[go: up one dir, main page]

JP2002361092A - Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them - Google Patents

Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them

Info

Publication number
JP2002361092A
JP2002361092A JP2001171583A JP2001171583A JP2002361092A JP 2002361092 A JP2002361092 A JP 2002361092A JP 2001171583 A JP2001171583 A JP 2001171583A JP 2001171583 A JP2001171583 A JP 2001171583A JP 2002361092 A JP2002361092 A JP 2002361092A
Authority
JP
Japan
Prior art keywords
catalyst
slurry
denitration
exhaust gas
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001171583A
Other languages
Japanese (ja)
Other versions
JP4344102B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Naomi Imada
尚美 今田
Eiji Miyamoto
英治 宮本
Tetsuo Hikino
哲郎 引野
Koichi Yokoyama
公一 横山
Akihiro Yamada
晃広 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001171583A priority Critical patent/JP4344102B2/en
Publication of JP2002361092A publication Critical patent/JP2002361092A/en
Application granted granted Critical
Publication of JP4344102B2 publication Critical patent/JP4344102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating slurry for a denitration catalyst, from which an exhaust gas denitration catalyst having high activity and strength is obtained, and a method of producing the same, to obtain a catalyst body having high performance using the slurry and to reduce the production cost. SOLUTION: The slurry for the exhaust gas denitration catalyst is characterized in that titanium oxide is dispersed in an aqueous solution of a compound expressed by rational formula: (NH3 )3 Mo2 V3 O15 wherein the atomic ratio of V to Mo is substantially 3:2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排ガス脱硝用触媒ス
ラリおよびその製法に係り、特に板厚の薄い、高活性な
脱硝用触媒を簡単な工程で得るための新規な方法と、そ
れにより得られる触媒構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst slurry for exhaust gas denitration and a method for producing the same, and more particularly to a novel method for obtaining a thin, highly active catalyst for denitration in a simple process, and the resulting method. The present invention relates to a catalyst structure.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中の窒素酸化物(NOx)は、光化学スモッ
グや酸性雨の原因物質であり、その効果的な除去方法と
して、アンモニア(NH3 )等を還元剤とした選択的接
触還元による排煙脱硝法が火力発電所を中心に幅広く用
いられている。触媒には、バナジウム(V)、モリブデ
ン(Mo)またはタングステン(W)を活性成分にした
酸化チタン(TiO2 )系触媒が使用されており、特に
活性成分の1つとしてバナジウムを含むものは活性が高
いだけでなく、排ガス中に含まれている不純物による劣
化が小さいこと、より低温から使用できることなどか
ら、現在の脱硝触媒の主流になっている(特開昭50−
128681号公報等)。触媒は通常ハニカム状、板状
に成形されて用いられている。
2. Description of the Related Art Nitrogen oxides (NOx) in flue gas emitted from power plants, various factories, automobiles, and the like are substances that cause photochemical smog and acid rain. Flue gas denitration by selective catalytic reduction using NH 3 ) as a reducing agent is widely used mainly in thermal power plants. As the catalyst, a titanium oxide (TiO 2 ) -based catalyst containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used. In particular, those containing vanadium as one of the active components are active. Not only is high, but it is also the mainstream of the current denitration catalysts because it is less deteriorated by impurities contained in the exhaust gas and can be used at lower temperatures.
No. 128681). The catalyst is usually used after being formed into a honeycomb shape or a plate shape.

【0003】上記触媒の調製法としては、酸化チタンと
V、Mo、Wなどの触媒活性成分の塩類とを水とともに
混練後、成形、焼成する方法(混練法)と、酸化チタン
の成形−焼成体に触媒活性成分塩類の混合溶液を含浸す
る方法(含浸法)、あらかじめ調製した触媒成分粉末を
スラリ化したものを金属やセラミック基材にコーティン
グする方法(特開昭50−128681号、特公昭53
−34195号、特開昭63−234224)が知られ
ている。
[0003] The above-mentioned catalysts are prepared by kneading titanium oxide and salts of catalytically active components such as V, Mo and W together with water, followed by molding and firing (kneading method); A method of impregnating a mixture with a mixed solution of salts of catalytically active components (impregnation method), a method of coating a slurry prepared from a previously prepared catalyst component powder on a metal or ceramic substrate (Japanese Patent Laid-Open No. 50-128681, Japanese Patent Publication No. 53
No. 34195, JP-A-63-234224) are known.

【0004】[0004]

【発明が解決しようとする課題】これら従来技術の中、
金属基板に触媒スラリをコーティングする方法は、製造
工程数が少なく、高活性な触媒が得易い方法であるが、
基材と触媒成分との接触強度が低く、触媒が剥離し易い
という難点があった。このため触媒成分を予備焼成した
り、微粉砕して粒径を調整して密度が高い触媒コーティ
ング層を形成する試みがなされているが、充分な強度が
得られているとはいいがたい。特に性能を向上する目的
で、触媒担持量を増大すると触媒コーティング層にクラ
ックが発生し、それが起点になって振動や熱衝撃で剥離
し易くなる。このため比較的低い触媒成分の担持量で用
いざるを得ず、高い性能の触媒体を得ることができなか
った。また、コーティング層の強度が低く、ダストを含
む排ガス中では摩耗して強度が低下するという問題もあ
った。
SUMMARY OF THE INVENTION Among these prior arts,
The method of coating the catalyst slurry on the metal substrate is a method in which the number of manufacturing steps is small and a highly active catalyst is easily obtained.
There was a problem that the contact strength between the substrate and the catalyst component was low, and the catalyst was easily peeled off. For this reason, attempts have been made to form a high-density catalyst coating layer by pre-calcining or finely pulverizing the catalyst component to adjust the particle size. However, it is difficult to say that sufficient strength has been obtained. In particular, when the amount of the supported catalyst is increased for the purpose of improving the performance, cracks are generated in the catalyst coating layer, and the cracks serve as a starting point, and are easily separated by vibration or thermal shock. For this reason, a relatively low amount of the catalyst component must be used, and a high-performance catalyst body could not be obtained. Further, there is also a problem that the strength of the coating layer is low, and the strength is reduced due to abrasion in exhaust gas containing dust.

【0005】本発明の課題は、高活性でかつ強度が高い
排ガス脱硝触媒が得られるコーティング用脱硝触媒スラ
リおよびその製造法を提供し、これにより高性能な触媒
体を得るとともに製造コストを低減することにある。
An object of the present invention is to provide a denitration catalyst slurry for coating capable of obtaining a highly active and high-strength exhaust gas denitration catalyst and a method for producing the same, thereby obtaining a high-performance catalyst body and reducing the production cost. It is in.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するため
に、本願で特許請求される発明は以下のとおりである。 (1)バナジウムとモリブデンの原子比V/Moが実質
的に3/2である、示性式(NH4 3 Mo2 3 15
で表わされる化合物の水性溶液に酸化チタンを分散さ
せたことを特徴とする排ガス脱硝用触媒スラリ。 (2)コロイダルシリカおよび/または無機繊維をさら
に含有することを特徴とする(1)記載の脱硝用触媒ス
ラリ。
Means for Solving the Problems To achieve the above object, the invention claimed in the present application is as follows. (1) The chemical formula (NH 4 ) 3 Mo 2 V 3 O 15 wherein the atomic ratio V / Mo of vanadium to molybdenum is substantially 3/2.
A catalyst slurry for exhaust gas denitration, comprising titanium oxide dispersed in an aqueous solution of a compound represented by the formula: (2) The catalyst slurry for denitration according to (1), further comprising colloidal silica and / or inorganic fibers.

【0007】(3)酸化モリブデン(MoO3 )とメタ
バナジン酸アンモン(NH4 VO3)とを、バナジウム
とモリブデンの原子比V/Moが実質的に3/2になる
ように水性溶媒の共存下で反応させ、示性式(NH4
3 Mo2 3 15 で表わされる化合物の水性溶液を得
る工程と、該水性溶液に酸化チタンを分散させる工程と
を含むことを特徴とする排ガス脱硝用触媒スラリの製
法。 (4)金属製またはガラスもしくはセラミック製の触媒
基材に、(1)または(2)記載のスラリをコーティン
グしたことを特徴とする排ガス脱硝用触媒。 (5)触媒基材が貫通孔を有する網状物であり、かつそ
の網目を埋めるように前記触媒がコーティングされてい
ることを特徴とする(4)記載の脱硝用触媒。
(3) Molybdenum oxide (MoO 3 ) and ammonium metavanadate (NH 4 VO 3 ) are mixed with an aqueous solvent so that the atomic ratio V / Mo of vanadium to molybdenum is substantially 3/2. With the chemical formula (NH 4 )
3 Mo 2 V 3 O to obtain an aqueous solution of the compound represented by 15 steps and, preparation of the catalyst slurry for exhaust gas denitration which comprises a step of dispersing titanium oxide in the aqueous solution. (4) A catalyst for exhaust gas denitration, comprising a metal or glass or ceramic catalyst substrate coated with the slurry according to (1) or (2). (5) The denitration catalyst according to (4), wherein the catalyst substrate is a mesh having a through hole, and the catalyst is coated so as to fill the mesh.

【0008】(6)触媒基材が貫通孔を有する網状基材
であり、かつその網目が貫通孔を有する状態で前記触媒
がコーティングされていることを特徴とする(4)記載
の排ガス脱硝用触媒。 (7)触媒基材が平板状であり、該平板に波形、凹凸
形、階段状の突起が形成されたものであることを特徴と
する(4)ないし(6)のいずれかに記載の排ガス脱硝
用触媒。 (8)(7)記載の平板状の脱硝触媒を積層させ、該脱
硝触媒間にガスの通過流路が形成されるようにした脱硝
触媒構造体。 (9)(1)または(2)記載のスラリ中に板状の触媒
を浸漬することにより、触媒をコーティングすることを
特徴とする(3)記載の脱硝触媒スラリの製法。
(6) The exhaust gas denitration system according to (4), wherein the catalyst substrate is a mesh substrate having through holes, and the catalyst is coated in a state where the mesh has through holes. catalyst. (7) The exhaust gas according to any one of (4) to (6), wherein the catalyst base is a flat plate, and the flat plate is formed with corrugations, irregularities, and step-like projections. DeNOx catalyst. (8) A denitration catalyst structure in which the plate-shaped denitration catalyst according to (7) is laminated, and a gas passage is formed between the denitration catalysts. (9) The method for producing a denitration catalyst slurry according to (3), wherein the catalyst is coated by immersing the plate-like catalyst in the slurry according to (1) or (2).

【0009】(10)平板状の基材表面に波形、凹凸
形、階段状の突起が形成された触媒基材をあらかじめ積
層して一体化した後、(1)または(2)記載の触媒ス
ラリ中に浸漬して触媒をコーティングすることを特徴と
する排ガス脱硝用触媒構造体の製造方法。 (11)バナジウムとモリブデンの原子比V/Moが実
質的に3/2である、示性式(NH4 3 Mo2 3
15 で表わされる化合物を酸化チタン粒子に担持したこ
とを特徴とする排ガス脱硝用触媒。
(10) The catalyst slurry according to (1) or (2), after previously laminating and integrating a catalyst substrate having corrugated, uneven, stepped projections formed on the surface of a flat substrate. A method for producing a catalyst structure for exhaust gas denitration, characterized in that the catalyst structure is immersed in the coating and coated with a catalyst. (11) The chemical formula (NH 4 ) 3 Mo 2 V 3 O, in which the atomic ratio V / Mo of vanadium to molybdenum is substantially 3/2.
An exhaust gas denitration catalyst comprising a compound represented by formula 15 supported on titanium oxide particles.

【0010】以下、本発明を図面により詳細に説明す
る。図1(a)、(b)、(c)、(d)は、それぞれ
本発明において触媒基材として用いる種々の網状物の断
面図、図2は上記網状物を積層して触媒構造体とした場
合の斜視図である。
Hereinafter, the present invention will be described in detail with reference to the drawings. 1 (a), 1 (b), 1 (c), and 1 (d) are cross-sectional views of various meshes used as a catalyst substrate in the present invention, and FIG. FIG.

【0011】本発明の触媒スラリに用いる可溶性Mo−
V化合物は、本発明者らが上記従来技術の解決のため鋭
意研究した結果見出したものであり、メタバナジン酸ア
ンモニウム(NH4 Vo3 )と三酸化モリブデン(Mo
3 )とをV/Mo原子比で3/2(実用的には3/
1.7〜3/2.3)で水に添加後、撹拌して得られる
赤褐色の物質であり、溶解度は常温で170g/リット
ルと大きいことを特徴とする化合物である。この化合物
の溶液に酸化チタン、必要に応じて結合剤であるコロイ
ダルシリカや無機繊維を添加してスラリ状にし、これを
前記基材に吹きつけるか、該スラリ中に基材を浸漬する
ことにより、基材に触媒成分層が形成される。
[0011] The soluble Mo- used in the catalyst slurry of the present invention.
The V compound has been found by the present inventors as a result of intensive studies for solving the above-mentioned prior art, and includes ammonium metavanadate (NH 4 Vo 3 ) and molybdenum trioxide (Mo).
O 3 ) at a V / Mo atomic ratio of 3/2 (practically 3 /
It is a reddish-brown substance obtained by adding to water in 1.7 to 3 / 2.3) and stirring, and the compound is characterized by having a large solubility of 170 g / liter at room temperature. To a solution of this compound, titanium oxide, if necessary, colloidal silica or inorganic fiber as a binder is added to form a slurry, and this is sprayed on the base material or the base material is immersed in the slurry. Then, a catalyst component layer is formed on the substrate.

【0012】本発明のスラリに用いるMo−V化合物と
酸化チタンの重量比率は0を超えて50/100以下、
好ましくは5/100〜25/100である。また、必
要に応じて添加されるコロイダルシリカの添加量は、酸
化チタンに対するSiO2 量として0を超えて50wt
%以下、好ましくは5〜30wt%である。また、無機
繊維としては、アルミノシリケート繊維などのセラミッ
ク繊維、石英硝子、E硝子など、アルカリ分が少ない材
質の繊維を数十μm以下に切断したものを用いることが
できる。無機繊維の添加量は酸化チタンに対し0〜70
wt%、好ましくは10〜50wt%の範囲である。
The weight ratio of the Mo-V compound to titanium oxide used in the slurry of the present invention is more than 0 and not more than 50/100,
Preferably it is 5/100 to 25/100. Further, the amount of colloidal silica added as required exceeds 50% by weight as SiO 2 with respect to titanium oxide.
%, Preferably 5 to 30% by weight. Further, as the inorganic fibers, ceramic fibers such as aluminosilicate fibers, quartz glass, E glass, and the like, which are cut into fibers having a low alkali content and cut to several tens μm or less can be used. The addition amount of the inorganic fiber is 0 to 70 with respect to titanium oxide.
wt%, preferably in the range of 10-50 wt%.

【0013】上記触媒成分の担持に用いる網状物として
は、ステンレス、軟鋼、アルミニウム製メタルラス、金
網、無機繊維製網状織布を無機バインダで固めたもの、
板状のセラミック多孔体などが用いられる。これらの基
材はあらかじめ図1に示すように、波状、凹凸状などの
突起を形成され、図2に示した種々の積層法で積層され
てガス流路が形成されるようになっている。
Examples of the mesh used for supporting the catalyst component include stainless steel, mild steel, an aluminum metal lath, a wire mesh, and an inorganic fiber mesh woven fabric fixed with an inorganic binder.
A plate-like porous ceramic body or the like is used. As shown in FIG. 1, these base materials are formed with projections such as corrugations and irregularities in advance, and are laminated by the various lamination methods shown in FIG. 2 to form gas channels.

【0014】本発明の触媒は、特定の可溶性Mo−V化
合物の溶液と酸化チタン粉末とを混合してなるスラリを
触媒基材に担持していればよく、例えば上記コロイダル
シリカを他の無機ゾルに変更したり、上記以外の無機繊
維を用いるようにしてもよい。また、スラリのコーティ
ングされ易さをコントロールするため、有機または無機
の添加剤を添加することも可能である。
The catalyst of the present invention only needs to support a slurry obtained by mixing a solution of a specific soluble Mo-V compound and a titanium oxide powder on a catalyst substrate. For example, the above-mentioned colloidal silica may be replaced with another inorganic sol. Or inorganic fibers other than those described above may be used. In addition, an organic or inorganic additive can be added to control the ease with which the slurry is coated.

【0015】触媒基材に対する触媒の担持量は、基材の
厚さと必要性能により自由に選定できるが、厚さ0.5
mmの基材の場合、100〜400g/m2 担持すると高
性能な触媒を得易い。
The amount of the catalyst carried on the catalyst substrate can be freely selected depending on the thickness of the substrate and the required performance.
In the case of a substrate having a thickness of 100 mm, it is easy to obtain a high-performance catalyst by supporting 100 to 400 g / m 2 .

【0016】次に、図3(a)は、本発明の触媒スラリ
を、メタルラス基材の網目状の貫通孔を埋めるようにコ
ーティング法によりメタルラス基材に塗布し、乾燥、焼
成して得られた触媒体の外観を示す図である。比較とし
て図3(b)に酸化チタン、メタバナジン酸アンモンお
よびモリブデン酸アンモンを含む従来の触媒スラリを用
いて同様にコーティングした触媒の外観を示した。図3
(b)の従来のコーティング触媒では網状担体の網目に
保持されたスラリ中の水分の蒸発と焼成時のシンタリン
グにより触媒層が収縮し、大きな亀裂を生じていること
がわかる。そして、この亀裂が起点になって基材から触
媒が脱落し易く、強度の高い触媒が得られず、また水分
蒸発やシンタリングにより触媒層が収縮して細孔容積を
低下させるため、高い脱硝性能が得られない。
Next, FIG. 3 (a) shows a catalyst slurry of the present invention applied to a metal lath substrate by a coating method so as to fill the mesh-like through holes of the metal lath substrate, and dried and fired. FIG. 3 is a view showing the appearance of a catalyzed body. For comparison, FIG. 3B shows the appearance of a catalyst similarly coated using a conventional catalyst slurry containing titanium oxide, ammonium metavanadate and ammonium molybdate. FIG.
In the conventional coating catalyst of (b), it can be seen that the catalyst layer shrinks due to evaporation of water in the slurry held in the mesh of the mesh-like carrier and sintering during firing, and a large crack is generated. The cracks serve as a starting point to easily drop the catalyst from the base material, so that a high-strength catalyst cannot be obtained.In addition, the catalyst layer shrinks due to moisture evaporation and sintering to reduce the pore volume. Performance cannot be obtained.

【0017】これに対し、図3(a)の本発明の触媒
は、可溶性Mo−V化合物と酸化チタンとを主成分とす
る特定のスラリを用いたことにより、クラックを全く生
じないコーティング層を形成することができる。この可
溶性Mo−V化合物は示性式が(NH4 3 Mo2 3
15で示されるヘテロポリ酸であると推定される。一般
にヘテロポリ酸は無機ポリマーと称され、無機バインダ
として用いる試みがなされているものであり、このポリ
マー構造が酸化チタン粒子間の結合を高めるとともに、
収縮を阻害してクラックの発生に寄与するものと推定さ
れる。また、従来の方法の場合、コロイダルシリカなど
のゾル状物をバインダに用いて強度を高めようとする
と、触媒成分中からMoやVのオキソ酸イオンが溶け出
て無機ゾルをゲル化させ、バインダ効果を得にくい。と
ころが、本発明の方法では活性成分であるMoとVのポ
リ酸と推定される特定化合物は、シリカゾルなどの無機
ゾルをゲル化させることがなく、長期間安定な混合状態
を維持し、バインダ効果を損ねないため、強度の高い触
媒を得ることができる。
On the other hand, the catalyst of the present invention shown in FIG. 3A uses a specific slurry containing a soluble Mo-V compound and titanium oxide as main components to form a coating layer which does not cause any cracks. Can be formed. This soluble Mo-V compound has a descriptive formula of (NH 4 ) 3 Mo 2 V 3
It is estimated to be heteropoly acid represented by O 15. In general, heteropolyacid is called an inorganic polymer, and an attempt has been made to use it as an inorganic binder.This polymer structure enhances bonding between titanium oxide particles,
It is presumed that it inhibits contraction and contributes to the generation of cracks. Further, in the case of the conventional method, when an attempt is made to increase the strength by using a sol-like substance such as colloidal silica as a binder, oxo acid ions of Mo and V are dissolved out of the catalyst component and the inorganic sol is gelled, and the binder is formed. Less effective. However, in the method of the present invention, the specific compounds that are presumed to be polyacids of Mo and V, which are active ingredients, do not gel inorganic sols such as silica sol, maintain a stable mixed state for a long time, and have a binder effect. Therefore, a strong catalyst can be obtained.

【0018】さらに、本発明ではスラリの担持後の乾燥
過程における収縮が少なく、水分の飛散した部分が細孔
を形成し、触媒内へのガス拡散を促進する。これにより
従来のコーティング方法に較べ飛躍的に活性を増大する
ことが可能となる。本発明の触媒は、以上のような作用
により高強度かつ高活性が実現されるだけでなく、触媒
製造上も次のような大きな効果がある。
Further, in the present invention, the shrinkage in the drying process after supporting the slurry is small, and the portion where the water is scattered forms pores to promote gas diffusion into the catalyst. This makes it possible to dramatically increase the activity as compared with the conventional coating method. The catalyst of the present invention not only achieves high strength and high activity by the above-mentioned actions, but also has the following great effects on catalyst production.

【0019】従来のスラリコーティング用スラリでは、
スラリ状態が無機金属イオンの影響を受ける。このため
金属性基材を積層したユニットの浸漬などを連続して製
造しようとすると、溶け出た金属イオンによりスラリの
粘度が徐々に増大して担持することが難しくなる。これ
に対し、本発明のスラリに金属基板を浸漬してもスラリ
の粘度が上昇することがないため、連続して触媒スラリ
コーティングすることが可能となり、量産に適した製造
法が可能である。
In a conventional slurry for slurry coating,
The slurry state is affected by inorganic metal ions. For this reason, when it is attempted to continuously manufacture a unit in which a metallic base material is laminated, the viscosity of the slurry is gradually increased by the dissolved metal ions, and it is difficult to carry the slurry. On the other hand, since the viscosity of the slurry does not increase even if the metal substrate is immersed in the slurry of the present invention, the catalyst slurry can be continuously coated, and a production method suitable for mass production is possible.

【0020】[0020]

【発明の実施の形態】以下、本発明の具体的実施例を述
べる。 実施例1 水900gに90gの三酸化モリブデン(MoO3 )と
100gのメタバナジン酸アンモン(NH4 VO3 )を
添加したスラリを常温で20時間緩やかに撹拌し、両者
を反応させて完全溶解させ、示性式(NH4 3 Mo2
3 15で示される化合物を含む褐色の透明溶液を得
た。得られた反応液の固形分は17.5wt%である。
得られたMo−V化合物溶液にコロイダルシリカ(日産
化学社製、商品名OSゾル、SiO2 分20%)を重量
比で7:3に混合添加し、混合溶液を調製した。この混
合溶液を106g分取し、これにE硝子製繊維(セント
ラル硝子社製、商品名ミルドファイバEFH−100、
長さ100μm)を10g(酸化チタンの20%)、酸
化チタン粉末(ミレニアム社製、G5)を50gを添加
後、撹拌して本発明のコーティング用スラリを得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. Example 1 A slurry obtained by adding 90 g of molybdenum trioxide (MoO 3 ) and 100 g of ammonium metavanadate (NH 4 VO 3 ) to 900 g of water was gently stirred at room temperature for 20 hours to allow the two to react and completely dissolve. Chemical formula (NH 4 ) 3 Mo 2
A brown clear solution containing the compound represented by V 3 O 15 was obtained. The solid content of the obtained reaction solution is 17.5% by weight.
Colloidal silica (manufactured by Nissan Chemical Industries, trade name OS sol, SiO 2 content: 20%) was mixed and added at a weight ratio of 7: 3 to the obtained Mo-V compound solution to prepare a mixed solution. 106 g of this mixed solution was dispensed, and E glass fiber (Central Glass Co., trade name: Milled Fiber EFH-100,
10 g (length: 100 μm) (50% of titanium oxide) and 50 g of titanium oxide powder (G5, manufactured by Millennium Co., Ltd.) were added, followed by stirring to obtain a coating slurry of the present invention.

【0021】これとは別に幅500mm−板厚0.2mmの
SUS430製帯鋼をメタルラス加工して目開きが約2
mmの網状基材を作成し、これから100mm角の試験片を
切り出した。本試験片を先に調製したコーティングスラ
リに浸漬後、引き上げてメタルラスの網目を埋めるよう
に触媒スラリを担持し、風乾後500℃で2時間焼成し
て触媒担持量350g/m2 の本発明の触媒を得た。 比較例1 比表面積約230m2 /gの酸化チタン1.5kgとメタ
バナジン酸アンモン86.7g、モリブデン酸アンモン
88.3gおよび蓚酸75gとをニーダに投入後、水を
粘土状になるまで加えながら混練し、酸化チタンにモリ
ブデンおよびバナジウム化合物が均一担持されるように
した。得られた粘土状物を押出し造粒機を用いて3mmφ
円筒状に押出した後、流動層乾燥、500℃で2時間焼
成、しかる後に粉機を用いて1μm以下が50%以上の
触媒微粉を得た。
Separately, a SUS430 strip steel having a width of 500 mm and a thickness of 0.2 mm is subjected to metal lath processing to form an opening of about 2 mm.
A 100 mm square test piece was cut out from a reticulated base material of mm. After immersing this test piece in the previously prepared coating slurry, pulling it up, carrying the catalyst slurry so as to fill the mesh of the metal lath, air-drying and firing at 500 ° C. for 2 hours, the catalyst carrying amount of the present invention of 350 g / m 2 was obtained. A catalyst was obtained. Comparative Example 1 1.5 kg of titanium oxide having a specific surface area of about 230 m 2 / g, 86.7 g of ammonium metavanadate, 88.3 g of ammonium molybdate and 75 g of oxalic acid were charged into a kneader, and kneaded while adding water until it became clay-like. Then, the molybdenum and vanadium compounds were uniformly supported on the titanium oxide. The obtained clay-like material is extruded using a granulator at 3 mmφ.
After being extruded into a cylindrical shape, the fluidized bed was dried and calcined at 500 ° C. for 2 hours, and then a fine powder of 1 μm or less having a particle size of 50% or more was obtained using a powdering machine.

【0022】上記触媒粉40g、前記ミルドファイバ8
gおよび水60gを混合してスラリを調製し、これを実
施例1と同様の方法でSUS430メタルラスに担持し
て担持量380g/m2 の触媒を得た。 比較例2 比較例1におけるスラリ調製時の水に代えて、実施例1
に用いたコロイダルシリカと水との3/7重量比の溶液
を用いてスラリを調製した。しかしながら、本スラリの
場合にはコロイダルシリカのゲル化に起因すると考えら
れる粘度の急激な増大が見られ、良好なコーティング触
媒が得られなかった。 実施例2〜5 実施例1におけるMo−V化合物とシリカゾルの混合比
7/3を100/0、85/15、50/50および3
0/70にそれぞれ変更し、他は同様にして本発明の触
媒を得た。 実施例6〜10 実施例1の酸化チタンに対するミルドファイバの添加量
(20%)を0、10、30、50および70wt%に
それぞれ変更し、他は同様にして本発明の触媒を調製し
た。
The catalyst powder 40 g, the milled fiber 8
g and 60 g of water were mixed to prepare a slurry, which was supported on a SUS430 metal lath in the same manner as in Example 1 to obtain a catalyst having a supported amount of 380 g / m 2 . Comparative Example 2 Example 1 was used in place of water at the time of preparing the slurry in Comparative Example 1.
A slurry was prepared using a solution having a 3/7 weight ratio of the colloidal silica and water used in the above. However, in the case of this slurry, a sharp increase in viscosity, which is considered to be caused by gelation of colloidal silica, was observed, and a good coating catalyst was not obtained. Examples 2 to 5 The mixing ratio of the Mo-V compound and the silica sol in Example 1 was changed from 7/3 to 100/0, 85/15, 50/50 and 3.
The catalyst of the present invention was obtained in the same manner as described above except that the ratio was changed to 0/70. Examples 6 to 10 The catalysts of the present invention were prepared in the same manner as in Example 1, except that the addition amount (20%) of the milled fiber to the titanium oxide was changed to 0, 10, 30, 50, and 70 wt%.

【0023】実施例1〜10および比較例1で得られた
触媒から10mm×100mmの短冊状のテストピースを切
り出し、表1に示す条件で脱硝性能を測定した。また、
実施例1〜9および比較例で得られた触媒の耐剥離性を
評価するため、作成した100mm×100mm角の触媒板
を高さ1mから鋼板上に10回落としたときの触媒の剥
離量を測定した。これら試験により得られた結果を触媒
組成とともに表2に示した。
From the catalysts obtained in Examples 1 to 10 and Comparative Example 1, strip-shaped test pieces of 10 mm × 100 mm were cut out, and the denitration performance was measured under the conditions shown in Table 1. Also,
In order to evaluate the peeling resistance of the catalysts obtained in Examples 1 to 9 and Comparative Example, the amount of catalyst peeling when a prepared 100 mm × 100 mm square catalyst plate was dropped 10 times from a height of 1 m onto a steel plate was measured. It was measured. The results obtained by these tests are shown in Table 2 together with the catalyst composition.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】実施例になる触媒は、いずれも比較例1の
触媒に較べ脱硝性能が高く、剥離試験による触媒剥離量
が少ない。このことから本発明の方法が性能ならびに強
度の高い触媒を得るに好適な方法であることは明白であ
る。
Each of the catalysts of the examples has higher denitration performance than the catalyst of Comparative Example 1, and the amount of peeled catalyst in the peel test is small. This clearly shows that the method of the present invention is a suitable method for obtaining a catalyst having high performance and high strength.

【0027】また、実施例1〜5の性能と剥離量を比較
すると、シリカゾルの添加量の増大により剥離量は低減
できるが、脱硝性能は低下する傾向が見られ、TiO2
に対するSiO2 の添加量を実施例で示した範囲である
30wt%以下にすると活性とともに、強度も高く維持
することができる。
Further, comparing the performances of Examples 1 to 5 with the amount of peeling, the amount of peeling can be reduced by increasing the amount of silica sol added, but the denitration performance tends to decrease, and TiO 2
When the amount of SiO 2 added to the composition is 30 wt% or less, which is the range shown in the examples, the activity and the strength can be maintained high.

【0028】また、実施例1および6〜10の触媒の性
能を比較すると、無機繊維である前記ミルドファイバの
添加量の増大は、活性の向上と剥離量の低減に効果があ
ることがわかる。しかし、添加量の増大に伴ってスラリ
の粘性が増大して、薄いコーティング層の形成が困難に
なる傾向が見られた。したがって、無機繊維は酸化チタ
ンに対し70wt%以下、好ましくは50wt%以下に
抑えると、良好なコーティング層を得易いことがわかっ
た。 実施例11 実施例1において、メタルラスを触媒スラリ中に浸漬
後、引き上げ、さらに圧縮空気を吹きつけてメタルラス
の目を埋めていたスラリを除去した。得られた触媒体を
実施例1と同様にして乾燥および焼成してメタルラス表
面を触媒が薄く覆った本発明の網状触媒体を得た。
Further, when the performances of the catalysts of Examples 1 and 6 to 10 are compared, it can be seen that an increase in the amount of the milled fiber which is an inorganic fiber is effective in improving the activity and reducing the amount of peeling. However, there was a tendency that the viscosity of the slurry increased with an increase in the amount of addition, making it difficult to form a thin coating layer. Therefore, it was found that when the content of the inorganic fibers was controlled to 70 wt% or less, and preferably 50 wt% or less with respect to titanium oxide, a good coating layer was easily obtained. Example 11 In Example 1, the metal lath was immersed in the catalyst slurry, pulled up, and further blown with compressed air to remove the slurry filling the eyes of the metal lath. The obtained catalyst was dried and calcined in the same manner as in Example 1 to obtain a network catalyst of the present invention in which the metal lath surface was covered with the catalyst thinly.

【0029】比較例3 比較例1の触媒スラリを用い、実施例11と同様の方法
で網状触媒体を得た。 実施例12 実施例1に用いたミルドファイバに代えて、アルミノシ
リケート繊維(東芝モノフラックス社製、ファイバフラ
ックス)を長さ約0.1mmに粉砕したものを用い、他は
同様にして本発明の触媒を得た。 比較例4 比較例1に用いたミルドファイバに代えて、アルミノシ
リケート繊維(東芝モノフラックス社製、ファイバフラ
ックス)を長さ約0.1mmに粉砕したものを用い、他は
同様にして触媒を得た。
Comparative Example 3 Using the catalyst slurry of Comparative Example 1, a reticulated catalyst body was obtained in the same manner as in Example 11. Example 12 Instead of the milled fiber used in Example 1, aluminosilicate fiber (fiber flux, manufactured by Toshiba Monoflux Co., Ltd.) was used, which was crushed to a length of about 0.1 mm. A catalyst was obtained. Comparative Example 4 In place of the milled fiber used in Comparative Example 1, aluminosilicate fiber (fiber flux, manufactured by Toshiba Monoflux Co., Ltd.) was crushed to a length of about 0.1 mm. Was.

【0030】実施例13 繊維径9μmのEガラス性繊維1400本の捻糸を10
本/インチの粗さで平織りした網状物にチタニア40
%、シリカゾル20%、ポリビニールアルコール1%の
スラリを含浸し、150℃で乾燥して剛性を持たせ触媒
基材を得た。本基材を100mm×100mm角に切り出
し、実施例1のメタルラス担体に代えて用い、他は同様
にして本発明の触媒を調製した。 比較例5 実施例13に用いたセラミックス製触媒基材をメタルラ
スに代えて用い、他は比較例1と同様にして触媒を調製
した。実施例11〜13および比較例3〜5の触媒の脱
硝性能と剥離試験による剥離量とを測定し、結果を表3
に示した。
Example 13 1400 E-glass fibers having a fiber diameter of 9 μm
Titania 40 on a net woven with a roughness of book / inch
%, A silica sol of 20% and a polyvinyl alcohol of 1% were impregnated with a slurry, and dried at 150 ° C. to obtain a catalyst base material. This base material was cut into a 100 mm × 100 mm square, and the catalyst of the present invention was prepared in the same manner as above except that the metal lath support of Example 1 was used. Comparative Example 5 A catalyst was prepared in the same manner as in Comparative Example 1, except that the ceramic catalyst substrate used in Example 13 was used in place of the metal lath. The denitration performance of the catalysts of Examples 11 to 13 and Comparative Examples 3 to 5 and the amount of peeling by the peeling test were measured, and the results were shown in Table 3.
It was shown to.

【0031】[0031]

【表3】 [Table 3]

【0032】実施例11および比較例3の結果の比較か
ら、網状素材の編目の開いた、触媒担持量の少ない場合
でも、本発明の触媒は高活性と低剥離量を維持できるこ
とがわかる。また、実施例12と比較例4、実施例13
と比較例5の結果の比較から、無機繊維が他のものであ
っても、または網状担体がメタルラス以外のセラミック
担体であっても同様に優れた触媒が得られることがわか
る。
From the comparison of the results of Example 11 and Comparative Example 3, it can be seen that the catalyst of the present invention can maintain high activity and low exfoliation even when the mesh of the net material is open and the amount of supported catalyst is small. Example 12 and Comparative Example 4 and Example 13
From the comparison of the results of Comparative Example 5 and Comparative Example 5, it can be seen that similarly excellent catalysts can be obtained even if the inorganic fibers are other, or the reticulated carrier is a ceramic carrier other than a metal lath.

【0033】このように特定組成の可溶性Mo−V化合
物を利用することにより、きわめて少ない工程で高い脱
硝性能と剥離強度を有する触媒を得ることができる。 実施例14 金属製網状基板を多数積層して形成した触媒ユニットに
本発明の触媒スラリを含浸して触媒をコーティングし
た。すなわち、実施例1で用いたと同様のSUS430
製のメタルラス基材に高さ2mmの波形を線条に形成し、
図4のような触媒基材を複数枚作成した。これを軟鋼製
の触媒枠に46枚積層して150mm角、長さ250mmの
触媒担体ユニットを作成した。
By using a soluble Mo-V compound having a specific composition as described above, a catalyst having high denitration performance and peel strength can be obtained with extremely few steps. Example 14 A catalyst unit formed by laminating a large number of metal net-like substrates was impregnated with the catalyst slurry of the present invention and coated with a catalyst. That is, the same SUS430 used in Example 1 was used.
A 2mm high corrugation is formed on the metal lath substrate
A plurality of catalyst substrates as shown in FIG. 4 were prepared. Forty-six of these were laminated on a mild steel catalyst frame to prepare a catalyst carrier unit of 150 mm square and 250 mm length.

【0034】これとは別に実施例1と同組成のスラリを
20kg調製し、上記ユニットを浸漬し、ユニットを揺り
動かしながら10分間経過後、スラリから引き上げて液
切りした。ファンで室温の空気を当てながら風乾後、5
00℃で2時間焼成して本発明のユニット状触媒を調製
した。 比較例6 実施例14と同じ金属製の触媒ユニットと比較例1で用
いた触媒スラリとを用いて同様のコーティング触媒を得
た。
Separately, 20 kg of a slurry having the same composition as in Example 1 was prepared, and the above-mentioned unit was immersed. After elapse of 10 minutes while oscillating the unit, the unit was pulled up from the slurry and drained. After air drying while blowing air at room temperature with a fan, 5
It was calcined at 00 ° C for 2 hours to prepare a unitary catalyst of the present invention. Comparative Example 6 The same coating catalyst was obtained by using the same metal catalyst unit as in Example 14 and the catalyst slurry used in Comparative Example 1.

【0035】実施例14と比較例6の試験後のスラリを
比較すると、前者は含浸試験前後で性状の差異は見られ
なかったが、後者のスラリは黒色に変色して粘度が著し
く上昇する現象が見られた。これは金属基材および金属
枠からFeイオンが溶出して触媒を変質させるととも
に、粘度を上昇させたものと考えられる。このように従
来のコーティング法では、金属基材を用いた場合にはス
ラリの変質による粘度の変化が均一な触媒製造を阻んで
いたが、本発明によるコーティング方法では可溶性Mo
−V化合物がきわめて安定なため、金属イオン等による
変質がなく安定にコーティング操作を続けることが可能
である。したがって、本発明は触媒製造の点からも有用
であることがわかる。
When the slurries after the tests of Example 14 and Comparative Example 6 were compared, no difference was observed in the properties of the former before and after the impregnation test, but the latter was discolored to black and the viscosity was significantly increased. It was observed. This is considered to be because Fe ions eluted from the metal substrate and the metal frame to alter the catalyst and increase the viscosity. As described above, in the conventional coating method, when a metal substrate is used, the change in viscosity due to the deterioration of the slurry hinders the production of a uniform catalyst. However, in the coating method according to the present invention, soluble Mo is used.
Since the -V compound is extremely stable, the coating operation can be stably continued without deterioration due to metal ions or the like. Therefore, it is understood that the present invention is useful also from the viewpoint of catalyst production.

【0036】実施例14と比較例6で得られた触媒ユニ
ットをそのまま充填できる排ガス脱硝装置を用い、表4
の条件で脱硝性能を測定した。本発明の触媒を用いた場
合には脱硝率が99%と高かったが、比較例6の触媒で
は94%と低かった。ユニット状でスラリをコーティン
グして触媒ユニットを構成した場合も高い性能が得られ
る。
Using an exhaust gas denitration apparatus capable of directly filling the catalyst units obtained in Example 14 and Comparative Example 6, Table 4
The denitration performance was measured under the following conditions. When the catalyst of the present invention was used, the denitration rate was as high as 99%, but the catalyst of Comparative Example 6 was as low as 94%. High performance is also obtained when the catalyst unit is formed by coating the slurry in a unit shape.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【発明の効果】本発明によれば、活性が高く剥離の少な
い排ガス脱硝用触媒が得られ、脱硝装置の高性能化が図
ることができる。また、本発明の排ガス脱硝触媒スラリ
は、予備焼成や粉砕などの複雑な製造工程を必要としな
い上、得られるコーティング用スラリの性状が安定であ
り、金属基板製担体のように無機イオンの溶出し易い担
体であっても性状が変化することがないので、均一な触
媒を安価に大量に製造することが可能になる。
According to the present invention, an exhaust gas denitration catalyst having high activity and little peeling can be obtained, and the performance of the denitration apparatus can be improved. In addition, the exhaust gas denitration catalyst slurry of the present invention does not require complicated manufacturing steps such as pre-baking and pulverization, and the properties of the obtained coating slurry are stable, and the elution of inorganic ions as in the case of a metal substrate carrier. Since the properties of the carrier are not changed even if the carrier is easy to be manufactured, it is possible to mass-produce a uniform catalyst at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる平板状の触媒基材に形成される
線条の例を示す触媒基材の断面図。
FIG. 1 is a sectional view of a catalyst substrate showing an example of a line formed on a flat catalyst substrate used in the present invention.

【図2】本発明の平板状触媒が積層されて使用される場
合の触媒構造体の斜視図。
FIG. 2 is a perspective view of a catalyst structure in the case where the plate-shaped catalyst of the present invention is used by being laminated.

【図3】本発明の触媒の外観を示す図。FIG. 3 is a view showing the appearance of the catalyst of the present invention.

【図4】実施例14に用いた触媒基材の概略の寸法を示
す図。
FIG. 4 is a view showing schematic dimensions of a catalyst substrate used in Example 14.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/04 351 B01J 37/02 301M 37/02 301 F01N 3/10 A F01N 3/10 3/28 301C 3/28 301 301P B01D 53/36 102D (72)発明者 宮本 英治 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 引野 哲郎 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 (72)発明者 横山 公一 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 山田 晃広 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 3G091 AA02 AB04 BA01 BA14 BA39 GA03 GA04 GA05 GA07 GA09 GA20 GB01W GB10W GB15W GB16W GB17X 4D048 AA06 AB02 BA06X BA07X BA10X BA12X BA13X BA23X BA26X BA39X BA41X BA42X BA46X BB03 BB04 BB08 BB18 4G069 AA02 AA03 AA08 BA02A BA02B BA04A BA04B BA13A BA13B BA14A BA17 BA18 BB06A BB06B BC54A BC54B BC54C BC59A BC59B BC59C BD01C BD06C CA02 CA08 CA13 EA09 EA11 EA12 EA13 EB02 EB03 EB10 EB15Y ED03 EE06 FA01 FA02 FA03 FB06 FB15 FB16 FB23 FC02 FC08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 35/04 351 B01J 37/02 301M 37/02 301 F01N 3/10 A F01N 3/10 3/28 301C 3/28 301 301P B01D 53/36 102D (72) Inventor Eiji Miyamoto 3-36 Takara-cho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Laboratory (72) Inventor Tetsuro Hikino 6-9 Takaramachi, Kure City, Hiroshima Prefecture Babcock Inside Kure Works, Hitachi Co., Ltd. (72) Inventor Koichi Yokoyama 3-36, Takara-cho, Kure-shi, Hiroshima Pref. Inside Kure Research Laboratory Kure (72) Inventor Akihiro Yamada 6-9, Takara-cho, Kure-shi, Hiroshima Pref. F-term in Kure office (reference) 3G091 AA02 AB04 BA01 BA14 BA39 GA03 GA04 GA05 GA07 GA09 GA20 GB01W GB10W GB15W G B16W GB17X 4D048 AA06 AB02 BA06X BA07X BA10X BA12X BA13X BA23X BA26X BA39X BA41X BA42X BA46X BB03 BB04 BB08 BB18 4G069 AA02 AA03 AA08 BA02A BD02 BA02B BA04A BA04B BA13ABA13 BC18 BCBBC EB02 EB03 EB10 EB15Y ED03 EE06 FA01 FA02 FA03 FB06 FB15 FB16 FB23 FC02 FC08

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 バナジウムとモリブデンの原子比V/M
oが実質的に3/2である、示性式(NH4 3 Mo2
3 15 で表わされる化合物の水性溶液に酸化チタン
を分散させたことを特徴とする排ガス脱硝用触媒スラ
リ。
1. The atomic ratio of vanadium to molybdenum V / M
The chemical formula (NH 4 ) 3 Mo 2 wherein o is substantially 3/2
Exhaust gas denitration catalyst slurry, wherein the titanium oxide in an aqueous solution of the compound dispersed represented by V 3 O 15.
【請求項2】 コロイダルシリカおよび/または無機繊
維をさらに含有することを特徴とする請求項1記載の脱
硝用触媒スラリ。
2. The catalyst slurry for denitration according to claim 1, further comprising colloidal silica and / or inorganic fibers.
【請求項3】 酸化モリブデン(MoO3 )とメタバナ
ジン酸アンモン(NH4 VO3 )とを、バナジウムとモ
リブデンの原子比V/Moが実質的に3/2になるよう
に水性溶媒の共存下で反応させ、示性式(NH4 3
2 3 15で表わされる化合物の水性溶液を得る工程
と、該水性溶液に酸化チタンを分散させる工程とを含む
ことを特徴とする排ガス脱硝用触媒スラリの製法。
3. Molybdenum oxide (MoO 3 ) and ammonium metavanadate (NH 4 VO 3 ) are mixed with an aqueous solvent so that the atomic ratio V / Mo of vanadium to molybdenum becomes substantially 3/2. The reaction is carried out with the chemical formula (NH 4 ) 3 M
A method for producing a catalyst slurry for exhaust gas denitration, comprising a step of obtaining an aqueous solution of a compound represented by o 2 V 3 O 15 and a step of dispersing titanium oxide in the aqueous solution.
【請求項4】 金属製またはガラスもしくはセラミック
製の触媒基材に、請求項1または2記載のスラリをコー
ティングしたことを特徴とする排ガス脱硝用触媒。
4. A catalyst for exhaust gas denitration, comprising a catalyst substrate made of metal, glass or ceramic coated with the slurry according to claim 1 or 2.
【請求項5】 触媒基材が貫通孔を有する網状物であ
り、かつその網目を埋めるように前記触媒がコーティン
グされていることを特徴とする請求項4記載の脱硝用触
媒。
5. The denitration catalyst according to claim 4, wherein the catalyst substrate is a mesh having through holes, and the catalyst is coated so as to fill the mesh.
【請求項6】 触媒基材が貫通孔を有する網状基材であ
り、かつその網目が貫通孔を有する状態で前記触媒がコ
ーティングされていることを特徴とする請求項4記載の
排ガス脱硝用触媒。
6. The exhaust gas denitration catalyst according to claim 4, wherein the catalyst substrate is a net-like base material having a through hole, and the catalyst is coated in a state where the mesh has a through hole. .
【請求項7】 触媒基材が平板状であり、該平板に波
形、凹凸形、階段状の突起が形成されたものであること
を特徴とする請求項4ないし6のいずれかに記載の排ガ
ス脱硝用触媒。
7. The exhaust gas according to claim 4, wherein the catalyst base is a flat plate, and the flat plate is formed with corrugations, irregularities, and step-like projections. DeNOx catalyst.
【請求項8】 請求項7記載の平板状の脱硝触媒を積層
させ、該脱硝触媒間にガスの通過流路が形成されるよう
にした脱硝触媒構造体。
8. A denitration catalyst structure wherein the plate-shaped denitration catalyst according to claim 7 is laminated, and a gas passage is formed between said denitration catalysts.
【請求項9】 請求項1または2記載のスラリ中に板状
の触媒を浸漬することにより、触媒をコーティングする
ことを特徴とする請求項3記載の脱硝触媒スラリの製
法。
9. The method for producing a denitration catalyst slurry according to claim 3, wherein the catalyst is coated by immersing the plate-like catalyst in the slurry according to claim 1 or 2.
【請求項10】 平板状の基材表面に波形、凹凸形、階
段状の突起が形成された触媒基材をあらかじめ積層して
一体化した後、請求項1または2記載の触媒スラリ中に
浸漬して触媒をコーティングすることを特徴とする排ガ
ス脱硝用触媒構造体の製造方法。
10. A catalyst base having a corrugated, uneven, or stepped projection formed on a flat base material surface, which is previously laminated and integrated, and then immersed in the catalyst slurry according to claim 1 or 2. A method for producing a catalyst structure for exhaust gas denitration, comprising coating a catalyst by heating.
【請求項11】 バナジウムとモリブデンの原子比V/
Moが実質的に3/2である、示性式(NH4 3 Mo
2 3 15 で表わされる化合物を酸化チタン粒子に担
持したことを特徴とする排ガス脱硝用触媒。
11. The atomic ratio of vanadium to molybdenum V /
The chemical formula (NH 4 ) 3 Mo, wherein Mo is substantially 3/2.
2 An exhaust gas denitration catalyst comprising a compound represented by V 3 O 15 supported on titanium oxide particles.
JP2001171583A 2001-06-06 2001-06-06 Catalyst slurry for exhaust gas denitration and method for producing the same Expired - Lifetime JP4344102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171583A JP4344102B2 (en) 2001-06-06 2001-06-06 Catalyst slurry for exhaust gas denitration and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171583A JP4344102B2 (en) 2001-06-06 2001-06-06 Catalyst slurry for exhaust gas denitration and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002361092A true JP2002361092A (en) 2002-12-17
JP4344102B2 JP4344102B2 (en) 2009-10-14

Family

ID=19013333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171583A Expired - Lifetime JP4344102B2 (en) 2001-06-06 2001-06-06 Catalyst slurry for exhaust gas denitration and method for producing the same

Country Status (1)

Country Link
JP (1) JP4344102B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253955A (en) * 2007-04-09 2008-10-23 Babcock Hitachi Kk Coating agent for denitrification catalyst, production method thereof, and denitrification catalyst
WO2009031234A1 (en) * 2007-09-07 2009-03-12 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst
JP2009525856A (en) * 2006-02-07 2009-07-16 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst with improved activity behavior
WO2009119639A1 (en) * 2008-03-25 2009-10-01 バブコック日立株式会社 Exhaust gas purification catalyst on which influence of iron compound has been suppressed
WO2021010486A1 (en) * 2019-07-18 2021-01-21 三菱パワー株式会社 Catalyst structure, and flow reactor or waste heat recovery boiler using same
JP2021534963A (en) * 2018-08-28 2021-12-16 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Catalysts for use in selective catalytic reduction (SCR) of nitrogen oxides
JP2022530128A (en) * 2019-04-26 2022-06-27 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalytic Ceramic Candle Filter for Composite Particulate Matter Removal and Selective Catalytic Reduction (SCR) of Nitrogen Oxides
KR20220112298A (en) 2020-01-28 2022-08-10 미츠비시 파워 가부시키가이샤 Denitration catalyst structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525856A (en) * 2006-02-07 2009-07-16 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst with improved activity behavior
JP2008253955A (en) * 2007-04-09 2008-10-23 Babcock Hitachi Kk Coating agent for denitrification catalyst, production method thereof, and denitrification catalyst
WO2009031234A1 (en) * 2007-09-07 2009-03-12 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst
JP5126718B2 (en) * 2007-09-07 2013-01-23 バブコック日立株式会社 Exhaust gas purification catalyst
WO2009119639A1 (en) * 2008-03-25 2009-10-01 バブコック日立株式会社 Exhaust gas purification catalyst on which influence of iron compound has been suppressed
JP5360834B2 (en) * 2008-03-25 2013-12-04 バブコック日立株式会社 Exhaust gas purification catalyst that suppresses the influence of iron compounds
JP2021534963A (en) * 2018-08-28 2021-12-16 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Catalysts for use in selective catalytic reduction (SCR) of nitrogen oxides
JP7436456B2 (en) 2018-08-28 2024-02-21 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst for use in selective catalytic reduction (SCR) of nitrogen oxides
JP2022530128A (en) * 2019-04-26 2022-06-27 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalytic Ceramic Candle Filter for Composite Particulate Matter Removal and Selective Catalytic Reduction (SCR) of Nitrogen Oxides
JP7421571B2 (en) 2019-04-26 2024-01-24 トプソー・アクチエゼルスカベット Catalytic ceramic candle filter for composite particulate matter removal and selective catalytic reduction (SCR) of nitrogen oxides
WO2021010486A1 (en) * 2019-07-18 2021-01-21 三菱パワー株式会社 Catalyst structure, and flow reactor or waste heat recovery boiler using same
KR20220112298A (en) 2020-01-28 2022-08-10 미츠비시 파워 가부시키가이샤 Denitration catalyst structure

Also Published As

Publication number Publication date
JP4344102B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
CN101925405B (en) Fabrication method of zeolite honeycomb type catalyst for reducing nitrogen oxide
JPH08325015A (en) Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier
CN107921417A (en) Exhaust emission control catalyst
JP2018030105A (en) Porous ceramic structure
WO2015072567A1 (en) Denitration catalyst and method for producing same
JP5806536B2 (en) Catalyst precursor dispersion, catalyst, and exhaust gas purification method
EP1938899B1 (en) Base for catalyst, catalyst and methods for producing those
CN111298802B (en) Preparation method of flue gas denitration catalyst
KR20220010744A (en) Ammonia Oxidation Catalyst for Diesel Applications
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
JP3793283B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP4824516B2 (en) Method for producing catalyst for removing nitrogen oxides in exhaust gas
US20030171217A1 (en) Support, its production method and catalyst body
JP4508597B2 (en) Exhaust gas treatment catalyst capable of SO3 reduction treatment, method for producing the same, and exhaust gas treatment method using the exhaust gas treatment catalyst
JP2020062627A (en) Ammonia purification catalyst
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP4020354B2 (en) Manufacturing method of plate-like catalyst structure
JPH10235206A (en) Denitration catalyst, preparation thereof and denitration method
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
WO2014178290A1 (en) Denitration catalyst and method for producing same
JP2005342711A (en) Denitration method for diesel engine exhaust gas
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2007098197A (en) Manufacturing method of photocatalyst material
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JP2006192365A (en) Exhaust gas purification catalyst for internal combustion engine, method for producing the same, and exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term