JP2002365129A - Thermal type infrared detector - Google Patents
Thermal type infrared detectorInfo
- Publication number
- JP2002365129A JP2002365129A JP2001174619A JP2001174619A JP2002365129A JP 2002365129 A JP2002365129 A JP 2002365129A JP 2001174619 A JP2001174619 A JP 2001174619A JP 2001174619 A JP2001174619 A JP 2001174619A JP 2002365129 A JP2002365129 A JP 2002365129A
- Authority
- JP
- Japan
- Prior art keywords
- infrared detector
- support leg
- thermal infrared
- width
- conductive material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱型赤外線検出器
に関し、特に、熱型赤外線検出器の受光部を支持する支
持脚の構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal infrared detector and, more particularly, to a support leg structure for supporting a light receiving portion of the thermal infrared detector.
【0002】[0002]
【従来の技術】熱型赤外線検出器は検出器の冷却を必要
とせず、常温で動作し低価格であるため、赤外線検出器
の中でも特に注目されている。この熱型赤外線検出器の
中で、感熱材料としてチタンボロメータを用いたものに
ついて、図5およびその断面を示す図6を参照して説明
すると、赤外線を吸収する受光部7とそれを支える支持
脚8からなるダイヤフラム9が、読み出し回路2を含む
シリコン基板1の上に、絶縁膜3の島、アルミ配線
(A)4a、アルミ配線(B)4b、アルミ配線(C)
4c等を介して形成され、空洞5の上に浮いた形で存在
している。2. Description of the Related Art Thermal infrared detectors have received special attention among infrared detectors because they do not require cooling of the detector, operate at room temperature and are inexpensive. Among the thermal infrared detectors, those using a titanium bolometer as a heat-sensitive material will be described with reference to FIG. 5 and FIG. 6 showing a cross section thereof. A diaphragm 9 made up of an insulating film 3, an aluminum wiring (A) 4 a, an aluminum wiring (B) 4 b, and an aluminum wiring (C) is formed on the silicon substrate 1 including the readout circuit 2.
4c and the like, and is present in a form floating above the cavity 5.
【0003】後ほど図6に示すように、受光部7の表面
には赤外線吸収膜6が具備され、入射する赤外線を吸収
し、基板側への熱の逃げ易さを表す熱伝導度に対応して
受光部7の温度が上昇し、受光部7の領域内に具備され
た感熱材料の一つであるチタンボロメータ10の抵抗を
変化させる。電気的にはチタンボロメータ10は上記支
持脚8の中に内包された導電材料10a(図5ではチタ
ンボロメータ10と一致する)、アルミ配線(A)4
a、アルミ配線(B)4b、アルミ配線(C)4cおよ
びアルミ配線と導電材料10aの電気的接触部であるコ
ンタクト(A)11、コンタクト(C)12を介して下
地の読み出し回路2と連結し、信号を読み出し得る構造
になっている。As shown in FIG. 6 later, an infrared absorbing film 6 is provided on the surface of the light receiving section 7 to absorb incident infrared rays and correspond to the thermal conductivity indicating the ease with which heat can escape to the substrate side. As a result, the temperature of the light receiving section 7 rises, and the resistance of the titanium bolometer 10 which is one of the heat-sensitive materials provided in the area of the light receiving section 7 is changed. Electrically, the titanium bolometer 10 is composed of a conductive material 10a (corresponding to the titanium bolometer 10 in FIG. 5) contained in the support leg 8, and an aluminum wiring (A) 4
a, an aluminum wiring (B) 4b, an aluminum wiring (C) 4c, and a connection to the underlying readout circuit 2 via contacts (A) 11 and contacts (C) 12, which are electrical contacts between the aluminum wiring and the conductive material 10a. In addition, the signal can be read out.
【0004】図6は、図5のチタンボロメータ10に沿
ったコンタクト(A)11の近傍から コンタクト
(C)12の近傍までの断面図である。このような熱型
赤外線検出器のチップは上記受光部7が温度上昇し易い
ように、実際には真空パッケージ中に収納された使用形
態をとっている。また、上記ダイヤフラム9は真空の空
洞上に保持されており、受光部7の直下への基板側への
熱の逃げを遮断し、受光部7の熱の逃散はすべて支持脚
8を通って行われる。その熱伝導度Gthを極力小さくす
ることにより、基板側との熱分離状態の良い熱分離構造
を作っている。そして、熱型2次元赤外線検出器におい
ては、この熱分離構造が読み出し走査回路を含む基板上
に2次元アレイ状に配列されている。FIG. 6 is a cross-sectional view from the vicinity of the contact (A) 11 to the vicinity of the contact (C) 12 along the titanium bolometer 10 of FIG. The chip of such a thermal infrared detector is actually used in a vacuum package so that the light receiving section 7 easily rises in temperature. Further, the diaphragm 9 is held on a vacuum cavity, and blocks heat from escaping to the substrate side immediately below the light receiving unit 7, and all heat of the light receiving unit 7 escapes through the support legs 8. Is By minimizing the thermal conductivity Gth as much as possible, a thermal isolation structure having a good thermal isolation state from the substrate side is produced. In the thermal type two-dimensional infrared detector, the thermal isolation structure is arranged in a two-dimensional array on a substrate including a readout scanning circuit.
【0005】このような感熱材料の型としてはボロメー
タ型以外にも焦電型と熱電対型があるが、これら熱型赤
外線検出器の赤外線受光感度は、ボロメータ型の場合は
ボロメータの抵抗温度係数、焦電型である場合は焦電係
数、そして熱電対型ボロメータ型の場合はゼーベック係
数というように熱電材料の熱電変換係数に比例する。更
にこの赤外線受光感度は、受光量に比例し、支持脚の熱
伝導度に反比例する。チタンボロメータを用いた上記従
来例をより詳しく説明する。[0005] In addition to the bolometer type, there are a pyroelectric type and a thermocouple type in addition to the bolometer type. The infrared sensitivity of these thermal type infrared detectors is such that the bolometer type has a resistance temperature coefficient of resistance. It is proportional to the thermoelectric conversion coefficient of the thermoelectric material, such as the pyroelectric coefficient for the pyroelectric type and the Seebeck coefficient for the thermocouple bolometer type. Further, the infrared light receiving sensitivity is proportional to the amount of received light and inversely proportional to the thermal conductivity of the support leg. The conventional example using a titanium bolometer will be described in more detail.
【0006】特開平9−203659号公報「ボロメー
タ型赤外線検出器」に示すように、金属チタンを熱電変
換材料の一種であるボロメータ材料として使用したチタ
ンボロメータ赤外線検出器は、通常のシリコンICライ
ンにおいて製造可能であり、比較的温度分解能も高く、
良品歩留まりも高いという利点がある。チタンボロメー
タ熱型赤外線検出器においては、赤外線の吸収率を高め
るために、受光部7の領域内においてダイヤフラム9の
断面構造の中で下側に(基板1に近い側に)、金属であ
るチタンボロメータ10を赤外線に対するミラーとし
て、つづらパターン状に設け(図5参照)、ダイヤフラ
ム9の断面の上側に膜厚約150Åという極薄の窒化チ
タンメタルからなる赤外線吸収膜6を対置させ(図6参
照)、両者間で赤外線を吸収させるための赤外線の共振
キャビティ18(図6の楕円印)を形成している。この
ような赤外線吸収機構は図6の断面図に示すように、上
記共振キャビティ18の長さが1μm程度以上あり必然
的に受光部7のダイヤフラムを厚膜化させ、それに伴っ
て通常、上記支持脚8も厚膜化されるため、支持脚8の
熱伝導度が増大し、高い感度を得るには若干不利とな
る。[0006] As disclosed in Japanese Patent Application Laid-Open No. 9-203659, "Bolometer type infrared detector", a titanium bolometer infrared detector using metallic titanium as a bolometer material which is a kind of thermoelectric conversion material is used in a normal silicon IC line. Manufacturable, relatively high temperature resolution,
There is an advantage that the yield of non-defective products is also high. In the thermal infrared detector of the titanium bolometer, in order to increase the absorptivity of infrared rays, in the area of the light receiving section 7, the metal titanium The bolometer 10 is provided as a mirror for infrared rays in a zigzag pattern (see FIG. 5), and the infrared absorbing film 6 made of an ultra-thin titanium nitride metal film having a thickness of about 150 ° is opposed to the upper side of the cross section of the diaphragm 9 (see FIG. 6). ), An infrared resonance cavity 18 (oval in FIG. 6) for absorbing infrared light is formed between the two. As shown in the cross-sectional view of FIG. 6, such an infrared absorbing mechanism has a length of the resonance cavity 18 of about 1 μm or more, and inevitably increases the thickness of the diaphragm of the light receiving section 7. Since the thickness of the leg 8 is also increased, the thermal conductivity of the supporting leg 8 is increased, which is slightly disadvantageous for obtaining high sensitivity.
【0007】通常、導電材料10aは、製造工程中のダ
メージから保護するため、第3シリコン酸化膜15、第
4シリコン酸化膜16等の絶縁保護膜によって被覆され
ている。この支持脚8の熱伝導度を可能な限り低減させ
るため、フォトレジスト法+選択エッチング法により、
製造ラインにおいて可能な導電材料幅20と製造ライン
において可能な必要最小限のマージンを持った支持脚幅
21とで構成されている。Normally, the conductive material 10a is covered with an insulating protective film such as a third silicon oxide film 15, a fourth silicon oxide film 16 or the like to protect the conductive material 10a from damage during the manufacturing process. In order to reduce the thermal conductivity of the support legs 8 as much as possible, a photoresist method and a selective etching method are used.
It is composed of a conductive material width 20 that can be used in the production line and a support leg width 21 that has a minimum necessary margin in the production line.
【0008】この場合、図6(a)のチタンボロメータ
に沿った断面図の中の支持脚断面位置19における支持
脚断面図を示す図6(b)で見ると、矩形の底辺近くに
導電材料10aが位置しているため、その上部の絶縁保
護膜である第4シリコン酸化膜16を、図7に示すよう
に、例えば半分ドライエッチング等で切除することによ
りその断面積を減少させ、熱伝導度を低減する方法があ
る。In this case, as shown in FIG. 6B which shows a sectional view of the supporting leg at a sectional position 19 of the supporting leg in the sectional view along the titanium bolometer of FIG. 6A, the conductive material is located near the bottom of the rectangle. Since 10a is located, the fourth silicon oxide film 16, which is an insulating protective film thereabove, is cut off by, for example, half dry etching as shown in FIG. There are ways to reduce the degree.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、このエ
ッチングは、通常異方性ドライエッチングを用いて行わ
れ、支持脚8の中の上記支持脚切除領域22とその外部
の非切除領域との境界(支持脚切除端23)で絶縁保護
膜に急な段差が生じるため、この境界に大きな力学的ス
トレスが生じ、絶縁保護膜に内包された導電材料10a
にマイクロクラックが入り易い。これは抵抗増加を伴う
欠陥画素を増やし、良品歩留まりを悪化させるという問
題を発生させる。However, this etching is usually performed by using anisotropic dry etching, and the boundary between the above-mentioned support leg cut-out region 22 in the support leg 8 and the non-cut-out region outside the support leg 8 (see FIG. 1). Since a steep step is generated in the insulating protective film at the cut end 23) of the supporting leg, a large mechanical stress is generated at this boundary, and the conductive material 10a encapsulated in the insulating protective film.
Micro cracks are easily formed in This causes a problem of increasing defective pixels accompanied by an increase in resistance and deteriorating the yield of non-defective products.
【0010】本発明は、上記問題点に鑑みてなされたも
のであって、その主たる目的は、絶縁保護膜に内包され
た導電材料にストレスを与えることなく、支持脚におけ
る熱伝導を抑制することができる熱型赤外線検出器を提
供することにある。The present invention has been made in view of the above problems, and a main object thereof is to suppress heat conduction in a supporting leg without applying stress to a conductive material included in an insulating protective film. It is an object of the present invention to provide a thermal-type infrared detector that can be used.
【0011】[0011]
【問題を解決するための手段】上記目的を達成するた
め、本発明の熱型赤外線検出器は、赤外線受光部と、該
赤外線受光部を中空保持する支持脚とからなるダイヤフ
ラム構造を有する熱型赤外線検出器において、前記支持
脚の長手方向の両端側に、端部から中央に向かって断面
積が徐々に小さくなるテーパー領域を備えるものであ
る。In order to achieve the above object, a thermal infrared detector according to the present invention is a thermal infrared detector having a diaphragm structure comprising an infrared receiving section and supporting legs for holding the infrared receiving section in a hollow state. In the infrared detector, a tapered region having a gradually decreasing cross-sectional area from the end to the center is provided at both ends in the longitudinal direction of the support leg.
【0012】また、本発明の熱型赤外線検出器は、赤外
線受光部と、該赤外線受光部を中空保持する支持脚とか
らなるダイヤフラム構造を有する熱型赤外線検出器にお
いて、前記支持脚の長手方向の両端側に、端部から中央
に向かって幅の少なくとも一部が徐々に小さくなるテー
パー領域を備えるものである。Further, the thermal infrared detector of the present invention is directed to a thermal infrared detector having a diaphragm structure comprising an infrared receiving portion and a supporting leg for holding the infrared receiving portion in a hollow direction. Are provided with tapered regions in which at least a part of the width gradually decreases from the end toward the center.
【0013】本発明においては、前記支持脚の上端側の
幅のみが徐々に小さくなり、該支持脚の断面が凸形状と
なる構成とすることができ、前記支持脚が、上下の絶縁
保護膜で導電材料を内包するように形成され、前記導電
材料上部の前記絶縁保護膜の幅が徐々に小さくなる構成
とすることもできる。In the present invention, only the width of the upper end side of the support leg may be gradually reduced, and the cross section of the support leg may have a convex shape. And a width of the insulating protection film on the conductive material may be gradually reduced.
【0014】また、本発明の熱型赤外線検出器は、赤外
線受光部と、該赤外線受光部を中空保持する支持脚とか
らなるダイヤフラム構造を有する熱型赤外線検出器にお
いて、前記支持脚の長手方向の両端側に、端部から中央
に向かって膜厚が徐々に薄くなるテーパー領域を備える
ものである。Further, the thermal infrared detector of the present invention is directed to a thermal infrared detector having a diaphragm structure comprising an infrared receiving portion and a supporting leg for holding the infrared receiving portion in a hollow, wherein the supporting leg has a longitudinal direction. Are provided with tapered regions whose thickness gradually decreases from the end to the center.
【0015】本発明においては、前記支持脚が、上下の
絶縁保護膜で導電材料を内包するように形成され、前記
導電材料上部の前記絶縁保護膜の膜厚が、前記端部を除
く領域で前記赤外線受光部の絶縁保護膜より薄くなるよ
うに形成されている構成とすることができる。In the present invention, the support leg is formed so as to include a conductive material by upper and lower insulating protective films, and the thickness of the insulating protective film on the conductive material is limited in a region excluding the end portion. The infrared light receiving portion may be formed to be thinner than the insulating protective film.
【0016】また、本発明においては、前記テーパー領
域の前記支持脚長手方向の断面が曲線を構成し、前記テ
ーパー領域の終端においても、前記幅又は膜厚が滑らか
に変化する構成とすることもできる。In the present invention, the cross section of the tapered region in the longitudinal direction of the support leg may form a curved line, and the width or the film thickness may smoothly change even at the end of the tapered region. it can.
【0017】このように、本発明の熱型赤外線検出器
は、その熱分離構造の支持脚部分を示す図1乃至図4に
示すように、支持脚切除端23で徐々にその幅もしくは
その厚さが増大し、断面積が徐々に増大するように支持
脚が形成されており、これにより支持脚端部に大きな力
学的ストレスが加わることが無く、内包される導電材料
におけるマイクロクラックの発生が抑えられ、かつ、幅
もしくは厚さが小さい部分で熱抵抗を大きくし、受光部
の熱の流出を抑制することができる。Thus, as shown in FIGS. 1 to 4 showing the supporting leg portion of the thermal separation structure, the thermal type infrared detector of the present invention gradually has its width or its thickness at the supporting leg cut end 23. The supporting legs are formed so that the cross-sectional area increases gradually, so that a large mechanical stress is not applied to the ends of the supporting legs, and micro-cracks are generated in the conductive material included therein. The heat resistance can be increased in the portion where the width or thickness is small and the outflow of heat from the light receiving portion can be suppressed.
【0018】[0018]
【発明の実施の形態】本発明に係る熱型赤外線検出器
は、その好ましい一実施の形態において、受光部と、該
受光部を中空保持する支持脚とからなるダイヤフラム構
造を有する熱型赤外線検出において、支持脚の長手方向
の両端側に、端部から中央に向かって幅又は膜厚が徐々
に小さくなるテーパー領域(支持脚切除端)を設け、テ
ーパー領域以外の基部領域の断面積を小さくすることに
よって受光部と基板との間の熱伝導を抑制し、また、幅
又は膜厚を徐々に変化させることによって境界領域にス
トレスが集中することを防止する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a preferred embodiment, a thermal infrared detector according to the present invention is a thermal infrared detector having a diaphragm structure comprising a light receiving portion and supporting legs for holding the light receiving portion in a hollow state. In each of the longitudinal ends of the support leg, a tapered region (support leg cut end) whose width or film thickness gradually decreases from the end toward the center, and the cross-sectional area of the base region other than the tapered region is reduced. By doing so, heat conduction between the light receiving portion and the substrate is suppressed, and stress is prevented from being concentrated on the boundary region by gradually changing the width or the film thickness.
【0019】[0019]
【実施例】上記した本発明の実施の形態についてさらに
詳細に説明すべく、本発明の実施例について図面を参照
して説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention;
【0020】[実施例1]まず、本発明の第1の実施例
に係る熱型赤外線検出器について、図1及び図2を参照
して説明する。図1は第1の実施例に係る熱型赤外線検
出器の支持脚部分を拡大した斜視図であり、図2はその
断面図である。本実施例は、熱型赤外線検出器の熱分離
構造の支持脚を構成する絶縁保護膜の厚さを支持脚部の
大半で受光部の絶縁保護膜の厚さより薄くし、かつ、支
持脚の端部領域において支持脚の長さ方向に向かってテ
ーパ状に徐々に厚くなっていることを特徴としている。[Embodiment 1] First, a thermal infrared detector according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an enlarged perspective view of a supporting leg portion of the thermal infrared detector according to the first embodiment, and FIG. 2 is a sectional view thereof. In the present embodiment, the thickness of the insulating protective film constituting the support leg of the thermal isolation structure of the thermal infrared detector is made thinner than the thickness of the insulating protective film of the light receiving portion in most of the support leg, and In the end region, the support leg is gradually tapered in the length direction of the support leg.
【0021】以下、チタンボロメータ赤外線検出器を例
にとって説明する。図1及び図2に示すように、第1の
実施例は従来例である図7の支持脚切除端23の形状を
変えるものであり、それ以外は従来例と全く同じ構成で
成っている。この支持脚切除端23において、支持脚8
の長手方向の両端で絶縁保護膜の厚さが徐々に厚くなる
ようなテーパ部を設ける。Hereinafter, a titanium bolometer infrared detector will be described as an example. As shown in FIGS. 1 and 2, the first embodiment is different from the conventional example in that the shape of the support leg cut end 23 shown in FIG. 7 is changed, and the other configuration is exactly the same as that of the conventional example. At the cut end 23 of the support leg, the support leg 8
Are provided such that the thickness of the insulating protective film gradually increases at both ends in the longitudinal direction.
【0022】図2(a)は支持脚8の長さ方向に沿った
断面図を表し、厚さ約1000Åの第1の絶縁保護膜す
なわち第3シリコン酸化膜15の上に形成された厚さ約
1000Å、幅約1μmのチタンメタルからなる導電材
料10a(ここではチタンボロメータ10と同じ)の細
線上に、厚さ約1μmの第2の絶縁保護膜すなわち第4
シリコン酸化膜16を設けた後、支持脚8の大半(支持
脚切除領域22)をフォトレジスト法により形成された
レジストマスクの開口部をバッファード弗酸液等の等方
性のウェットエッチング法を用いて、例えば第4シリコ
ン酸化膜16の膜厚の半分程度、すなわち約5500Å
除去し、支持脚切除領域22(薄膜部)とその外側で元
の厚さの部分(厚膜部)の境界(支持脚切除端23)で
テーパ状の段差を設けている。FIG. 2A is a cross-sectional view along the length direction of the support leg 8 and shows the thickness formed on the first insulating protective film, that is, the third silicon oxide film 15 having a thickness of about 1000 °. A second insulating protective film having a thickness of about 1 μm, i.e., a fourth insulating protection film,
After the silicon oxide film 16 is provided, most of the supporting legs 8 (the supporting leg cutout regions 22) are subjected to an isotropic wet etching method such as a buffered hydrofluoric acid solution through openings of a resist mask formed by a photoresist method. For example, about half the thickness of the fourth silicon oxide film 16, that is, about 5500 °
A tapered step is provided at a boundary (support leg cut end 23) between the support leg cut region 22 (thin film portion) and the original thickness portion (thick film portion) outside thereof.
【0023】このようにエッチングすると、支持脚切除
領域22の大半は、絶縁保護膜の全体の断面積が絶縁保
護膜を切除する前の断面積の約半分となる。この場合、
絶縁保護膜厚の最も薄いところとテーパ部の接続の仕方
は、図2(a)のチタンボロメータに沿った支持脚断面
図の破線に示すように完全に滑らかにすれば、上記厚膜
部と薄膜部の境界である支持脚切除端23でのストレス
を低減するために更に望ましいと言える。なお、支持脚
切除端23でテーパ状の段差を設ける方法としては、レ
ジストのサイドエッチングを伴うドライエッチングもし
くは等方性ドライエッチング法によっても可能である。When the etching is performed in this manner, in most of the support leg cutout regions 22, the entire cross-sectional area of the insulating protective film becomes approximately half the cross-sectional area before the insulating protective film is cut off. in this case,
The connection between the thinnest portion of the insulating protective film and the tapered portion can be made completely smooth as shown by the broken line in the sectional view of the supporting leg along the titanium bolometer in FIG. It can be said that it is more desirable to reduce the stress at the support leg cut end 23 which is the boundary of the thin film portion. In addition, as a method of providing the tapered step at the cut-off end 23 of the support leg, dry etching accompanied by side etching of the resist or an isotropic dry etching method is also possible.
【0024】支持脚8の熱伝導度は、絶縁保護膜が担う
熱伝導度とチタンメタルが担う熱伝導度の和である。本
実施例の場合、図1に示すように支持脚8の大半の厚さ
を受光部7の厚さの約半分に薄くした結果、絶縁保護膜
の断面積が約半分に減少するため、支持脚8の全体の熱
伝導度が約75%に低減し、それに伴い上記チタンボロ
メータ赤外線検出器の感度を約1.3倍以上に向上させ
ることができた。The thermal conductivity of the support leg 8 is the sum of the thermal conductivity of the insulating protective film and the thermal conductivity of the titanium metal. In the case of this embodiment, as shown in FIG. 1, the thickness of the support leg 8 is reduced to approximately half the thickness of the light receiving unit 7, and as a result, the cross-sectional area of the insulating protective film is reduced to approximately half. The overall thermal conductivity of the leg 8 was reduced to about 75%, and the sensitivity of the titanium bolometer infrared detector could be improved to about 1.3 times or more.
【0025】これは、元々、支持脚8の上記各寸法を有
する断面形状においては、支持脚切除前の断面積が大き
く熱伝導率の小さい絶縁保護膜の熱伝導度と、断面積が
小さく熱伝導率の大きい導電材料であるチタンの熱伝導
度とが同等程度であり、そのうちの絶縁保護膜の断面積
が支持脚切除後ほぼ半減した結果である。支持脚8の長
手方向に見たとき、上記薄膜領域の両端の厚さが変わる
境界では保護膜の厚さが徐々に厚くなっており急な段差
ではないためストレスが減少し、保護膜に内包された導
電材料10aにマイクロクラックが入ることも抑制され
るため、従来生じていた抵抗増加による欠陥画素の増大
という問題も解決することができる。This is because, in the cross-sectional shape of the support leg 8 having the above-described dimensions, the thermal conductivity of the insulating protective film having a large cross-sectional area before cutting the support leg and a small thermal conductivity, and the thermal conductivity of the insulating protective film having a small cross-sectional area are small. The result is that the thermal conductivity of titanium, which is a conductive material having a high conductivity, is about the same as that of titanium, and the cross-sectional area of the insulating protective film is almost halved after the support leg is cut. When viewed in the longitudinal direction of the support leg 8, the thickness of the protective film gradually increases at the boundary where the thickness of both ends of the thin film region changes, and the stress is reduced because the thickness is not a steep step. Since micro cracks are also suppressed from entering the conductive material 10a, the problem of an increase in defective pixels due to an increase in resistance, which has conventionally occurred, can be solved.
【0026】[実施例2]次に、本発明の第2の実施例
に係る熱型赤外線検出器について、図3及び図4を参照
して説明する。図3は第2の実施例に係る熱型赤外線検
出器の支持脚部分を拡大した斜視図であり、図4はその
断面図である。[Embodiment 2] Next, a thermal infrared detector according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is an enlarged perspective view of a supporting leg portion of the thermal infrared detector according to the second embodiment, and FIG. 4 is a sectional view thereof.
【0027】第2の実施例は、従来例である図7の支持
脚8の形状を変えたことを特徴とするものであり、それ
以外は従来例と全く同じ構成で成っていることは前記し
た第1の実施例と同じである。具体的には、第2の実施
例は、支持脚8の断面が凸型になるように支持脚の幅方
向で両肩を選択エッチングで除去し、支持脚切除端23
においては支持脚8の長手方向にはこの凸型の上端の幅
を徐々に広げる形状としている。The second embodiment is characterized in that the shape of the support leg 8 of the conventional example shown in FIG. 7 is changed, and the other points are exactly the same as those of the conventional example. This is the same as the first embodiment. More specifically, in the second embodiment, both shoulders are removed by selective etching in the width direction of the support leg 8 so that the cross section of the support leg 8 becomes convex, and the support leg cut end 23 is formed.
In this case, the width of the upper end of the convex shape is gradually increased in the longitudinal direction of the support leg 8.
【0028】図4の(a)、(b)および(c)は、各
々幅約2μmの支持脚8の長さ方向に沿った正面図、側
面図および(b)側面図中のX1、X2、X3の位置で
の各断面図を表しており、厚さ約1000Åの第1の絶
縁保護膜すなわち第3シリコン酸化膜15の上に形成さ
れた厚さ約1000Å、幅約1μmのチタンメタルから
なる導電材料10aの細線上に厚さ約1μmの第2の絶
縁保護膜すなわち第4シリコン酸化膜16を設けた後、
フォトレジスト法および異方性のドライエッチング法を
用いて凸型断面形状にしている。例えば、第4シリコン
酸化膜16の上から4分の3程度まで、すなわち約75
00Å、片方の肩幅分約0.7μmずつ支持脚の両側を
切除しているが、支持脚切除端23においてテーパ状の
拡幅部を設けている。FIGS. 4 (a), 4 (b) and 4 (c) show a front view, a side view and a side view X1, X2 in the length direction of the support leg 8 each having a width of about 2 μm. , X3, each of which is formed of a titanium insulating film having a thickness of about 1000 ° and a width of about 1 μm formed on a first insulating protective film, ie, a third silicon oxide film 15 having a thickness of about 1000 °. After a second insulating protective film, that is, a fourth silicon oxide film 16 having a thickness of about 1 μm is provided on the fine wire of the conductive material 10a,
A convex sectional shape is formed by using a photoresist method and an anisotropic dry etching method. For example, up to about 4 of the fourth silicon oxide film 16, that is, about 75
At 00 °, both sides of the support leg are cut away by about 0.7 μm for one shoulder width, and a tapered widened portion is provided at the cut end 23 of the support leg.
【0029】支持脚切除領域22の大半は絶縁保護膜の
全体の断面積が絶縁保護膜を切除する前の断面積の約半
分となる。この場合、絶縁保護膜厚の最も狭窄した領域
とテーパ部はある角度をもって接続している。一方、同
図波線のように滑らかな接続の仕方にすれば、上記拡幅
部でのストレスを低減するために更に望ましいと言え
る。これはフォトレジストマスクパターンの微調整によ
って可能である。In most of the support leg cutout area 22, the entire cross-sectional area of the insulating protective film is about half of the cross-sectional area before the insulating protective film is cut off. In this case, the region where the insulating protective film thickness is most narrowed and the tapered portion are connected at a certain angle. On the other hand, it can be said that it is more desirable to adopt a smooth connection method as shown by the dashed line in the figure in order to reduce the stress at the widened portion. This can be achieved by fine adjustment of the photoresist mask pattern.
【0030】図4に示すように、支持脚の大半で第1の
絶縁保護膜13の上部の幅が狭窄されており、絶縁保護
膜の断面積が約半分に減少するため熱伝導度が元の値の
約4分の3に低減し、感度を約3分の4に向上させるこ
とができる。また、支持脚の長手方向に見たとき、上記
切除領域の両端では第1の絶縁保護膜において上部の幅
が徐々に広がっており、上記切除領域の両端で急激な断
面積の変化はないため、この境界に大きなストレスがか
からず、保護膜に内包された導電材料にマイクロクラッ
クが入ることがない。このため抵抗増加による欠陥画素
が少なく良品歩留まりを高く維持できる。As shown in FIG. 4, the width of the upper part of the first insulating protective film 13 is narrowed in most of the supporting legs, and the cross-sectional area of the insulating protective film is reduced to about half, so that the thermal conductivity is reduced. Can be reduced to about three-quarters of the value, and the sensitivity can be improved to about four-thirds. When viewed in the longitudinal direction of the support leg, the width of the upper portion of the first insulating protective film gradually increases at both ends of the cut region, and there is no rapid change in the cross-sectional area at both ends of the cut region. In addition, no large stress is applied to this boundary, and no microcracks enter the conductive material included in the protective film. Therefore, the number of defective pixels due to an increase in resistance is small, and the yield of non-defective products can be maintained high.
【0031】また、本実施例では、前記した第1の実施
例のように支持脚8の厚さを均一に薄くするのではな
く、角部のみを削り取って凸形状にしているため、断面
積が小さくなっても強度の低下を抑えることができる。
なお、断面形状は凸形状に限定されるものではなく、片
側のみを削り取ったL字形状や中央部を削り取った凹形
状等、任意の形状とすることができる。Also, in this embodiment, since the thickness of the support leg 8 is not uniformly reduced as in the first embodiment described above, only the corners are cut off to form a convex shape. Can be suppressed from decreasing even if the diameter becomes smaller.
Note that the cross-sectional shape is not limited to the convex shape, and may be an arbitrary shape such as an L-shape in which only one side is cut or a concave shape in which the center is cut.
【0032】また、上記各実施例では、チタンボロメー
タ熱型赤外線検出器を例にとって説明したが、支持脚の
絶縁保護膜の厚さが充分厚い場合にも一般的に適用でき
ることは言うまでもない。また、同様の考え方で支持脚
の薄い場合にその両端でその幅を徐々に広げることによ
りストレスの集中を緩和し、支持脚内の導電材料のマイ
クロクラックによる抵抗増加欠陥を抑制できることも言
うまでもない。Further, in each of the above embodiments, a titanium bolometer thermal infrared detector has been described as an example, but it goes without saying that the present invention can be generally applied to a case where the thickness of the insulating protective film of the supporting leg is sufficiently large. Further, it is needless to say that, when the support leg is thin, the width of the support leg is gradually increased at both ends to reduce the concentration of stress and suppress a resistance increase defect due to microcracks of the conductive material in the support leg.
【0033】[0033]
【発明の効果】以上説明したように、本発明の熱型赤外
線検出器によれば、支持脚の一部を切除することによ
り、絶縁保護膜の断面積が減少するために熱伝導度が低
減し、感度の向上を図ることができる。また、支持脚の
切除領域の境界で絶縁保護膜に急な段差が生じないた
め、この境界に大きなストレスが生じず保護膜に内包さ
れた導電材料にマイクロクラックが入ることなく、抵抗
欠陥の少ない2次元熱型赤外線検出器を歩留まりよく得
ることができる。As described above, according to the thermal infrared detector of the present invention, by cutting off a part of the supporting leg, the cross-sectional area of the insulating protective film is reduced, so that the thermal conductivity is reduced. Thus, the sensitivity can be improved. In addition, since a steep step does not occur in the insulating protective film at the boundary between the cutout regions of the support legs, a large stress does not occur at this boundary, microcracks do not enter the conductive material included in the protective film, and there are few resistance defects. A two-dimensional thermal infrared detector can be obtained with high yield.
【図1】本発明の第1の実施例に係る熱型赤外線検出器
の支持脚部分を示す斜視図である。FIG. 1 is a perspective view showing a supporting leg portion of a thermal infrared detector according to a first embodiment of the present invention.
【図2】本発明の第1の実施例に係る熱型赤外線検出器
の支持脚部分を示す断面図である。FIG. 2 is a sectional view showing a supporting leg portion of the thermal infrared detector according to the first embodiment of the present invention.
【図3】本発明の第2の実施例に係る熱型赤外線検出器
の支持脚部分を示す斜視図である。FIG. 3 is a perspective view showing a supporting leg portion of a thermal infrared detector according to a second embodiment of the present invention.
【図4】本発明の第2の実施例に係る熱型赤外線検出器
の支持脚部分を示す断面図である。FIG. 4 is a sectional view showing a supporting leg portion of a thermal infrared detector according to a second embodiment of the present invention.
【図5】熱型赤外線検出器の構造を示す斜視図である。FIG. 5 is a perspective view showing a structure of a thermal infrared detector.
【図6】従来の熱型赤外線検出器の支持脚部分を示す断
面図である。FIG. 6 is a sectional view showing a supporting leg portion of a conventional thermal infrared detector.
【図7】従来の熱型赤外線検出器の支持脚部分を示す図
である。FIG. 7 is a view showing a supporting leg portion of a conventional thermal infrared detector.
1 基板 2 読み出し回路 3 絶縁膜 4a アルミ配線(A) 4b アルミ配線(B) 4c アルミ配線(C) 5 空洞 6 赤外線吸収層 7 受光部 8 支持脚 9 ダイヤフラム 10 チタンボロメータ 10a 導電材料 11 コンタクト(A) 12 コンタクト(C) 13 スリット 14 第2シリコン酸化膜 15 第3シリコン酸化膜 16 第4シリコン酸化膜 17 スリット 18 共振キャビティ 19 支持脚断面位置 20 導電材料幅 21 支持脚幅 22 支持脚切除領域 23 支持脚切除端 DESCRIPTION OF SYMBOLS 1 Substrate 2 Readout circuit 3 Insulating film 4a Aluminum wiring (A) 4b Aluminum wiring (B) 4c Aluminum wiring (C) 5 Cavity 6 Infrared absorption layer 7 Light receiving part 8 Support leg 9 Diaphragm 10 Titanium bolometer 10a Conductive material 11 Contact (A 12 Contact (C) 13 Slit 14 Second silicon oxide film 15 Third silicon oxide film 16 Fourth silicon oxide film 17 Slit 18 Resonance cavity 19 Support leg cross-sectional position 20 Conductive material width 21 Support leg width 22 Support leg cut-out area 23 Support leg cut end
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 37/00 H01L 27/14 K Fターム(参考) 2G065 AB02 BA11 BA12 BA13 BA14 BA34 CA13 DA18 DA20 2G066 BA04 BA08 BA09 BA55 BB09 CA02 4M118 AA10 AB01 CA20 CA40 CB20 DD02 EA04 EA20 GA10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 37/00 H01L 27/14 K F term (Reference) 2G065 AB02 BA11 BA12 BA13 BA14 BA34 CA13 DA18 DA20 2G066 BA04 BA08 BA09 BA55 BB09 CA02 4M118 AA10 AB01 CA20 CA40 CB20 DD02 EA04 EA20 GA10
Claims (7)
持する支持脚とからなるダイヤフラム構造を有する熱型
赤外線検出器において、 前記支持脚の長手方向の両端側に、端部から中央に向か
って断面積が徐々に小さくなるテーパー領域を備えるこ
とを特徴とする熱型赤外線検出器。1. A thermal infrared detector having a diaphragm structure comprising an infrared receiving section and supporting legs for holding the infrared receiving section in a hollow state, wherein the supporting legs are provided at both ends in the longitudinal direction of the supporting legs, and from the end to the center. A thermal infrared detector comprising a tapered region whose cross-sectional area gradually decreases.
持する支持脚とからなるダイヤフラム構造を有する熱型
赤外線検出器において、 前記支持脚の長手方向の両端側に、端部から中央に向か
って幅の少なくとも一部が徐々に小さくなるテーパー領
域を備えることを特徴とする熱型赤外線検出器。2. A thermal infrared detector having a diaphragm structure comprising an infrared receiving section and a supporting leg for holding the infrared receiving section in a hollow state, wherein the supporting leg is provided at both ends in the longitudinal direction and at the center from the end. A thermal infrared detector comprising a tapered region in which at least part of the width gradually decreases.
くなり、該支持脚の断面が凸形状となることを特徴とす
る請求項2記載の熱型赤外線検出器。3. The thermal infrared detector according to claim 2, wherein only the width at the upper end side of said support leg is gradually reduced, and the cross section of said support leg is convex.
料を内包するように形成され、前記導電材料上部の前記
絶縁保護膜の幅が徐々に小さくなることを特徴とする請
求項2又は3に記載の熱型赤外線検出器。4. The method according to claim 2, wherein the support leg is formed so as to include a conductive material by upper and lower insulating protection films, and the width of the insulating protection film on the conductive material is gradually reduced. Or a thermal infrared detector according to 3.
持する支持脚とからなるダイヤフラム構造を有する熱型
赤外線検出器において、 前記支持脚の長手方向の両端側に、端部から中央に向か
って膜厚が徐々に薄くなるテーパー領域を備えることを
特徴とする熱型赤外線検出器。5. A thermal infrared detector having a diaphragm structure comprising an infrared receiving section and a supporting leg for holding the infrared receiving section in a hollow, wherein the supporting leg is provided at both ends in the longitudinal direction of the supporting leg and at the center from the end. A thermal infrared detector comprising a tapered region whose thickness gradually decreases toward the surface.
料を内包するように形成され、前記導電材料上部の前記
絶縁保護膜の膜厚が、前記端部を除く領域で前記赤外線
受光部の絶縁保護膜より薄くなるように形成されている
ことを特徴とする請求項5記載の熱型赤外線検出器。6. The support leg is formed so as to enclose a conductive material with upper and lower insulating protective films, and the thickness of the insulating protective film on the conductive material is reduced in a region excluding the end portion. 6. The thermal infrared detector according to claim 5, wherein the thermal infrared detector is formed so as to be thinner than a part of the insulating protective film.
断面が曲線を構成し、前記テーパー領域の終端において
も、前記幅又は膜厚が滑らかに変化することを特徴とす
る請求項1乃至6のいずれか一に記載の熱型赤外線検出
器。7. The tapered region has a curved cross section in the longitudinal direction of the support leg, and the width or the film thickness changes smoothly even at the end of the tapered region. The thermal infrared detector according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001174619A JP3644411B2 (en) | 2001-06-08 | 2001-06-08 | Thermal infrared detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001174619A JP3644411B2 (en) | 2001-06-08 | 2001-06-08 | Thermal infrared detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002365129A true JP2002365129A (en) | 2002-12-18 |
JP3644411B2 JP3644411B2 (en) | 2005-04-27 |
Family
ID=19015879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001174619A Expired - Fee Related JP3644411B2 (en) | 2001-06-08 | 2001-06-08 | Thermal infrared detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3644411B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006126203A (en) * | 2004-10-28 | 2006-05-18 | Commiss Energ Atom | Radiation detector with thermal separation due to shrinkage and infrared detector using the radiation detector |
JP2007316005A (en) * | 2006-05-29 | 2007-12-06 | Nissan Motor Co Ltd | Infrared sensor and manufacturing method therefor |
JP2009250856A (en) * | 2008-04-09 | 2009-10-29 | Nissan Motor Co Ltd | Infrared detecting element |
JP2021162367A (en) * | 2020-03-30 | 2021-10-11 | ラピスセミコンダクタ株式会社 | Sensor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03211427A (en) * | 1990-01-16 | 1991-09-17 | Terumo Corp | Infrared sensor and production thereof |
JPH04315056A (en) * | 1991-04-12 | 1992-11-06 | Tokai Rika Co Ltd | Acceleration sensor |
JPH08285680A (en) * | 1995-02-16 | 1996-11-01 | Mitsubishi Electric Corp | Infrared detector and manufacture thereof, and etching monitor for manufacturing the infrared detector |
JPH10274561A (en) * | 1997-03-31 | 1998-10-13 | Nec Corp | Thermal infrared detector |
JP2000349355A (en) * | 1999-06-03 | 2000-12-15 | Sharp Corp | Thermal infrared detector |
-
2001
- 2001-06-08 JP JP2001174619A patent/JP3644411B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03211427A (en) * | 1990-01-16 | 1991-09-17 | Terumo Corp | Infrared sensor and production thereof |
JPH04315056A (en) * | 1991-04-12 | 1992-11-06 | Tokai Rika Co Ltd | Acceleration sensor |
JPH08285680A (en) * | 1995-02-16 | 1996-11-01 | Mitsubishi Electric Corp | Infrared detector and manufacture thereof, and etching monitor for manufacturing the infrared detector |
JPH10274561A (en) * | 1997-03-31 | 1998-10-13 | Nec Corp | Thermal infrared detector |
JP2000349355A (en) * | 1999-06-03 | 2000-12-15 | Sharp Corp | Thermal infrared detector |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006126203A (en) * | 2004-10-28 | 2006-05-18 | Commiss Energ Atom | Radiation detector with thermal separation due to shrinkage and infrared detector using the radiation detector |
JP2007316005A (en) * | 2006-05-29 | 2007-12-06 | Nissan Motor Co Ltd | Infrared sensor and manufacturing method therefor |
JP2009250856A (en) * | 2008-04-09 | 2009-10-29 | Nissan Motor Co Ltd | Infrared detecting element |
JP2021162367A (en) * | 2020-03-30 | 2021-10-11 | ラピスセミコンダクタ株式会社 | Sensor device |
Also Published As
Publication number | Publication date |
---|---|
JP3644411B2 (en) | 2005-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6144030A (en) | Advanced small pixel high fill factor uncooled focal plane array | |
US7638769B2 (en) | Solid-state image sensing device, method for manufacturing the same, and imaging system | |
JP5751544B2 (en) | Silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) wafers used in manufacturing uncooled microbolometers | |
US5583058A (en) | Infrared detection element array and method for fabricating the same | |
GB2278496A (en) | Infrared detecting element | |
US5852321A (en) | Thermal type infrared radiation solid state image pick-up device | |
JPH11337403A (en) | Infrared detecting element and its manufacture | |
JP2003166876A (en) | Thermal type infrared detection element, its manufacturing method and thermal type infrared detection element array | |
JP3859479B2 (en) | Bolometer type infrared detector | |
JP2002365129A (en) | Thermal type infrared detector | |
JPH11211558A (en) | Sensors and sensor arrays | |
CN212539430U (en) | Heterogeneously integrated thermal infrared sensing element and thermal infrared sensor | |
JP3132197B2 (en) | Thermal infrared sensor | |
JP3377041B2 (en) | Thermal infrared detector with thermal separation structure | |
JP2005116856A (en) | Thermal infrared solid-state imaging device and its manufacturing method | |
JP2000321125A (en) | Infrared sensor element | |
JP3663070B2 (en) | Thermal infrared solid-state imaging device and manufacturing method thereof | |
JP3175662B2 (en) | Manufacturing method of thermal infrared detecting element | |
JP2884679B2 (en) | Thermopile type infrared sensor | |
JPH046424A (en) | Infrared sensor | |
JP2004271386A (en) | Thermal infrared detector and its manufacturing method | |
JP3476443B2 (en) | Manufacturing method of thermal sensor | |
JPH11148868A (en) | Thermal sensing element and method of manufacturing the same | |
JPH0755557A (en) | Thermal type infrared sensor | |
JP3422150B2 (en) | Infrared detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040329 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040520 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040621 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040621 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080210 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120210 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |