JP2002367655A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JP2002367655A JP2002367655A JP2001176346A JP2001176346A JP2002367655A JP 2002367655 A JP2002367655 A JP 2002367655A JP 2001176346 A JP2001176346 A JP 2001176346A JP 2001176346 A JP2001176346 A JP 2001176346A JP 2002367655 A JP2002367655 A JP 2002367655A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- electrode
- water
- cathode
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 72
- 239000003054 catalyst Substances 0.000 claims abstract description 72
- 238000009792 diffusion process Methods 0.000 claims abstract description 69
- 239000003792 electrolyte Substances 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 45
- 229910052799 carbon Inorganic materials 0.000 abstract description 45
- 239000005871 repellent Substances 0.000 abstract description 26
- 239000001257 hydrogen Substances 0.000 abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 22
- 230000001965 increasing effect Effects 0.000 abstract description 12
- 239000007789 gas Substances 0.000 description 59
- 230000001590 oxidative effect Effects 0.000 description 24
- 239000002737 fuel gas Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 15
- 239000005518 polymer electrolyte Substances 0.000 description 15
- 238000011144 upstream manufacturing Methods 0.000 description 14
- 239000012528 membrane Substances 0.000 description 13
- 239000011148 porous material Substances 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- -1 hydrogen ions Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
(57)【要約】
【課題】 燃料電池内の電解質のアノード側カソード側
両面の含水率を一定に保持することによって、燃料電池
の出力を一定に保つ。
【解決手段】 カソード側の空気極26の拡散層52、
撥水カーボン層54、触媒層56が、アノード側の水素
極22の拡散層42、撥水カーボン層44、触媒層46
に比べ、排水性が抑制されている燃料電池であって、拡
散層52と撥水カーボン層54の気孔径、気孔量を拡散
層42、撥水カーボン層44に比べて小さくしたり、ま
たは拡散層52、撥水カーボン層54、触媒層56の厚
みを、拡散層42、撥水カーボン層44、触媒層46に
比べ厚くしたり、または撥水カーボン層54、触媒層5
6の疎水性を、撥水カーボン層44、触媒層46に比べ
高くすることにより構成された燃料電池である。
(57) [Summary] [PROBLEMS] To keep the output of a fuel cell constant by keeping the water content on both the anode and cathode sides of the electrolyte in the fuel cell constant. SOLUTION: A diffusion layer 52 of a cathode side air electrode 26,
The water-repellent carbon layer 54 and the catalyst layer 56 are composed of the diffusion layer 42 of the hydrogen electrode 22 on the anode side, the water-repellent carbon layer 44, and the catalyst layer 46.
In this fuel cell, the drainage performance is suppressed as compared with that of the diffusion layer 52 and the water-repellent carbon layer 54. The thickness of the layer 52, the water-repellent carbon layer 54, and the catalyst layer 56 may be made larger than the diffusion layer 42, the water-repellent carbon layer 44, and the catalyst layer 46, or the water-repellent carbon layer 54 and the catalyst layer 5
6 is a fuel cell constituted by increasing the hydrophobicity of the water-repellent carbon layer 44 and the catalyst layer 46 as compared with those of the water-repellent carbon layer 44 and the catalyst layer 46.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特に燃料電池にお
ける電気化学反応時の電解質のカソード側及びアノード
側の乾燥及び濡れすぎを抑制した高効率の燃料電池に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency fuel cell which suppresses excessive drying and excessive wetting on the cathode side and the anode side of an electrolyte during an electrochemical reaction in a fuel cell.
【0002】[0002]
【従来の技術】電気化学反応による発電方式を用いた燃
料電池は、高効率と優れた環境特性を有することから小
電力電池として近年脚光を浴びている。燃料電池の原理
は、水の電気分解の逆反応、すなわち水素と酸素が結び
ついて電子イオンと水とが生成する仕組みを利用してい
る。2. Description of the Related Art In recent years, a fuel cell using a power generation system by an electrochemical reaction has been spotlighted as a small power battery because of its high efficiency and excellent environmental characteristics. The principle of the fuel cell utilizes a reverse reaction of water electrolysis, that is, a mechanism in which hydrogen and oxygen are combined to generate electron ions and water.
【0003】燃料電池としては、無機酸であるリン酸を
電解質とするリン酸型燃料電池と、炭酸リチウムと炭酸
カリウムとの混合炭酸塩を含浸させた電界質板を用いる
溶融炭酸塩型燃料電池と、リン酸水溶液や溶融炭酸塩の
ような液体上材料の代わりにイオン導電性を有する固体
の安定化ジルコニアを電解質とし作動温度1000℃の
固体電解質型燃料電池と、水酸化カリウム水溶液を電解
質とするアルカリ型燃料電池と、水素イオン導電性のフ
ッ素樹脂系のイオン交換膜(例えばナフィオン(Nafion
デュポン社の登録商標))を電解質として作動温度8
0〜90℃である固体高分子型燃料電池がある。As a fuel cell, a phosphoric acid type fuel cell using phosphoric acid which is an inorganic acid as an electrolyte, and a molten carbonate type fuel cell using an electrolyte plate impregnated with a mixed carbonate of lithium carbonate and potassium carbonate are used. A solid electrolyte fuel cell having an operating temperature of 1000 ° C. using solid stabilized zirconia having ionic conductivity as an electrolyte instead of a liquid material such as a phosphoric acid aqueous solution or molten carbonate, and an aqueous solution of potassium hydroxide as an electrolyte. Alkaline fuel cell and a hydrogen ion conductive fluororesin-based ion exchange membrane (eg, Nafion
Operating temperature 8 using DuPont registered trademark) as electrolyte
There is a polymer electrolyte fuel cell at 0 to 90 ° C.
【0004】近年、特に電解質の逸散・保持等の問題が
なく、常温で起動しかつ起動時間が極めて早い等の利点
を有する固体高分子型燃料電池が注目されている。この
固体高分子型燃料電池(PEFC:Polymer Electrolyt
e Fuel Cells)の構造は、固体高分子電解質膜を2枚の
ガス拡散電極で挟み、これらを一体として接合したセル
が少なくとも1つ以上が積層されスタックを形成してな
る。[0004] In recent years, attention has been focused on a polymer electrolyte fuel cell which has no particular problem such as electrolyte dissipation / holding and has the advantages of starting at room temperature and having a very short start-up time. This polymer electrolyte fuel cell (PEFC: Polymer Electrolyt
e Fuel Cells) has a structure in which a solid polymer electrolyte membrane is sandwiched between two gas diffusion electrodes, and at least one or more cells in which these are integrally joined are stacked to form a stack.
【0005】上記固体高分子型燃料電池は、図7に示す
ように、電解質11に上述した高分子イオン交換膜を用
い、この電解質11の両側には、それぞれアノード側触
媒電極12とカソード側触媒電極16(いずれも例えば
触媒として白金を含む)が配置され、更に両触媒電極1
2,16の外側には、それぞれアノード側ガス拡散電極
14とカソード側ガス拡散電極18が配置され、セル1
0が形成される。As shown in FIG. 7, the solid polymer fuel cell uses the above-mentioned polymer ion exchange membrane for the electrolyte 11, and has an anode-side catalyst electrode 12 and a cathode-side catalyst on both sides of the electrolyte 11. Electrodes 16 (each containing, for example, platinum as a catalyst) are arranged.
An anode-side gas diffusion electrode 14 and a cathode-side gas diffusion electrode 18 are arranged outside the cells 2 and 16, respectively.
0 is formed.
【0006】アノード側に供給された加湿燃料ガス中の
水素は、アノード側ガス拡散電極14を介してアノード
側触媒電極12に送られ、アノード側触媒電極12にお
いて水素イオン化され、水素イオンは、電解質11中を
水を介在のもとH+・xH2Oとしてカソード側に移動す
る。移動した水素イオンは、カソード側触媒電極16に
おいて、カソード側ガス拡散電極18に供給された酸化
ガス中の酸素と外部回路20を流通してきた電子
(e-)と反応して水を生成する。この生成した水は、
カソード側から排出される。このとき、外部回路20を
流通した電子の流れを直流の電気エネルギーとして利用
することができる。[0006] Hydrogen in the humidified fuel gas supplied to the anode side is sent to the anode catalyst electrode 12 via the anode gas diffusion electrode 14 and is hydrogen ionized at the anode catalyst electrode 12. 11 is moved to the cathode side as H + .xH 2 O with water interposed. The transferred hydrogen ions react with oxygen in the oxidizing gas supplied to the cathode gas diffusion electrode 18 and electrons (e − ) flowing through the external circuit 20 at the cathode catalyst electrode 16 to generate water. This generated water is
It is discharged from the cathode side. At this time, the flow of electrons flowing through the external circuit 20 can be used as DC electric energy.
【0007】更に詳説すると、アノード側ガス拡散電極
14とアノード側触媒電極12とからなる水素極に燃料
ガス(水素又は水素リッチの改質ガス)を供給すること
によって、次式の反応が生じる。More specifically, by supplying a fuel gas (hydrogen or hydrogen-rich reformed gas) to the hydrogen electrode composed of the anode-side gas diffusion electrode 14 and the anode-side catalyst electrode 12, the following reaction occurs.
【0008】[0008]
【数1】H2 → 2H++2e- また、カソード側ガス拡散電極18とカソード側触媒電
極16とからなる空気極に酸化ガス(酸素又は空気)を
供給することにより、次の反応が起こる。H 2 → 2H + + 2e − By supplying an oxidizing gas (oxygen or air) to the air electrode composed of the cathode gas diffusion electrode 18 and the cathode catalyst electrode 16, the following reaction occurs.
【0009】[0009]
【数2】1/2O2 +2H++2e- → H2O 上述の電気化学反応により、固体高分子型燃料電池は起
電力を呈する。ここで、電解質11における水素イオン
の透過性を良好に維持するためには、電解質11を十分
な保水状態に保つ必要がある。 2 O 2 + 2H + + 2e − → H 2 O The polymer electrolyte fuel cell exhibits an electromotive force by the above-described electrochemical reaction. Here, in order to maintain good permeability of hydrogen ions in the electrolyte 11, it is necessary to keep the electrolyte 11 in a sufficiently water-retaining state.
【0010】通常、固体高分子型燃料電池は、図8,9
に示すような構成を有し、空気極26に酸化ガスを供給
するセパレータ30には、一定方向に並列して複数のリ
ブが設けられ、このリブを介して酸素ガスが一定の方向
に流通する。一方、水素極22に燃料ガスを供給するセ
パレータ32にも、一定方向に並列して複数のリブが設
けられ、このリブを介して燃料ガスが流通する。ここ
で、セパレータ30,32のそれぞれのリブは、一般に
燃料ガスと酸化ガスとの流通方向が異なるように形成さ
れている。Usually, a polymer electrolyte fuel cell is shown in FIGS.
And a plurality of ribs are provided in parallel in a certain direction on the separator 30 for supplying the oxidizing gas to the air electrode 26, and oxygen gas flows in a certain direction through the ribs. . On the other hand, a plurality of ribs are also provided in parallel in a certain direction on the separator 32 that supplies the fuel gas to the hydrogen electrode 22, and the fuel gas flows through the ribs. Here, the ribs of the separators 30 and 32 are generally formed so that the flow directions of the fuel gas and the oxidizing gas are different.
【0011】従って、図8に示すように、アノード側の
水素極22において、加湿された燃料ガスの供給される
リブ上流側では、加湿のために水蒸気分圧が高いが、燃
料ガスの排出されるリブ下流側では、電池反応によって
水素極22から水が空気極26に移動するため、燃料ガ
スに対する水蒸気分圧が低下する。これにより、燃料ガ
スの下流側の水素極22に面する電解質11は乾燥しす
ぎてしまい(ドライアップ状態)、アノード側からカソ
ード側にプロトンを移動する際に随伴させる水が不足
し、その結果電解質11の抵抗が高くなり、固体高分子
型燃料電池の出力が低下してしまうおそれがあった。Therefore, as shown in FIG. 8, in the hydrogen electrode 22 on the anode side, on the upstream side of the rib where the humidified fuel gas is supplied, the partial pressure of steam is high due to humidification, but the fuel gas is discharged. On the downstream side of the ribs, water moves from the hydrogen electrode 22 to the air electrode 26 due to the battery reaction, so that the partial pressure of water vapor with respect to the fuel gas decreases. As a result, the electrolyte 11 facing the hydrogen electrode 22 on the downstream side of the fuel gas becomes too dry (dry-up state), and the amount of water accompanying the transfer of protons from the anode side to the cathode side becomes insufficient. There is a possibility that the resistance of the electrolyte 11 increases and the output of the polymer electrolyte fuel cell decreases.
【0012】一方、カソード側の空気極26において、
酸化ガスの供給されるリブ上流側では、乾燥した空気が
供給されるため水蒸気分圧が低いが、酸化ガスが排出さ
れるリブ下流側では、電池反応により供給された空気中
の酸素が消費され、水が生成すると同時にアノード側か
らプロトンとともに水が移動してくるため、酸化ガスに
対する水蒸気分圧が高くなり、その結果カソード側の空
気極26のガス拡散基材(図7に示すカソード側ガス拡
散電極18)の細孔が水により閉塞され(フラッディン
グ状態)、カソード側への酸化ガスの拡散が阻害され
る。これにより、固体高分子型燃料電池の出力が低下す
るおそれがあった。On the other hand, at the cathode-side air electrode 26,
On the upstream side of the rib where the oxidizing gas is supplied, the partial pressure of water vapor is low because dry air is supplied, but on the downstream side of the rib where the oxidizing gas is discharged, oxygen in the air supplied by the battery reaction is consumed. Since the water moves together with the protons from the anode side at the same time as the water is generated, the partial pressure of water vapor with respect to the oxidizing gas increases, and as a result, the gas diffusion substrate of the air electrode 26 on the cathode side (the cathode side gas shown in FIG. 7) The pores of the diffusion electrode 18) are closed by water (flooding state), and the diffusion of the oxidizing gas to the cathode side is hindered. Thereby, the output of the polymer electrolyte fuel cell may be reduced.
【0013】そこで、特開平6−247562号公報の
「固体高分子電解質燃料電池」では、カソード側の水に
よるガス拡散電極細孔の閉塞を防止するために、電解質
に付設されたカソード側のガス拡散用カーボン電極にお
いて、酸化ガスの上流流路域から下流流路域に沿って空
隙率を徐々に大きくし、空隙率を酸化ガス流路に沿って
変化させた燃料電池が提案されている。In order to prevent the pores of the gas diffusion electrode from being blocked by water on the cathode side, Japanese Patent Application Laid-Open No. 6-247562 discloses a "solid polymer electrolyte fuel cell". In the diffusion carbon electrode, a fuel cell has been proposed in which the porosity is gradually increased from the upstream flow path area to the downstream flow path area of the oxidizing gas, and the porosity is changed along the oxidizing gas flow path.
【0014】また、特開平6−267564号公報の
「固体高分子電解質燃料電池」では、上述同様に、カソ
ード側の水によるガス拡散電極細孔の閉塞を防止するた
めに、電解質に付設されたカソード側のガス拡散用カー
ボン電極に酸化ガスを供給する酸化剤配流板の酸化ガス
流路の深さあるいは幅を少なくともいずれかを、酸化ガ
スの上流流路域から下流流路域に沿って徐々に小さく
し、酸化ガスの流速を早くすることによって、排出効率
を高めた燃料電池が提案されている。Further, in the "Solid polymer electrolyte fuel cell" disclosed in Japanese Patent Application Laid-Open No. Hei 6-267564, as described above, in order to prevent the gas diffusion electrode pores from being blocked by water on the cathode side, the electrolyte is attached to the electrolyte. The depth or width of the oxidizing gas flow path of the oxidizing agent distribution plate that supplies the oxidizing gas to the gas diffusion carbon electrode on the cathode side is gradually increased along the downstream flow path area from the upstream flow path area of the oxidizing gas. A fuel cell has been proposed in which the discharge efficiency is increased by reducing the size of the fuel cell and increasing the flow rate of the oxidizing gas.
【0015】[0015]
【発明が解決しようとする課題】しかしながら、上述の
いずれの燃料電池においても、水素極の燃料ガス流通下
流側の水不足による、アノード側の電解質面の乾燥しす
ぎを防止できなかった。このため、電池反応における水
素極から空気極側へのプロトン移動が阻害され、その結
果燃料電池の出力が低下してしまうおそれがあった。However, in any of the above-mentioned fuel cells, it has not been possible to prevent the electrolyte surface on the anode side from being excessively dried due to a shortage of water on the downstream side of the fuel gas flow through the hydrogen electrode. For this reason, proton transfer from the hydrogen electrode to the air electrode side in the cell reaction is hindered, and as a result, the output of the fuel cell may be reduced.
【0016】そこで、本発明は上記課題に鑑みてなされ
たものであり、その目的は、燃料電池の水素極と空気極
の局所的な乾燥しすぎ又は濡れすぎによる燃料電池の出
力低下を抑制する燃料電池を提供することである。The present invention has been made in view of the above problems, and an object of the present invention is to suppress a decrease in output of a fuel cell due to local overdrying or overwetting of a hydrogen electrode and an air electrode of the fuel cell. It is to provide a fuel cell.
【0017】[0017]
【課題を解決するための手段】上記目的を達成するため
に、本発明の燃料電池は、以下の特徴を有する。In order to achieve the above object, a fuel cell according to the present invention has the following features.
【0018】(1)電解質の両面側にそれぞれカソード
側ガス拡散電極とアノード側ガス拡散電極とが配置され
た積層体を有する燃料電池であって、前記電解質とカソ
ード側ガス拡散電極との間に設けられたカソード側触媒
電極と、前記電解質とアノード側ガス拡散電極との間に
設けられたアノード側触媒電極と、を有し、前記カソー
ド側触媒電極及びカソード側ガス拡散電極の少なくとも
一方は、前記アノード側触媒電極及びアノード側ガス拡
散電極の少なくとも一方に比べ排水性能が抑制されてい
る燃料電池である。(1) A fuel cell having a laminate in which a cathode-side gas diffusion electrode and an anode-side gas diffusion electrode are respectively disposed on both sides of an electrolyte, wherein a fuel cell is provided between the electrolyte and the cathode-side gas diffusion electrode. Provided cathode-side catalyst electrode, and an anode-side catalyst electrode provided between the electrolyte and the anode-side gas diffusion electrode, at least one of the cathode-side catalyst electrode and the cathode-side gas diffusion electrode, A fuel cell in which drainage performance is suppressed as compared with at least one of the anode-side catalyst electrode and the anode-side gas diffusion electrode.
【0019】例えば、電解質のアノード側面の乾燥しす
ぎの部分に対向するカソード側ガス拡散電極及び触媒電
極の少なくとも一方の排水を抑制することによって、バ
ックディフュージョン(逆拡散)勾配により、カソード
側からアノード側に水が移動する。これにより、電池反
応において、電解質両面、すなわち全体の含水率を均一
に保つことができる。ここで、バックディフュージョン
(逆拡散)勾配とは、電解質のアノード側とカソード側
の表面含水濃度を一定比率に保つために、プロトンが水
を随伴してアノード側からカソード側に向かって移動す
る際に、カソード側からアノード側に水が移動する現象
をいう。For example, by suppressing drainage of at least one of the cathode-side gas diffusion electrode and the catalyst electrode facing the excessively dried portion of the anode side surface of the electrolyte, the back diffusion (reverse diffusion) gradient causes the anode to move from the cathode side to the anode side. Water moves to the side. Thereby, in the battery reaction, both electrolytes, that is, the entire water content can be kept uniform. Here, the back diffusion (reverse diffusion) gradient means that when protons move from the anode side to the cathode side accompanied by water in order to maintain the surface water concentration on the anode side and the cathode side of the electrolyte at a constant ratio. This phenomenon refers to a phenomenon in which water moves from the cathode side to the anode side.
【0020】一方、空気が流入する上流側のカソード側
高分子電解質面では、一般に乾燥し易いが、カソード側
ガス拡散電極及び触媒電極の少なくとも一方の排水性を
アノード側のガス拡散電極及び触媒電極の少なくとも一
方に比べ抑制することによって、電池反応によるプロト
ンに随伴した水により、乾燥を抑制することができる。On the other hand, the cathode-side polymer electrolyte surface on the upstream side into which air flows is generally easy to dry, but at least one of the cathode-side gas diffusion electrode and the catalyst electrode is drained by the anode-side gas diffusion electrode and the catalyst electrode. The drying can be suppressed by the water accompanying the proton due to the battery reaction.
【0021】従って、本発明によれば、電池反応おける
プロトンに随伴する水の移動及び逆拡散によって、高分
子電解質の両面全体の含水率を一定に保つことができ、
それにより、燃料電池の出力を一定に保つことができ
る。Therefore, according to the present invention, the water content of both surfaces of the polymer electrolyte can be kept constant by the movement and back diffusion of water accompanying the protons in the battery reaction.
Thereby, the output of the fuel cell can be kept constant.
【0022】(2)上記(1)に記載の燃料電池におい
て、前記アノード側触媒電極及びアノード側ガス拡散電
極の少なくとも一方の気孔率は、前記カソード側触媒電
極及びカソード側ガス拡散電極の少なくとも一方の気孔
率に比べ高い燃料電池である。(2) In the fuel cell according to the above (1), the porosity of at least one of the anode catalyst electrode and the anode gas diffusion electrode is at least one of the cathode catalyst electrode and the cathode gas diffusion electrode. The fuel cell has a higher porosity than that of the fuel cell.
【0023】上述の構成にすることによって、アノード
側に比べカソード側の排水性を抑制することができ、上
述したように、電解質両面全体を均一な含水率に保つこ
とができる。従って、燃料電池の出力を一定に保つこと
ができる。With the above configuration, drainage on the cathode side can be suppressed as compared with the anode side, and as described above, it is possible to maintain a uniform water content on both surfaces of the electrolyte. Therefore, the output of the fuel cell can be kept constant.
【0024】(3)上記(1)に記載の燃料電池におい
て、前記カソード側ガス拡散電極及びカソード側触媒電
極の少なくとも一方の厚みは、前記アノード側ガス拡散
電極及びアノード側触媒電極の少なくとも一方の厚みに
比べ厚い燃料電池である。(3) In the fuel cell according to (1), the thickness of at least one of the cathode-side gas diffusion electrode and the cathode-side catalyst electrode is at least one of the anode-side gas diffusion electrode and the anode-side catalyst electrode. The fuel cell is thicker than the thickness.
【0025】カソード側の電極の厚みをアノード側の電
極の厚みより厚くすることによって、カソード側の電極
内の水の保有量を高めることができ、これにより、上述
したように、電解質両面全体を均一な含水率に保つこと
ができる。By making the thickness of the cathode-side electrode thicker than the thickness of the anode-side electrode, it is possible to increase the amount of water retained in the cathode-side electrode. A uniform moisture content can be maintained.
【0026】(4)上記(1)に記載の燃料電池におい
て、前記カソード側ガス拡散電極及びカソード側触媒電
極の少なくとも一方の疎水性は、前記アノード側ガス拡
散電極及びアノード側触媒電極の少なくとも一方の疎水
性に比べ高い燃料電池である。(4) In the fuel cell according to the above (1), the hydrophobicity of at least one of the cathode-side gas diffusion electrode and the cathode-side catalyst electrode is at least one of the anode-side gas diffusion electrode and the anode-side catalyst electrode. Is a fuel cell that is higher than the hydrophobicity of the fuel cell.
【0027】アノード側の電極に比べ、カソード側の電
極の疎水性を高めることによって、カソード側の電極内
の水保有量を高めることができる。これにより、プロト
ンに随伴する水の移動と逆拡散とによって、電解質両面
全体の含水率の均一化が図れ、燃料電池の出力を一定に
保つことができる。By increasing the hydrophobicity of the cathode-side electrode as compared to the anode-side electrode, the amount of water retained in the cathode-side electrode can be increased. As a result, the movement of water accompanying the protons and the back diffusion can make the water content on both surfaces of the electrolyte uniform, thereby keeping the output of the fuel cell constant.
【0028】[0028]
【発明の実施の形態】以下、本発明の好適な実施形態を
説明する。なお、先に説明した従来の燃料電池と同じ構
成要素には、同一の符号を付し、その説明を省略する。Preferred embodiments of the present invention will be described below. The same components as those of the above-described conventional fuel cell are denoted by the same reference numerals, and description thereof will be omitted.
【0029】図1には、本実施の形態の燃料電池の一形
態が例示されている。図1に示すように、高分子イオン
交換膜からなる電解質膜13を挟むように両面には、水
素極22と空気極26が配置されている。また、水素極
22は、電解質膜13のアノード面近傍から触媒層4
6、撥水カーボン層44、拡散層基材42の順で配置さ
れ形成されている。一方、空気極26は、電解質膜13
のカソード側近傍から触媒層56、撥水カーボン層5
4、拡散層基材52の順で配置され形成されている。FIG. 1 illustrates an embodiment of the fuel cell according to the present embodiment. As shown in FIG. 1, a hydrogen electrode 22 and an air electrode 26 are arranged on both sides of the electrolyte membrane 13 made of a polymer ion exchange membrane. In addition, the hydrogen electrode 22 is connected to the catalyst layer 4 from near the anode surface of the electrolyte membrane 13.
6, the water-repellent carbon layer 44 and the diffusion layer base material 42 are arranged and formed in this order. On the other hand, the air electrode 26 is connected to the electrolyte membrane 13.
Layer 56, water-repellent carbon layer 5
4, the diffusion layer base material 52 is arranged and formed in this order.
【0030】ここで、水素極22の拡散層基材42と撥
水カーボン層44は、アノード側ガス拡散電極であり、
水素極22の触媒層46はアノード側触媒電極である。
一方、空気極26の拡散層基材52と撥水カーボン層5
4は、カソード側ガス拡散電極であり、空気極26の触
媒層56はカソード側触媒電極である。Here, the diffusion layer base material 42 of the hydrogen electrode 22 and the water-repellent carbon layer 44 are an anode-side gas diffusion electrode,
The catalyst layer 46 of the hydrogen electrode 22 is an anode-side catalyst electrode.
On the other hand, the diffusion layer substrate 52 of the air electrode 26 and the water-repellent carbon layer 5
Reference numeral 4 denotes a cathode gas diffusion electrode, and the catalyst layer 56 of the air electrode 26 is a cathode catalyst electrode.
【0031】上述したように、アノード側では、燃料ガ
スの中の水素が水素極22の触媒層46における触媒反
応により電子(e-)とプロトン(H+)とになり、プロ
トンは水を随伴して空気極26に移動する。一方、空気
極26では、移動したきたプロトンと、外部回路(図示
せず)を流通してきた電子と、酸化ガス(例えば空気)
中の酸素とが反応して、水が生成する。As described above, on the anode side, hydrogen in the fuel gas is converted into electrons (e − ) and protons (H + ) by a catalytic reaction in the catalyst layer 46 of the hydrogen electrode 22, and the protons accompany water. To the air electrode 26. On the other hand, at the air electrode 26, the transferred protons, the electrons flowing through the external circuit (not shown), and the oxidizing gas (for example, air)
Water reacts with the oxygen in the water to produce water.
【0032】また、図2,3に示すように、上記撥水カ
ーボン層44,54は、カーボン粒子66,86から形
成され、触媒層46,56は、担体カーボン60,80
の表面に白金等の触媒62,82が担持され、更に電解
質(図示せず)で被覆された触媒粒子から形成されてい
る。また、拡散層基材42,52は、カーボン繊維より
形成されている。As shown in FIGS. 2 and 3, the water-repellent carbon layers 44 and 54 are formed of carbon particles 66 and 86, and the catalyst layers 46 and 56 are formed of carrier carbons 60 and 80.
Catalysts 62 and 82 such as platinum are supported on the surface of the catalyst, and are formed of catalyst particles coated with an electrolyte (not shown). Further, the diffusion layer base materials 42 and 52 are formed of carbon fibers.
【0033】また、本実施の形態において、カソードガ
スである酸化ガスとアノードガスである燃料ガスとは、
図4に示すように、その流通方向が対向するように配流
されることがより好ましい。In the present embodiment, the oxidizing gas as the cathode gas and the fuel gas as the anode gas are:
As shown in FIG. 4, it is more preferable that the flow is distributed such that the flow directions thereof are opposed to each other.
【0034】以下、酸化ガスと燃料ガスとの流通方向が
対向するように配流されている燃料電池を例に説明す
る。Hereinafter, a fuel cell in which the flow directions of the oxidizing gas and the fuel gas are opposite to each other will be described as an example.
【0035】カソード側の空気極26の排水性をアノー
ド側の水素極22に比べ抑制するためには、カソード側
の特に水蒸気の排出を抑制する一方、アノード側の水蒸
気の流通性を促して水交換を促進することによりなされ
る。In order to suppress the drainage of the cathode-side air electrode 26 as compared with the anode-side hydrogen electrode 22, in particular, the discharge of water vapor on the cathode side is suppressed, while the flow of water vapor on the anode side is promoted to promote water flow. This is done by facilitating the exchange.
【0036】[気孔率による排水性制御]そこで、本実
施例では、図2,3に示すように、カソード側の撥水カ
ーボン層54又は触媒層56の気孔率、すなわち気孔径
及び/又は気孔量を、アノード側の撥水カーボン層44
又は触媒層46の気孔径及び/又は気孔量に比べ、小さ
くする。これにより、アノード側に対してカソード側の
排水性が抑制される。[Drainage Control by Porosity] In this embodiment, as shown in FIGS. 2 and 3, the porosity of the water-repellent carbon layer 54 or the catalyst layer 56 on the cathode side, that is, the pore diameter and / or the pore size The amount is adjusted for the water-repellent carbon layer 44 on the anode side.
Alternatively, the diameter is made smaller than the pore diameter and / or the pore volume of the catalyst layer 46. This suppresses drainage on the cathode side relative to the anode side.
【0037】上述のカソード側の撥水カーボン層54又
は触媒層56の気孔径を縮小するためには、アノード側
のカーボン粒子66の粒径、担体カーボン60の粒径に
比べ、カソード側のカーボン粒子86の粒径、担体カー
ボン80の粒径を縮小する。In order to reduce the pore diameter of the water-repellent carbon layer 54 or the catalyst layer 56 on the cathode side, the diameter of the carbon particles 66 on the cathode side is smaller than the diameter of the carbon particles 66 on the anode side and that of the carrier carbon 60. The particle size of the particles 86 and the particle size of the carrier carbon 80 are reduced.
【0038】また、上記カソード側の撥水カーボン層5
4又は触媒層56の気孔量を減少させるためには、アノ
ード側のカーボン粒子66、担体カーボン60に比べ、
カソード側のカーボン粒子86、担体カーボン80のカ
ーボン粒子を小さくする。例えば、カソード側のカーボ
ン粒子86、担体カーボン80の低ストラクチャ化、す
なわち二次粒子を少なくすることによって達成される。
または、触媒層56中の担体カーボン80を被覆する電
界質量を増大させても良い。また、カソード側の撥水カ
ーボン層54又は触媒層56の形成時プレス圧を、アノ
ード側の撥水カーボン層44又は触媒層46の形成時プ
レス圧より高いすることにより、気孔量を調整してもよ
い。The water-repellent carbon layer 5 on the cathode side
In order to reduce the porosity of the catalyst layer 4 or the catalyst layer 56, the carbon particles 66 on the anode side and the carrier carbon 60
The carbon particles 86 on the cathode side and the carbon particles of the carrier carbon 80 are reduced. For example, this is achieved by reducing the structure of the cathode-side carbon particles 86 and the carrier carbon 80, that is, by reducing the number of secondary particles.
Alternatively, the mass of the electric field covering the carrier carbon 80 in the catalyst layer 56 may be increased. Further, by setting the pressing pressure at the time of forming the water-repellent carbon layer 54 or the catalyst layer 56 on the cathode side higher than the pressing pressure at the time of forming the water-repellent carbon layer 44 or the catalyst layer 46 on the anode side, the amount of pores is adjusted. Is also good.
【0039】[層の厚みによる排水性制御]更に、図
2,3に示すように、カソード側の撥水カーボン層54
又は触媒層56の厚みを、アノード側の撥水カーボン層
44又は触媒層46の厚みより厚くすることによって、
排水性を調整することができる。例えば、カソード側の
撥水カーボン層54は、アノード側撥水カーボン層44
に比べ、基材の撥水カーボン層を形成する材料の塗布量
を多くすることによって達成できる。[Drainage Control by Layer Thickness] Further, as shown in FIGS.
Alternatively, by making the thickness of the catalyst layer 56 larger than the thickness of the water-repellent carbon layer 44 or the catalyst layer 46 on the anode side,
Drainage can be adjusted. For example, the cathode side water-repellent carbon layer 54 is
This can be achieved by increasing the amount of application of the material for forming the water-repellent carbon layer of the substrate as compared with
【0040】なお、カソード側の触媒層56の厚みを厚
くすることに伴って、触媒82の量の増大はコストへの
影響があるため、触媒担持密度の低減を図ることが好ま
しく、例えば、触媒の担体への添加量を低減することに
より達成できる。溶液上の触媒を析出させて担持させる
場合、触媒の添加量を低減すると、触媒粒径が微細化す
るため、触媒活性も向上する。Incidentally, as the thickness of the catalyst layer 56 on the cathode side is increased, an increase in the amount of the catalyst 82 has an effect on the cost. Therefore, it is preferable to reduce the catalyst carrying density. This can be achieved by reducing the amount of added to the carrier. When the catalyst on the solution is deposited and supported, reducing the amount of the catalyst added reduces the catalyst particle size, thereby improving the catalyst activity.
【0041】一方、アノード側の触媒層46の厚みを薄
くすることに伴って、触媒量が低減しないように、担体
に対する触媒添加量を多くすることにより、触媒粒子の
担持密度を高めることができる。On the other hand, by increasing the amount of catalyst added to the carrier so that the amount of catalyst does not decrease as the thickness of the catalyst layer 46 on the anode side decreases, the loading density of catalyst particles can be increased. .
【0042】また、カソード側の拡散層基材52の厚み
をアノード側の拡散層基材42の厚みに比べ、厚くする
ことによっても達成できる。Further, it can be achieved by making the thickness of the diffusion layer base material 52 on the cathode side larger than the thickness of the diffusion layer base material 42 on the anode side.
【0043】[層の疎水性調整による排水制御]また、
図2,3に示すように、カソード側の撥水カーボン層5
4中における疎水性物質64の量を、アノード側の撥水
性カーボン層44における疎水性物質64の量に比べ多
くすることにより、アノード側に対するカソード側の排
水性を抑制することができる。上記疎水性物質として
は、例えばフッ素系樹脂が挙げられ、フッ素系樹脂とし
ては、ポリテチラフルオロエチレン(PTFE)が好ま
しい。[Drainage Control by Adjusting Hydrophobicity of Layer]
As shown in FIGS. 2 and 3, the water-repellent carbon layer 5 on the cathode side
By making the amount of the hydrophobic substance 64 in 4 larger than the amount of the hydrophobic substance 64 in the water-repellent carbon layer 44 on the anode side, drainage on the cathode side with respect to the anode side can be suppressed. As the hydrophobic substance, for example, a fluorine-based resin is exemplified. As the fluorine-based resin, polytetrafluoroethylene (PTFE) is preferable.
【0044】また、カソード側のカーボン粒子86をア
ノード側のカーボン粒子66に比べ疎水性を強化する。
例えば、カーボン粒子86を黒鉛化する。または、アノ
ード側のカーボン粒子66の親水性化を強化し、例えば
親水性の官能基をカーボン粒子66に導入することによ
り達成される。The carbon particles 86 on the cathode side are more hydrophobic than the carbon particles 66 on the anode side.
For example, the carbon particles 86 are graphitized. Alternatively, this can be achieved by enhancing the hydrophilicity of the carbon particles 66 on the anode side, for example, by introducing a hydrophilic functional group into the carbon particles 66.
【0045】また、カソード側の拡散層基材52の基材
をアノード側の拡散層基材42の基材に比べ疎水性を強
化する。例えば、拡散層基材52の記載に撥水剤処理を
施してもよい。またはアノード側の拡散層基材42の基
材に親水性処理を施してもよい。In addition, the base material of the diffusion layer base material 52 on the cathode side is more hydrophobic than the base material of the diffusion layer base material 42 on the anode side. For example, the description of the diffusion layer base material 52 may be subjected to a water repellent treatment. Alternatively, the base material of the diffusion layer base material 42 on the anode side may be subjected to a hydrophilic treatment.
【0046】以上の構成により、カソード側はアノード
側に比べ排水性が抑制され、これによって、図4に示す
ように、電解質膜13の保水バランスが達成される。以
下に、燃料ガス上流側に対向して酸化ガスの下流側が配
置され、また燃料ガス下流側に対向して酸化ガスの上流
側が配置されている場合を例にとって説明する。With the above configuration, drainage on the cathode side is suppressed as compared with that on the anode side, thereby achieving the water retention balance of the electrolyte membrane 13 as shown in FIG. Hereinafter, a case where the downstream side of the oxidizing gas is disposed opposite to the upstream side of the fuel gas and the upstream side of the oxidizing gas is disposed opposite to the downstream side of the fuel gas will be described as an example.
【0047】乾燥した燃料ガスが流入する燃料ガス上流
側では、電解質膜13が乾燥し易い。しかし、対向する
酸化ガス下流側では、電池反応により生成した水の排出
が抑制されているために濡れており、一方、アノード側
では水の燃料ガス中への拡散が促進されているため、カ
ソード側から水の逆拡散が生じて、電解質膜13を介し
てカソードからアノード側に向かって水が移動する。従
って、燃料ガス上流側の電解質膜13のアノード側面含
水率は、一定に保たれる。On the upstream side of the fuel gas into which the dried fuel gas flows, the electrolyte membrane 13 is easily dried. However, on the downstream side of the opposing oxidizing gas, the water generated by the battery reaction is suppressed because the discharge thereof is suppressed, and on the anode side, the diffusion of water into the fuel gas is promoted. Back diffusion of water occurs from the side, and the water moves from the cathode toward the anode side through the electrolyte membrane 13. Therefore, the anode side moisture content of the electrolyte membrane 13 on the fuel gas upstream side is kept constant.
【0048】また、乾燥した酸化ガスが流入する酸化ガ
ス上流側では、電解質膜13が乾燥し易い。しかし、対
向する燃料ガス下流側では、上述の通り、上流側にて水
をカソード側から移動させているため、水を多く含んだ
状態になっている。この水は、電池反応によりプロトン
に随伴させて電解質膜13を介してカソード側に移動さ
せているため、カソード側上流の電解質膜13のカソー
ド側面の含水率は、一定に保たれる。On the upstream side of the oxidizing gas into which the dried oxidizing gas flows, the electrolyte membrane 13 is easily dried. However, on the downstream side of the opposed fuel gas, as described above, water is moved from the cathode side on the upstream side, so that the state is rich in water. Since this water is moved to the cathode side through the electrolyte membrane 13 along with the protons due to the battery reaction, the water content on the cathode side surface of the electrolyte membrane 13 upstream of the cathode side is kept constant.
【0049】すなわち、本実施の形態に燃料電池では、
水循環(二点鎖線により図示)により、電解質膜13の
両面全体が均一に保水された状態となる。That is, in the fuel cell according to this embodiment,
By water circulation (shown by a two-dot chain line), the entire surface of the electrolyte membrane 13 is uniformly kept in water.
【0050】その結果、図5に示すように、燃料ガスを
加湿することなく運転した場合(無加湿運転時)の電流
密度は、カソードガス入口(酸化ガス上流側)からカソ
ードガス出口(酸化ガス下流側)にかけて、本発明の構
成によれば、従来に比べ、ほぼ一定の電流密度を保つこ
とができた。As a result, as shown in FIG. 5, when the fuel gas was operated without humidification (during non-humidification operation), the current density was changed from the cathode gas inlet (oxidizing gas upstream side) to the cathode gas outlet (oxidizing gas upstream side). (Downstream), according to the configuration of the present invention, it was possible to maintain a substantially constant current density as compared with the related art.
【0051】また、セルにおける電池反応は、O2+2
H2→H2Oであり、この反応は発熱反応である。従っ
て、電池反応の経時に応じて、セル温度は上昇する。そ
こで、上述同様、無加湿運転において、電池反応の経時
におけるセル温度と燃料電池の放電特性との関係を測定
すると、図6に示すように、従来に比べ、本発明の構成
によれば、電池反応において常時高い放電特性を得るこ
とができた。The battery reaction in the cell is represented by O 2 +2
H 2 → H 2 O, and this reaction is an exothermic reaction. Therefore, the cell temperature increases with the aging of the battery reaction. Therefore, as described above, in the non-humidifying operation, when the relationship between the cell temperature and the discharge characteristics of the fuel cell over time of the battery reaction was measured, as shown in FIG. High discharge characteristics were always obtained in the reaction.
【0052】[0052]
【発明の効果】以上の通り、本発明によれば、電解質の
両面全体の保水を均一に保つことができるため、燃料電
池の出力を一定に保つことができる。As described above, according to the present invention, the water retention on both sides of the electrolyte can be kept uniform, so that the output of the fuel cell can be kept constant.
【図1】 本発明の実施の形態の燃料電池の構成を示す
模式図である。FIG. 1 is a schematic diagram showing a configuration of a fuel cell according to an embodiment of the present invention.
【図2】 図1において波線で囲んだXの部分の拡大図
である。FIG. 2 is an enlarged view of a portion X surrounded by a wavy line in FIG.
【図3】 図1において波線で囲んだYの部分の拡大図
である。FIG. 3 is an enlarged view of a Y portion surrounded by a wavy line in FIG.
【図4】 本発明の燃料電池の特性を説明する図であ
る。FIG. 4 is a diagram illustrating characteristics of the fuel cell of the present invention.
【図5】 本発明の燃料電池と従来の燃料電池との無加
湿運転時の電流密度分布を示すグラフ図である。FIG. 5 is a graph showing a current density distribution of the fuel cell of the present invention and a conventional fuel cell during a non-humidifying operation.
【図6】 本発明の燃料電池と従来の燃料電池との無加
湿運転時の放電特性を示すグラフ図である。FIG. 6 is a graph showing discharge characteristics of the fuel cell of the present invention and a conventional fuel cell during a non-humidifying operation.
【図7】 固体高分子型燃料電池の構成を説明するため
の図である。FIG. 7 is a diagram illustrating a configuration of a polymer electrolyte fuel cell.
【図8】 固体高分子型燃料電池のセルの一例の分解斜
視図である。FIG. 8 is an exploded perspective view of an example of a cell of a polymer electrolyte fuel cell.
【図9】 固体高分子型燃料電池のガス配流を説明する
図である。FIG. 9 is a diagram illustrating gas distribution in a polymer electrolyte fuel cell.
10 セル、11 電解質、12 アノード側触媒電
極、13 電解質膜、14 アノード側拡散電極、16
カソード側触媒電極、18 カソード側拡散電極、2
0 外部回路、22 水素極、26 空気極、42,5
2 拡散層基材、44,54 撥水カーボン層、46,
56 触媒層。Reference Signs List 10 cell, 11 electrolyte, 12 anode catalyst electrode, 13 electrolyte membrane, 14 anode diffusion electrode, 16
Cathode side catalyst electrode, 18 Cathode side diffusion electrode, 2
0 external circuit, 22 hydrogen electrode, 26 air electrode, 42,5
2 diffusion layer base material, 44, 54 water-repellent carbon layer, 46,
56 Catalyst layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木野 喜隆 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H018 AA06 AS02 AS03 CC06 DD08 EE03 EE05 EE06 EE19 HH00 HH03 HH04 5H026 AA06 CC03 HH00 HH03 HH04 5H027 AA06 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yoshitaka Kino 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 5H018 AA06 AS02 AS03 CC06 DD08 EE03 EE05 EE06 EE19 HH00 HH03 HH04 5H026 AA06 CC03 HH00 HH03 HH04 5H027 AA06
Claims (4)
ス拡散電極とアノード側ガス拡散電極とが配置された積
層体を有する燃料電池であって、 前記電解質とカソード側ガス拡散電極との間に設けられ
たカソード側触媒電極と、 前記電解質とアノード側ガス拡散電極との間に設けられ
たアノード側触媒電極と、を有し、 前記カソード側触媒電極及びカソード側ガス拡散電極の
少なくとも一方は、前記アノード側触媒電極及びアノー
ド側ガス拡散電極の少なくとも一方に比べ排水性能が抑
制されていることを特徴とする燃料電池。1. A fuel cell comprising a laminate in which a cathode gas diffusion electrode and an anode gas diffusion electrode are disposed on both sides of an electrolyte, respectively, provided between the electrolyte and the cathode gas diffusion electrode. A cathode catalyst electrode provided, an anode catalyst electrode provided between the electrolyte and the anode gas diffusion electrode, at least one of the cathode catalyst electrode and the cathode gas diffusion electrode, A fuel cell, wherein drainage performance is suppressed as compared with at least one of an anode-side catalyst electrode and an anode-side gas diffusion electrode.
少なくとも一方の気孔率は、前記カソード側触媒電極及
びカソード側ガス拡散電極の少なくとも一方の気孔率に
比べ高いことを特徴とする燃料電池。2. The fuel cell according to claim 1, wherein the porosity of at least one of the anode catalyst electrode and the anode gas diffusion electrode is at least one of the cathode catalyst electrode and the cathode gas diffusion electrode. A fuel cell characterized by a higher efficiency than a fuel cell.
少なくとも一方の厚みは、前記アノード側ガス拡散電極
及びアノード側触媒電極の少なくとも一方の厚みに比べ
厚いことを特徴とする燃料電池。3. The fuel cell according to claim 1, wherein the thickness of at least one of the cathode-side gas diffusion electrode and the cathode-side catalyst electrode is equal to the thickness of at least one of the anode-side gas diffusion electrode and the anode-side catalyst electrode. A fuel cell characterized by being relatively thick.
少なくとも一方の疎水性は、前記アノード側ガス拡散電
極及びアノード側触媒電極の少なくとも一方の疎水性に
比べ高いことを特徴とする燃料電池。4. The fuel cell according to claim 1, wherein the hydrophobicity of at least one of the cathode-side gas diffusion electrode and the cathode-side catalyst electrode is the hydrophobicity of at least one of the anode-side gas diffusion electrode and the anode-side catalyst electrode. A fuel cell characterized by high performance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001176346A JP4956870B2 (en) | 2001-06-11 | 2001-06-11 | Fuel cell and fuel cell manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001176346A JP4956870B2 (en) | 2001-06-11 | 2001-06-11 | Fuel cell and fuel cell manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002367655A true JP2002367655A (en) | 2002-12-20 |
JP4956870B2 JP4956870B2 (en) | 2012-06-20 |
Family
ID=19017350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001176346A Expired - Fee Related JP4956870B2 (en) | 2001-06-11 | 2001-06-11 | Fuel cell and fuel cell manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4956870B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005302343A (en) * | 2004-04-07 | 2005-10-27 | Toyota Motor Corp | Membrane electrode assembly |
WO2006057139A1 (en) * | 2004-11-25 | 2006-06-01 | Nissan Motor Co., Ltd. | Solid polymer type fuel cell |
JP2006351270A (en) * | 2005-06-14 | 2006-12-28 | Nissan Motor Co Ltd | Fuel cell |
JP2006351466A (en) * | 2005-06-20 | 2006-12-28 | Toyota Motor Corp | Formation of membrane electrode assemblies for fuel cells |
JP2007527103A (en) * | 2004-03-05 | 2007-09-20 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Membrane electrode unit |
JP2007250279A (en) * | 2006-03-14 | 2007-09-27 | Honda Motor Co Ltd | Membrane electrode structure for polymer electrolyte fuel cell |
WO2008068886A1 (en) * | 2006-11-27 | 2008-06-12 | Kabushiki Kaisha Toshiba | Fuel battery |
WO2008152794A1 (en) * | 2007-06-08 | 2008-12-18 | Panasonic Corporation | Polymer electrolyte fuel cell |
US20090169957A1 (en) * | 2006-04-19 | 2009-07-02 | Hiroshi Harada | Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (mea), and fuel cell |
WO2009096339A1 (en) * | 2008-01-30 | 2009-08-06 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP2010021114A (en) * | 2008-07-14 | 2010-01-28 | Panasonic Corp | Direct oxidation type fuel cell |
JP2010061993A (en) * | 2008-09-03 | 2010-03-18 | Toyota Motor Corp | Fuel cell |
JP2010073563A (en) * | 2008-09-19 | 2010-04-02 | Nissan Motor Co Ltd | Fuel cell and gas diffusion layer for fuel cell, and its manufacturing method |
JP2010272356A (en) * | 2009-05-21 | 2010-12-02 | Toyota Motor Corp | Membrane-electrode assembly for fuel cell, method for producing the same, and fuel cell |
JP4904812B2 (en) * | 2003-05-14 | 2012-03-28 | 東レ株式会社 | Membrane electrode composite and polymer electrolyte fuel cell using the same |
JP2012186105A (en) * | 2011-03-08 | 2012-09-27 | Nippon Soken Inc | Fuel cell |
JP2013120657A (en) * | 2011-12-06 | 2013-06-17 | Toyota Motor Corp | Fuel cell |
JP2013222677A (en) * | 2012-04-19 | 2013-10-28 | Honda Motor Co Ltd | Electrolyte membrane and electrode structure |
JP2016520971A (en) * | 2013-04-30 | 2016-07-14 | フオルクスワーゲン・アクチエンゲゼルシヤフトVolkswagen Aktiengesellschaft | Self-humidifying membrane / electrode assembly and fuel cell equipped with the same |
JP2017525105A (en) * | 2014-07-11 | 2017-08-31 | エスジーエル・カーボン・エスイー | Membrane electrode assembly |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07142071A (en) * | 1993-11-19 | 1995-06-02 | Mitsubishi Heavy Ind Ltd | Solid electrolyte type fuel cell |
JPH0950812A (en) * | 1995-08-07 | 1997-02-18 | Nippon Telegr & Teleph Corp <Ntt> | Electrode substrate for solid oxide fuel cell and method for manufacturing the same |
JPH09245800A (en) * | 1996-03-08 | 1997-09-19 | Toyota Motor Corp | Fuel cell and electrode for fuel cell |
JPH11339815A (en) * | 1998-05-29 | 1999-12-10 | Aisin Seiki Co Ltd | Solid polymer electrolyte fuel cell and method for manufacturing the same |
JPH11354140A (en) * | 1998-06-10 | 1999-12-24 | Toyota Central Res & Dev Lab Inc | High strength thin film electrolyte |
-
2001
- 2001-06-11 JP JP2001176346A patent/JP4956870B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07142071A (en) * | 1993-11-19 | 1995-06-02 | Mitsubishi Heavy Ind Ltd | Solid electrolyte type fuel cell |
JPH0950812A (en) * | 1995-08-07 | 1997-02-18 | Nippon Telegr & Teleph Corp <Ntt> | Electrode substrate for solid oxide fuel cell and method for manufacturing the same |
JPH09245800A (en) * | 1996-03-08 | 1997-09-19 | Toyota Motor Corp | Fuel cell and electrode for fuel cell |
JPH11339815A (en) * | 1998-05-29 | 1999-12-10 | Aisin Seiki Co Ltd | Solid polymer electrolyte fuel cell and method for manufacturing the same |
JPH11354140A (en) * | 1998-06-10 | 1999-12-24 | Toyota Central Res & Dev Lab Inc | High strength thin film electrolyte |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4904812B2 (en) * | 2003-05-14 | 2012-03-28 | 東レ株式会社 | Membrane electrode composite and polymer electrolyte fuel cell using the same |
JP2007527103A (en) * | 2004-03-05 | 2007-09-20 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Membrane electrode unit |
JP2005302343A (en) * | 2004-04-07 | 2005-10-27 | Toyota Motor Corp | Membrane electrode assembly |
US7901836B2 (en) | 2004-11-25 | 2011-03-08 | Nissan Motor Co., Ltd. | Polymer electrolyte fuel cell |
WO2006057139A1 (en) * | 2004-11-25 | 2006-06-01 | Nissan Motor Co., Ltd. | Solid polymer type fuel cell |
US8329359B2 (en) | 2004-11-25 | 2012-12-11 | Nissan Motor Co., Ltd. | Polymer electrolyte fuel cell |
JP2006351270A (en) * | 2005-06-14 | 2006-12-28 | Nissan Motor Co Ltd | Fuel cell |
JP2006351466A (en) * | 2005-06-20 | 2006-12-28 | Toyota Motor Corp | Formation of membrane electrode assemblies for fuel cells |
JP2007250279A (en) * | 2006-03-14 | 2007-09-27 | Honda Motor Co Ltd | Membrane electrode structure for polymer electrolyte fuel cell |
US9070910B2 (en) | 2006-04-19 | 2015-06-30 | Toyota Jidosha Kabushiki Kaisha | Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell |
US9160012B2 (en) | 2006-04-19 | 2015-10-13 | Toyota Jidosha Kabushiki Kaisha | Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell |
US9147892B2 (en) * | 2006-04-19 | 2015-09-29 | Toyota Jidosha Kabushiki Kaisha | Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell |
US20090169957A1 (en) * | 2006-04-19 | 2009-07-02 | Hiroshi Harada | Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (mea), and fuel cell |
WO2008068886A1 (en) * | 2006-11-27 | 2008-06-12 | Kabushiki Kaisha Toshiba | Fuel battery |
WO2008152794A1 (en) * | 2007-06-08 | 2008-12-18 | Panasonic Corporation | Polymer electrolyte fuel cell |
JP5214600B2 (en) * | 2007-06-08 | 2013-06-19 | パナソニック株式会社 | Polymer electrolyte fuel cell |
US9077003B2 (en) | 2008-01-30 | 2015-07-07 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
WO2009096339A1 (en) * | 2008-01-30 | 2009-08-06 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP2010021114A (en) * | 2008-07-14 | 2010-01-28 | Panasonic Corp | Direct oxidation type fuel cell |
JP2010061993A (en) * | 2008-09-03 | 2010-03-18 | Toyota Motor Corp | Fuel cell |
JP2010073563A (en) * | 2008-09-19 | 2010-04-02 | Nissan Motor Co Ltd | Fuel cell and gas diffusion layer for fuel cell, and its manufacturing method |
JP2010272356A (en) * | 2009-05-21 | 2010-12-02 | Toyota Motor Corp | Membrane-electrode assembly for fuel cell, method for producing the same, and fuel cell |
JP2012186105A (en) * | 2011-03-08 | 2012-09-27 | Nippon Soken Inc | Fuel cell |
JP2013120657A (en) * | 2011-12-06 | 2013-06-17 | Toyota Motor Corp | Fuel cell |
JP2013222677A (en) * | 2012-04-19 | 2013-10-28 | Honda Motor Co Ltd | Electrolyte membrane and electrode structure |
JP2016520971A (en) * | 2013-04-30 | 2016-07-14 | フオルクスワーゲン・アクチエンゲゼルシヤフトVolkswagen Aktiengesellschaft | Self-humidifying membrane / electrode assembly and fuel cell equipped with the same |
KR101947863B1 (en) * | 2013-04-30 | 2019-02-13 | 아우디 아게 | Self-wetting membrane electrode unit and fuel cell having such a unit |
JP2017525105A (en) * | 2014-07-11 | 2017-08-31 | エスジーエル・カーボン・エスイー | Membrane electrode assembly |
Also Published As
Publication number | Publication date |
---|---|
JP4956870B2 (en) | 2012-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4923319B2 (en) | Fuel cell | |
JP4956870B2 (en) | Fuel cell and fuel cell manufacturing method | |
WO2005124903A1 (en) | Gas diffusion electrode and solid-state high-molecular electrolyte type fuel cell | |
KR20040099149A (en) | Fuel Cell | |
JP5198044B2 (en) | Direct oxidation fuel cell | |
JP3577402B2 (en) | Polymer electrolyte fuel cell | |
US7803490B2 (en) | Direct methanol fuel cell | |
JP2003178780A (en) | Polymer electrolyte fuel cell system and method of operating polymer electrolyte fuel cell | |
JP2001006708A (en) | Solid high polymer fuel cell | |
JP2010170896A (en) | Fuel cell | |
JP2006294603A (en) | Direct fuel cell | |
JP2005340173A (en) | Fuel cell stack | |
JP5034172B2 (en) | Gas diffusion layer for fuel cell and fuel cell using the same | |
JP3354550B2 (en) | Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack | |
JP2007265898A (en) | Electrolyte membrane for polymer electrolyte fuel cell and polymer electrolyte fuel cell comprising the same | |
JP2005038780A (en) | Polymer electrolyte fuel cell | |
JP4945887B2 (en) | Cell module and solid polymer electrolyte fuel cell | |
JP3500086B2 (en) | Fuel cell and fuel cell using the same | |
JP2006049115A (en) | Fuel cell | |
JP2009043688A (en) | Fuel cell | |
JP2002289200A (en) | Fuel cell | |
JP4476558B2 (en) | Fuel cell and manufacturing method thereof | |
JP2008262715A (en) | Fuel cell | |
JP2001338656A (en) | Fuel cell | |
JP2002289201A (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |