JP2002363131A - Method for x-y-x type structure lipid production - Google Patents
Method for x-y-x type structure lipid productionInfo
- Publication number
- JP2002363131A JP2002363131A JP2001167116A JP2001167116A JP2002363131A JP 2002363131 A JP2002363131 A JP 2002363131A JP 2001167116 A JP2001167116 A JP 2001167116A JP 2001167116 A JP2001167116 A JP 2001167116A JP 2002363131 A JP2002363131 A JP 2002363131A
- Authority
- JP
- Japan
- Prior art keywords
- fatty acid
- diglyceride
- reaction
- acid
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 150000002632 lipids Chemical class 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 59
- 238000006243 chemical reaction Methods 0.000 claims abstract description 44
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 40
- 229930195729 fatty acid Natural products 0.000 claims abstract description 40
- 239000000194 fatty acid Substances 0.000 claims abstract description 40
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 39
- 239000002904 solvent Substances 0.000 claims abstract description 31
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 claims abstract description 30
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims abstract description 18
- 235000020669 docosahexaenoic acid Nutrition 0.000 claims abstract description 17
- 229940090949 docosahexaenoic acid Drugs 0.000 claims abstract description 15
- 125000006239 protecting group Chemical group 0.000 claims abstract description 10
- 238000000746 purification Methods 0.000 claims abstract description 9
- 230000007246 mechanism Effects 0.000 claims abstract description 5
- 238000001953 recrystallisation Methods 0.000 claims abstract description 5
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 claims abstract description 3
- 235000020673 eicosapentaenoic acid Nutrition 0.000 claims abstract description 3
- 229960005135 eicosapentaenoic acid Drugs 0.000 claims abstract description 3
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 235000011187 glycerol Nutrition 0.000 claims description 25
- 238000011403 purification operation Methods 0.000 abstract description 4
- 235000014593 oils and fats Nutrition 0.000 abstract 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 45
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 36
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 30
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 27
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 17
- 239000003925 fat Substances 0.000 description 12
- 235000019197 fats Nutrition 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000003921 oil Substances 0.000 description 11
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 230000010933 acylation Effects 0.000 description 8
- 238000005917 acylation reaction Methods 0.000 description 8
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 5
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- CNDHHGUSRIZDSL-UHFFFAOYSA-N 1-chlorooctane Chemical compound CCCCCCCCCl CNDHHGUSRIZDSL-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000004367 Lipase Substances 0.000 description 3
- 102000004882 Lipase Human genes 0.000 description 3
- 108090001060 Lipase Proteins 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 125000005456 glyceride group Chemical class 0.000 description 3
- 150000002576 ketones Chemical group 0.000 description 3
- 235000019421 lipase Nutrition 0.000 description 3
- 229960002446 octanoic acid Drugs 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- DVSZKTAMJJTWFG-SKCDLICFSA-N (2e,4e,6e,8e,10e,12e)-docosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC\C=C\C=C\C=C\C=C\C=C\C=C\C(O)=O DVSZKTAMJJTWFG-SKCDLICFSA-N 0.000 description 2
- GZJLLYHBALOKEX-UHFFFAOYSA-N 6-Ketone, O18-Me-Ussuriedine Natural products CC=CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O GZJLLYHBALOKEX-UHFFFAOYSA-N 0.000 description 2
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 2
- KAUVQQXNCKESLC-UHFFFAOYSA-N docosahexaenoic acid (DHA) Natural products COC(=O)C(C)NOCC1=CC=CC=C1 KAUVQQXNCKESLC-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- -1 fatty acid chlorides Chemical class 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 229940120503 dihydroxyacetone Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000004667 medium chain fatty acids Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 150000004669 very long chain fatty acids Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業の属する技術分野】本発明は、X-Y-X型の構造
脂質の効率的な製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing an XYX type structural lipid.
【0002】[0002]
【従来の技術】従来、油脂の栄養学的な評価はトリグリ
セライドを構成する脂肪酸の種類によって議論されるこ
とが多く、例えば、高度不飽和脂肪酸(PUFA)が体
に良いとか、ω−3とω−6のバランスが大事などとい
う議論も、構成脂肪酸にのみ着目された議論になる。2. Description of the Related Art Conventionally, the nutritional evaluation of fats and oils is often discussed according to the type of fatty acids constituting triglycerides. For example, polyunsaturated fatty acids (PUFA) are good for the body, ω-3 and ω. The argument that the balance of -6 is important is also an argument that focuses only on constituent fatty acids.
【0003】ところが、食事で取る油脂は、構成する脂
肪酸の割合に応じて摂取量が一律に決まるのではなく、
トリグリセライドの構造によって、吸収されやすい脂肪
酸とそうでない脂肪酸があることが、分かってきてい
る。つまり、消化管内で酵素による分解を受けながら吸
収、代謝される脂肪酸は、3つの水酸基を持つグリセリ
ンのどの位置に結合しているかで吸収のされ方が異なる
ことが、分かってきたということである。これらの知見
をもとに、栄養学的価値の高い脂肪酸を積極的に吸収さ
せようとする考え方から、油脂構造に着目した研究が行
われている。[0003] However, the amount of fats and oils taken in the diet is not determined uniformly according to the proportion of fatty acids in the fats and oils.
It has been found that some fatty acids are easily absorbed and some are not, depending on the structure of triglycerides. In other words, it has been found that fatty acids that are absorbed and metabolized while being decomposed by enzymes in the digestive tract are absorbed differently depending on where they are bound to glycerin having three hydroxyl groups. . Based on these findings, studies focusing on the structure of fats and oils have been conducted from the viewpoint of actively absorbing fatty acids having high nutritional value.
【0004】具体的には、グリセリンの3種の水酸基の
うち外側に位置する1,3位の水酸基に結合した脂肪酸
は、リパーゼの加水分解を受けやすく、2位に脂肪酸を
一つだけ残したモノグリセライドが、吸収されやすくな
る現象に着目し、X−Y−X型の油脂のXに、よりリパ
ーゼで分解されやすい中鎖脂肪酸(炭素数8および10
のものが代表的)を配し、Yに栄養学的に価値の高いP
UFA、特に近年注目されているドコサヘキサエン酸
(DHA)を配したCDC(カプリル酸−DHA−カプ
リル酸)が、DHA含有油脂の高付加価値化に期待され
ている。[0004] Specifically, a fatty acid bonded to the outer one of the three hydroxyl groups of glycerin is susceptible to hydrolysis of lipase, leaving only one fatty acid at the second position. Focusing on the phenomenon in which monoglyceride is easily absorbed, the medium-chain fatty acids (8 and 10 carbon atoms) which are more easily decomposed by lipase into X of XYX type fats and oils
Are typical), and Y is nutritionally valuable P
UFA, in particular, CDC (caprylic acid-DHA-caprylic acid) provided with docosahexaenoic acid (DHA), which has attracted attention in recent years, is expected to increase the added value of DHA-containing fats and oils.
【0005】PUFAの吸収性に有利であると言われ
る、グリセリン分子の1,3位に中鎖脂肪酸、2位にP
UFAを有したトリグリセライドの研究は、比較的古く
から行われている。しかし、効率的な構造油脂の製造法
に関しては、技術的な問題やコストの問題から実用化さ
れていない。特に、近年注目されているDHAについて
は、DHA自体の高純度化が困難であったり、微生物由
来の酵素(リパーゼ)がDHAなどの非常に鎖長の長い
脂肪酸に作用しづらいことなどから、技術の応用がより
困難となっていた。さらに、コストの問題や並行して関
る工業化レベルの製法への問題点は、課題として残され
ている。[0005] It is said that PUFA is advantageous for PUFA absorption.
The study of triglycerides with UFA has been relatively old. However, an efficient method for producing a structured fat has not been put into practical use due to technical problems and cost problems. In particular, with respect to DHA, which has been attracting attention in recent years, it is difficult to purify DHA itself, and it is difficult for enzymes derived from microorganisms (lipases) to act on very long chain fatty acids such as DHA. Had become more difficult to apply. Furthermore, the problem of cost and the problem of the industrial-level manufacturing method related to it remain as problems.
【0006】[0006]
【発明が解決しようとする課題】前述のとおり、構造脂
質自体の発想はそう新しくなく、現実に十数年前からこ
れらの特許出願が数多く存在する。化学的にこうした構
造脂質を合成するときは、グリセリンの3つの水酸基の
どの位置にどんな脂肪酸を結合させるかを制御しなくて
はならないので、通常は、有機合成で一般的に取られる
手法で保護基を導入することによって、脂肪酸の導入位
置を制限する方法が取られる。As described above, the idea of the structural lipid itself is not so new, and many of these patent applications have actually existed for more than ten years. When chemically synthesizing such structural lipids, it is necessary to control which fatty acid is attached to which of the three hydroxyl groups of glycerin, so protection is usually carried out by a method commonly used in organic synthesis. By introducing a group, a method of restricting the introduction position of the fatty acid is employed.
【0007】グリセリンの構造について、厳密にいうと
1位と3位は立体的に向きが異なるので、それぞれに異
なる置換基が導入されたグリセリン誘導体は不斉が生じ
るため、別の化合物と区別されるが、ここで目的とされ
る構造脂質CDCは左右対称なため不斉は生じないこと
を前提に、1位と3位は区別しないで記述する。保護基
を利用することで任意の位置に決まった脂肪酸を導入す
る合成法は確立している。また、保護基ではないが、2
位の水酸基がケトンの構造をしたジヒドロキシアセトン
はケトンを還元することによりグリセリンに変換できる
ので、保護基を導入したのと同様の効果が得られ、すな
わち1,3位にのみ脂肪酸を導入できた後でケトンを水
酸基に変換して、2位に脂肪酸を導入することができる
(特開昭59−190948)。Strictly speaking, the structure of glycerin is sterically different at the 1-position and the 3-position, so that a glycerin derivative having different substituents introduced therein is asymmetric, and is therefore distinguished from another compound. However, the structural lipid CDC, which is the objective here, is described symmetrically, with the premise that no asymmetry occurs because the structural lipid CDC is bilaterally symmetric. A synthetic method has been established to introduce a predetermined fatty acid at an arbitrary position by using a protecting group. Although it is not a protecting group,
Since dihydroxyacetone having a ketone structure at the hydroxyl group can be converted to glycerin by reducing the ketone, the same effect as when a protecting group is introduced is obtained, that is, a fatty acid can be introduced only at the 1,3-position. Later, the ketone can be converted to a hydroxyl group to introduce a fatty acid at the 2-position (JP-A-59-190948).
【0008】これらの確立した従来技術の合成法では、
最終的にできるトリグリセライドの構造が明らかであ
り、かつ、純度が90%以上と高い。しかし、工程数が
増加し、通常各工程毎に精製操作が必要であり、コスト
高であり、また、精製が困難なため大量生産に向かな
い。In these established prior art synthetic methods,
The structure of the finally formed triglyceride is clear, and the purity is as high as 90% or more. However, the number of steps is increased, and usually a purification operation is required for each step, which is expensive, and is not suitable for mass production because purification is difficult.
【0009】上記の従来技術のメリット、デメリットを
踏まえて、本発明は、高度な精製操作を伴わずに低コス
トで、効率的に目的構造脂質の含量が高い、好ましくは
80%程度の油脂を製造することを目的とする。In view of the advantages and disadvantages of the prior art described above, the present invention provides a low-cost, high-efficiency, high-content, preferably about 80%, fat / oil without the need for sophisticated purification operations. It is intended to be manufactured.
【0010】[0010]
【課題を解決するための手段】本発明は、X-Y-X型構
造脂質の製造方法において、まず、グリセリンに直接か
つ選択的に、1,3位に脂肪酸(X)を導入して1,3
−ジグリセライド(X-O-X)を調製し、次に1,3−
ジグリセライド(X-O-X)に脂肪酸(Y)を導入しト
リグリセライド(X-Y-X)を調製することを特徴とす
る方法。The present invention relates to a method for producing an XYX type structural lipid, which comprises firstly and directly introducing a fatty acid (X) into the glycerin at the 1,3-position. , 3
-Diglyceride (X-OX) is prepared, then 1,3-
A method comprising preparing a triglyceride (XYX) by introducing a fatty acid (Y) into diglyceride (XOX).
【0011】1,3位への脂肪酸(X)の直接かつ選択
的導入が、脂肪酸塩化物を用いて、保護基や類似の機構
を使用しないで、溶媒、塩基および反応温度の組み合わ
せのみにより行われており、その場合、本発明は、X-
Y-X型構造脂質の製造方法において、脂肪酸塩化物を
用いて、保護基や類似の機構を使用しないで、溶媒、塩
基および反応温度の組み合わせのみにより、まず、グリ
セリンに直接かつ選択的に、1,3位に脂肪酸(X)を
導入して1,3−ジグリセライド(X-O-X)を調製
し、次に1,3−ジグリセライド(X-O-X)に脂肪酸
(Y)を導入しトリグリセライド(X-Y-X)を調製す
ることを特徴とする方法である。The direct and selective introduction of the fatty acid (X) at the 1,3-position is carried out using fatty acid chlorides, without using protecting groups or similar mechanisms, only by a combination of solvent, base and reaction temperature. In this case, the present invention relates to X-
In the method for producing a YX type structural lipid, a fatty acid chloride is used, without using a protecting group or a similar mechanism, and directly and selectively to glycerin only by a combination of a solvent, a base and a reaction temperature. A fatty acid (X) is introduced at the 1,3-position to prepare 1,3-diglyceride (XOX), and then a fatty acid (Y) is introduced into 1,3-diglyceride (XOX). And preparing triglyceride (XYX).
【0012】中間工程でカラム精製、再結晶は行わない
ことを特徴としており、その場合、本発明は、X-Y-X
型構造脂質の製造方法において、まず、グリセリンに直
接かつ選択的に、1,3位に脂肪酸(X)を導入して
1,3−ジグリセライド(X-O-X)を調製し、より具
体的には脂肪酸塩化物を用いて、保護基や類似の機構を
使用しないで、溶媒、塩基および反応温度の組み合わせ
のみにより、まず、グリセリンに直接かつ選択的に、
1,3位に脂肪酸(X)を導入して1,3−ジグリセラ
イド(X-O-X)を調製し、次に1,3−ジグリセライ
ド(X-O-X)に脂肪酸(Y)を導入しトリグリセライ
ド(X-Y-X)を調製すること、中間工程でカラム精
製、再結晶は行わないことを特徴とする方法である。It is characterized in that no column purification or recrystallization is performed in the intermediate step, and in this case, the present invention provides an XYX
In the method for producing a type-structured lipid, first, a fatty acid (X) is directly and selectively introduced into glycerin at the 1,3-position to prepare 1,3-diglyceride (XOX). First, directly and selectively to glycerin, using only a combination of solvent, base and reaction temperature, using a fatty acid chloride, without using a protecting group or a similar mechanism.
A fatty acid (X) is introduced at the 1,3-position to prepare 1,3-diglyceride (XOX), and then a fatty acid (Y) is introduced into 1,3-diglyceride (XOX). This method is characterized in that triglyceride (XYX) is prepared, and column purification and recrystallization are not performed in an intermediate step.
【0013】[0013]
【発明の実施の形態】本発明において、高度不飽和脂肪
酸(PUFA)とは、好ましくは炭素数18以上、二重
結合数3以上の脂肪酸であり、より好ましくは炭素数2
0以上、二重結合数3以上の脂肪酸である。具体的には
α‐リノレン酸(18:3,n‐3),γ‐リノレン酸
(18:3,n‐6)、アラキドン酸(20:4,n‐
6),エイコサペンタエン酸(20:5,n‐3),n
‐6系ドコサペンタエン酸(22:5,n‐6)、ドコ
サヘキサエン酸(22:6,n‐3)などが例示され
る。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a polyunsaturated fatty acid (PUFA) is preferably a fatty acid having 18 or more carbon atoms and 3 or more double bonds, more preferably 2 or more carbon atoms.
It is a fatty acid having 0 or more and 3 or more double bonds. Specifically, α-linolenic acid (18: 3, n-3), γ-linolenic acid (18: 3, n-6), arachidonic acid (20: 4, n-
6), eicosapentaenoic acid (20: 5, n-3), n
-6-docosapentaenoic acid (22: 5, n-6), docosahexaenoic acid (22: 6, n-3) and the like.
【0014】低コストで、効率的に、目的構造脂質の含
量が高い、好ましくは80%程度の油脂を製造するに
は、(イ)保護基を使用しない、(ロ)中間工程でカラ
ム精製、再結晶は行なわない、方法であり、具体的に
は、(1)グリセリンに直接、1,3位に優先的に(選
択的に)脂肪酸Xを導入して1,3−ジグリセライド
(X-O-X)を調製し、(2)1,3−ジグリセライド
(X-O-X)に脂肪酸Yを導入しトリグリセライド(X
-Y-X)を調製するという手順の合成ルートを採用する
製造方法である。In order to efficiently and economically produce an oil or fat having a high content of the target structural lipid, preferably about 80%, (a) no protective group is used, (b) column purification in an intermediate step, This is a method in which recrystallization is not carried out. Specifically, (1) a fatty acid X is introduced directly into glycerin preferentially (selectively) at the 1,3-position to give 1,3-diglyceride (X-O -X), and (2) a fatty acid Y is introduced into 1,3-diglyceride (XOX) to prepare a triglyceride (X
-YX) is a production method employing a synthetic route of the procedure of preparing (YX).
【0015】上記(1)の脂肪酸の導入(エステル化、
アシル化)は、最も一般的なアシル化法である酸塩化物
法を使用する。溶媒としてはテトラヒドロフラン(TH
F)またはアセトニトリルを使用する。酸塩化物と反応
性の溶媒、例えば、アルコール系溶媒、アセトンは、使
用することができない。酸塩化物と反応性を考慮するだ
けではなく、グリセリンという高極性の化合物と油脂、
または原料の脂肪酸塩化物という低極性の化合物の混和
を実現できるものでなければならない。実験室では、こ
の様な場面で良く使用されるものに、ジメチルホルムア
ミド(DMF)やジメチルスルフォキサイド(DMS
O)などがあるが、これらは沸点が高く減圧濃縮などの
操作ができない。通常は、これらの溶媒が水と混和する
性質を利用し、多量の水を投入し、ヘキサン、酢酸エチ
ル、エーテル、トルエン、塩化メチレン、クロロホルム
などといった水と混和しない溶媒で脂溶性の成分を抽出
するといった操作が行われる。しかし、これでは溶媒の
回収ができないため工業的にはコスト、廃液処理のため
に好ましくない。こうした背景から数種の溶媒で試験し
たところ、テトラヒドロフラン(THF)、アセトニト
リルを使用することによって目的が達成できることを見
いだした。The introduction (esterification,
Acylation) uses the most common acylation method, the acid chloride method. As a solvent, tetrahydrofuran (TH
F) or use acetonitrile. Solvents which are reactive with acid chlorides, for example alcoholic solvents, acetone, cannot be used. Not only consider acid chlorides and reactivity, but also highly polar compounds such as glycerin and fats and oils,
Alternatively, it must be capable of realizing the incorporation of a low-polarity compound such as a raw material fatty acid chloride. In the laboratory, dimethylformamide (DMF) and dimethylsulfoxide (DMS) are often used in such situations.
O) and the like, but these have a high boiling point and cannot be subjected to operations such as concentration under reduced pressure. Usually, by utilizing the property that these solvents are miscible with water, pour a large amount of water and extract fat-soluble components with water-immiscible solvents such as hexane, ethyl acetate, ether, toluene, methylene chloride and chloroform. Is performed. However, this method cannot recover the solvent, which is not preferable industrially because of cost and waste liquid treatment. From such a background, when the test was performed with several kinds of solvents, it was found that the object could be achieved by using tetrahydrofuran (THF) and acetonitrile.
【0016】また、酸塩化物法は塩基性触媒の存在下で
行われる。塩基性触媒としてはトリエチルアミン(TE
A)が好ましい。酸塩化物法で必要となる塩基性触媒
は、その選択によって目的の1,3−ジグリセライドが
得られるか否かが左右される。例えば、有機合成で汎用
されるジメチルアミノピリジン(DMAP)を使用した
場合には、1,3位への選択性が得られず目的物の含量
は非常に少なくなってしまう。これについても検討の結
果、反応温度を十分に低く維持し(0℃かそれ以下)、
塩基触媒にTEAを使用することで好結果が得られるこ
とを発見した。The acid chloride method is carried out in the presence of a basic catalyst. Triethylamine (TE
A) is preferred. The selection of the basic catalyst required in the acid chloride method depends on whether or not the desired 1,3-diglyceride can be obtained. For example, when dimethylaminopyridine (DMAP), which is widely used in organic synthesis, is used, the selectivity to the 1,3-position is not obtained, and the content of the target product is extremely small. As a result of this study, the reaction temperature was maintained sufficiently low (0 ° C. or less),
It has been discovered that the use of TEA as a base catalyst has been successful.
【0017】すなわち、本発明の製造方法において、T
HFまたはアセトニトリルを溶媒としてグリセリンを混
和し、TEAを塩基として加え、脂肪酸塩化物(カプリ
ル酸=オクタン酸)を溶媒で希釈して、低温下で徐々に
加えるという反応条件をとることで、本発明の目的を達
成することができる。That is, in the manufacturing method of the present invention, T
The present invention adopts a reaction condition in which glycerin is mixed with HF or acetonitrile as a solvent, TEA is added as a base, and fatty acid chloride (caprylic acid = octanoic acid) is diluted with the solvent and gradually added at a low temperature. Can achieve the purpose.
【0018】この場合、未反応の酸塩化物が完全にモノ
グリセライドやグリセリンと反応しきることはできな
い。本発明は、最終的に全く純粋なCDCである必要は
ないので、1,3−ジグリセライドの含量が製品規格の
設定範囲内であれば問題ない。本発明は、目標を80%
程度に置いている。In this case, the unreacted acid chloride cannot completely react with monoglyceride or glycerin. Since the present invention does not need to be a pure CDC in the end, there is no problem as long as the content of 1,3-diglyceride is within the setting range of the product specification. The present invention aims at 80%
About to put.
【0019】また、ヘキサンとアセトニトリルの分配に
よって簡便にジグリセライド、モノグリセライドの濃縮
(酸塩化物、トリグリセライドの除去)ができることも
見いだした。あるいは含水エタノールとヘキサンでも実
施可能と考えられる。必要に応じてこれらの操作を導入
することができ、目的物の含量を増強できる。It has also been found that diglyceride and monoglyceride can be easily concentrated (removal of acid chloride and triglyceride) by partitioning between hexane and acetonitrile. Alternatively, it is considered that the method can be carried out using hydrous ethanol and hexane. These operations can be introduced as needed, and the content of the target substance can be enhanced.
【0020】さらに1,3−ジグリセライドの生成を2
ステップに分割し、1回目は上述の条件で大過剰量のグ
リセリンを使用して1−ジグリセライドを優先的に生成
させ、過剰のグリセリンを除いた後で(水と有機溶媒の
分配で可能)、溶媒を低極性よりの一般溶媒に変更して
2回目のアシル化を実行することでモノグリセライドと
未反応酸塩化物の残存を減少させることができた。2回
目の溶媒には実施例では塩化メチレンを使用しているが
モノグリセライド、トリグリセライド、酸塩化物を溶解
できて(グリセリンは溶かせなくてもよい)、酸塩化物
と反応しない溶媒なら使用可能であり、それゆえ、ヘキ
サン、酢酸エチル、クロロホルム系、トルエン、ベンゼ
ン、ピリジン(この場合は塩基を兼ねられる)など多く
の一般的有機溶媒が使用可能と思われる。ただし、実際
には毒性の強い溶媒(ベンゼン、クロロホルムなど)は
好まれないし、コストの高い溶媒も選択されない。Further, the production of 1,3-diglyceride was
Divided into steps, the first time using a large excess of glycerin under the conditions described above to preferentially produce 1-diglyceride and after removing the excess glycerin (possible with partitioning of water and organic solvent), By changing the solvent to a general solvent having a lower polarity and performing the second acylation, the residual of monoglyceride and unreacted acid chloride could be reduced. In the examples, methylene chloride is used as the second solvent, but any solvent that can dissolve monoglyceride, triglyceride, and acid chloride (glycerin does not need to be dissolved) and does not react with acid chloride can be used. Therefore, many common organic solvents, such as hexane, ethyl acetate, chloroform, toluene, benzene, pyridine (in this case, also serving as a base) could be used. However, in practice, highly toxic solvents (benzene, chloroform, etc.) are not preferred, and expensive solvents are not selected.
【0021】1,3−ジグリセライドの生成を2ステッ
プに分割して行う方法について、さらに中間体の精製度
が後続の反応にどう影響するかについても実施例で確認
を行なった。実験的にはここで用いたようなWSCD、
DCCなどといった縮合剤が簡便で効果的だが、試薬が
高価だったり、副生成物の除去が困難だったりするため
工業化には不向きである。原理的に最初の反応と同様な
酸塩化物法がもっとも現実的で、反応条件のみ強力にす
る(DMAPの使用、反応温度)ことで実現可能であ
る。In the method of producing 1,3-diglyceride by dividing it into two steps, it was also confirmed in Examples that the degree of purification of the intermediate affects the subsequent reaction. Experimentally, WSCD as used here,
Although a condensing agent such as DCC is simple and effective, it is not suitable for industrialization because the reagent is expensive and it is difficult to remove by-products. The acid chloride method similar to the first reaction in principle is the most realistic and can be realized by strengthening only the reaction conditions (use of DMAP, reaction temperature).
【0022】[0022]
【実施例】本願発明の詳細を実施例で説明する。本願発
明はこれら実施例によって何ら限定されるものではな
い。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to embodiments. The present invention is not limited by these examples.
【0023】実施例 実験例(1) 1,3-ジカプリルグリセロールの調整 グリセロール0.5g(5.43mmol)、アセトニ
トリル10ml、トリエチルアミン1.96mlをスタ
ーラで良く混合し、氷上で冷却した。カプリルクロライ
ド1.77g(2.0eq)をアセトニトリル4mlで
希釈しゆっくりと反応液に加えた。滴下終了後、室温に
戻し1時間撹拌した。反応終了後、溶媒を減圧下留去
し、酢酸エチルと水で分配し、酢酸エチル層を水、飽和
NaHCO3、飽和食塩水で順次洗浄し、無水MgSO4で
乾燥後、減圧下、濃縮乾固し試料1を得た。EXAMPLES Experimental Example (1) Preparation of 1,3-Dicaprylglycerol 0.5 g (5.43 mmol) of glycerol, 10 ml of acetonitrile and 1.96 ml of triethylamine were mixed well with a stirrer and cooled on ice. 1.77 g (2.0 eq) of capryl chloride was diluted with 4 ml of acetonitrile and slowly added to the reaction solution. After completion of the dropwise addition, the mixture was returned to room temperature and stirred for 1 hour. After completion of the reaction, the solvent was distilled off under reduced pressure, and the mixture was partitioned between ethyl acetate and water. The ethyl acetate layer was washed successively with water, saturated NaHCO 3 and saturated brine, dried over anhydrous MgSO 4, and concentrated to dryness under reduced pressure. Then, Sample 1 was obtained.
【0024】実験例(2) 1,3-ジカプリル-2-DHA-グリセロールの調整 グリセロール2.83g(30.7mmol)、アセト
ニトリル40ml、トリエチルアミン1.02mlをス
ターラで良く混合し、氷上で冷却した。カプリルクロラ
イド1.0g(0.2eq)をアセトニトリル4mlで
希釈しゆっくりと反応液に加えた。滴下終了後、氷上で
30分撹拌し、溶媒を減圧下留去した。残渣に塩化メチ
レンと水を加え、分配し、塩化メチレン層を水、飽和食
塩水で順次洗浄し、無水MgSO4で乾燥した。濾液に
トリエチルアミン1.02mlを加えスターラで良く混
合し、氷上で冷却した。カプリルクロライド0.8gを
塩化メチレン4mlで希釈しゆっくりと反応液に加え
た。滴下終了後、氷上で30分撹拌し、ジメチルアミノ
ピリジン(DMAP)0.811g、ドコサヘキサエン
酸(DHA)1.91gを加え溶解した。水溶性カルボ
ジイミド(WSCD)0.944gを塩化メチレン4m
lに溶解し、ゆっくりと反応液に滴下した。氷上で2時
間、室温で16時間撹拌した。反応終了後、溶媒を減圧
下留去し、酢酸エチルと水で分配し、酢酸エチル層を
水、1N HCl、飽和食塩水で順次洗浄し、無水Mg
SO4で乾燥後、減圧下、濃縮乾固し試料2を得た
(3.04g)。試料2はシリカゲル約20mlのカラ
ムに供し、ヘキサン/酢酸エチル/トリエチルアミン
(100/10/1)で溶出しトリグリセライド画分を
分画した(2.83g)。Experimental Example (2) Preparation of 1,3-dicapril-2-DHA-glycerol 2.83 g (30.7 mmol) of glycerol, 40 ml of acetonitrile and 1.02 ml of triethylamine were mixed well with a stirrer and cooled on ice. 1.0 g (0.2 eq) of capryl chloride was diluted with 4 ml of acetonitrile and slowly added to the reaction solution. After completion of the dropwise addition, the mixture was stirred on ice for 30 minutes, and the solvent was distilled off under reduced pressure. Methylene chloride and water were added to the residue, and the mixture was partitioned. The methylene chloride layer was washed successively with water and saturated brine, and dried over anhydrous MgSO 4 . 1.02 ml of triethylamine was added to the filtrate, mixed well with a stirrer, and cooled on ice. 0.8 g of capryl chloride was diluted with 4 ml of methylene chloride and slowly added to the reaction solution. After completion of the dropwise addition, the mixture was stirred on ice for 30 minutes, and 0.811 g of dimethylaminopyridine (DMAP) and 1.91 g of docosahexaenoic acid (DHA) were added and dissolved. 0.944 g of water-soluble carbodiimide (WSCD) was added to 4 m of methylene chloride.
and slowly added dropwise to the reaction solution. Stirred on ice for 2 hours and at room temperature for 16 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the mixture was partitioned between ethyl acetate and water. The ethyl acetate layer was washed successively with water, 1N HCl and saturated saline, and dried over anhydrous Mg.
After drying over SO 4 , the mixture was concentrated to dryness under reduced pressure to obtain Sample 2 (3.04 g). Sample 2 was applied to a column of about 20 ml of silica gel and eluted with hexane / ethyl acetate / triethylamine (100/10/1) to separate a triglyceride fraction (2.83 g).
【0025】《結果と考察》グリセリンの1,3位を選
択的にアシル化するために比較的弱い塩基のトリエチル
アミン(TEA)を用い低温下で酸塩化物を反応させる
方法を用いた。反応溶媒は高極性のグリセリンと低極性
の脂肪酸塩化物の両者に親和性のある溶媒で、かつ酸塩
化物と反応しない必要がある。この点でアルコール類、
アセトンは不適であり、DMFやDMSOなどは沸点が
高く溶媒の除去に問題があるため試験には用いなかっ
た。THFは劣化しやすく、劣化した溶媒では不明の生
成物を複数TLCで確認したが、同溶媒でも活性アルミ
ナを通してから使用することで良好な結果が得られるこ
とが判った。また、同様にアセトニトリルも目的に利用
可能であることが示された。ここで実験例(1)で得ら
れた試料1の脂質組成分析の結果を表1に示す。<< Results and Discussion >> In order to selectively acylate the 1,3-positions of glycerin, a method of reacting an acid chloride at a low temperature using a relatively weak base, triethylamine (TEA), was used. The reaction solvent must be a solvent that has an affinity for both high-polarity glycerin and low-polarity fatty acid chloride, and must not react with the acid chloride. In this regard, alcohols,
Acetone was unsuitable, and DMF and DMSO were not used in the test because of their high boiling points and problems in solvent removal. THF was easily degraded, and unknown products were confirmed by TLC for a plurality of deteriorated solvents. However, it was found that good results were obtained by using the same solvent after passing through activated alumina. It was also shown that acetonitrile could be used for the same purpose. Table 1 shows the results of the lipid composition analysis of Sample 1 obtained in Experimental Example (1).
【0026】[0026]
【表1】 [Table 1]
【0027】表1から明らかなように、ジグリセライド
の比率が高く、トリグリセライド、モノグリセライドが
低いことから1,3位への優先的にアシル化が起こるこ
とが判る。すなわち自明的にジグリセライドは1,3−
ジグリセライドが主であると判断できる。これをアセト
ニトリルとヘキサンで分配すると、アセトニトリル層に
ジグリセライド以下が抽出されることが判った。組成は
表2のようになった。As is clear from Table 1, since the ratio of diglyceride is high and triglyceride and monoglyceride are low, it is understood that acylation occurs preferentially to the 1,3-position. That is, diglyceride is obviously 1,3-
It can be determined that diglyceride is mainly used. When this was partitioned between acetonitrile and hexane, it was found that less than diglyceride was extracted into the acetonitrile layer. The composition was as shown in Table 2.
【0028】[0028]
【表2】 [Table 2]
【0029】実験例(1)で得られた部分グリセライド
にDHA等のPUFAをアシル化することによってこの
グリセライド組成を反映した構造脂質が得られると考え
られる。すなわち、CDCを88.9%程度含有した油
脂が得られることになる。It is considered that a structural lipid reflecting this glyceride composition can be obtained by acylating PUFA such as DHA to the partial glyceride obtained in Experimental Example (1). That is, an oil or fat containing about 88.9% of CDC is obtained.
【0030】ここまでの反応においてモノグリセライド
とC8-Clが反応系に残っているのにかかわらず時間の
延長やTEAの追加ではさらに反応を進めることはでき
なかった。当然、モノグリセライドの残存量を減じるこ
とはジグリセライドの純度を高めることに結びつくが、
未反応原料の除去などの後続の反応についての前処理の
煩雑さを軽減できる可能性があるため、できるだけ反応
を完結させることが有利であると思われる。そこで、T
EAよりもさらに強い塩基であるジメチルアミノピリジ
ン(DMAP)を0.1等量、酸塩化物添加の前後で加
える試験を行なったが、何れの場合にも1,3位への選
択性が欠如しトリグリセライド、1,2−ジグリセライ
ドの増加が示された。TEAのみの反応が完結しにくい
一般的な理由はないことから、生成物の部分グリセライ
ドが会合して未反応の水酸基に酸塩化物が接触しにくい
ような溶媒和をしている可能性が示唆される。In the reaction so far, even though monoglyceride and C8-Cl remained in the reaction system, the reaction could not be further advanced by extending the time or adding TEA. Naturally, reducing the residual amount of monoglyceride leads to increasing the purity of diglyceride,
It may be advantageous to complete the reaction as much as possible, as it may reduce the complexity of pre-processing for subsequent reactions, such as removal of unreacted raw materials. So, T
A test was conducted in which 0.1 equivalent of dimethylaminopyridine (DMAP), a stronger base than EA, was added before and after the addition of the acid chloride, but in any case, the selectivity to the 1,3-position was lacking. However, an increase in triglyceride and 1,2-diglyceride was shown. Since there is no general reason that the reaction of TEA alone is difficult to complete, it is possible that partial glyceride of the product associates and solvates so that the acid chloride does not easily come into contact with unreacted hydroxyl groups. Is done.
【0031】実験例(2)は、これらの現象を考慮に入
れ、ジグリセライドの生成の2段階化によって溶媒を変
更した試験、及び後続のDHAのアシル化を精製操作の
ない条件下で試験した。1段回目の反応では主に1−モ
ノグリセライドの生成が目的でこれには過剰量のグリセ
リンの使用で実現できた。未反応のグリセリンを除くこ
とでこれ以降の反応系では使用する化合物の極性の幅を
大幅に減少できるため、使用する溶媒の選択肢は大きく
拡がることになる。Taking these phenomena into consideration, Experimental Example (2) was a test in which the solvent was changed by two-step formation of diglyceride, and the subsequent acylation of DHA was tested under conditions without purification. The first-stage reaction mainly aimed at the production of 1-monoglyceride, which could be realized by using an excessive amount of glycerin. By removing the unreacted glycerin, the range of polarity of the compound used in the subsequent reaction system can be greatly reduced, and the choice of the solvent to be used is greatly expanded.
【0032】実験例(2)の変形として次の実験をし
た。グリセリン除去のため水と分配できることと、後続
の反応をWSCDで行なうことを考慮し塩化メチレンを
使用することとした。1段目の反応後の後処理は水洗
後、塩化メチレン層の乾燥に無水硫酸マグネシウムで処
理し、1段目と同量のTEAを加え、冷却下、80%量
の酸塩化物を反応させた。ここまでの経過は非常に良好
でTLC上ではトリグリセライドの生成も少なくモノグ
リセライドの残存も減少していた。また、未反応の酸塩
化物もTLC上ではかなり減少していたため、3段回目
の反応に進めた。2段目の反応液にDMAPを加え溶解
後、DHAを加え氷冷し、塩化メチレンで希釈したWS
CDをゆっくりと添加した。2回目の反応後の溶液に直
接3回目の反応試薬を加えることはTEAの塩酸塩が多
量に含まれることと残存していた未反応原料が最終的な
アシル化にどう影響するか不安な点が残されていたが、
反応の結果は良好で未反応のジグリセライド、モノグリ
セライドに相当するスポットはTLC上では痕跡程度し
か確認されなかった。ただし、モル比の計算が精密にで
きない理由からDHAの添加量をやや過剰に設定せざる
をえなかったため、未反応のDHAはやや多めに残って
しまった(TLC−FIDの分析では約8.8%含
有)。本実験はトリグリセライドの構造分析の目的のた
めに得られた試料をシリカゲルカラム(6倍容量)にて
ヘキサン/酢酸エチル/TEA(100:10:1)で
トリグリセライド画分のみを生成し分析を行なった。結
果はGCにてCCC,CDC+CCD,CDDがそれぞ
れ6.7%、88.1%、5.2%であった。さらに銀
カラムのHPLCによりCDCとCCDの比率を求めた
ところ89.8:9.2となり、1〜2段階での選択的
反応は成功していることを示した。The following experiment was carried out as a modification of the experimental example (2). Methylene chloride was used to allow for partitioning with water for glycerin removal and for subsequent reactions to be performed on WSCD. After-treatment after the first-stage reaction, after washing with water, drying the methylene chloride layer and treating with anhydrous magnesium sulfate, adding the same amount of TEA as in the first stage, and reacting 80% of the acid chloride under cooling. Was. The progress so far was very good, and the production of triglyceride was small on TLC, and the residual of monoglyceride was also reduced. In addition, unreacted acid chloride was considerably reduced on TLC, and thus the reaction was proceeded to the third-stage reaction. DMAP was added to and dissolved in the second-stage reaction solution, DHA was added, the mixture was cooled on ice, and WS diluted with methylene chloride was used.
CD was added slowly. Addition of the third reaction reagent directly to the solution after the second reaction involves a large amount of the hydrochloride salt of TEA and concerns about how the remaining unreacted raw materials affect the final acylation. Was left,
The results of the reaction were good, and only traces of spots corresponding to unreacted diglyceride and monoglyceride were confirmed on TLC. However, since the molar ratio cannot be calculated precisely, the amount of DHA to be added had to be set to be slightly excessive, so that a large amount of unreacted DHA remained (in TLC-FID analysis, about 8. 8%). In this experiment, a sample obtained for the purpose of structural analysis of triglyceride was analyzed using a silica gel column (6 volumes) with hexane / ethyl acetate / TEA (100: 10: 1) to generate only a triglyceride fraction. Was. As a result, the CCC, CDC + CCD, and CDD in GC were 6.7%, 88.1%, and 5.2%, respectively. Further, when the ratio of CDC to CCD was determined by HPLC on a silver column, the ratio was 89.8: 9.2, indicating that the selective reaction in one or two steps was successful.
【0033】ここで、HPLCのみからすべての組成を
算出しないのは、検出に使用した濃縮−光散乱検出器で
は原理上、分子量の寄与が大きく、それが異るCCCや
CDDは定量性がないことが理由である(分離は良
好)。結果的にはCCCの存在比が予想よりも高く出て
しまったが、これは2回目の反応から3回目の反応へ移
る段階でDMAPを加えることにより、未反応の酸塩化
物が選択性なく反応してしまった結果と考えられる。反
応の以降段階ではTLCのみで状況を確認しているが飽
和脂肪酸の検出感度が極めて低いため、未反応原料の残
存量の見積もりが不十分な結果と言える。すなわちこの
段階での反応の完結を高めるか、あるいは残存する原料
を除去または失活させればCCCの生成量を減じること
が可能と思われる。Here, the reason that all the compositions are not calculated only from the HPLC is that the concentration-light scattering detector used for the detection has a large contribution of the molecular weight in principle, and CCC and CDD which differ from each other are not quantitative. (Separation is good). As a result, the abundance ratio of CCC was higher than expected. However, by adding DMAP at the stage of shifting from the second reaction to the third reaction, unreacted acid chloride was not selected. It is considered the result of the reaction. In the subsequent stages of the reaction, the situation was confirmed only by TLC, but the detection sensitivity of saturated fatty acids was extremely low, so that it can be said that the estimation of the residual amount of unreacted raw materials was insufficient. That is, it is considered that the amount of CCC generated can be reduced by increasing the completion of the reaction at this stage or by removing or inactivating the remaining raw materials.
【0034】《結論》保護基等を用いることなく、グリ
セリンの1,3位へ選択的なアシル化が実用レベルで可
能であることを示した。反応の条件は極めて温和である
ことが必要でこの目的ではTEAの使用と反応装置の冷
却が有効であった。また反応溶媒にはTHF、アセトニ
トリルが反応には望ましい。ジグリセライドの生成を2
段階の反応に分けることでジグリセライドの生成効率を
上昇させることが可能で、このときは2段階目の反応で
上記以外の溶媒の使用が可能であり、水と分配できる酢
酸エチルや塩化メチレン、クロロホルムなどが溶媒の置
換の必要がないため簡便である。得られた1,3−ジグ
リセライドにDHA等のPUFAをアシル化することに
よってCDC型構造脂質を調製可能であった。今回は実
験室的に簡便に実施可能であるWSCDのアシル化を使
用したが、工業的には1,2段回目の反応と同様に酸塩
化物の使用が簡便で低コストと考えられる。しかしなが
ら、今回の方法を使用しても最終的なCDC製品の価値
を高めるにはDHAの高度精製が必要であり、いかに低
コストでこれを実現するかが事業化への大きな壁になる
と思われる。<Conclusion> It has been shown that selective acylation of glycerin at the 1,3-position can be performed at a practical level without using a protecting group or the like. The conditions of the reaction needed to be very mild, for which purpose the use of TEA and cooling of the reactor were effective. Further, THF and acetonitrile are preferable as the reaction solvent for the reaction. Diglyceride generation 2
It is possible to increase the diglyceride production efficiency by dividing the reaction into two stages. In this case, a solvent other than the above can be used in the second stage reaction, and ethyl acetate, methylene chloride, chloroform which can be distributed with water can be used. Are simple because there is no need to replace the solvent. By acylating PUFA such as DHA to the obtained 1,3-diglyceride, a CDC-type structured lipid could be prepared. This time, the acylation of WSCD, which can be easily carried out in a laboratory, was used. However, industrially, it is considered that the use of an acid chloride is simple and low in cost as in the first and second stage reactions. However, even if this method is used, advanced purification of DHA is necessary to increase the value of the final CDC product, and how to achieve this at low cost will be a major barrier to commercialization. .
【0035】[0035]
【発明の効果】高度な精製操作を伴わずに低コストで、
効率的に目的X-Y-X型構造脂質(特にY:DHA)の
含量が高い、好ましくは80%程度の油脂を製造するこ
とができる。[Effect of the Invention] Low cost without advanced purification operation,
It is possible to efficiently produce a fat or oil having a high content of the target XYX type structural lipid (particularly Y: DHA), preferably about 80%.
Claims (4)
て、まず、グリセリンに直接かつ選択的に、1,3位に
脂肪酸(X)を導入して1,3−ジグリセライド(X-
O-X)を調製し、次に1,3−ジグリセライド(X-O
-X)に脂肪酸(Y)を導入しトリグリセライド(X-Y
-X)を調製することを特徴とする方法。In a method for producing an XYX type structural lipid, first, a fatty acid (X) is introduced directly and selectively into glycerin at the 1,3-position to prepare 1,3-diglyceride (X-
OX), and then 1,3-diglyceride (X-O)
-X) into which triglyceride (XY) is introduced.
-X).
択的導入が、脂肪酸塩化物を用いて、保護基や類似の機
構を使用しないで、溶媒、塩基および反応温度の組み合
わせのみにより行われる請求項1のX-Y-X型構造脂質
の製造方法。2. The direct and selective introduction of the fatty acid (X) at the 1,3-position using a fatty acid chloride, without using protecting groups or similar mechanisms, and using only a combination of a solvent, a base and a reaction temperature. The method for producing an XYX type structural lipid according to claim 1, which is performed by:
ない請求項1または2のX-Y-X型構造脂質の製造方
法。3. The method according to claim 1, wherein column purification and recrystallization are not performed in the intermediate step.
酸またはエイコサペンタエン酸である請求項1、2また
は3のX-Y-X型構造脂質の製造方法。4. The method for producing an XYX type structural lipid according to claim 1, wherein the fatty acid (Y) is docosahexaenoic acid or eicosapentaenoic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001167116A JP2002363131A (en) | 2001-06-01 | 2001-06-01 | Method for x-y-x type structure lipid production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001167116A JP2002363131A (en) | 2001-06-01 | 2001-06-01 | Method for x-y-x type structure lipid production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002363131A true JP2002363131A (en) | 2002-12-18 |
Family
ID=19009550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001167116A Withdrawn JP2002363131A (en) | 2001-06-01 | 2001-06-01 | Method for x-y-x type structure lipid production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002363131A (en) |
-
2001
- 2001-06-01 JP JP2001167116A patent/JP2002363131A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1560803B1 (en) | Lipase-catalysed esterification of marine oil | |
JP6465938B2 (en) | Method for producing highly unsaturated fatty acid alkyl ester-containing composition | |
JP4647212B2 (en) | Extraction and dewaxing of lipids from oilseeds and microbial sources | |
Dillon et al. | Purification of omega-3 polyunsaturated fatty acids from fish oil using silver-thiolate chromatographic material and high performance liquid chromatography | |
US6399803B1 (en) | Process for separating a triglyceride comprising a docosahexaenoic acid residue from a mixture of triglycerides | |
KR102678363B1 (en) | Very long chain polyunsaturated fatty acids from natural oils | |
JP5946833B2 (en) | Method for concentrating ω3 fatty acids | |
US9163198B2 (en) | Process for purification of EPA (eicosapentanoic acid) ethyl ester from fish oil | |
Irimescu et al. | Two-step enzymatic synthesis of docosahexaenoic acid-rich symmetrically structured triacylglycerols via 2-monoacylglycerols | |
JPH05507100A (en) | Methods of preparing triglycerides and triglyceride compositions | |
JP6423436B2 (en) | Chromatographic method for producing polyunsaturated fatty acids | |
JPH0225447A (en) | Production of highly unsaturated fatty acids | |
US9546125B2 (en) | Continuous process for extraction of unsaturated triglycerides from fish oil | |
KR20150126941A (en) | Recovering urea and oil from a urea/oil complex | |
DE69508558T2 (en) | Process for the fractionation of fatty acids | |
CN109438227B (en) | Production method of omega-3 polyenoic fatty acid ethyl ester | |
JP2002363131A (en) | Method for x-y-x type structure lipid production | |
JP3001954B2 (en) | How to obtain polyunsaturated fatty acids | |
JP6464144B2 (en) | Method for purifying stearidonic acid | |
Sitompul et al. | Synthesis of Structured Triglycerides Based on Canarium Oil for Food Application. | |
JPH01207258A (en) | Method for removing acid | |
Rahman et al. | Synthesis and characterization of 2-monoacylglycerols from Canarium oil (Canarium indicum) | |
JP4421295B2 (en) | Cholesterol-lowering structured lipid with ω3 PUFA | |
JPH0219338A (en) | Extraction and purification of poly (unsaturated fatty acid) from natural source | |
JP2000023689A (en) | Concentration of compound in trans-10 isomer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080805 |