous metal excellent in energy absorption and method for producing the same
Asavavisithchai et al. The effect of oxides in various aluminium powders on foamability
JPH10158761A (en) Production of foam having directional pore
Surace¹ et al. Investigation and comparison of aluminium foams manufactured by different techniques
JP2005081426A (en) Method for casting aluminum alloy casting
JP4126366B2 (en) Method for producing foamed inorganic powder
WO2001006025A1 (en) Method of producing items in foam aluminum
JP2007162052A (en) Material for foam metal and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees