JP2002348613A - Manufacturing method of grain-oriented electrical steel sheet with excellent punchability that does not require decarburization annealing - Google Patents
Manufacturing method of grain-oriented electrical steel sheet with excellent punchability that does not require decarburization annealingInfo
- Publication number
- JP2002348613A JP2002348613A JP2001155968A JP2001155968A JP2002348613A JP 2002348613 A JP2002348613 A JP 2002348613A JP 2001155968 A JP2001155968 A JP 2001155968A JP 2001155968 A JP2001155968 A JP 2001155968A JP 2002348613 A JP2002348613 A JP 2002348613A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- grain
- electrical steel
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
(57)【要約】
【課題】 脱炭焼鈍を必要とせずに良好な磁気特性と打
ち抜き性を有する一方向性電磁鋼板の製造方法を提供す
る。
【解決手段】 質量で、C≦0.005%、Si:2.5〜4.5%、酸
可溶性Al:0.020〜0.040%、N:0.0030〜0.010%、0.003%≦
(S+0.405Se)≦0.014%、Mn:0.05〜0.14%を含有するスラ
ブを1280℃未満の温度域に加熱し、熱間圧延し、熱延板
焼鈍を施しもしくは施さず、85%以上の圧下率の最終冷
間圧延し、脱炭することなく一次再結晶焼鈍を施し、Mg
Oを主体とする焼鈍分離剤を塗布し仕上焼鈍を施すに際
し、熱間仕上げ圧延開始温度を975℃超とし、かつ仕上
げ最終スタンドの圧下率R2、および一つ前の圧下率R1に
ついて、以下のどちらかを満たし、二次再結晶後の鋼板
の全酸化物質量を2.0g/m2未満とする。0.3≦R1の時は、
0.1<R2(条件1)、0.3≦R2の時は、0.1<R1(条件2)。
(57) [Summary] [PROBLEMS] To provide a method for producing a grain-oriented electrical steel sheet having good magnetic properties and punching properties without requiring decarburization annealing. SOLUTION: By mass, C ≦ 0.005%, Si: 2.5-4.5%, acid-soluble Al: 0.020-0.040%, N: 0.0030-0.010%, 0.003% ≦
(S + 0.405Se) ≦ 0.014%, Mn: A slab containing 0.05 to 0.14% is heated to a temperature range of less than 1280 ° C., hot-rolled, and subjected to hot-rolled sheet annealing or not, and to 85% or more. The final cold rolling of the rolling reduction, primary recrystallization annealing without decarburization, Mg
When applying an annealing separator mainly containing O and performing finish annealing, the hot finish rolling start temperature is set to more than 975 ° C., and the rolling reduction R2 of the finishing final stand, and the rolling reduction R1 immediately before, the following: Either is satisfied, and the total oxide mass of the steel sheet after the secondary recrystallization is less than 2.0 g / m 2 . When 0.3 ≦ R1,
When 0.1 <R2 (condition 1) and 0.3 ≦ R2, 0.1 <R1 (condition 2).
Description
【0001】[0001]
【発明の属する技術分野】本発明は、変圧器等の鉄芯と
して使用され、特に打ち抜き性の優れた一方向性電磁鋼
板の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet which is used as an iron core of a transformer or the like, and is particularly excellent in punching property.
【0002】[0002]
【従来の技術】一方向性電磁鋼板は、主として変圧器そ
の他の電気機器の鉄芯材料として使用され、磁性特性、
鉄損特性等の磁気特性に優れていることが要求される。
一方向性電磁鋼板は、最終仕上焼鈍工程において二次再
結晶を生成させ、鋼板面に{110}面を、圧延方向に
<001>軸を有する、所謂Goss組織を発達させる
ことによって製造される。良好な磁気特性をもつ一方向
性電磁鋼板を得るためには、磁化容易軸である<001
>軸を圧延方向に高度に揃えることが必要である。2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric equipment, and has magnetic properties,
It is required to have excellent magnetic properties such as iron loss properties.
A grain-oriented electrical steel sheet is manufactured by generating secondary recrystallization in the final finish annealing step, and developing a so-called Goss structure having a {110} plane on the steel sheet surface and a <001> axis in the rolling direction. . In order to obtain a grain-oriented electrical steel sheet having good magnetic properties, the axis of easy magnetization is <001.
> It is necessary to align the shaft highly in the rolling direction.
【0003】高い磁束密度を有する一方向性電磁鋼板の
製造技術の代表的なものとして、田口らによって特公昭
40−15644号公報に開示された技術、或は今中ら
によって特公昭51−13469号公報に開示された技
術がある。前者においてはAlNおよびMnSを、後者
においてMnS,MnSe,Sbを主なインヒビターと
して機能させている。これらいずれの技術も、MnSを
インヒビターとして用いるが、二次再結晶時にインヒビ
ターとして機能するに必要な量のMnSを完全に固溶さ
せるためには、熱間圧延においてスラブを1400℃程
度の高温に加熱しなければならない。このスラブ加熱温
度は、普通鋼スラブの加熱温度よりも200℃以上も高
く、このことに起因して設備費やエネルギーコストが増
大し、また品質面でも、鋼板端部の耳割れや、高温スラ
ブ加熱時の結晶粒粗大化に起因する線状二次再結晶不良
が発生しやすいと言う問題がある。[0003] Taguchi et al. Discloses a technique for producing a grain-oriented electrical steel sheet having a high magnetic flux density, as disclosed in Japanese Patent Publication No. 40-15644, or by Imanaka et al. There is a technique disclosed in Japanese Unexamined Patent Publication (Kokai) No. H11-26095. In the former, AlN and MnS function as main inhibitors, and in the latter, MnS, MnSe, and Sb function as main inhibitors. In each of these techniques, MnS is used as an inhibitor. However, in order to completely dissolve the amount of MnS required to function as an inhibitor during secondary recrystallization, the slab is heated to a high temperature of about 1400 ° C. in hot rolling. Must be heated. The heating temperature of the slab is 200 ° C. or more higher than the heating temperature of the ordinary steel slab, which leads to an increase in equipment and energy costs. There is a problem that linear secondary recrystallization failure due to coarsening of crystal grains during heating is likely to occur.
【0004】以上のような技術に対し、特開昭59−5
6522号公報において、Mnを0.08〜0.45
%、Sを0.007%以下とし、MnSをインヒビター
として用いないようにすることによって、低温スラブ加
熱を可能にする方向性珪素鋼板の製造方法が提案され
た。ところで、工業化された従来の一方向性電磁鋼板の
製造においては、前記のいずれのインヒビターを用いる
場合でも、製造過程で炭素を0.04質量%を超えて含
むことが必須であった。Cと共にSi:3〜4%程度を
含有する通常の方向性電磁鋼は、鋳造から熱延までの熱
履歴を受ける過程でγ−α変態を生ずるが、この変態に
よる組織の微細化、均質化が成品板の二次再結晶を安定
して生成させる上に有効と考えられている。[0004] With respect to the above-mentioned technology, Japanese Patent Laid-Open Publication No.
No. 6522, Mn is set to 0.08 to 0.45.
%, S is set to 0.007% or less, and a method of manufacturing a grain-oriented silicon steel sheet that enables low-temperature slab heating by not using MnS as an inhibitor has been proposed. By the way, in the manufacture of the conventional industrialized grain-oriented electrical steel sheet, it is essential to contain more than 0.04% by mass of carbon in the manufacturing process even when any of the above inhibitors is used. Normal grain-oriented electrical steel containing about 3 to 4% of Si together with C undergoes γ-α transformation in the process of receiving the heat history from casting to hot rolling. Is considered to be effective in stably generating secondary recrystallization of a product plate.
【0005】一方、製品においては非磁気時効性確保の
ため、Cを0.0050%以下まで低下させる必要があ
ることから、脱炭焼鈍が必須であった。脱炭焼鈍は通
常、湿潤含水素雰囲気でおよそ800〜900℃で焼鈍
を行う。脱炭に必要な焼鈍時間は鋼中炭素量と雰囲気の
酸化度(PH2O/PH2)で決まるが、さらに鋼板厚みの
2乗に比例する。更に一方向性電磁鋼板はSiを3%前
後含むため、脱炭焼鈍雰囲気では表層の酸化により益々
脱炭し難くなる。On the other hand, in products, C must be reduced to 0.0050% or less in order to ensure non-magnetic aging, and thus decarburization annealing is essential. The decarburizing annealing is usually performed at about 800 to 900 ° C. in a wet hydrogen-containing atmosphere. The annealing time required for decarburization is determined by the amount of carbon in the steel and the degree of oxidation of the atmosphere (P H2O / P H2 ), and is further proportional to the square of the thickness of the steel sheet. Further, since the grain-oriented electrical steel sheet contains about 3% of Si, in a decarburizing annealing atmosphere, decarburization becomes more difficult due to oxidation of the surface layer.
【0006】特に大型回転機器に用いられる一方向性電
磁鋼板は、無方向性電磁鋼板の高級品の更なる高級グレ
ードとして用いられているが、大型プレスで打ち抜いて
鉄芯に積層するため、打ち抜き性が良好であることと、
積層しやすい厚い板厚が求められている。しかしなが
ら、製品厚みが0.35mmを超える一方向性電磁鋼板
の製造においては、酸洗を挟んでの二度以上の脱炭焼鈍
または極めて長時間の脱炭焼鈍を行う必要があり、コス
トが非常に高くなり現実的でなかった。[0006] In particular, the grain-oriented electrical steel sheet used for large-sized rotating equipment is used as a higher-grade grade of high-grade non-oriented electrical steel sheet. That the properties are good,
There is a demand for a thick plate that can be easily laminated. However, in the production of a grain-oriented electrical steel sheet having a product thickness of more than 0.35 mm, it is necessary to perform decarburizing annealing twice or more with pickling or an extremely long decarburizing annealing, which is very costly. Was not realistic.
【0007】また、特に、後天的にインヒビターを形成
させる低温スラブ加熱を用いる一方向性電磁鋼板の製造
では、一次再結晶粒径を一定範囲に制御するために、焼
鈍温度を成分により変化させる必要があり、脱炭および
表層酸化層生成と併せて制御しなければならず、実操業
では大変な注意と監視を必要とする。さらに、脱炭焼鈍
を行うと、必然的に鋼板表面に珪素酸化物(シリカ)が
生じる。この場合、二次再結晶焼鈍時の焼鈍分離剤とし
てMgOを用いると、シリカとMgOの反応で二次再結
晶焼鈍後の鋼板にフォルステライトを主成分とするグラ
ス皮膜が形成される。このグラス皮膜は絶縁皮膜として
有効であるが、非常に堅く、鉄芯製造時の打ち抜き工程
での打ち抜き性が劣るため、グラス皮膜のない一方向性
電磁鋼板が求められていた。In particular, in the production of a grain-oriented electrical steel sheet using low-temperature slab heating for forming an inhibitor in an acquired manner, in order to control the primary recrystallized grain size within a certain range, it is necessary to change the annealing temperature according to the components. It must be controlled in conjunction with decarburization and formation of the surface oxide layer, and actual operation requires great care and monitoring. Further, when decarburization annealing is performed, silicon oxide (silica) is inevitably generated on the steel sheet surface. In this case, if MgO is used as an annealing separator during the secondary recrystallization annealing, a glass film containing forsterite as a main component is formed on the steel sheet after the secondary recrystallization annealing by a reaction between silica and MgO. Although this glass film is effective as an insulating film, it is very hard and has poor punching properties in a punching step in the production of an iron core. Therefore, a unidirectional electrical steel sheet without a glass film has been required.
【0008】これを解決する方法として、1)脱炭焼鈍
後の酸化層厚みを3μm以下として焼鈍分離剤としてM
gOの代わりに微粒Al2O3を主に用いる方法(特開昭
53−22113号公報、特開昭56−65983号公
報、特開昭59−96278号公報)、2)MgOを主
体とする焼鈍分離剤にLi,K,Na,Ba,Ca等の
塩化物や硝酸塩等を添加して、一度出来たフォルステラ
イトを二次再結晶焼鈍時に破壊する方法(特開平5−3
11353号公報)、3)通常の方法で製造した二次再
結晶後の一方向性電磁鋼板を酸洗にて強制的にグラス皮
膜を除去する方法(従来から一方向性電磁鋼板の“パン
チングクオリティ”として米国で工業化・実用化されて
いる)、4)脱炭焼鈍後に酸洗にて一度出来たシリカを
除去する方法、などが開示されている。As a method for solving this, 1) The thickness of the oxide layer after decarburizing annealing is set to 3 μm or less, and M is used as an annealing separator.
a method mainly using fine-grained Al 2 O 3 instead of gO (JP-A-53-22113, JP-A-56-6983, and JP-A-59-96278); 2) Mainly MgO A method in which chloride, nitrate, or the like such as Li, K, Na, Ba, or Ca is added to an annealing separator to destroy once formed forsterite during secondary recrystallization annealing (Japanese Patent Laid-Open No. 5-3).
No. 11353), 3) A method of forcibly removing the glass film by pickling the unidirectional electrical steel sheet after the secondary recrystallization manufactured by a usual method ("Punching quality of a conventional unidirectional electrical steel sheet"). And 4) a method of removing silica once formed by pickling after decarburizing annealing.
【0009】ただし、これらの方法において、1)では
Al2O3の塗布が難しく、2)では添加物が高価で、ま
た二次再結晶焼鈍時に気化して設備を傷めるので、含有
量を少なくする必要がある、3)、4)では酸洗工程を
付加せねばならず、コストが高い、という欠点がそれぞ
れある。また、脱炭焼鈍を行わない一方向性電磁鋼板の
製造方法については、すでに数多くの技術が開示されて
いる。特開昭55−73818号公報には、Cを0.0
2%とし、一回目の冷延圧下率を50%以上にする二回
冷延法で最終板厚にした後、脱炭焼鈍を省略して、通常
の箱焼鈍もしくはオープンコイル焼鈍する方法を開示し
ている。しかしながら、この方法では一次再結晶を二次
再結晶と合わせてコイルの形で焼鈍するため、コイル位
置による温度偏差の影響が大きく、工業的に実施するの
は困難である。However, in these methods, the application of Al 2 O 3 is difficult in 1), the additives are expensive in 2), and the equipment is damaged by vaporization during secondary recrystallization annealing, so that the content is low. In 3) and 4), it is necessary to add a pickling step, and there is a disadvantage that the cost is high. In addition, a number of techniques have already been disclosed as to a method for producing a grain-oriented electrical steel sheet without performing decarburization annealing. JP-A-55-73818 discloses that C is 0.0
Disclosed is a method of performing ordinary box annealing or open coil annealing after omitting decarburizing annealing after setting the final sheet thickness by a double cold rolling method of 2% and a first cold rolling reduction of 50% or more. are doing. However, in this method, since the primary recrystallization and the secondary recrystallization are annealed in the form of a coil, the influence of the temperature deviation due to the coil position is large, and it is difficult to implement industrially.
【0010】また、特開昭57−114614号公報に
は、含Al一方向性珪素鋼板スラブを、1250℃以下
の低温で粗圧延を開始し、900℃以上で累積圧下率8
0%以上で少なくとも1パスを35%以上、かつ900
℃以下で累積圧下率40%以上の歪蓄積圧延を行うこと
で、低温スラブ加熱と脱炭焼鈍省略する方法が開示され
ている。しかしながら、このような熱間圧延における9
00℃以下という低温域での高圧下では、集合組織の状
態が異なると考えられ、製品の磁束密度B8は1.90
以下と低い。Japanese Unexamined Patent Publication (Kokai) No. 57-114614 discloses that an Al-containing unidirectional silicon steel sheet slab is subjected to rough rolling at a low temperature of 1250 ° C. or less, and a cumulative rolling reduction of 8 at 900 ° C. or more.
0% or more and at least one pass 35% or more and 900
A method is disclosed in which strain accumulation rolling at a cumulative reduction rate of 40% or more is performed at a temperature of not more than 40 ° C. to omit low-temperature slab heating and decarburizing annealing. However, in such hot rolling, 9
Under a high pressure in a low temperature range of 00 ° C. or less, the texture state is considered to be different, and the magnetic flux density B8 of the product is 1.90.
Below and low.
【0011】更に、特開平6−346147号公報や特
開平7−26328号公報には、Cu:0.05〜2.
00%やSb:0.010〜0.100%をインヒビタ
ー成分として添加する方法が開示されているが、十分な
成果が得られていない。[0011] Further, in JP-A-6-346147 and JP-A-7-26328, Cu: 0.05-2.
A method of adding 00% or Sb: 0.010 to 0.100% as an inhibitor component is disclosed, but a satisfactory result has not been obtained.
【0012】[0012]
【発明が解決しようとする課題】本発明は、低温スラブ
加熱を前提として、脱炭焼鈍の必要がないほど溶鋼での
C含有量を減じて、フォルステライトを主成分とするグ
ラス皮膜の形成原料であるシリカを脱炭焼鈍省略により
形成させないことで、磁気特性および打ち抜き性に優れ
た一方向性電磁鋼板を安定して製造することができる方
法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention is based on the premise that low-temperature slab heating is performed, so that the C content in molten steel is reduced to the extent that decarburization annealing is not required, and a raw material for forming a glass film containing forsterite as a main component. An object of the present invention is to provide a method capable of stably producing a grain-oriented electrical steel sheet having excellent magnetic properties and punching properties by not forming silica, which is a decarburization anneal, by omitting decarburization annealing.
【0013】[0013]
【課題を解決するための手段】本発明は上記課題を解決
するために示されたもので、その要旨とするところは下
記のとおりである。 (1) 質量%で、 C≦0.005%、 Si:2.5〜4.5%、酸可溶性Al:0.020〜
0.040%、N:0.0030〜0.010%、0.
003%≦(S+0.405Se)≦0.014%、M
n:0.05〜0.14%を含有し、残部Feおよび不
可避的不純物からなるスラブを、1280℃未満の温度
域に加熱し、熱間圧延し、熱延板焼鈍を施しもしくは施
さず、85%以上の圧下率を適用する最終冷間圧延によ
って最終板厚とした後、脱炭することなく一次再結晶焼
鈍を施し、焼鈍分離剤を塗布し仕上焼鈍を施す一方向性
電磁鋼板の製造方法において、熱間圧延における仕上げ
圧延の開始温度を975℃超とし、かつ仕上げ圧延の仕
上げ最終スタンドの圧下率R2、および最終スタンドの
一つ前の圧下率R1について、以下に規定する条件1、
条件2のいずれかを満足することを特徴とする脱炭焼鈍
を必要としない打ち抜き性の優れた一方向性電磁鋼板の
製造方法。SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and the gist thereof is as follows. (1) In mass%, C ≦ 0.005%, Si: 2.5 to 4.5%, acid-soluble Al: 0.020 to
0.040%, N: 0.0030 to 0.010%, 0.1%
003% ≦ (S + 0.405Se) ≦ 0.014%, M
n: a slab containing 0.05 to 0.14%, the balance being Fe and unavoidable impurities, heated to a temperature range of less than 1280 ° C., hot-rolled, and subjected to hot rolled sheet annealing or not, Manufacture of unidirectional electrical steel sheet which is subjected to primary recrystallization annealing without decarburization, applied with an annealing separator, and then subjected to finish annealing after final cold rolling to a final thickness of 85% or more and applying a reduction ratio of 85% or more. In the method, the starting temperature of the finish rolling in the hot rolling is set at more than 975 ° C., and the rolling reduction R2 of the finishing final stand of the finish rolling and the rolling reduction R1 immediately before the final stand are defined as the following conditions 1,
A method for producing a grain-oriented electrical steel sheet having excellent punchability and not requiring decarburization annealing, characterized by satisfying any one of the conditions 2.
【0014】 0.3≦R1 の時は 0.1<R2 ……… (条件1) 0.3≦R2 の時は 0.1<R1 ……… (条件2) ただし、 R1=(tf2−tf1)/tf2 R2=(tf1−tf)/tf1 tf:仕上げ厚み(mm) tf1:仕上げス最終タンド入り口厚み(mm) tf2:仕上げ最終スタンドの一つ前の入り口厚み(m
m) (2) 熱間圧延の仕上げ圧延の仕上げ最終スタンドの
圧下率R2、および最終スタンドの一つ前の圧下率R1
をいずれも0.3以上とすることを特徴とする(1)の
脱炭焼鈍を必要としない打ち抜き性の優れた一方向性電
磁鋼板の製造方法。 (3) 一次再結晶焼鈍後二次再結晶焼鈍までの間に走
行するストリップ状態でアンモニアガスを用いて該スト
リップを窒化することを特徴とする(1)または(2)
記載の脱炭焼鈍を必要としない打ち抜き性の優れた一方
向性電磁鋼板の製造方法。 (4) 二次再結晶焼鈍後の鋼板の全酸化物質量が1.
0g/m2以下であることを特徴とする(1)〜(3)
のいずれかの項に記載の脱炭焼鈍を必要としない打ち抜
き性の優れた一方向性電磁鋼板の製造方法。 (5) 一次再結晶焼鈍時の雰囲気をPH2O/PH2を
0.01未満とし、焼鈍温度を800〜920℃で均熱
時間30秒〜200秒とすることを特徴とする(1)〜
(4)のいずれかの項に記載の脱炭焼鈍を必要としない
打ち抜き性の優れた一方向性電磁鋼板の製造方法。 (6) 焼鈍分離剤として、MgO100質量部に対し
てLi,K,Na,Ba,Ca,Mg,Zn,Fe,Z
r,Sr,Sn,Alの塩化物、硝酸塩、硫化物、硫酸
塩の中から選ばれる1種または2種以上を0.1〜2
0.0質量部添加した焼鈍分離剤を塗布することを特徴
とする(1)〜(5)のいずれかの項に記載の脱炭焼鈍
を必要としない打ち抜き性の優れた一方向性電磁鋼板の
製造方法。 (7) MgOを主体とする焼鈍分離剤の水和水分を
2.0%未満とすることを特徴とする(1)〜(6)の
いずれかの項に記載の脱炭焼鈍を必要としない打ち抜き
性の優れた一方向性電磁鋼板の製造方法。 (8) 二次再結晶焼鈍の昇温加熱時の800℃までの
雰囲気酸化度(PH2O/PH2)を0.02未満とするこ
とを特徴とする(1)〜(7)のいずれかの項に記載の
脱炭焼鈍を必要としない打ち抜き性の優れた一方向性電
磁鋼板の製造方法。 (9) 二次再結晶焼鈍の昇温加熱時の雰囲気ガスの組
成をN2、H2、不活性ガスの混合で、かつN2を50v
ol%以上とすることを特徴とする(1)〜(8)のい
ずれかの項に記載の脱炭焼鈍を必要としない打ち抜き性
の優れた一方向性電磁鋼板の製造方法。When 0.3 ≦ R1, 0.1 <R2 (Condition 1) When 0.3 ≦ R2, 0.1 <R1 (Condition 2) However, R1 = (t f2 −t f1 ) / t f2 R2 = (t f1 −t f ) / t f1 t f : Finished thickness (mm) t f1 : Finished thickness of the final tund entrance (mm) t f2 : Immediately before the finished final stand Entrance thickness (m
m) (2) The reduction ratio R2 of the final stand in the finish rolling of the hot rolling and the reduction ratio R1 just before the final stand.
(1) The method for producing a grain-oriented electrical steel sheet excellent in punching properties which does not require decarburizing annealing as described in (1). (3) Nitriding the strip using ammonia gas in a strip state running between the primary recrystallization annealing and the secondary recrystallization annealing, (1) or (2).
A method for producing a grain-oriented electrical steel sheet having excellent punching properties that does not require the decarburization annealing described. (4) The total oxide mass of the steel sheet after the secondary recrystallization annealing is 1.
0 g / m 2 or less (1) to (3)
The method for producing a grain-oriented electrical steel sheet having excellent punching properties that does not require decarburization annealing according to any one of the above items. (5) The atmosphere at the time of primary recrystallization annealing is set such that P H2O / P H2 is less than 0.01, the annealing temperature is 800 to 920 ° C., and the soaking time is 30 seconds to 200 seconds.
(4) A method for producing a grain-oriented electrical steel sheet having excellent punchability and not requiring decarburization annealing as described in any of (4). (6) Li, K, Na, Ba, Ca, Mg, Zn, Fe, Z per 100 parts by mass of MgO as an annealing separator
One or two or more selected from chlorides, nitrates, sulfides, and sulfates of r, Sr, Sn, and Al are 0.1 to 2
(1) A unidirectional electrical steel sheet excellent in punching properties which does not require decarburizing annealing as described in any one of (1) to (5), wherein an annealing separator added with 0.0 parts by mass is applied. Manufacturing method. (7) The decarburizing annealing described in any one of (1) to (6), wherein the hydrated moisture of the annealing separator mainly composed of MgO is less than 2.0%. A method for producing unidirectional electrical steel sheets with excellent punching properties. (8) The method according to any one of (1) to (7), wherein the degree of atmospheric oxidation (P H2 O / P H2 ) up to 800 ° C. during the heating and heating in the secondary recrystallization annealing is less than 0.02. The method for producing a grain-oriented electrical steel sheet having excellent punching properties that does not require decarburizing annealing described in the paragraph. (9) The composition of the atmosphere gas at the time of heating and heating in the secondary recrystallization annealing is a mixture of N 2 , H 2 , and an inert gas, and N 2 is 50 V
(1) to (8), wherein the method for producing a grain-oriented electrical steel sheet having excellent punchability and not requiring decarburization annealing is described in any one of (1) to (8).
【0015】[0015]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明者等は、従来注目されていなかった、仕上熱間圧
延の後段最終2パス後の圧下率に着目し、この現象を利
用して、低温スラブ加熱を前提とする、85%以上の圧
下率を適用する最終強圧下冷間圧延による製造プロセス
によって製造される磁気特性に優れた一方向性電磁鋼板
を、脱炭焼鈍することなく安定して製造する方法を確立
すべく研究を重ね、本発明を完成するに至ったものであ
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present inventors have paid attention to the reduction ratio after the last two passes of the latter stage of the finish hot rolling, which has not been noticed in the past, and utilizing this phenomenon, the reduction of 85% or more on the premise of low-temperature slab heating. Research has been conducted to establish a method for stably producing a grain-oriented electrical steel sheet with excellent magnetic properties without decarburizing annealing, which is manufactured by a manufacturing process by final high-pressure cold rolling that applies a reduction rate. The invention has been completed.
【0016】本発明が対象とする一方向性電磁鋼板は、
従来用いられている製鋼法によって得られる溶鋼を、連
続鋳造して直接にスラブとするか、或は溶鋼を鋳型に注
入し、凝固させて鋼塊とし、これを分塊圧延してスラブ
とし、次いで熱間圧延して熱延板とした後、必要に応じ
て焼鈍を施し、次いで85%超の圧下率を適用する1回
の冷間圧延工程或は85%超の圧下率を適用する最終冷
間圧延工程を含む中間焼鈍を挟む2回以上の冷間圧延に
よって最終板厚とした後、一次再結晶焼鈍、窒化、焼鈍
分離剤の塗布、最終仕上焼鈍を施すプロセスによって製
造される。The grain-oriented electrical steel sheet to which the present invention is directed is:
Molten steel obtained by a conventionally used steelmaking method is continuously cast into a slab directly, or molten steel is poured into a mold and solidified to form a steel ingot, which is slab-rolled into a slab, Next, after hot rolling to obtain a hot rolled sheet, annealing is performed if necessary, and then a single cold rolling step in which a reduction rate of more than 85% is applied or a final step of applying a reduction rate of more than 85%. It is manufactured by a process of performing a primary recrystallization annealing, nitriding, application of an annealing separator, and a final finish annealing after making a final thickness by two or more cold rollings including an intermediate annealing including a cold rolling step.
【0017】本発明者等は、熱間圧延における仕上げ圧
延(以下単に仕上げ圧延という)の最終2パス後の材料
の圧下率に注目して、種々の観点から広範囲にわたって
研究を進めた結果、仕上げ圧延の最終2パス後の材料の
歪み蓄積現象と製品の磁気特性が密接に関係しているこ
とを知見した。以下に、熱延仕上げ最終スタンドとその
一つ前のスタンドにおける圧下率配分と磁気特性の関係
について、実験をもとに詳細に説明する。The present inventors have focused on the rolling reduction of the material after the final two passes of finish rolling (hereinafter simply referred to as finish rolling) in hot rolling, and conducted extensive research from various viewpoints. It has been found that the strain accumulation phenomenon of the material after the last two passes of rolling and the magnetic properties of the product are closely related. The relationship between the reduction ratio distribution and the magnetic properties of the final hot-rolling finishing stand and the immediately preceding stand will be described in detail based on experiments.
【0018】C=0.003質量%、Si=3.15〜
3.35質量%、Al=0.025〜0.027質量
%、N=0.0078〜0.0083質量%を含有する
スラブを1150℃でスラブ加熱して熱延し、熱延仕上
げ温度を1000〜1050℃とし、仕上げ圧延の最終
パスの圧下率(R2)及びその1つ前のパスの圧下率
(R1)をそれぞれ種々変更して、様々な板厚の熱延鋼
帯を得た。C = 0.003 mass%, Si = 3.15-
A slab containing 3.35% by mass, Al = 0.025 to 0.027% by mass, and N = 0.0078 to 0.0083% by mass is slab-heated at 1150 ° C and hot rolled. The temperature was set to 1000 to 1050 ° C., and the reduction ratio (R2) of the final pass of the finish rolling and the reduction ratio (R1) of the previous pass were variously changed to obtain hot-rolled steel strips of various plate thicknesses.
【0019】それら熱延鋼板は、その後1120℃で3
分間の熱延板焼鈍を施し、酸洗を行った後、200〜2
50℃の温間圧延で、最終冷間圧延率を90%一定とし
て、圧延最終製品厚みを0.22〜0.50mmとし
た。その後、体積率でN2:H2=45:55、露点+2
0℃の非脱炭雰囲気で820〜860℃90秒の一次再
結晶焼鈍を施し、一次再結晶粒径を21〜24μmとし
た。その後、走行するストリップ状態でアンモニアを含
む雰囲気を用いて、鋼中全Nとして200〜220pp
mとなるように窒化処理を行った。次いで、MgOを主
体とする焼鈍分離剤を塗布して、1200℃まで体積率
でN2:H2=25:75の雰囲気で昇温速度15℃/時
間の二次再結晶焼鈍と、引き続き、H2:100%雰囲
気で、1200℃×30時間の純化処理を行った。その
後燐酸アルミニウムとクロム酸を主成分とする絶縁張力
皮膜を塗布焼付した。The hot-rolled steel sheets were then heated at 1120 ° C. for 3 hours.
After performing hot-rolled sheet annealing for about 10 minutes and pickling,
By warm rolling at 50 ° C., the final cold rolling reduction was fixed at 90%, and the final rolled product thickness was 0.22 to 0.50 mm. Then, N 2 : H 2 = 45: 55 by volume ratio, dew point +2
Primary recrystallization annealing was performed at 820 to 860 ° C. for 90 seconds in a non-decarburizing atmosphere at 0 ° C. to make the primary recrystallization particle size 21 to 24 μm. Thereafter, using an atmosphere containing ammonia in a running strip state, the total N in the steel is 200 to 220 pp.
A nitriding treatment was performed so as to obtain m. Next, an annealing separator mainly composed of MgO is applied, and a secondary recrystallization annealing is performed at a temperature rising rate of 15 ° C./hour in an atmosphere of N 2 : H 2 = 25: 75 at a volume ratio up to 1200 ° C., Purification treatment was performed at 1200 ° C. for 30 hours in an atmosphere of H 2 : 100%. Thereafter, an insulating tension film containing aluminum phosphate and chromic acid as main components was applied and baked.
【0020】その結果の磁気特性(磁束密度B8
(T))を図1に示す。図1から明らかなように、仕上
げ圧延の最終2パスのうち、少なくとも一方の圧下率が
0.3以上で、かつ他方も0.1以上の場合に、B8は
1.84Tを超え、一方向性電磁鋼板の規格を満たすこ
とができる。さらに最終2パスの圧下率がともに30%
以上の場合に、B8≧1.90Tの高い磁束密度を有す
る製品が得られている。The resulting magnetic properties (magnetic flux density B8
(T)) is shown in FIG. As is clear from FIG. 1, when the rolling reduction of at least one of the final two passes of the finish rolling is 0.3 or more and the other is also 0.1 or more, B8 exceeds 1.84T, and one direction. Can meet the specifications of conductive electrical steel sheets. In addition, the rolling reduction of the last two passes is both 30%
In the above case, a product having a high magnetic flux density of B8 ≧ 1.90T is obtained.
【0021】また、同じ素材及び製法で、熱延仕上げ圧
延率をR1=R2=0.32とR1=R2=0.5の2
種類とし、冷間圧延率を種々変更した場合の、磁気特性
(磁束密度B8(T))を図2に示す。図2から明らか
なように、最終冷間圧延率を85%以上とすると、B8
≧1.90Tの高い磁束密度を有する製品が得られてい
る。Further, with the same material and manufacturing method, the hot-rolled finish rolling ratio is set to R1 = R2 = 0.32 and R1 = R2 = 0.5.
FIG. 2 shows the magnetic characteristics (magnetic flux density B8 (T)) when the cold rolling reduction was changed in various types. As apparent from FIG. 2, when the final cold rolling reduction is 85% or more, B8
A product having a high magnetic flux density of ≧ 1.90T has been obtained.
【0022】本発明の学術的理由については必ずしも明
らかではないけれども、本発明者等は次のように推察し
ている。新井らによると(“Materials Science Foru
m”Vols.204-206(1996)pp.617-622)、冷間圧延率が9
5%になるとGoss方位からのずれが大きくなり磁束
密度は低下している。この場合はS=3.3%、C=
0.05%であり、熱延時にはγ相が存在する。Although the scientific reasons for the present invention are not always clear, the present inventors speculate as follows. According to Arai et al. (“Materials Science Foru
m ”Vols. 204-206 (1996) pp. 617-622), with a cold rolling reduction of 9
At 5%, the deviation from the Goss azimuth increases and the magnetic flux density decreases. In this case, S = 3.3%, C =
0.05%, and a γ phase exists during hot rolling.
【0023】一方、岩永らによると(“Journal of Mat
erials Engineering and Performance”Volume3(2) Apr
il 1994 p223)、95%の冷間圧延率でも良好な磁束密
度が得られている。この場合は熱延板に相当する段階で
の集合組織が通常と異なるため、高冷間圧延率で磁気特
性が良好になると述べられている。本発明では、C含有
量が少ないため全工程でγ相を有することはなくα単相
である。故に岩永らの場合に対応していて、高冷間圧延
率で良好な磁気特性が得られると考える。このとき一次
再結晶集合組織でGossのΣ9対応方位が強くなるの
である。α単相材では、熱延での終わりの方のスタンド
での比較的高圧下率で歪みが蓄積され、続く熱延板焼鈍
で再結晶が各部位で起こり冷間圧延前粒径が比較的小さ
くなるため、種々の方位が存在し、続く冷間圧延での高
圧延率で適切な集合組織となると推定する。On the other hand, according to Iwanaga et al. (“Journal of Mat
erials Engineering and Performance ”Volume3 (2) Apr
il 1994 p223), a good magnetic flux density is obtained even at a cold rolling reduction of 95%. It is stated that in this case, the texture at the stage corresponding to the hot rolled sheet is different from the usual, so that the magnetic properties are improved at a high cold rolling reduction. In the present invention, since the C content is small, there is no γ phase in all the steps, and it is an α single phase. Therefore, it corresponds to the case of Iwanaga et al., And it is considered that good magnetic properties can be obtained at a high cold rolling reduction. At this time, the orientation corresponding to Goss of # 9 becomes strong in the primary recrystallization texture. In the α-single-phase material, strain is accumulated at a relatively high pressure rate at the stand at the end of hot rolling, and recrystallization occurs at each part in the subsequent hot rolled sheet annealing, and the grain size before cold rolling is relatively small. Since it becomes smaller, it is estimated that various orientations are present, and an appropriate texture is obtained at a high rolling reduction in the subsequent cold rolling.
【0024】以下に本発明の限定理由を説明する。ま
ず、本発明に関してその成分組成をあげると次のとおり
である。なお、本発明で規定する成分組成は全て質量%
である。 C:0.0050%以下;Cは最終製品に0.0050
%を超えて含有すると、所謂トランス等電気機器にて用
いられているときに磁気時効を起こし機器特性が劣化す
るので、従来一方向性電磁鋼板製造の途中工程での脱炭
焼鈍が必須である。しかし本発明では脱炭焼鈍を行わな
いために、0.0050%以下とする。このことが本発
明の大きなの特徴の一つである。The reasons for limiting the present invention will be described below. First, the component composition of the present invention is as follows. In addition, all the component compositions defined in the present invention are mass%.
It is. C: 0.0050% or less; C is 0.0050 in the final product
%, Magnetic aging occurs when used in so-called electrical equipment such as a transformer, and the characteristics of the equipment deteriorate. Therefore, decarburization annealing is conventionally required in the middle of the production of a grain-oriented electrical steel sheet. . However, in the present invention, in order not to perform decarburization annealing, the content is set to 0.0050% or less. This is one of the major features of the present invention.
【0025】Si:2.5〜4.5%;Siは、鋼板の
比抵抗を高め、鉄損の低減に寄与する。Si含有量が、
2.5%未満では鉄損低減効果が十分ではなく、また純
化と2次再結晶のため行われる高温での仕上げ焼鈍にお
いて、α−γ変態による結晶方位のランダム化が生じ十
分な磁気特性が得られない。一方、4.5%を超えると
冷間圧延性が損なわれ、製造が困難となる。したがっ
て、Si含有量は、2.5〜4.5%とする。なお、好
ましくは3.0〜3.7%の範囲とする。Si: 2.5-4.5%; Si increases the specific resistance of the steel sheet and contributes to a reduction in iron loss. Si content is
If it is less than 2.5%, the effect of reducing iron loss is not sufficient, and in the finish annealing at a high temperature performed for purification and secondary recrystallization, randomization of crystal orientation due to α-γ transformation occurs and sufficient magnetic properties are obtained. I can't get it. On the other hand, if it exceeds 4.5%, the cold rollability is impaired, and the production becomes difficult. Therefore, the content of Si is set to 2.5 to 4.5%. In addition, it is preferably in the range of 3.0 to 3.7%.
【0026】Mn:0.05〜0.14%;不可避的に
溶鋼に存在するものであるが、窒化するためインヒビタ
ー元素としては必須でない。しかし、Mnは熱間脆性に
よる熱間圧延時の割れを防止するのに有効な元素であ
り、その効果は0.05%未満では得られない。一方、
0.14%を超えて添加すると熱延加熱時にMnS,M
nSeの固溶が不均一になり磁気特性の変動の要因とな
り品質が安定しない。したがって、Mn含有量は、0.
05〜0.14%とする。なお、好ましくは0.08〜
0.11%の範囲とする。Mn: 0.05 to 0.14%; unavoidably present in molten steel, but is not essential as an inhibitor element because it is nitrided. However, Mn is an element effective for preventing cracking during hot rolling due to hot embrittlement, and its effect cannot be obtained at less than 0.05%. on the other hand,
When added in excess of 0.14%, MnS, M
The solid solution of nSe becomes non-uniform, causing a change in magnetic characteristics, and the quality is not stable. Therefore, the Mn content is 0.1.
05 to 0.14%. In addition, preferably 0.08 to
The range is 0.11%.
【0027】Al:0.020〜0.040%;Al
は、AlNを形成してインヒビターとして作用する元素
である。Al含有量が、0.020%未満では抑制力の
確保が十分ではなく、一方、0.040%を超えるとそ
の効果が損なわれるので、0.020〜0.040%と
する。なお、好ましい範囲は0.024〜0.030%
である。Al: 0.020-0.040%; Al
Is an element that forms AlN and acts as an inhibitor. If the Al content is less than 0.020%, the suppression power is not sufficiently ensured, while if it exceeds 0.040%, the effect is impaired, so the content is set to 0.020 to 0.040%. The preferred range is 0.024 to 0.030%.
It is.
【0028】N:0.003〜0.010%;Nは、A
lNを形成してインヒビターとして作用する元素であ
る。本発明ではAlNは熱延加熱時にはほぼ完全に析出
させるのでAlとのバランスで制限を受ける。N含有量
が、0.003%未満では抑制力の確保が十分ではなく
二次再結晶不良で磁気特性が劣り、一方、0.01%を
超えるとブリスターなる欠陥(膨れ)が生じる。好まし
い範囲は0.006〜0.008%である。N: 0.003-0.010%; N is A
It is an element that forms 1N and acts as an inhibitor. In the present invention, AlN precipitates almost completely at the time of hot-rolling heating, so that it is limited by the balance with Al. When the N content is less than 0.003%, the suppressing force is not sufficiently secured, and the magnetic properties are inferior due to poor secondary recrystallization. A preferred range is 0.006 to 0.008%.
【0029】SeとS: 0.003%≦S+0.40
5Se≦0.014%; 高温度熱延加熱で完全固溶させる一方向性電磁鋼板の製
造ではSとSeは、MnSとMnSeを形成してインヒ
ビターとして作用する有力な元素である。しかし、本発
明は1280℃以下の比較的低温でのスラブ加熱である
ため,両元素の含有量は少ない方が良い。Se and S: 0.003% ≦ S + 0.40
5Se ≦ 0.014%; In the production of a grain-oriented electrical steel sheet that is completely solid-dissolved by high-temperature hot-rolling heating, S and Se are effective elements that form MnS and MnSe and act as inhibitors. However, in the present invention, since the slab heating is performed at a relatively low temperature of 1280 ° C. or less, the content of both elements is preferably small.
【0030】本発明では低温スラブ加熱であるため、鋳
造時の析出物分布がそのまま残存するので、含有量が多
いと熱延加熱時に温度不均一での析出物の不均一性が発
生して二次再結晶後での磁性変動(所謂スキッドマー
ク)を生じる。このため上限はS+0.405Se≦
0.014%とする。また少なすぎると二次再結晶が不
安定になるので、下限を0.003%以上とする。In the present invention, since the low-temperature slab heating is performed, the precipitate distribution at the time of casting remains as it is. Therefore, when the content is large, the non-uniformity of the precipitate occurs due to the non-uniform temperature at the time of hot rolling heating. Magnetic fluctuation (so-called skid mark) occurs after the next recrystallization. Therefore, the upper limit is S + 0.405Se ≦
0.014%. If the amount is too small, the secondary recrystallization becomes unstable, so the lower limit is made 0.003% or more.
【0031】なお、本発明においては、インヒビター成
分として上記した元素のほかに、Sn、Sb、P、C
r、Cuも有利に作用するのでそれぞれ前記成分に併せ
て含有させることもできる。これらの成分の好適添加範
囲はそれぞれ、0.02〜0.3%である。更に、Ni
は0.03〜0.3%、Mo,Cdは0.005〜0.
3%で効果がある。In the present invention, in addition to the above-mentioned elements as inhibitor components, Sn, Sb, P, C
Since r and Cu also act advantageously, they can be contained together with the above components. The preferable addition range of these components is 0.02 to 0.3%, respectively. Furthermore, Ni
Is 0.03-0.3%, Mo and Cd are 0.005-0.3%.
It is effective at 3%.
【0032】次に本発明の製造工程について説明する。
前記の成分からなる溶鋼を連続鋳造により直接スラブと
するか、或は溶鋼を鋳型に注入し、凝固させて鋼塊と
し、これを分塊圧延してスラブとした後、1280℃未
満の温度域に加熱した後、熱間圧延を施す。または近年
普及され始めている、鋳造厚みが30〜75mmの所謂
薄スラブ鋳造を用い、粗圧延を省略して仕上げ圧延を行
う方法を用いても良い。Next, the manufacturing process of the present invention will be described.
The molten steel composed of the above components is directly converted into a slab by continuous casting, or the molten steel is poured into a mold and solidified to form a steel ingot, which is subjected to slab rolling to form a slab. , And then hot-rolled. Alternatively, a method of performing so-called thin slab casting with a casting thickness of 30 to 75 mm, which has begun to be widely used in recent years, and omitting rough rolling and performing finish rolling may be used.
【0033】この熱間圧延における仕上げ圧延の最終ス
タンドの圧下率R2、および最終スタンドの一つ前の圧
下率R1について、以下の条件のうちいずれかを満たす
ようにすることが、本発明の最大の特徴である。 0.3≦R1 の時は 0.1<R2 ……… (条件1) 0.3≦R2 の時は 0.1<R1 ……… (条件2) ただし、 R1=(tf2−tf1)/tf2 R2=(tf1−tf)/tf1 tf:仕上げ厚み(mm) tf1:仕上げス最終タンド入り口厚み(mm) tf2:仕上げ最終スタンドの一つ前の入り口厚み(m
m) 以上の温度、圧下率条件を満たすようにすることで、鋳
造、熱間圧延時にCを有さずとも、良好な磁気特性を有
する一方向性電磁鋼板を製造することができる。さら
に、R1,R2ともに0.3以上であれば、より良好な
磁気特性を得ることができる。圧下率の上限は磁気特性
の点からは特に規定しないが、通常の熱間圧延設備の能
力では、1パス当たりの圧下率は0.6位までが限界で
ある。The maximum rolling reduction R2 of the final stand of the finish rolling in the hot rolling and the rolling reduction R1 immediately before the final stand satisfy one of the following conditions. It is a feature of. When 0.3 ≦ R1, 0.1 <R2 (Condition 1) When 0.3 ≦ R2, 0.1 <R1 (Condition 2) However, R1 = (t f2 −t f1 ) / T f2 R2 = (t f1 −t f ) / t f1 t f : Finished thickness (mm) t f1 : Finished finish tund entrance thickness (mm) t f2 : Finished finish stand immediately before entrance ( m
m) By satisfying the above conditions of temperature and rolling reduction, it is possible to manufacture a grain-oriented electrical steel sheet having good magnetic properties without having C during casting and hot rolling. Further, when both R1 and R2 are 0.3 or more, better magnetic characteristics can be obtained. Although the upper limit of the rolling reduction is not particularly defined from the viewpoint of magnetic properties, the rolling reduction per pass is limited to about 0.6 at ordinary hot rolling equipment capacity.
【0034】また、仕上げ圧延の開始温度は975℃超
とする必要がある。975℃以下では強圧下による集合
組織の改善効果がない。上限については特に規定しない
が、本発明のスラブ加熱温度は1280℃未満であるた
め、通常は1150℃以下となる。熱間圧延により1.
5〜20mmの板厚とした鋼板は、所望とする磁気特性
に応じて熱延板焼鈍を施しもしくは省略し、続いて冷間
圧延を施す。このとき最終冷間圧延の圧下率は85%以
上とする必要がある。これ未満では二次再結晶が十分に
進行せず、磁気特性が劣化する。上限は特に規定しない
が、通常の冷間圧延機で圧下率96%以上とするには、
熱間圧延の板厚を非常に厚くせねばならず、現実的では
ない。Further, the starting temperature of the finish rolling needs to be higher than 975 ° C. At 975 ° C. or lower, there is no effect of improving the texture by strong pressure. Although the upper limit is not particularly specified, the slab heating temperature of the present invention is lower than 1280 ° C., and thus is usually 1150 ° C. or lower. By hot rolling 1.
The steel sheet having a thickness of 5 to 20 mm is subjected to hot-rolled sheet annealing or omitted depending on desired magnetic properties, and then subjected to cold rolling. At this time, the rolling reduction of the final cold rolling needs to be 85% or more. If it is less than this, secondary recrystallization does not sufficiently proceed, and the magnetic properties deteriorate. Although the upper limit is not particularly specified, in order to reduce the rolling reduction to 96% or more with a normal cold rolling mill,
The thickness of the hot-rolled plate must be very large, which is not practical.
【0035】冷間圧延により0.15〜0.50mmの
板厚とした鋼板は、続いて一次再結晶焼鈍を施す。この
ときの焼鈍温度は800〜920℃とするのが好まし
く、さらに一次再結晶粒径を適正な範囲にするよう、焼
鈍温度を適宜調整するのが好ましい。次に、二次再結晶
後の全酸化物質量について説明する。先ほどの実験と同
じ素材及び製法で、最終板厚0.4mmのものについ
て、焼鈍分離剤にCaCl2を種々の量添加して二次再
結晶焼鈍を施し、鋼板表面の全酸化物質量を0.1〜
3.5g/m2とした製品を用いて打ち抜き試験を行っ
たときの、打ち抜き回数と打ち抜き後の鋼板のカエリ高
さとの関係を図3に示す。図3から、カエリ高さが50
μmを超える打ち抜き回数は、鋼板表面の全酸化物質量
が多くなるにつれ急激に低下し、1.0g/m2を超え
ると打ち抜き性評価の基準である3万回を割ってしまう
ことが分かる。The steel sheet having a thickness of 0.15 to 0.50 mm by cold rolling is subsequently subjected to primary recrystallization annealing. The annealing temperature at this time is preferably set to 800 to 920 ° C., and it is preferable to appropriately adjust the annealing temperature so that the primary recrystallized grain size is in an appropriate range. Next, the total oxide mass after the secondary recrystallization will be described. With the same material and manufacturing method as in the previous experiment, with a final plate thickness of 0.4 mm, CaCl 2 was added to the annealing separator in various amounts and subjected to secondary recrystallization annealing to reduce the total oxide mass on the steel sheet surface to 0%. .1 to
FIG. 3 shows the relationship between the number of times of punching and the height of burrs on the steel sheet after punching when a punching test was performed using a product with 3.5 g / m 2 . From FIG. 3, the burrs height is 50
It can be seen that the number of punches exceeding μm sharply decreases as the total oxide mass on the steel sheet surface increases, and that it exceeds 30,000 times, which is the criterion for the evaluation of punchability, when it exceeds 1.0 g / m 2 .
【0036】本発明では脱炭焼鈍しないため鋼板表面に
SiO2は形成され難く、それによりフォルステライト
を主とするグラス皮膜を有さない一方向性電磁鋼板を製
造することができる。しかしながら、一方向性電磁鋼板
は成分としてSiを多く含むので、実際の工業生産での
一次再結晶焼鈍では最低限のSiO2は形成され、グラ
ス皮膜は形成されうる。したがって、更に安定してグラ
ス皮膜を形成させないようにするためには、さらに、
i)一次再結晶焼鈍時の雰囲気、ii)MgOの水和水、
iii)MgOへの添加物、iv)二次再結晶仕上げ焼鈍で
の雰囲気調整、などの手段の1つ以上を用いることが好
ましい。これらにより、二次再結晶後の鋼板の全酸化物
質量を1.0g/m2以下となるようにする。以下に上
記i)〜iv)の各手段について詳細に説明する。[0036] SiO 2 on the surface of the steel sheet to not decarburization annealing in the present invention is difficult to be formed, thereby producing a grain-oriented electrical steel sheet having no glass coating film consisting mainly of forsterite. However, since the grain-oriented electrical steel sheet contains a large amount of Si as a component, a minimum amount of SiO 2 is formed by primary recrystallization annealing in actual industrial production, and a glass film can be formed. Therefore, in order not to form the glass film more stably,
i) atmosphere during primary recrystallization annealing, ii) hydration water of MgO,
It is preferable to use at least one of means such as iii) an additive to MgO, and iv) atmosphere adjustment in the secondary recrystallization finish annealing. Thus, the total oxide mass of the steel sheet after the secondary recrystallization is controlled to be 1.0 g / m 2 or less. Hereinafter, the respective means i) to iv) will be described in detail.
【0037】i)一次再結晶焼鈍においてSiO2の形
成を極力低減して二次再結晶焼鈍後にグラス皮膜を鋼板
の全域で均一に形成させないためには、焼鈍雰囲気のP
H2O/PH2を0.01未満とするのが望ましい。 ii)焼鈍分離剤の水和水分は2.0%未満とするのが好
ましい。2.0%以上では二次再結晶焼鈍後にグラス皮
膜が生成する。 iii)焼鈍分離剤にLi,K,Na,Ba,Ca,M
g,Zn,Fe,Zr,Sr,Sn,Alの塩化物、硝
酸塩、硫化物、硫酸塩の中から選ばれる1種または2種
以上を添加すると、二次再結晶焼鈍において、一度生成
されたグラス皮膜を破壊することができる。本発明では
脱炭焼鈍によるSiO2の生成量が非常に少ないので、
添加量も従来技術と比べ少なくてよく、MgO:100
質量部に対して添加物の合計で0.1〜20.0質量部
である。0.1質量部未満では効果がない。20質量部
を超えると二次再結晶焼鈍時に気化して設備を傷める。
添加量が0.1〜20.0質量部の範囲であれば、十分
な打ち抜き性を確保できる。望ましい添加量は0.1〜
5.0質量部である。 iv)二次再結晶焼鈍の昇温加熱中の800℃までの雰囲
気酸化度(PH2O/PH2)を0.02未満とすること
で、二次再結晶焼鈍後にグラス皮膜を鋼板の全域で均一
に形成させないことが可能である。雰囲気酸化度の調整
方法としては、H2%の混合率を変える方法が好まし
い。I) In order to minimize the formation of SiO 2 in the primary recrystallization annealing so that the glass film is not uniformly formed over the entire area of the steel sheet after the secondary recrystallization annealing, the P in the annealing atmosphere is required.
The H2 O / P H2 desirable to less than 0.01. ii) The hydration moisture of the annealing separator is preferably less than 2.0%. If it is 2.0% or more, a glass film is formed after the secondary recrystallization annealing. iii) Li, K, Na, Ba, Ca, M
When one or more selected from chlorides, nitrates, sulfides, and sulfates of g, Zn, Fe, Zr, Sr, Sn, and Al are added, they are once formed in the secondary recrystallization annealing. Can destroy glass film. In the present invention, the amount of SiO 2 generated by decarburization annealing is very small,
The amount of addition may be smaller than that of the prior art, and MgO: 100
The total amount of the additives is 0.1 to 20.0 parts by mass with respect to parts by mass. If the amount is less than 0.1 part by mass, there is no effect. If it exceeds 20 parts by mass, it vaporizes during secondary recrystallization annealing and damages the equipment.
When the added amount is in the range of 0.1 to 20.0 parts by mass, sufficient punching properties can be secured. Desirable addition amount is 0.1 to
5.0 parts by mass. iv) By making the degree of atmospheric oxidation (P H2O / P H2 ) up to 800 ° C. during the heating and heating of the secondary recrystallization annealing less than 0.02, the glass film is formed over the entire area of the steel sheet after the secondary recrystallization annealing. It is possible not to form them uniformly. As a method of adjusting the degree of oxidation in the atmosphere, a method of changing the mixing ratio of H 2 % is preferable.
【0038】一次再結晶焼鈍後の鋼板には、インヒビタ
ー強化のため窒化処理が施される。窒化増量としては、
0.0050%未満ではインヒビターの強化にほとんど
寄与せず、0.0150%を超えるとグラス皮膜を破壊
するため制限される。窒化処理は走行するストリップ状
態でアンモニアガスを用いるのが好ましい。また、一次
再結晶焼鈍後、二次再結晶仕上げ焼鈍までの間に、Mg
Oを主体とする焼鈍分離剤を塗布し、コイルの形に巻き
取る。この焼鈍分離剤には、磁気特性の向上を目的とし
て、塩化物などを添加してもよい。The steel sheet after the primary recrystallization annealing is subjected to a nitriding treatment for strengthening the inhibitor. As nitriding increase,
If it is less than 0.0050%, it hardly contributes to the strengthening of the inhibitor, and if it exceeds 0.0150%, the glass coating is destroyed, so that it is limited. In the nitriding treatment, it is preferable to use ammonia gas in a running strip state. Also, after the primary recrystallization annealing and before the secondary recrystallization finishing annealing, Mg
An annealing separator mainly composed of O is applied and wound into a coil. A chloride or the like may be added to the annealing separator for the purpose of improving magnetic properties.
【0039】コイルは引き続き二次再結晶仕上げ焼鈍を
施す。二次再結晶仕上げ焼鈍は5〜30℃/時の昇温速
度で昇温する。このときの雰囲気ガスの組成はN2、
H2、不活性ガスの混合であるが、本発明では鋼板表面
の酸化層がほとんどないため、インヒビターであるAl
Nの早期分解を抑制し、良好な磁気特性を得るため、雰
囲気ガス中のN2を50vol%以上とするのが好まし
い。The coil is subsequently subjected to a secondary recrystallization finish annealing. In the secondary recrystallization finishing annealing, the temperature is raised at a rate of 5 to 30 ° C./hour. At this time, the composition of the atmosphere gas was N 2 ,
Although H 2 and inert gas are mixed, in the present invention, since there is almost no oxide layer on the surface of the steel sheet, the inhibitor Al
In order to suppress the early decomposition of N and obtain good magnetic properties, it is preferable to set N 2 in the atmosphere gas to 50 vol% or more.
【0040】その後1100℃以上まで昇温した後、H
2:100%の雰囲気で10時間以上の純化を施す。二次
再結晶後の鋼板は焼鈍分離剤を洗浄除去後、絶縁皮膜を
塗布焼き付けて、製品とする。さらに磁気特性を向上さ
せるため、公知の磁区細分化処理を施しても良い。Thereafter, after the temperature was raised to 1100 ° C. or more, H
2 : Purification for 10 hours or more in 100% atmosphere. After the secondary recrystallization, the steel sheet is washed and removed of the annealing separator, and then coated with an insulating film and baked to obtain a product. In order to further improve the magnetic characteristics, a known magnetic domain segmentation process may be performed.
【0041】[0041]
【実施例】以下実施例を説明する。 (熱間圧延鋼帯準備)質量%で、C:0.003%、S
i:3.20%、Mn:0.10%、S:0.0078
%、酸可溶性Al:0.027%、N:0.0075%
を含有し、残部Feおよび不可避的不純物からなる25
2mm厚のスラブを、1150℃の温度で加熱した後、
まず粗圧延し、続いて仕上げ熱間圧延を、入り口温度を
1025〜1050℃で開始し、6つの仕上げスタンド
で以下の板厚条件で3.8mmと2.4mmの熱間圧延
鋼帯を準備した。巻き取り温度は530〜600℃であ
った。Embodiments will be described below. (Preparation of hot-rolled steel strip) In mass%, C: 0.003%, S
i: 3.20%, Mn: 0.10%, S: 0.0078
%, Acid-soluble Al: 0.027%, N: 0.0075%
And the balance 25 consisting of Fe and unavoidable impurities
After heating a 2mm thick slab at a temperature of 1150 ° C,
First, rough rolling is performed, followed by finishing hot rolling, at an inlet temperature of 1025 to 1050 ° C., and hot rolling steel strips of 3.8 mm and 2.4 mm are prepared on the six finishing stands under the following sheet thickness conditions. did. The winding temperature was 530-600 ° C.
【0042】条件1 : 93→65→50→30→1
6.0→6.7→3.8(mm) 条件2 : 80→55→30→15→ 5.5→4.
7→3.8(mm) 条件3 : 93→65→50→20→ 7.0→4.
2→2.4(mm) 条件4 : 80→55→30→15→ 3.4→2.
9→2.4(mm) (実施例1)この熱延板に、1100℃に30秒保持
し、900℃に30秒保持して急冷する熱延板焼鈍と酸
洗を行い、次いで、パス間の温度を175〜225℃と
して冷間圧延し、0.335mm、0.40mmの板厚
とした。その後835℃で90秒の均熱の一次再結晶焼
鈍をN2:25%、H2:75%、Dp=0℃(PH2O
/PH2:0.0081)の雰囲気ガス中で行った。その
後走行するストリップ状態下でアンモニアガスで窒化
し、195〜225ppmの窒素含有量とした。次いで
MgOを主成分とする焼鈍分離剤を塗布して、1200
℃までN2=25%、H2=75%雰囲気、15℃/時間
の昇温速度の二次再結晶焼鈍を施した。その後H2=1
00%での1200℃×30時間の純化処理を行い、平
坦化処理で燐酸塩を主成分とする良密着性絶縁皮膜を塗
布し、磁気特性を測定した。この結果を表1、表2に示
す。Condition 1: 93 → 65 → 50 → 30 → 1
6.0 → 6.7 → 3.8 (mm) Condition 2: 80 → 55 → 30 → 15 → 5.5 → 4.
7 → 3.8 (mm) Condition 3: 93 → 65 → 50 → 20 → 7.0 → 4.
2 → 2.4 (mm) Condition 4: 80 → 55 → 30 → 15 → 3.4 → 2.
9 → 2.4 (mm) (Example 1) This hot-rolled sheet was subjected to hot-rolled sheet annealing and acid pickling in which it was kept at 1100 ° C. for 30 seconds, kept at 900 ° C. for 30 seconds and rapidly cooled, then passed. Cold rolling was performed at a temperature between 175 and 225 ° C. to obtain sheet thicknesses of 0.335 mm and 0.40 mm. Thereafter, primary recrystallization annealing at 835 ° C. for 90 seconds was performed by N2: 25%, H2: 75%, Dp = 0 ° C. (P H2O
/ P H2 : 0.0081). Thereafter, it was nitrided with ammonia gas in a running strip state to a nitrogen content of 195 to 225 ppm. Next, an annealing separator containing MgO as a main component was applied, and
The secondary recrystallization annealing was performed at a heating rate of 15 ° C./hour in an atmosphere of N 2 = 25% and H 2 = 75% up to ° C. Then H 2 = 1
A purification treatment at 1200 ° C. for 30 hours at 00% was performed, and a good adhesion insulating film containing phosphate as a main component was applied by a flattening treatment, and the magnetic properties were measured. The results are shown in Tables 1 and 2.
【0043】[0043]
【表1】 [Table 1]
【0044】[0044]
【表2】 [Table 2]
【0045】表1、表2から、本発明の熱間圧延仕上げ
圧延の圧下率R1,R2がともに30%以上の場合に
は、いずれの板厚においても良好な磁気特性が得られた
のに対し、比較例で圧下率がいずれも30%未満の場
合、磁気特性が劣る結果となった。また表2から、冷間
圧延の圧下率が85%未満の場合には、やや磁気特性が
劣る結果となった。As can be seen from Tables 1 and 2, when both the reduction ratios R1 and R2 of the hot rolling finish rolling of the present invention were 30% or more, good magnetic properties were obtained at any plate thickness. On the other hand, when the rolling reduction was less than 30% in each of the comparative examples, the magnetic properties were inferior. Further, from Table 2, when the rolling reduction of the cold rolling was less than 85%, the result was that the magnetic properties were slightly inferior.
【0046】[0046]
【発明の効果】以上説明したように本発明においては、
熱間圧延仕上げ入り口温度,熱間圧延最終2パスの圧下
率、および冷間圧延率を規定することにより、脱炭する
こと無く低温スラブ加熱を前提とする製造方法で良好な
磁気特性を安定して得ることができる。As described above, in the present invention,
By defining the hot rolling finish inlet temperature, the reduction rate of the last two passes of hot rolling, and the cold rolling rate, it is possible to stabilize good magnetic properties by a manufacturing method based on low-temperature slab heating without decarburization. Can be obtained.
【図1】熱間圧延最終2パスの圧下率と磁気特性(磁束
密度B8(T))との関係を示すグラフ。FIG. 1 is a graph showing the relationship between the rolling reduction in the last two passes of hot rolling and magnetic properties (magnetic flux density B8 (T)).
【図2】冷間圧延の圧下率と磁気特性(磁束密度B8
(T))との関係を示すグラフ。FIG. 2 shows the rolling reduction and the magnetic properties (magnetic flux density B8) of cold rolling.
(T)) is a graph showing the relationship.
【図3】鋼板表面の全酸化物質量毎の、打ち抜き回数と
カエリ高さとの関係を示すグラフ。FIG. 3 is a graph showing the relationship between the number of punches and the height of burrs for each total oxide mass on the steel sheet surface.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C23C 8/26 C23C 8/26 (72)発明者 藤井 宣憲 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 大畑 喜史 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 田中 收 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社 Fターム(参考) 4K028 AA02 AB01 AC04 4K033 AA02 CA09 CA10 FA01 FA03 FA05 HA01 HA02 JA01 LA01 MA02 MA03 RA04 SA03 TA02──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C23C 8/26 C23C 8/26 (72) Inventor Noriyoshi Fujii 1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka -1 Inside Nippon Steel Corporation Yawata Works (72) Inventor Yoshifumi Ohata 1-1 Inside Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Haru Tanaka F-term (Reference) 4K028 AA02 AB01 AC04 4K033 AA02 CA09 CA10 FA01 FA03 FA05 HA01 HA02 JA01 LA01 MA02 MA03 RA04 SA03 TA02
Claims (9)
2.5〜4.5%、酸可溶性Al:0.020〜0.0
40%、N:0.0030〜0.010%、0.003
%≦(S+0.405Se)≦0.014%、Mn:
0.05〜0.14%を含有し、残部Feおよび不可避
的不純物からなるスラブを、1280℃未満の温度域に
加熱し、熱間圧延し、熱延板焼鈍を施しもしくは施さ
ず、85%以上の圧下率を適用する最終冷間圧延によっ
て最終板厚とした後、脱炭することなく一次再結晶焼鈍
を施し、焼鈍分離剤を塗布し仕上焼鈍を施す一方向性電
磁鋼板の製造方法において、熱間圧延における仕上げ圧
延の開始温度を975℃超とし、かつ仕上げ圧延の仕上
げ最終スタンドの圧下率R2、および最終スタンドの一
つ前の圧下率R1について、以下に規定する条件1、条
件2のいずれかを満足することを特徴とする脱炭焼鈍を
必要としない打ち抜き性の優れた一方向性電磁鋼板の製
造方法。 0.3≦R1 の時は 0.1<R2 ……… (条件1) 0.3≦R2 の時は 0.1<R1 ……… (条件2) ただし、 R1=(tf2−tf1)/tf2 R2=(tf1−tf)/tf1 tf:仕上げ厚み(mm) tf1:仕上げス最終タンド入り口厚み(mm) tf2:仕上げ最終スタンドの一つ前の入り口厚み(m
m)1. The method according to claim 1, wherein C ≦ 0.005% by mass%, Si:
2.5-4.5%, acid-soluble Al: 0.020-0.0
40%, N: 0.0030 to 0.010%, 0.003
% ≦ (S + 0.405Se) ≦ 0.014%, Mn:
A slab containing 0.05 to 0.14%, the balance being Fe and unavoidable impurities, is heated to a temperature range of less than 1280 ° C., hot-rolled, and subjected to hot rolled sheet annealing or not, and is subjected to 85% After making the final sheet thickness by final cold rolling applying the above reduction rate, in the method for producing a unidirectional electrical steel sheet which performs primary recrystallization annealing without decarburization, applies an annealing separator, and performs finish annealing. The start temperature of the finish rolling in hot rolling is set to more than 975 ° C., and the rolling reduction R2 of the finishing final stand of finish rolling and the rolling reduction R1 immediately before the final stand are defined as conditions 1 and 2 defined below. A method for producing a grain-oriented electrical steel sheet having excellent punchability and not requiring decarburization annealing, characterized by satisfying any of the above. When 0.3 ≦ R1, 0.1 <R2 (Condition 1) When 0.3 ≦ R2, 0.1 <R1 (Condition 2) However, R1 = (t f2 −t f1 ) / T f2 R2 = (t f1 −t f ) / t f1 t f : Finished thickness (mm) t f1 : Finished finish tund entrance thickness (mm) t f2 : Finished finish stand immediately before entrance ( m
m)
ンドの圧下率R2、および最終スタンドの一つ前の圧下
率R1をいずれも0.3以上とすることを特徴とする請
求項1記載の脱炭焼鈍を必要としない打ち抜き性の優れ
た一方向性電磁鋼板の製造方法。2. The rolling reduction R2 of the finishing stand in the finish rolling of the hot rolling and the rolling reduction R1 just before the final stand are all 0.3 or more. A method for manufacturing a grain-oriented electrical steel sheet with excellent punching properties that does not require decarburization annealing.
間に走行するストリップ状態でアンモニアガスを用いて
該ストリップを窒化することを特徴とする請求項1また
は2記載の脱炭焼鈍を必要としない打ち抜き性の優れた
一方向性電磁鋼板の製造方法。3. The decarburizing annealing according to claim 1 or 2, wherein the strip is nitrided by using ammonia gas in a strip state running after the primary recrystallization annealing until the secondary recrystallization annealing. A method for manufacturing a grain-oriented electrical steel sheet with excellent punchability that is not required.
が1.0g/m2以下であることを特徴とする請求項1
〜3のいずれかの項に記載の脱炭焼鈍を必要としない打
ち抜き性の優れた一方向性電磁鋼板の製造方法。4. The steel sheet according to claim 1, wherein the total oxide mass of the steel sheet after the secondary recrystallization annealing is 1.0 g / m 2 or less.
3. A method for producing a grain-oriented electrical steel sheet having excellent punchability and not requiring decarburization annealing according to any one of Items 3 to 3.
H2を0.01未満とし、焼鈍温度を800〜920℃で
均熱時間30秒〜200秒とすることを特徴とする請求
項1〜4のいずれかの項に記載の脱炭焼鈍を必要としな
い打ち抜き性の優れた一方向性電磁鋼板の製造方法。5. The atmosphere during primary recrystallization annealing is P H2O / P
The decarburizing annealing according to any one of claims 1 to 4, wherein H2 is less than 0.01 and the annealing temperature is 800 to 920 ° C and the soaking time is 30 seconds to 200 seconds. A method for producing a grain-oriented electrical steel sheet with excellent punchability.
部に対してLi,K,Na,Ba,Ca,Mg,Zn,
Fe,Zr,Sr,Sn,Alの塩化物、硝酸塩、硫化
物、硫酸塩の中から選ばれる1種または2種以上を0.
1〜20.0質量部添加した焼鈍分離剤を塗布すること
を特徴とする請求項1〜5のいずれかの項に記載の脱炭
焼鈍を必要としない打ち抜き性の優れた一方向性電磁鋼
板の製造方法。6. As an annealing separating agent, Li, K, Na, Ba, Ca, Mg, Zn, 100 parts by mass of MgO are used.
One, two or more selected from chlorides, nitrates, sulfides, and sulfates of Fe, Zr, Sr, Sn, and Al.
6. A grain-oriented electrical steel sheet having excellent punchability and not requiring decarburizing annealing according to claim 1, wherein an annealing separator added with 1 to 20.0 parts by mass is applied. Manufacturing method.
分を2.0%未満とすることを特徴とする請求項1〜6
のいずれかの項に記載の脱炭焼鈍を必要としない打ち抜
き性の優れた一方向性電磁鋼板の製造方法。7. The hydrated water of the annealing separator mainly composed of MgO is less than 2.0%.
The method for producing a grain-oriented electrical steel sheet having excellent punching properties that does not require decarburization annealing according to any one of the above items.
までの雰囲気酸化度(PH2O/PH2)を0.02未満と
することを特徴とする請求項1〜7のいずれかの項に記
載の脱炭焼鈍を必要としない打ち抜き性の優れた一方向
性電磁鋼板の製造方法。8. 800 ° C. at the time of heating for secondary recrystallization annealing
8. The method according to claim 1, wherein the atmosphere oxidation degree (P H2 O / P H2 ) is less than 0.02. Manufacturing method of grain-oriented electrical steel sheet.
スの組成をN2、H2、不活性ガスの混合で、かつN2を
50vol%以上とすることを特徴とする請求項1〜8
のいずれかの項に記載の脱炭焼鈍を必要としない打ち抜
き性の優れた一方向性電磁鋼板の製造方法。9. The method according to claim 1, wherein the composition of the atmosphere gas at the time of heating and heating in the secondary recrystallization annealing is a mixture of N 2 , H 2 and an inert gas, and N 2 is 50 vol% or more. 1-8
The method for producing a grain-oriented electrical steel sheet having excellent punching properties that does not require decarburization annealing according to any one of the above items.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001155968A JP2002348613A (en) | 2001-05-24 | 2001-05-24 | Manufacturing method of grain-oriented electrical steel sheet with excellent punchability that does not require decarburization annealing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001155968A JP2002348613A (en) | 2001-05-24 | 2001-05-24 | Manufacturing method of grain-oriented electrical steel sheet with excellent punchability that does not require decarburization annealing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002348613A true JP2002348613A (en) | 2002-12-04 |
Family
ID=19000053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001155968A Withdrawn JP2002348613A (en) | 2001-05-24 | 2001-05-24 | Manufacturing method of grain-oriented electrical steel sheet with excellent punchability that does not require decarburization annealing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002348613A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101130724B1 (en) * | 2004-12-28 | 2012-03-28 | 주식회사 포스코 | A method for grain-oriented electrical steel sheet with uniform magnetic properties |
KR101351959B1 (en) | 2011-11-21 | 2014-01-22 | 주식회사 포스코 | Method for manufacturing grain oriented electrical steel having excellent productive fabrication and manufactured grain oriented electrical steel by the same |
CN106414780A (en) * | 2014-05-12 | 2017-02-15 | 杰富意钢铁株式会社 | Method for producing oriented electromagnetic steel sheet |
CN106460085A (en) * | 2014-05-12 | 2017-02-22 | 杰富意钢铁株式会社 | Method for producing oriented electromagnetic steel sheet |
WO2020012666A1 (en) | 2018-07-13 | 2020-01-16 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and manufacturing method for same |
CN114632818A (en) * | 2022-03-14 | 2022-06-17 | 安阳钢铁股份有限公司 | Process method for reducing hot-rolled edge cracks of oriented silicon steel |
-
2001
- 2001-05-24 JP JP2001155968A patent/JP2002348613A/en not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101130724B1 (en) * | 2004-12-28 | 2012-03-28 | 주식회사 포스코 | A method for grain-oriented electrical steel sheet with uniform magnetic properties |
KR101351959B1 (en) | 2011-11-21 | 2014-01-22 | 주식회사 포스코 | Method for manufacturing grain oriented electrical steel having excellent productive fabrication and manufactured grain oriented electrical steel by the same |
CN106414780A (en) * | 2014-05-12 | 2017-02-15 | 杰富意钢铁株式会社 | Method for producing oriented electromagnetic steel sheet |
CN106460085A (en) * | 2014-05-12 | 2017-02-22 | 杰富意钢铁株式会社 | Method for producing oriented electromagnetic steel sheet |
US10294543B2 (en) | 2014-05-12 | 2019-05-21 | Jfe Steel Corporation | Method for producing grain-oriented electrical steel sheet |
US10294544B2 (en) | 2014-05-12 | 2019-05-21 | Jfe Steel Corporation | Method for producing grain-oriented electrical steel sheet |
CN106460085B (en) * | 2014-05-12 | 2019-07-02 | 杰富意钢铁株式会社 | Method for producing grain-oriented electrical steel sheet |
WO2020012666A1 (en) | 2018-07-13 | 2020-01-16 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and manufacturing method for same |
KR20210018433A (en) | 2018-07-13 | 2021-02-17 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet and its manufacturing method |
US12123068B2 (en) | 2018-07-13 | 2024-10-22 | Nippon Steel Corporation | Grain oriented electrical steel sheet and producing method thereof |
CN114632818A (en) * | 2022-03-14 | 2022-06-17 | 安阳钢铁股份有限公司 | Process method for reducing hot-rolled edge cracks of oriented silicon steel |
CN114632818B (en) * | 2022-03-14 | 2023-12-05 | 安阳钢铁股份有限公司 | Technological method for reducing hot rolling edge cracking of oriented silicon steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2983128B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3392669B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3359449B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP2000256810A (en) | Oriented silicon steel sheet excellent in magnetic properties and punching workability at low magnetic field and high frequency, and method for producing the same | |
WO1999046416A1 (en) | Unidirectional magnetic steel sheet and method of its manufacture | |
JP3921806B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP4123629B2 (en) | Electrical steel sheet and manufacturing method thereof | |
JP2002348613A (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent punchability that does not require decarburization annealing | |
JP4608467B2 (en) | Manufacturing method of electrical steel sheet | |
JP3056970B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties | |
JP3368310B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP4119689B2 (en) | Manufacturing method of bi-directional electrical steel sheet | |
JP2001049351A (en) | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density | |
JP7214974B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2002363646A (en) | Method for producing mirror-oriented grain-oriented electrical steel sheet that does not require decarburization annealing | |
JP2002030340A (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties | |
JP3397293B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP2002348612A (en) | Manufacturing method of grain-oriented electrical steel sheet that does not require decarburization annealing | |
JPH05295440A (en) | Method for producing unidirectional electrical steel sheet using rapidly solidified thin slab | |
JP3311021B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss | |
JP3061515B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH07305116A (en) | High magnetic flux density grain-oriented electrical steel sheet manufacturing method | |
WO2020149333A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP3392699B2 (en) | Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics | |
JPH09118920A (en) | Stable manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080805 |