[go: up one dir, main page]

JP2002357407A - Planar shape measurement method in phase shift interference fringe simultaneous imaging device - Google Patents

Planar shape measurement method in phase shift interference fringe simultaneous imaging device

Info

Publication number
JP2002357407A
JP2002357407A JP2001167748A JP2001167748A JP2002357407A JP 2002357407 A JP2002357407 A JP 2002357407A JP 2001167748 A JP2001167748 A JP 2001167748A JP 2001167748 A JP2001167748 A JP 2001167748A JP 2002357407 A JP2002357407 A JP 2002357407A
Authority
JP
Japan
Prior art keywords
phase shift
shape
amplitude
branch
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001167748A
Other languages
Japanese (ja)
Other versions
JP4799766B2 (en
Inventor
Kazuhiko Kawasaki
和彦 川▲崎▼
Naoki Mitsuya
直樹 光谷
Yasushi Uejima
泰 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2001167748A priority Critical patent/JP4799766B2/en
Publication of JP2002357407A publication Critical patent/JP2002357407A/en
Application granted granted Critical
Publication of JP4799766B2 publication Critical patent/JP4799766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

(57)【要約】 【課題】 位相シフト干渉縞同時計測装置いおいて、参
照面と被検面からの反射光からなる原光束を分割するこ
とにより生じる分岐位相シフト干渉縞間のバイアス、振
幅の差異により発生する形状算出時の誤差を数値演算に
より低減する際、予めバイアス、振幅を算出する際に用
いる被検面と形状を計測する被検面との反射率が異な
り、試料光強度が異なっても、被検面起伏形状を高精度
に計測できる平面形状計測方法を得るにある。 【解決手段】 位相シフト干渉縞同時計測装置におい
て、参照面と被検面からの反射光からなる原光束を分割
することにより生じる分枝位相シフト干渉縞間のバイア
ス、振幅の差異により発生する形状算出時の誤差をバイ
アス、振幅算出時と形状計測時の試料光の強度比、即ち
反射率比を新たに考慮に入れて形状算出することを提案
しようとする。
PROBLEM TO BE SOLVED: To provide a bias and amplitude between branch phase shift interference fringes generated by dividing an original luminous flux composed of light reflected from a reference surface and a test surface in a phase shift interference fringe simultaneous measurement apparatus. When the error in shape calculation caused by the difference is reduced by numerical calculation, the reflectance between the surface to be measured when calculating the bias and the amplitude in advance and the surface to be measured for the shape is different, and the sample light intensity is reduced. An object of the present invention is to provide a planar shape measuring method that can measure the undulating shape of a test surface with high accuracy even if different. In a simultaneous phase shift interference fringe measuring apparatus, a shape generated by a difference in bias and amplitude between branched phase shift interference fringes generated by dividing an original light beam composed of light reflected from a reference surface and a test surface. This paper proposes to calculate the shape by taking into account the error in the calculation and the intensity ratio of the sample light at the time of amplitude calculation and shape measurement, that is, the reflectance ratio, at the time of shape calculation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、位相シフト干渉縞
同時計測装置、つまり被検面と参照面からの反射光が光
学的に無干渉状態にある原光束を複数の分枝原光束に分
割し、夫々分枝原光束に異なる固定的光学位相差を与え
て干渉させ、複数の撮像機構で同時撮像し、被検面の形
状を計測する位相シフト干渉計に関する。さらに詳しく
言えば、本発明は、この位相シフト干渉計より得られる
分枝位相シフト干渉縞のバイアス、振幅を補正により観
測領域内の各点にて整合調整を施して大幅に精度向上を
図る新たな技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase shift interference fringe simultaneous measuring apparatus, that is, a source light beam in which reflected light from a test surface and a reference surface is in an optically non-interfering state into a plurality of branched original light beams. Also, the present invention relates to a phase shift interferometer that gives different fixed optical phase differences to the branched light beams and causes them to interfere with each other, simultaneously captures images with a plurality of image capturing mechanisms, and measures the shape of the surface to be measured. More specifically, the present invention provides a new method for correcting the bias and amplitude of the branched phase-shifted interference fringes obtained by the phase-shifting interferometer at each point in the observation area by correcting the bias and the amplitude to greatly improve the accuracy. Technology.

【0002】[0002]

【従来の技術】例えば特願平11-136831号明細
書で説明されている図1に示すような位相シフト干渉縞
同時計測装置においては、レーザ光源1からのレーザー
光束は、レンズ2によりビーム径を拡大され、ビームス
プリッタ3を透過してコリメートレンズ4にて平行光束
にされる。そして、この位相シフト干渉縞同時計測装置
では、前記平行光束から参照面5で反射された参照光と
参照面5、λ/4板6を透過し被検面7で反射された試
料光を生成するが、試料光は再びλ/4板6を透過する
ことで偏光面が参照光とは直交し、光学的無干渉状態の
原光束となる。ビームスプリッタ3で反射された原光束
に含まれる参照光と試料光はλ/ 4板8を透過すること
でそれぞれ互いに回転方向の異なる円偏光状態となり、
三分割プリズム9で3つの分枝光束に分割される。
2. Description of the Related Art For example, in a phase shift interference fringe simultaneous measuring apparatus as shown in FIG. 1 described in Japanese Patent Application No. 11-136831, a laser beam from a laser Is transmitted through the beam splitter 3 to be converted into a parallel light beam by the collimator lens 4. In this phase shift interference fringe simultaneous measurement apparatus, the reference light reflected from the parallel light beam on the reference surface 5 and the sample light transmitted through the reference surface 5 and the λ / 4 plate 6 and reflected on the test surface 7 are generated. However, the sample light again passes through the λ / 4 plate 6 so that the polarization plane is orthogonal to the reference light, and becomes the original light beam in an optically non-interference state. The reference light and the sample light included in the original light beam reflected by the beam splitter 3 pass through the λ / 4 plate 8 to be in circularly polarized states having different rotation directions from each other.
The light is split into three branched light beams by the three-division prism 9.

【0003】また、それぞれの分枝光束の光路上には偏
光板10〜12が配置され、光軸に対して概略直交する
面内において偏光板の透過軸角度が設定され、固定的光
学位相差を与えた分枝位相シフト干渉縞を発生させ、撮
像機構13〜15により撮像が行われる。したがって、
この装置により被検面形状を高精度に計測するために
は、3枚の分枝位相シフト干渉縞間において、観測領域
内の対応する各点のバイアス、振幅は等しいことが前提
となる。
[0003] Further, polarizing plates 10 to 12 are arranged on the optical path of each branched light beam, the transmission axis angle of the polarizing plate is set in a plane substantially orthogonal to the optical axis, and a fixed optical phase difference is set. Is generated, and imaging is performed by the imaging mechanisms 13 to 15. Therefore,
In order to measure the shape of the surface to be inspected with high accuracy using this apparatus, it is premised that the bias and amplitude of each corresponding point in the observation region are equal between the three branched phase shift interference fringes.

【0004】[0004]

【発明が解決しようとする課題】ところが、実際の位相
シフト干渉縞同時撮影装置では、三分割プリズム9にお
ける分割強度誤差やλ/4板8の低速軸の設置誤差にと
もなう透過光の楕円偏光化などが原因となり、3枚の分
枝位相シフト干渉縞間のバイアスと振幅はそれぞれ異な
るものとなる。
However, in an actual phase shift interference fringe simultaneous photographing apparatus, transmitted light is converted into elliptically polarized light due to a divisional intensity error in the three-division prism 9 and an installation error of the low-speed axis of the λ / 4 plate 8. For this reason, the bias and the amplitude between the three branched phase-shift interference fringes are different from each other.

【0005】この問題の対策として、従来では、分枝位
相シフト干渉縞画像からバイアスと振幅の代表値を算出
して光学素子相互の差を補正する対策がとられていた。
しかし、分枝光路上に介在する複数の光学素子を反射や
透過時に均一に作用させることはむずかしく、分枝位相
シフト干渉縞間のバイアスと振幅の値は観測領域内の各
画素ごとに異なるのが現実であり、代表値で一様に補正
する方法では、一画面内においてバイアスと振幅のばら
つきが補正後にも残る欠点がある。さらに、被検面が変
わり試料光強度が変われば干渉縞のバイアス、振幅は変
わるため、異なる被検面を計測した場合には補正誤差が
発生することになる。
As a countermeasure against this problem, conventionally, a countermeasure for calculating a representative value of bias and amplitude from a branched phase shift interference fringe image and correcting a difference between optical elements has been taken.
However, it is difficult to make the multiple optical elements intervening on the branching optical path act uniformly at the time of reflection and transmission, and the bias and amplitude values between the branching phase shift interference fringes differ for each pixel in the observation area. In reality, the method of uniformly correcting with a representative value has a drawback that a variation in bias and amplitude within one screen remains even after correction. Further, if the surface to be inspected changes and the light intensity of the sample changes, the bias and amplitude of the interference fringes change. Therefore, when a different surface to be measured is measured, a correction error occurs.

【0006】本発明の目的は、以上に述べたような従来
の位相シフト干渉縞同時撮像装置の問題に鑑み、異なる
撮像機構より得られる分岐位相シフト干渉縞のバイア
ス、振幅を測定する際に使用する被検面と、形状計測時
の被検面が異なる場合でも、各々の面の反射率を考慮し
て形状を算出することで被検面起伏形状を高精度に計測
できる平面計測方法を得るにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the conventional phase shift interference fringe simultaneous imaging apparatus as described above, an object of the present invention is to measure the bias and amplitude of the branch phase shift interference fringes obtained from different imaging mechanisms. Even if the surface to be measured is different from the surface to be measured at the time of shape measurement, a plane measurement method capable of measuring the surface undulation shape with high accuracy by calculating the shape in consideration of the reflectance of each surface is obtained. It is in.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明は、位相シフト干渉縞同時計測装置におい
て、参照面、被検面からの反射光からなる原光束を分割
することにより生じる分枝位相シフト干渉縞間のバイア
ス、振幅の差異により発生する形状算出時の誤差をバイ
アス、振幅算出時と形状算出時の試料光強度の比、即ち
反射率比を新たに考慮に入れて形状算出することを提案
しようとするものである。
In order to achieve this object, the present invention relates to a phase shift interference fringe simultaneous measuring apparatus, which is provided by dividing an original luminous flux composed of light reflected from a reference surface and a surface to be measured. Bias between branch phase shift interference fringes, error in shape calculation due to difference in amplitude, bias, and shape calculation taking into account the ratio of sample light intensity during amplitude calculation and shape calculation, that is, reflectivity ratio newly It is intended to propose to do.

【0008】つまり、本発明では、レーザ光源より発す
るコヒーレント光束を参照面と被検面に照射し、前記参
照面、前記被検面それぞれからの反射光である参照光と
試料光の偏光面を偏光光学素子を介在させて互いに直交
させ、光学的無干渉状態となした原光束を生成する観測
光学系と、前記原光束を複数の分枝原光束に分け、前記
分枝原光束のそれぞれに偏光光学素子を介して異なる固
定的光学位相差を与えた複数の分枝位相シフト干渉縞を
発生させ、前記被検面の観測範囲にある一つの位置がそ
れぞれの分枝観測座標系において同一位置になるよう位
置の整合を施し、分枝ごとに設けられた分枝撮像機構に
よりこれら干渉縞に対応する画像データを取得し、位相
シフト法にて前記被検面の観測範囲の平面起伏形状を数
値データにより再現する位相シフト干渉縞同時撮像装置
において、前記参照光と前記試料光との間に相対的な光
学的位相差を別途与えたときにそれぞれの前記分枝撮像
機構にて得られる分枝毎の位相シフト干渉縞画像データ
から分枝毎のバイアスと振幅を予め算出しておき、平面
起伏形状計測時には、予め算出されている分枝毎の前記
バイアス、振幅と平面起伏形状計測時に得られた前記位
相シフト干渉縞画像データとを用いて各画素毎に形状計
算を行うことで、異なる分枝撮像機構より得られる分枝
位相シフト干渉縞間のバイアス、振幅の差異により発生
する形状算出誤差を解消する際、試料光がない状態で得
られる分枝参照光画像データを分枝撮像機構毎に予め取
得しておき、前記バイアス、前記振幅算出時の画素毎の
試料光強度と、前記平面起伏形状計測時の前記試料光の
画素毎の強度比を画素毎の反射率比として新たに未知の
変数として考慮して平面起伏形状を算出することによ
り、各前記分枝撮像機構より得られる前記分枝位相シフ
ト干渉縞間のバイアス、振幅が異なり、かつ、前記試料
光強度に応じてバイアス、振幅が変化する場合であって
も高精度に平面起伏形状を算出する位相シフト干渉縞同
時撮像装置における平面形状計測方法が提案される。
That is, in the present invention, the reference surface and the test surface are irradiated with the coherent light beam emitted from the laser light source, and the reference surface and the sample light, which are the reflected light from the reference surface and the test surface, are polarized. An observation optical system that generates an original light beam that is orthogonal to each other with a polarizing optical element interposed therebetween and is in an optically incoherent state, and divides the original light beam into a plurality of branched original light beams, each of the branched original light beams. A plurality of branched phase-shift interference fringes having different fixed optical phase differences are generated through the polarizing optical element, and one position in the observation range of the surface to be measured is the same position in each branch observation coordinate system. Are obtained, image data corresponding to these interference fringes is obtained by a branch imaging mechanism provided for each branch, and the plane undulation shape of the observation range of the test surface is obtained by a phase shift method. Re-execute by numerical data In the simultaneous phase shift interference fringe imaging apparatus, when a relative optical phase difference is separately provided between the reference light and the sample light, a phase for each branch obtained by each of the branch imaging mechanisms is provided. The bias and amplitude for each branch are calculated in advance from the shift interference fringe image data, and when measuring the plane undulation shape, the bias and amplitude for each branch calculated in advance and the phase obtained when measuring the plane undulation shape are calculated. By performing shape calculation for each pixel using the shift interference fringe image data, a shape calculation error caused by a difference in bias and amplitude between branched phase shift interference fringes obtained from different branch imaging mechanisms is eliminated. In this case, the branch reference light image data obtained in the absence of the sample light is obtained in advance for each of the branch imaging mechanisms, and the bias, the sample light intensity for each pixel at the time of calculating the amplitude, and the planar relief shape meter The branch phase obtained from each of the branch imaging mechanisms is calculated by calculating the planar undulation shape by newly considering the intensity ratio of the sample light for each pixel as a reflectance ratio for each pixel as an unknown variable. Bias and amplitude between shift interference fringes are different, and even when the bias and amplitude change according to the sample light intensity, the planar shape in the phase shift interference fringe simultaneous imaging apparatus that calculates the plane undulation shape with high accuracy A measurement method is proposed.

【0009】また、反射率が空間的に一様とみなせる前
記被検面を計測する際には、前記画素毎の反射率比の代
わりに材質に依存した被検面反射率の値から算出される
前記被検面反射率比を演算上の設定値として与えること
で、2台の前記分枝撮像機構より得られる2つの前記分
枝位相シフト干渉縞画像データから被検面起伏形状計測
を行う位相シフト干渉縞同時撮像装置における平面形状
計測方法も説明される。
When measuring the surface to be examined whose reflectance can be regarded as spatially uniform, instead of the reflectance ratio for each pixel, it is calculated from the reflectance of the surface to be inspected depending on the material. By giving the target surface reflectance ratio as an arithmetic setting value, the target surface undulation shape is measured from the two branched phase shift interference fringe image data obtained from the two branch imaging mechanisms. A planar shape measurement method in the phase shift interference fringe simultaneous imaging apparatus is also described.

【0010】[0010]

【作用】本発明においては、光学部品や鏡面加工された
被検面の形状を計測する際に、一観測領域内の反射率が
空間的に一様とみなせかつ被検面の材質に依存する反射
率が既知であるような場合には、被検面の反射率比を一
々画素毎のデータを求めて用いる代わりに演算上の設定
パラメータとして与えて形状を算出することで、従来の
位相シフト法では3枚の干渉縞、つまり3台の撮像機構
が必要とされた位相シフト干渉縞同時撮像装置におい
て、2台の撮像機構より得られる2枚の分枝位相シフト
干渉縞にて形状算出が実現可能となり、これにより部品
個数低減による低コスト化を図れる。
According to the present invention, when measuring the shape of an optical component or a mirror-finished surface to be measured, the reflectance within one observation region can be regarded as spatially uniform and depends on the material of the surface to be measured. If the reflectivity is known, instead of using the reflectivity ratio of the surface to be measured for each pixel and using it as an operational setting parameter to calculate the shape, the conventional phase shift In the phase shift interference fringe simultaneous imaging device that required three interference fringes, that is, three imaging mechanisms in the method, the shape calculation was performed using two branch phase shift interference fringes obtained from the two imaging mechanisms. This makes it possible to reduce costs by reducing the number of components.

【0011】[0011]

【発明の実施の形態】以下、図面について本発明の好ま
しい実施の態様を説明する。本発明の第1実施例で用い
る位相シフト干渉縞同時撮像装置は図1に示してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. The phase shift interference fringe simultaneous imaging apparatus used in the first embodiment of the present invention is shown in FIG.

【0012】前述したように、図1の位相シフト干渉縞
同時計測装置では、レーザ光源1からのレーザー光束
は、レンズ2によりビーム径を拡大され、ビームスプリ
ッタ3を透過してコリメートレンズ4にて平行光束にさ
れ、前記平行光束から参照面5で反射された参照光と参
照面5、λ/4板6を透過し被検面7で反射された試料
光が生成される。この試料光は再びλ/4板6を透過す
ることで偏光面が参照光とは直交し、光学的無干渉状態
の原光束となるけれども、ビームスプリッタ3で反射さ
れた原光束に含まれる参照光と試料光はλ/4板8を透
過することでそれぞれ互いに回転方向の異なる円偏光状
態となり、三分割プリズム9で3つの分枝光束に分割さ
れる。
As described above, in the phase shift interference fringe simultaneous measuring apparatus shown in FIG. 1, the beam diameter of the laser beam from the laser light source 1 is expanded by the lens 2, transmitted through the beam splitter 3, and passed through the collimator lens 4. A parallel light beam is generated, and the reference light reflected from the parallel light beam on the reference surface 5 and the sample light transmitted through the reference surface 5 and the λ / 4 plate 6 and reflected on the test surface 7 are generated. The sample light passes through the λ / 4 plate 6 again, so that the polarization plane is orthogonal to the reference light and becomes an original light beam in an optically non-interfering state, but the reference light included in the original light beam reflected by the beam splitter 3. The light and the sample light pass through the λ / 4 plate 8 to be in a state of circular polarization having different rotation directions from each other, and are split into three branched light beams by the three-piece prism 9.

【0013】また、それぞれの分枝光束の光路上には偏
光板10〜12が配置され、光軸に対して概略直交する
面内において偏光板の透過軸角度が設定され、固定的光
学位相差を与えた分枝位相シフト干渉縞を発生させ、撮
像機構13〜15により撮像が行われることになる。
Further, polarizing plates 10 to 12 are arranged on the optical path of each branched light beam, the transmission axis angle of the polarizing plate is set in a plane substantially perpendicular to the optical axis, and a fixed optical phase difference is set. Is generated, and imaging is performed by the imaging mechanisms 13 to 15.

【0014】位相シフト干渉縞同時撮像装置における被
検面起伏形状の算出ところで、干渉縞を利用して被検面
の形状を算出する際に一般に位相シフト法が用いられ
る。
In calculating the undulating shape of a test surface in a simultaneous phase shift interference fringe imaging apparatus, a phase shift method is generally used when calculating the shape of a test surface using interference fringes.

【0015】この場合の干渉縞強度情報はバイアス、振
幅と被検面形状に相当する位相から構成されており、こ
れら3つの未知数を含む干渉縞の式から位相を算出する
ためには最低3枚以上の位相シフトされた干渉縞が必要
となる。例えば、従来の位相シフト干渉計により得られ
る3枚の干渉縞を次式で表現する。
The interference fringe intensity information in this case is composed of a bias, an amplitude and a phase corresponding to the shape of the surface to be inspected. At least three pieces of information are required to calculate the phase from the equation of the interference fringe including these three unknowns. The above-described phase-shifted interference fringes are required. For example, three interference fringes obtained by a conventional phase shift interferometer are expressed by the following equations.

【数1】 (Equation 1)

【0016】ここで、I1 (x,y)、I2 (x,
y)、I3 (x,y)は1台の撮像機構より得られる干
渉縞強度を現す。B(x,y)、A(x,y)はバイア
ス、振幅をそれぞれ現す。また、αとβは位相φ(x,
y)を算出するために干渉計にて計画的に付加される位
相シフト量を現す。
Here, I 1 (x, y) and I 2 (x, y
y) and I 3 (x, y) represent the interference fringe intensity obtained from one imaging mechanism. B (x, y) and A (x, y) represent a bias and an amplitude, respectively. Α and β have a phase φ (x,
represents the amount of phase shift that is intentionally added by the interferometer to calculate y).

【0017】ここに、バイアス、振幅は計測する被検面
によって異なる値となる可能性があるが、1台の撮像機
構により得られる3枚の干渉縞においてはバイアス、振
幅はそれぞれ同じとみなすことができる。このことを利
用して3枚以上の干渉縞から3つの未知数を考慮して位
相φ(x,y)を解けばバイアス、振幅の変化に影響を
受けずに被検面形状を算出することができる。
Here, the bias and the amplitude may have different values depending on the surface to be measured. However, it is assumed that the bias and the amplitude are the same in three interference fringes obtained by one imaging mechanism. Can be. By taking advantage of this fact, if the phase φ (x, y) is solved in consideration of three unknowns from three or more interference fringes, the shape of the surface to be inspected can be calculated without being affected by changes in bias and amplitude. it can.

【0018】式(1−1)〜式(1−3)に示された干
渉縞の場合、次式の計算を行えば位相φ(x,y)は得
られる。
In the case of the interference fringes shown in the equations (1-1) to (1-3), the phase φ (x, y) can be obtained by performing the following calculation.

【数2】 (Equation 2)

【0019】一方、図1に示した位相シフト干渉縞同時
計測装置にあっては、分割に伴うバイアス、振幅のばら
つきを加味すると分枝位相シフト干渉縞は次式で現すこ
とができる。
On the other hand, in the phase shift interference fringe simultaneous measuring apparatus shown in FIG. 1, the branch phase shift interference fringes can be expressed by the following equation in consideration of the bias and the amplitude variation accompanying the division.

【数3】 (Equation 3)

【0020】各分枝位相シフト干渉縞に含まれるバイア
ス、振幅はそれぞれ異なり、連立方程式中には3個の計
測値に対して7個の未知数が存在するため、このままで
は位相φ(x,y)を算出することはできない。ところ
が、分枝位相シフト干渉縞間におけるバイアス、振幅の
ばらつきは干渉計内部の光学素子によって発生する固定
の誤差であることを利用すれば、あらかじめB1 (x,
y)、B2 (x,y)、B3 (x,y)、A1 (x,
y)、A2 (x,y)、A3 (x,y)を計測すること
で、位相φ(x,y)を算出することができる。
Since the bias and amplitude included in each of the branched phase-shift interference fringes are different from each other, and there are seven unknowns for three measured values in the simultaneous equations, the phase φ (x, y) remains as it is. ) Cannot be calculated. However, by utilizing the fact that the variation in bias and amplitude between the branched phase-shift interference fringes is a fixed error generated by an optical element inside the interferometer, B 1 (x,
y), B 2 (x, y), B 3 (x, y), A 1 (x, y)
By measuring y), A 2 (x, y), and A 3 (x, y), the phase φ (x, y) can be calculated.

【0021】画素毎のバイアス、振幅算出方法 そこでまず、B1 (x,y)、B2 (x,y)、B3
(x,y)、A1 (x,y)、A2 (x,y)、A3
(x,y)を算出する手順を示す。図1において、被検
面7を外部から制御する仕組み(省略)で行う参照面変
位や光源の波長可変などの方法により、参照光と試料光
の間に光学的位相差δi を別途与えたときの分枝ごとの
位相シフト干渉縞を撮像する。
Method of calculating bias and amplitude for each pixel First, B 1 (x, y), B 2 (x, y), B 3
(X, y), A 1 (x, y), A 2 (x, y), A 3
The procedure for calculating (x, y) will be described. In FIG. 1, an optical phase difference δ i is separately given between the reference light and the sample light by a method such as a reference surface displacement or a wavelength change of a light source performed by a mechanism (omitted) for externally controlling the test surface 7. The phase shift interference fringes for each branch are imaged.

【0022】[0022]

【数4】 δi を計画的に変化させ、分枝毎に3枚以上の分枝位相
シフト干渉縞が得られれば、各分枝毎のバイアスと振幅
を算出することができる。ここでは一つの例として、δ
i を干渉縞の位相1周期分2πを等しく分割する値とし
た場合を示すことにする。
(Equation 4) If δ i is changed systematically and three or more branched phase-shift interference fringes are obtained for each branch, the bias and amplitude for each branch can be calculated. Here, as one example, δ
The case where i is a value that equally divides 2π for one period of the interference fringe phase will be shown.

【数5】 式(5)の条件の下、分枝毎に得られた干渉縞から以下
の計算を行なうことにより各分枝毎のバイアス、振幅は
算出される。
(Equation 5) The bias and amplitude for each branch are calculated by performing the following calculation from the interference fringes obtained for each branch under the condition of Expression (5).

【数6】 (Equation 6)

【数7】 (Equation 7)

【0023】ここで得られたB1 (x,y)、B2
(x,y)、B3 (x,y)、A1 (x,y)、A2
(x,y)、A3 (x,y)を、以後分枝撮像機構にて
得られる分枝位相シフト干渉縞のバイアス、振幅として
用いれば、未知数φ(x,y)1個に対して3個の計測
値となるため位相φ(x,y)の算出は可能となる。
The obtained B 1 (x, y), B 2
(X, y), B 3 (x, y), A 1 (x, y), A 2
If (x, y) and A 3 (x, y) are used as the bias and the amplitude of the branched phase-shift interference fringe obtained by the branch imaging mechanism, the unknown number φ (x, y) Since there are three measurement values, the phase φ (x, y) can be calculated.

【0024】式(8)以下に、干渉縞のバイアス、振幅
は被検面によって変化しないと仮定した場合の位相φ
(x,y)の算出例を示す。
Equation (8) shows the phase φ when the bias and the amplitude of the interference fringes are assumed not to change depending on the surface to be measured.
The calculation example of (x, y) is shown.

【0025】画素毎のバイアス、振幅を用いた被検面形
状算出方法 以下、式(10)、式(12)により後述の方法即ち反
射率比γを用いないで形状φを算出する方法を示す。被
検面形状計測時に得られた各分枝撮像機構で得られた干
渉縞強度からバイアスを減算した後に、振幅を除算して
バイアス0、振幅1の干渉縞に変換する。
A method of calculating the shape of a test surface using the bias and amplitude of each pixel Hereinafter, a method described later, that is, a method of calculating the shape φ without using the reflectance ratio γ, will be described using equations (10) and (12). . After the bias is subtracted from the interference fringe intensity obtained by each of the branch imaging mechanisms obtained at the time of measuring the shape of the test surface, the amplitude is divided to convert it into interference fringes having a bias of 0 and an amplitude of 1.

【数8】 式(8−1)〜式(8−3)によりsin[φ(x,
y)]、cos[φ(x,y)]を未知数として、過剰
な数の測定値から誘導した過剰な数のI1 ’、I 2 ’、
3 ’を用いて、最小2乗近似によりφ(x,y)を算
出する。
(Equation 8)From equations (8-1) to (8-3), sin [φ (x,
y)], cos [φ (x, y)]
Excess number of I derived from a large number of measurements1 ’, I Two ’,
IThree ′ To calculate φ (x, y) by least squares approximation
Put out.

【0026】ここに、別途判明しているα、βの下での
φを求める算出式は次式の通りである。
Here, a calculation formula for obtaining φ under α and β that has been separately determined is as follows.

【数9】 この場合、Eが最小となる値のφは次式より得られる。(Equation 9) In this case, the value φ that minimizes E is obtained from the following equation.

【数10】 (Equation 10)

【0027】また、被検面の反射率比γを考慮しない場
合にあっては、別の方法として先に得られているバイア
ス、振幅を使用することで2台の分枝撮像機構より得ら
れる2枚の分枝位相シフト干渉縞のみから2個の未知数
sin[φ(x,y)]、cos[φ(x,y)]の厳
密解を算出し、被検面の形状を算出することも可能であ
る。
When the reflectance ratio γ of the surface to be inspected is not taken into consideration, the bias and amplitude obtained previously can be used as another method to obtain from the two branch imaging mechanisms. The exact solution of two unknowns sin [φ (x, y)] and cos [φ (x, y)] is calculated from only the two branched phase-shifted interference fringes to calculate the shape of the surface to be measured. Is also possible.

【数11】 したがって、位相φ(x,y)は次式で求められる。[Equation 11] Therefore, the phase φ (x, y) is obtained by the following equation.

【数12】 (Equation 12)

【0028】バイアス、振幅算出用被検面Sと計測用被
検面T からの反射光強度が異なる場合次に、干渉縞を構
成するバイアス、振幅が被検面によって変化する場合に
ついて検討する。図2にバイアス、振幅算用被検面S使
用時の参照光、試料光のモデルを示す。図中示すよう
に、参照光強度をa(x,y)、試料光強度をb(x,
y)とし、3分割プリズムにより分割されて各撮像機構
に到達する参照光、試料光強度をそれぞれ、a1 (x,
y)、 b1 (x,y)、a2 (x,y)、 b2 (x,
y)、a3 (x,y)、 b3 (x,y)とおく。
When the Intensities of Reflected Light from the Surface S for Calculation of Bias and Amplitude and the Surface T for Measurement are Different Next, the case where the bias and amplitude forming the interference fringes change depending on the surface to be examined. FIG. 2 shows a model of the reference light and the sample light when the test surface S for bias and amplitude calculation is used. As shown in the figure, the reference light intensity is a (x, y) and the sample light intensity is b (x, y).
y), the reference light and the sample light intensity that reach each imaging mechanism after being divided by the three-piece prism are denoted by a 1 (x,
y), b 1 (x, y), a 2 (x, y), b 2 (x, y
y), a 3 (x, y), and b 3 (x, y).

【0029】式(4)〜式(7)にて示した手順により
得られるB1 (x,y)、B2 (x,y)、B3 (x,
y)、A1 (x,y)、A2 (x,y)、A3 (x,
y)と図2に示すモデルとの関係は次式にて示される。
B 1 (x, y), B 2 (x, y), B 3 (x, y) obtained by the procedures shown in equations (4) to (7)
y), A 1 (x, y), A 2 (x, y), A 3 (x, y)
The relationship between y) and the model shown in FIG. 2 is expressed by the following equation.

【数13】 (Equation 13)

【数14】 [Equation 14]

【0030】一方、計測用被検面Tを計測する際の試料
光強度をb”(x,y)とし、3台の分枝撮像機構に到
達する試料光強度をb1 ”(x,y)、b2 ”(x,
y)、b3 ”(x,y)とする。b”(x,y)とバイ
アス、振幅算出時の被検面Sからの試料光強度b(x,
y)の画素毎の強度比を反射率比γ(x,y)とおく
と、3台の分枝撮像機構に到達する試料光も同じ比率γ
(x,y)で影響が及ぼされると考えられるため、図3
に示すような試料光強度が各分枝撮像機構に到達する。
On the other hand, the sample light intensity at the time of measuring the measurement target surface T is b "(x, y), and the sample light intensity reaching the three branch imaging mechanisms is b 1 " (x, y). ), B 2 ″ (x,
y), b 3 ″ (x, y). b ″ (x, y) and the sample light intensity b (x, y) from the surface S to be measured when calculating the bias and amplitude.
If the intensity ratio for each pixel in y) is a reflectance ratio γ (x, y), the sample light reaching the three branch imaging mechanisms also has the same ratio γ.
(X, y) is considered to be affected, so FIG.
The sample light intensity as shown in FIG.

【数15】 (Equation 15)

【0031】一方、参照光強度の方は被検面に依存せず
に一定の値である。これらを考慮すると、計測用被検面
Tにおける分枝毎のバイアスB1 ”(x,y)、B2
(x,y)、B3 ”(x,y)、振幅A1 ”(x,
y)、A2 ”(x,y)、A3 ”(x,y)と先に得ら
れているバイアスB1 (x,y)、B2 (x,y)、B
3(x,y)と振幅A1 (x,y)、A2 (x,y)、
3 (x,y)のそれぞれの関係は次のようになる。
On the other hand, the reference light intensity is a constant value independent of the surface to be inspected. In consideration of these, biases B 1 ″ (x, y) and B 2 ″ for each branch on the measurement target surface T are taken into consideration.
(X, y), B 3 ″ (x, y), amplitude A 1 ″ (x, y
y), A 2 ″ (x, y), A 3 ″ (x, y) and the previously obtained biases B 1 (x, y), B 2 (x, y), B
3 (x, y) and amplitudes A 1 (x, y), A 2 (x, y),
The relation of A 3 (x, y) is as follows.

【数16】 (Equation 16)

【数17】 計測用被検面Tで得られる干渉縞を現すと、次式の形に
なる。
[Equation 17] The interference fringes obtained on the measurement target surface T are expressed by the following equation.

【数18】 (Equation 18)

【0032】これらの式は、反射率比γ(x,y)を用
いると、次式に書き換えられる。
These equations can be rewritten as follows using the reflectance ratio γ (x, y).

【数19】 式(3−1)〜式(3−3)と式(18−1)〜式(1
8−3)を比較して分かる通り、バイアス、振幅算出用
被検面Sを基準とし反射率の異なる被検面を計測した場
合には、干渉縞に含まれるバイアス、振幅は異なるもの
となる。
[Equation 19] Expressions (3-1) to (3-3) and Expressions (18-1) to (1
As can be understood from the comparison of 8-3), when the test surfaces having different reflectivities are measured with reference to the test surface S for calculating the bias and the amplitude, the bias and the amplitude included in the interference fringes are different. .

【0033】そのため、分枝位相シフト干渉を式(8)
に代入して、変換したのちに式(12)にて、位相φ
(x,y)を算出したとしても誤差が発生する。ここ
で、誤差量φerror を求める(式(25)以降)。準備
の過程は(19)〜(20)にある。式(18−1)〜
式(18−3)で示した計測用被検面Tで得られる干渉
縞I i ”(x,y)を被検面Sにて得られたバイアス、
振幅Bi (x,y)、Ai (x,y)で正規化した場合
の干渉縞は次の通りである。
Therefore, the branch phase shift interference is calculated by the following equation (8).
, And after conversion, the phase φ
Even if (x, y) is calculated, an error occurs. here
And the error amount φerror (Equation (25) and thereafter). Preparation
(19) to (20). Formula (18-1)
Interference obtained on the measurement target surface T expressed by the equation (18-3)
Stripe I i "(X, y) is the bias obtained on the test surface S,
Amplitude Bi (X, y), Ai When normalized by (x, y)
Are as follows.

【0034】[0034]

【数20】 式(10)に、干渉縞Ii ”’(x,y) ;(i=1,
2,3)を代入する。Ii ”’(x,y) ;(i=1,
2,3)はいずれもγ(x,y)の影響を受けている。
(Equation 20) In equation (10), the interference fringes I i ″ ′ (x, y); (i = 1,
Substitute 2, 3). I i ″ ′ (x, y); (i = 1,
2, 3) are all affected by γ (x, y).

【数21】 (Equation 21)

【0035】ここで、Here,

【数22】 とすると、式(10)'は、(Equation 22) Then, equation (10) ′ becomes

【数23】 となる。(Equation 23) Becomes

【0036】ここで、Here,

【数24】 となるため、式(20)は次式の形にまとめられる。(Equation 24) Therefore, Expression (20) is summarized in the following expression.

【数25】 (Equation 25)

【0037】さらに、Further,

【数26】 とおき、(Equation 26) Toki,

【数27】 として式(21)をまとめる。[Equation 27] Formula (21) is summarized as follows.

【0038】[0038]

【数28】 誤差φerror は、[Equation 28] The error φ error is

【数29】 で現され、(Equation 29) Expressed in

【数30】 の関係を用いれば、φerror は次式になる。[Equation 30] By using the relationship, φ error is given by the following equation.

【0039】[0039]

【数31】 さらに整理を行うと、(Equation 31) If you further organize,

【数32】 となる。(Equation 32) Becomes

【0040】ここで、V,Wは、それぞれHere, V and W are respectively

【数33】 を現す。[Equation 33] To show.

【0041】ちなみに、位相シフト量をBy the way, the phase shift amount

【数34】 とした場合には、(Equation 34) If

【数35】 となる。(Equation 35) Becomes

【0042】γが1近傍について考えると、p(γ)は
小さくコントラストの高い干渉縞が得られるような干渉
計においては、L1 =1付近、M1 =0付近であること
から、
Considering that γ is close to 1 , in an interferometer in which p (γ) is small and an interference fringe with high contrast is obtained, since L 1 = 1 and M 1 = 0,

【数36】 の条件が得られ、その結果φerror は近似的に次の様に
求められる。
[Equation 36] Is obtained, and as a result, φ error is approximately obtained as follows.

【0043】[0043]

【数37】 (37)

【0044】さらに、分母を展開するとφerror は近似
的に次式で表現できる。
Further, when the denominator is expanded, φ error can be approximately expressed by the following equation.

【数38】 式(29)におけるp(γ)は、(38) P (γ) in equation (29) is

【数39】 の関係にあり、p(1)=0となるため、γ=1の時
(言い換えるとバイアス、振幅算出用被検面Sと計測用
被検面Tの試料光強度が同じ場合)にのみ誤差φer ror
=0となる。γ≠1の時は、式(29)の第2項以降に
より干渉縞位相φと同一周波数や2倍波、3倍波といっ
た高次の周波数で変動する誤差φerror が発生する。
[Equation 39] Since p (1) = 0, the error occurs only when γ = 1 (in other words, when the sample light intensity of the bias-amplitude calculation target surface S and the measurement target surface T is the same). φ er ror
= 0. When γ ≠ 1, an error φ error that fluctuates at the same frequency as the interference fringe phase φ or a higher-order frequency such as a second harmonic and a third harmonic is generated from the second term of the equation (29).

【0045】式(12)に示した2枚の干渉縞から位相
の厳密解を算出する方法についていえば、式(18−
1)’、式(18−2)’の2枚の干渉縞I1”(x,
y)、I2”(x,y)を代入すると式(30)にな
る。
Regarding the method for calculating the exact solution of the phase from the two interference fringes shown in equation (12), equation (18-
1) ′, two interference fringes I 1 ″ (x,
y) and I 2 ″ (x, y) are substituted into Expression (30).

【数40】 ただし、(Equation 40) However,

【数41】 である。位相シフト量を[Equation 41] It is. The amount of phase shift

【数42】 とした場合には、L2 ,M2 はそれぞれ(Equation 42) , L 2 and M 2 are respectively

【数43】 となる。その結果φerror は式(32)になる。[Equation 43] Becomes As a result, φ error is given by equation (32).

【0046】[0046]

【数44】 ここでV2 、W2 はそれぞれ次式の関係を満たす。[Equation 44] Here, V 2 and W 2 each satisfy the following relationship.

【数45】 式(12)によって厳密解を算出する方法においても、
γ≠1の場合(言い換えると、バイアス、振幅算出用被
検面Sと計測用被検面Tからの試料光強度が異なる場
合)、式(32)の第2項以降により干渉縞位相φと同
一周波数や2倍波、3倍波といった高次の周波数で変動
する誤差が発生する。
[Equation 45] In the method of calculating an exact solution according to equation (12),
When γ ≠ 1 (in other words, when the sample light intensity from the bias and amplitude calculation target surface S and the measurement target surface T is different), the interference fringe phase φ is calculated according to the second and subsequent terms of Expression (32). Errors that vary at higher frequencies such as the same frequency, a second harmonic, and a third harmonic occur.

【0047】被検面反射率比を考慮した形状算出 そこで、式(10)や式(12)に示した方法とは異な
り、本発明による新規な方式、即ち、反射率比γに依存
しない形状算出方法について次に示す。式(18−
1)、式(18−2)、式(18−3)に表される干渉
縞強度から参照光強度a1 (x,y)、a2 (x,
y)、a3 (x,y)をそれぞれ減算した値を用い、
Calculation of the shape in consideration of the reflectance ratio of the surface to be inspected Therefore, unlike the methods shown in the equations (10) and (12), a new method according to the present invention, that is, a shape independent of the reflectance ratio γ The calculation method will be described below. Equation (18−
1), the reference light intensities a 1 (x, y), a 2 (x, y) from the interference fringe intensities expressed in the equations (18-2) and (18-3).
y) and a 3 (x, y) are subtracted,

【数46】 について解く。[Equation 46] Solve for

【0048】[0048]

【数47】 式(33−1)〜式(33−3)から[Equation 47] From equations (33-1) to (33-3)

【数48】 が導かれ、行列式[Equation 48] Leads to the determinant

【数49】 が0にならないα(x,y)、β(x,y)であれば、[Equation 49] If α (x, y) and β (x, y) do not become 0,

【数50】 について解くことができる。[Equation 50] Can be solved for

【0049】これにより得られるThis is obtained

【数51】 の比の逆正接をとり、位相φ(x,y)を得る。(Equation 51) To obtain the phase φ (x, y).

【数52】 式(36)においては式(10)、式(12)の方法と
は異なり被検面反射率比γの影響は除去されている。
(Equation 52) In the equation (36), unlike the methods of the equations (10) and (12), the influence of the reflectance ratio γ of the test surface is eliminated.

【0050】式(36)は、新たに導入した被検面反射
率比γに対して恒等的に成立するため、γ=1でなくて
も常にφ’(x,y)=φ(x,y)の関係になる。つ
まり、異なる被検面を計測した場合でも、反射率の影響
を受けることなく形状を算出することができる。なお、
被検面反射率比として定義したγ(x,y)は次の式で
求められる。
Since equation (36) holds true for the newly introduced reflectance ratio γ of the test surface, φ ′ (x, y) = φ (x , Y). That is, even when different test surfaces are measured, the shape can be calculated without being affected by the reflectance. In addition,
Γ (x, y) defined as the reflectance ratio of the test surface is obtained by the following equation.

【数53】 (Equation 53)

【0051】次に、図4について本発明の第2実施例に
よる位相シフト干渉縞同時計測装置を説明する。ちなみ
に、光学部品や鏡面加工された面のように材質が既知で
鏡面加工された被検面を計測する際には、被検面の反射
率は一様とみなせかつその値も特定でき得る。このよう
な場合には、式(32)を積極的に使用して被検面の反
射率比γを演算上の設定値として与えて誤差量を算出す
ることで、算出された形状を補正することも可能にな
る。
Next, a phase shift interference fringe simultaneous measuring apparatus according to a second embodiment of the present invention will be described with reference to FIG. By the way, when measuring a mirror-finished surface such as an optical component or a mirror-finished surface, the reflectance of the surface to be measured can be regarded as uniform and its value can be specified. In such a case, the calculated shape is corrected by positively using Expression (32) to give the reflectance ratio γ of the surface to be measured as an arithmetic set value and calculating an error amount. It becomes possible.

【0052】このような補正は式(30)より得られる
誤差を含んだ形状から式(32)を減算することにより
実現できる。図4の位相シフト干渉縞同時計測装置で
は、レーザ光源1からのレーザー光束は、レンズ2によ
りビーム径を拡大され、ビームスプリッタ3を透過して
コリメートレンズ4にて平行光束にされ、前記平行光束
から参照面5で反射された参照光と参照面5、λ/4板
6を透過し被検面7で反射された試料光が生成されるの
は図1の場合と同様である。この試料光は再びλ/4板
6を透過することで偏光面が参照光とは直交し、光学的
無干渉状態の原光束となるけれども、ビームスプリッタ
3で反射された原光束に含まれる参照光と試料光はλ/
4板8を透過することでそれぞれ互いに回転方向の異な
る円偏光状態となり、分割プリズム16で2つの分枝光
束に分割される。
Such a correction can be realized by subtracting equation (32) from the shape containing the error obtained from equation (30). In the simultaneous phase shift interference fringe measuring apparatus shown in FIG. 4, the laser beam from the laser light source 1 is expanded in beam diameter by the lens 2, passes through the beam splitter 3, is converted into a parallel beam by the collimating lens 4, The reference light reflected by the reference surface 5 and the sample light transmitted through the reference surface 5 and the λ / 4 plate 6 and reflected by the test surface 7 are generated as in FIG. The sample light passes through the λ / 4 plate 6 again, so that the polarization plane is orthogonal to the reference light and becomes an original light beam in an optically non-interfering state, but the reference light included in the original light beam reflected by the beam splitter 3. Light and sample light are λ /
The light passes through the four plates 8 to be in a circularly polarized state having different rotation directions, and is split by the splitting prism 16 into two branched light beams.

【0053】また、それぞれの分枝光束の光路上には偏
光板17、18が配置され、固定的光学位相差を与えた
分枝位相シフト干渉縞を発生させ、撮像機構19,20
により撮像が行われることになる。言い換えると、図4
は位相シフト干渉縞同時撮像装置を構成する際、特定の
被検面を測定対象とした場合には、分枝撮像機構は2台
でも実現可能である。
Polarizing plates 17 and 18 are disposed on the optical paths of the respective branched light beams to generate branched phase-shift interference fringes having a fixed optical phase difference.
Will be taken. In other words, FIG.
When configuring a phase shift interference fringe simultaneous imaging apparatus, if a specific surface to be measured is to be measured, two branch imaging mechanisms can be realized.

【0054】[0054]

【発明の効果】以上の説明から明らかなように、本発明
の請求項1によれば、位相シフト干渉縞同時計測装置に
おいて、予め画素毎に算出された干渉縞のバイアス、振
幅と被検面には依存しない分枝参照光画像データを、各
分枝撮像機構毎を用い、バイアス、振幅算出時と形状算
出時の試料光強度の比を反射率比として新たに考慮に入
れて被検面起伏形状を算出することで、参照光と試料光
からなる原光束を分割することにより生じる分枝位相シ
フト干渉縞間のバイアス、振幅の差異が原因となって発
生する形状算出時の誤差を被検面が異なる場合でも低減
することができる。
As is clear from the above description, according to the first aspect of the present invention, in the phase shift interference fringe simultaneous measuring apparatus, the bias and amplitude of the interference fringe calculated in advance for each pixel and the surface to be inspected are measured. The reference surface image data that does not depend on the surface of the test object is newly taken into account by using the ratio of the sample light intensity at the time of calculating the bias and amplitude and the shape at the time of calculating the shape as a reflectance ratio using each branch imaging mechanism. By calculating the undulation shape, errors in shape calculation caused by the difference in bias and amplitude between the branched phase shift interference fringes caused by splitting the original light beam composed of the reference light and the sample light are affected. Even when the inspection surfaces are different, it can be reduced.

【0055】また、本発明の請求項2によれば、光学部
品検査や鏡面の形状計測などの場合のように、一観測領
域内の反射率が空間的に一様とみなせかつ被検面の材質
に依存する反射率が既知であるような場合には、先に定
義した反射率比を演算上の設定パラメータとして与えて
形状を算出することで、従来の位相シフト法では3枚の
干渉縞、つまり3台の撮像機構が必要とされた位相シフ
ト干渉縞同時撮像装置において、2台の撮像機構より得
られる2枚の分枝位相シフト干渉縞にて形状算出が実現
可能となり、これにより部品個数低減による低コスト化
を図れる。
According to the second aspect of the present invention, as in the case of inspection of an optical component or measurement of the shape of a mirror surface, the reflectance within one observation region can be regarded as spatially uniform and the surface to be inspected can be regarded as uniform. In the case where the reflectance depending on the material is known, the shape is calculated by giving the reflectance ratio defined above as a setting parameter in the calculation, and the conventional phase shift method uses three interference fringes. That is, in a phase shift interference fringe simultaneous imaging apparatus that requires three imaging mechanisms, the shape calculation can be realized with two branched phase shift interference fringes obtained from the two imaging mechanisms. Cost reduction can be achieved by reducing the number.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による位相シフト干渉縞同
時撮像装置の原理図である。
FIG. 1 is a principle view of a phase shift interference fringe simultaneous imaging apparatus according to a first embodiment of the present invention.

【図2】同位相シフト干渉縞同時撮像装置におけるバイ
アス、振幅算出用被検面Sの計測時の反射光強度説明図
である。
FIG. 2 is an explanatory diagram of reflected light intensity when measuring a bias and amplitude calculation target surface S in the simultaneous phase shift interference fringe imaging apparatus.

【図3】同位相シフト干渉縞同時撮像装置における計測
用被検面Tの計測時の反射光強度説明図である。
FIG. 3 is an explanatory diagram of reflected light intensity at the time of measuring a measurement target surface T in the same phase shift interference fringe simultaneous imaging apparatus.

【図4】本発明の第2実施例による位相シフト干渉縞同
時撮像装置の原理図である。
FIG. 4 is a principle view of a phase shift interference fringe simultaneous imaging apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 レンズ 3 ビームスプリッタ 4 コリメータ 5 参照面 6 λ/4板 7 被検面 8 λ/4板 9 3分割プリズム 10、11,12,17,18 偏光板 13,14,15,19,20 撮像機構 DESCRIPTION OF SYMBOLS 1 Laser light source 2 Lens 3 Beam splitter 4 Collimator 5 Reference surface 6 λ / 4 plate 7 Test surface 8 λ / 4 plate 9 Three-segmented prism 10, 11, 12, 17, 18 Polarizing plate 13, 14, 15, 19, 20 Imaging mechanism

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA45 FF04 FF51 GG04 HH04 JJ05 JJ19 JJ26 LL33 LL36 QQ18 QQ25 QQ26 QQ42  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA45 FF04 FF51 GG04 HH04 JJ05 JJ19 JJ26 LL33 LL36 QQ18 QQ25 QQ26 QQ42

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源より発するコヒーレント光束
を参照面と被検面に照射し、前記参照面、前記被検面そ
れぞれからの反射光である参照光と試料光の偏光面を偏
光光学素子を介在させて互いに直交させ、光学的無干渉
状態となした原光束を生成する観測光学系と、前記原光
束を複数の分枝原光束に分け、前記分枝原光束のそれぞ
れに偏光光学素子を介して異なる固定的光学位相差を与
えた複数の分枝位相シフト干渉縞を発生させ、前記被検
面の観測範囲にある一つの位置がそれぞれの分枝観測座
標系において同一位置になるよう位置の整合を施し、分
枝ごとに設けられた分枝撮像機構によりこれら干渉縞に
対応する画像データを取得し、位相シフト法にて前記被
検面の観測範囲の平面起伏形状を数値データにより再現
する位相シフト干渉縞同時撮像装置において、 前記参照光と前記試料光との間に相対的な光学的位相差
を別途与えたときにそれぞれの前記分枝撮像機構にて得
られる分枝毎の位相シフト干渉縞画像データから分枝毎
のバイアスと振幅を予め算出しておき、平面起伏形状計
測時には、予め算出されている分枝毎の前記バイアス、
振幅と平面起伏形状計測時に得られた前記位相シフト干
渉縞画像データとを用いて各画素毎に形状計算を行うこ
とで、異なる分枝撮像機構より得られる分枝位相シフト
干渉縞間のバイアス、振幅の差異により発生する形状算
出誤差を解消する際、試料光がない状態で得られる分枝
参照光画像データを分枝撮像機構毎に予め取得してお
き、前記バイアス、前記振幅算出時の画素毎の試料光強
度と、前記平面起伏形状計測時の前記試料光の画素毎の
強度比を画素毎の反射率比として新たに未知の変数とし
て考慮して平面起伏形状を算出することにより、 各前記分枝撮像機構より得られる前記分枝位相シフト干
渉縞間のバイアス、振幅が異なり、かつ、前記試料光強
度に応じてバイアス、振幅が変化する場合であっても高
精度に平面起伏形状を算出することを特徴とする位相シ
フト干渉縞同時撮像装置における平面形状計測方法。
1. A reference surface and a test surface are irradiated with a coherent light beam emitted from a laser light source, and polarization surfaces of the reference light and the sample light, which are reflected light from the reference surface and the test surface, are polarized by a polarizing optical element. An observation optical system that generates an original light beam in an optically non-interfering state by interposing and orthogonal to each other, and divides the original light beam into a plurality of branched original light beams, and a polarizing optical element for each of the branched original light beams. A plurality of branched phase-shift interference fringes having different fixed optical phase differences are generated through a position such that one position in the observation range of the test surface is the same position in each branch observation coordinate system. The image data corresponding to these interference fringes is acquired by the branch imaging mechanism provided for each branch, and the plane undulation shape of the observation range of the test surface is reproduced by numerical data by the phase shift method. Phase shift interference In the simultaneous fringe imaging apparatus, a phase shift interference fringe image for each branch obtained by each of the branch imaging mechanisms when a relative optical phase difference is separately provided between the reference light and the sample light. The bias and the amplitude for each branch are calculated in advance from the data, and at the time of measuring the plane undulation shape, the bias for each branch calculated in advance,
By performing a shape calculation for each pixel using the amplitude and the phase shift interference fringe image data obtained at the time of measuring the plane undulation shape, bias between the branched phase shift interference fringes obtained from different branch imaging mechanism, When resolving a shape calculation error caused by a difference in amplitude, branch reference light image data obtained in a state where there is no sample light is obtained in advance for each branch imaging mechanism, and the bias and the pixel at the time of calculating the amplitude are obtained. Each sample light intensity and the plane undulation shape are calculated by newly considering the intensity ratio of the sample light of each pixel of the sample light at the time of measurement of the plane undulation shape as an unknown variable as a reflectance ratio for each pixel. The bias and amplitude between the branched phase shift interference fringes obtained from the branched imaging mechanism are different, and the bias and the amplitude are changed according to the sample light intensity. Calculation A planar shape measuring method in a phase shift interference fringe simultaneous imaging apparatus, comprising:
【請求項2】 請求項1において、反射率が空間的に一
様とみなせる前記被検面を計測する際には、前記画素毎
の反射率比の代わりに材質に依存した被検面反射率の値
から算出される前記被検面反射率比を演算上の設定値と
して与えることで、2台の前記分枝撮像機構より得られ
る2つの前記分枝位相シフト干渉縞画像データから被検
面起伏形状計測を行うことを特徴とする位相シフト干渉
縞同時撮像装置における平面形状計測方法。
2. The method according to claim 1, wherein, when measuring the test surface whose reflectance is considered to be spatially uniform, the reflectance of the test surface depends on the material instead of the reflectance ratio of each pixel. Is given as an arithmetic set value by calculating the reflectance ratio of the target surface calculated from the value of the target surface, the target surface reflectance ratio is obtained from the two branch phase shift interference fringe image data obtained from the two branch imaging mechanisms. A planar shape measuring method in a simultaneous phase shift interference fringe imaging apparatus, which performs undulating shape measurement.
JP2001167748A 2001-06-04 2001-06-04 Planar shape measuring method in phase shift interference fringe simultaneous imaging device Expired - Fee Related JP4799766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167748A JP4799766B2 (en) 2001-06-04 2001-06-04 Planar shape measuring method in phase shift interference fringe simultaneous imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167748A JP4799766B2 (en) 2001-06-04 2001-06-04 Planar shape measuring method in phase shift interference fringe simultaneous imaging device

Publications (2)

Publication Number Publication Date
JP2002357407A true JP2002357407A (en) 2002-12-13
JP4799766B2 JP4799766B2 (en) 2011-10-26

Family

ID=19010090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167748A Expired - Fee Related JP4799766B2 (en) 2001-06-04 2001-06-04 Planar shape measuring method in phase shift interference fringe simultaneous imaging device

Country Status (1)

Country Link
JP (1) JP4799766B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062183A (en) * 2003-08-08 2005-03-10 Mitsutoyo Corp Method for providing offset correction determination signal and interferometer system
KR100766876B1 (en) 2005-07-13 2007-10-15 한국과학기술원 Space Phase Transition Device for Real-Time Optical Interferometer
JP2009526978A (en) * 2006-02-18 2009-07-23 カール マール ホールディング ゲーエムベーハー Optical surface sensor
JP2015055579A (en) * 2013-09-12 2015-03-23 藤垣 元治 Displacement and strain distribution measurement device with digital holography
JP2018077140A (en) * 2016-11-09 2018-05-17 株式会社ミツトヨ Phase shift interferometer
CN114397092A (en) * 2022-01-14 2022-04-26 深圳迈塔兰斯科技有限公司 Method and system for measuring super-surface phase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329514A (en) * 1999-05-18 2000-11-30 Mitsutoyo Corp Correction method of interference fringe image

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329514A (en) * 1999-05-18 2000-11-30 Mitsutoyo Corp Correction method of interference fringe image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010046894, 川▲崎▼和彦他3名, "「位相シフト干渉縞同時撮像による形状計測(第3報)」", 2001年度精密工学会春季大会学術講演会講演論文集, 20010305, 第606頁, 精密工学会 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062183A (en) * 2003-08-08 2005-03-10 Mitsutoyo Corp Method for providing offset correction determination signal and interferometer system
KR100766876B1 (en) 2005-07-13 2007-10-15 한국과학기술원 Space Phase Transition Device for Real-Time Optical Interferometer
JP2009526978A (en) * 2006-02-18 2009-07-23 カール マール ホールディング ゲーエムベーハー Optical surface sensor
JP2015055579A (en) * 2013-09-12 2015-03-23 藤垣 元治 Displacement and strain distribution measurement device with digital holography
JP2018077140A (en) * 2016-11-09 2018-05-17 株式会社ミツトヨ Phase shift interferometer
CN114397092A (en) * 2022-01-14 2022-04-26 深圳迈塔兰斯科技有限公司 Method and system for measuring super-surface phase
CN114397092B (en) * 2022-01-14 2024-01-30 深圳迈塔兰斯科技有限公司 Method and system for measuring super-surface phase

Also Published As

Publication number Publication date
JP4799766B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP3517903B2 (en) Interferometer
EP1717546B1 (en) Interferometer and method of calibrating the interferometer
CN102109414B (en) Method and device for calibrating phase modulation of spatial light modulators by utilizing heterodyne interference
JP3352249B2 (en) Position shift detector
CN102261985B (en) Optical system wave aberration calibration apparatus and calibration method of using apparatus to test error
JP5349739B2 (en) Interferometer and interferometer calibration method
JPH085314A (en) Method and apparatus for measuring displacement
US20190187612A1 (en) Ellipsometry Device and Ellipsometry Method
JP3714854B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JPS5818604B2 (en) How to measure thickness
JP4799766B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP3029133B2 (en) Measurement method and device
Wyant Advances in interferometric metrology
US11841218B2 (en) System and method of measuring surface topography
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP3327998B2 (en) Shape measuring method and device
JPH11337321A (en) Method and apparatus for simultaneous measurement of phase shift interference fringes
JP2931082B2 (en) Method and apparatus for measuring small displacement
JP3766319B2 (en) Planar shape measurement method for simultaneous imaging of phase shift interference fringes
JP3773073B2 (en) Apparatus and method for measuring aspheric shape
JP4386543B2 (en) Surface shape measuring device
JPH06137814A (en) Minute displacement measuring method and its device
JP3508988B2 (en) Measurement method of phase shift amount for processing phase shift mask
JPH116784A (en) Device and method for measuring shape of aspherical surface
JP3493329B2 (en) Planar shape measuring device, planar shape measuring method, and storage medium storing program for executing the method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20010615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees