JP2002348111A - Activated carbon production method - Google Patents
Activated carbon production methodInfo
- Publication number
- JP2002348111A JP2002348111A JP2001162881A JP2001162881A JP2002348111A JP 2002348111 A JP2002348111 A JP 2002348111A JP 2001162881 A JP2001162881 A JP 2001162881A JP 2001162881 A JP2001162881 A JP 2001162881A JP 2002348111 A JP2002348111 A JP 2002348111A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- activated carbon
- raw material
- temperature
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Coke Industry (AREA)
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
(57)【要約】
【課題】 高吸着能を有し、脱硫性能に優れ、且つ、移
動層方式の乾式脱硫脱硝工程での循環使用に耐え得る高
強度な活性炭の製造方法を提供する。
【解決手段】 石炭に300 〜600 ℃の温度で低温乾留を
施した半成コークスを主原料とし、粘結性を有する石炭
を副原料として、これらを結合剤とともに混合成形した
成形物に炭化、賦活処理を行なって活性炭とする活性炭
の製造方法において、主原料である半成コクースの原料
炭として、軟化溶融状態にある温度でのNMR測定結果
から算出した易動性水素成分の量が30%以下である石炭
を用いる。また、副原料である粘結性を有する石炭とし
て、軟化溶融状態にある温度でのNMR測定結果から算
出した易動性水素成分の量が35〜45%である石炭を用い
る。PROBLEM TO BE SOLVED: To provide a method for producing high-strength activated carbon having high adsorption capacity, excellent desulfurization performance, and capable of withstanding circulating use in a moving bed type dry desulfurization and denitration process. SOLUTION: A semi-coke obtained by subjecting coal to low-temperature carbonization at a temperature of 300 to 600 ° C is used as a main raw material, and a coal having cohesive properties is used as an auxiliary raw material. In the method for producing activated carbon obtained by performing an activation treatment to obtain activated carbon, the amount of a mobile hydrogen component calculated from NMR measurement results at a temperature in a softened and molten state is 30% The following coal is used. Further, as the coking coal as an auxiliary raw material, a coal having a mobile hydrogen component amount of 35 to 45% calculated from NMR measurement results at a temperature in a softened and molten state is used.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、乾式脱硫脱硝プロ
セスにおいて吸着剤として使用される高強度、高吸着能
を有する活性炭の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing activated carbon having high strength and high adsorptivity used as an adsorbent in a dry desulfurization and denitration process.
【0002】[0002]
【従来の技術】活性炭吸着剤の欠点を解消するため種々
の研究が行われ、石炭を原料としこれに各種の結合剤を
加えて成形し、特定の条件下で乾留、賦活することによ
って脱硫脱硝に適した成形活性炭が提案されている。例
えば、特公昭62−51885 号公報には、石炭から活性度の
高い半成コークスを製造しこれを主原料としこれに数種
の石炭と結合剤を加えてロガ指数が20〜30%になるよう
に強度調整後乾留、賦活する方法が開示されている。ま
た、特開平11−157822公報にはボタン指数を1.5〜4 に
原料石炭の配合を調整後乾留、賦活する方法が開示され
ている。しかし、これらのロガ指数やボタン指数は耐摩
耗性等の強度を表す指数、配合炭の粘結性を表す指数で
あって、特定範囲のロガ指数、ボタン指数に石炭の配合
を調整することで耐摩耗性や強度に優れた活性炭を製造
することはできるが、必ずしも脱硫性能又は脱硫脱硝性
能の向上を図ることはできない。2. Description of the Related Art Various studies have been conducted to solve the drawbacks of activated carbon adsorbents. Desulfurization and denitration are performed by using coal as a raw material, adding a variety of binders to the mixture, forming the mixture under specific conditions, and then subjecting it to dry distillation and activation. Activated carbon suitable for the use has been proposed. For example, Japanese Patent Publication No. Sho 62-51885 discloses that a semi-active coke having a high activity is produced from coal, and this is used as a main raw material, and several kinds of coal and a binder are added to the coke to achieve a logarithmic index of 20 to 30%. Thus, a method of performing dry distillation and activation after adjusting the strength is disclosed. Japanese Patent Application Laid-Open No. 11-157822 discloses a method in which the blending of raw coal is adjusted to a button index of 1.5 to 4, followed by dry distillation and activation. However, these log index and button index are indexes indicating strength such as abrasion resistance, and index indicating caking property of blended coal. Activated carbon having excellent wear resistance and strength can be produced, but the desulfurization performance or desulfurization and denitration performance cannot always be improved.
【0003】また、特開平11−349317公報には揮発分と
流動度が最適範囲にある石炭を配合することで強度、吸
着能に優れた活性炭を製造する方法が開示されている。
しかしながら、この方法においては用いる主原料、副原
料や加熱温度、加熱速度などの製造条件に種々の制約が
あり、成分変動の少ない主原料や副原料の入手が困難で
あるとともに、製造工程が複雑化して簡単に活性炭を製
造することができずコストアップを招くという問題があ
る。[0003] Japanese Patent Application Laid-Open No. 11-349317 discloses a method for producing activated carbon having excellent strength and adsorptivity by blending coal having a volatile content and a fluidity within optimum ranges.
However, in this method, there are various restrictions on the manufacturing conditions such as the main raw material, the auxiliary raw material, the heating temperature, the heating rate, and the like, and it is difficult to obtain the main raw material and the auxiliary raw material with little component fluctuation, and the manufacturing process is complicated. However, there is a problem that activated carbon cannot be easily produced and the cost is increased.
【0004】[0004]
【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、高強度で、高吸着能(例えばSOx
吸着能)を有し脱硫性能に優れ、且つ、移動層方式の乾
式脱硫脱硝プロセスでの循環使用に耐えるだけの高い強
度を有する活性炭の製造方法を提供するためになされた
ものである。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and has a high strength and a high adsorption capacity (for example, SO x).
The present invention has been made to provide a method for producing activated carbon having excellent adsorption capacity, excellent desulfurization performance, and high strength enough to withstand circulation use in a moving bed type dry desulfurization and denitration process.
【0005】[0005]
【課題を解決するため手段】発明者らは、鋭意検討を重
ねた結果、石炭を原料とする脱硫用活性炭又は脱硫脱硝
用活性炭の製造方法において、該石炭の軟化溶融温度域
でのNMR(核磁気共鳴)測定結果から石炭粒子内に存
在する横緩和時間が長い成分、即ち、易動性水素成分の
量(溶融指数) が特定範囲にある石炭を選定、配合する
ことで、極めて高い脱硫性能(例えばSOx 吸着能)を
有し、しかも移動層での長時間使用に耐え得る高強度で
堅牢な活性炭の製造方法を発明するに至った。Means for Solving the Problems As a result of intensive studies, the inventors have found that in a method for producing activated carbon for desulfurization or activated carbon for desulfurization and denitrification using coal as a raw material, NMR (nucleation) in the softening and melting temperature range of the coal is used. From the results of magnetic resonance (MRI) measurement, selecting and blending a component with a long transverse relaxation time present in the coal particles, that is, a coal with a specific range of the amount of mobile hydrogen component (melting index), provides extremely high desulfurization performance. Thus, a method for producing a high-strength and robust activated carbon having (e.g., SO x adsorption ability) and capable of withstanding long-term use in a moving bed has been invented.
【0006】上記した課題を解決するためになされた本
発明は、石炭に300 〜600 ℃の温度で低温乾留を施した
半成コークスを主原料とし、粘結性を有する石炭を副原
料とし、これらを結合剤とともに混合成形した成形物に
炭化、賦活の熱処理を行なって活性炭とする活性炭の製
造方法において、主原料である半成コークスの原料炭と
して、軟化溶融状態にある温度でのNMR測定結果から
算出した易動性水素成分の量が30%以下である石炭を用
いることを特徴とする活性炭製造方法を請求項1に係る
発明とする。また、前記した発明において副原料として
用いる粘結性を有する石炭として、軟化溶融状態にある
温度でのNMR測定結果から算出した易動性水素成分の
量が35〜45%である石炭を用いる活性炭製造方法を請求
項2に係る発明とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. According to the present invention, semi-coke obtained by subjecting coal to low-temperature carbonization at a temperature of 300 to 600 ° C. is used as a main raw material, and coal having caking properties is used as an auxiliary raw material. In a method of producing activated carbon by subjecting a molded product obtained by mixing and molding these materials together with a binder to heat treatment of activation and carbonization by activation heat treatment, NMR measurement at a temperature in a softened and molten state as raw carbon of semi-coke as a main raw material. The invention according to claim 1 is a method for producing activated carbon, characterized by using coal whose amount of a mobile hydrogen component calculated from the result is 30% or less. In the above-mentioned invention, as the coal having caking properties to be used as an auxiliary raw material, activated carbon using 35 to 45% of the amount of a mobile hydrogen component calculated from NMR measurement results at a temperature in a softened and molten state is used. The manufacturing method is the invention according to claim 2.
【0007】[0007]
【作用】本発明の活性炭の製造方法は、主原料である半
成コクースの原料炭として、軟化溶融温度でのNMR測
定結果から算出した易動性水素成分量が30%以下のもの
を用いることにより、SOx 分子を吸着するのに適した
直径10Å付近のミクロ孔を多数形成することができるの
で、これから製造した活性炭は高強度でSOx 吸着能に
優れたものとなる。また、主原料である前記したような
半成コクースに混合する副原料である成形物の原料炭と
して、NMR測定結果から算出した易動性水素成分量が
35〜45%である粘結性石炭を用いることによって、さら
に外観が良好で高いロガ強度と良好なSOx 吸着能を有
する活性炭を製造することができる。According to the method for producing activated carbon of the present invention, as a raw material coal of semi-cured coke which is a main raw material, one having a mobile hydrogen component amount of 30% or less calculated from NMR measurement results at a softening melting temperature is used. Thereby, a large number of micropores having a diameter of about 10 ° suitable for adsorbing SO x molecules can be formed, and thus the activated carbon produced therefrom has high strength and excellent SO x adsorbing ability. In addition, as a raw material coal of a molded product which is a sub-material mixed with the semi-coke as described above which is a main material, the amount of a mobile hydrogen component calculated from NMR measurement results is
By using the caking property of coal is 35 to 45% can be produced activated carbon having a better SO x adsorption capacity and good high logger strength appearance.
【0008】[0008]
【発明の実施の形態】本発明の実施の形態を図1に示す
実施例の工程図と併せ説明する。次いで、本発明を実施
例により更に具体的に説明するが、本発明は実施例によ
り何ら制限されるものではない。なお、易動性水素成分
の量、ロガ強度、脱硫脱硝率、硫安生成による粉化率は
下記の測定により求めた。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the flow chart of the embodiment shown in FIG. Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples. The amount of the mobile hydrogen component, the logarithmic strength, the desulfurization and denitration rate, and the powdering rate due to the production of ammonium sulfate were determined by the following measurements.
【0009】〈易動性水素成分の量〉対象とする石炭試
料を核磁気共鳴装置専用の試料管に装入する。なお、石
炭試料は試料管に入るサイズである数ミリメートル以下
であれば、特にその大きさや形状に制限はない。測定の
手法としては、水素90度のパルス幅は8 μsec 、エコー
時間は50μsec 〜3msec 、繰り返し時間は5msec 〜1se
c、積算回数は512 回とする。データのサイズはX方向
で512 ポイント、Y方向で512 ポイント、Z方向は1 〜
512 ポイントに設定する。その際に試料を3 ℃/min で
昇温させながら、X、Y、Zの3 軸にそれぞれ、89gaus
s /cm、96gauss /cm、107gauss/cmの磁場勾配を短時
間で与える方法で測定を行い、石炭の水素核NMRイメ
ージング画像を得る。更に昇温させながら、同じ測定を
することで、石炭が軟化溶融状態のNMRイメージ画像
を得る。得られた画像から、適当な横緩和時間での分布
と易動性水素成分の存在量を算出する。ここで易動性水
素成分の存在量は、軟化溶融温度域で、横緩和時間が10
0 μsec 以上である成分の量を意味する。ここで多重パ
ルスや横緩和時間に関しては、特開平11−326248号中に
その内容を記載している。<Amount of mobile hydrogen component> A target coal sample is charged into a sample tube dedicated to a nuclear magnetic resonance apparatus. The size and shape of the coal sample are not particularly limited as long as the size is several millimeters or less, which is the size that enters the sample tube. As a measuring method, the pulse width of 90 ° hydrogen is 8 μsec, the echo time is 50 μsec to 3 msec, and the repetition time is 5 msec to 1 se.
c, The number of integration is 512 times. The data size is 512 points in the X direction, 512 points in the Y direction, and 1 to
Set to 512 points. At that time, the sample was heated at 3 ° C / min, and 89gauss was applied to each of the three axes of X, Y and Z.
The measurement is performed by applying a magnetic field gradient of s / cm, 96 gauss / cm, and 107 gauss / cm in a short time to obtain a hydrogen nucleus NMR imaging image of coal. By performing the same measurement while further raising the temperature, an NMR image image of the coal in a softened and molten state is obtained. From the obtained image, the distribution at an appropriate lateral relaxation time and the abundance of the mobile hydrogen component are calculated. Here, the abundance of the mobile hydrogen component depends on the transverse relaxation time of 10 in the softening and melting temperature range.
It means the amount of the component that is 0 μsec or more. The details of the multiple pulses and the transverse relaxation time are described in JP-A-11-326248.
【0010】〈ロガ強度〉活性炭の装入、排出が可能
で、円筒の対角に2箇所高さ30mmの邪魔板を設置した、
回転円筒 (φ200 ×70) 内に活性炭サンプルを30g 装
入、60rpm の回転速度で円筒を1000回転させた。その後
活性炭を取り出し、3mm メッシュの篩にて微粉分を除去
し、投入活性炭重量に対する3mm 篩上の重量割合を求
め、下記(1) 式によりロガ強度を決定した。なお、ロガ
強度試験機を図7 に示した。<Logger strength> Activated carbon can be charged and discharged, and baffles with a height of 30 mm are installed at two locations on the diagonal of the cylinder.
30 g of an activated carbon sample was charged into a rotating cylinder (φ200 × 70), and the cylinder was rotated 1000 times at a rotation speed of 60 rpm. Thereafter, the activated carbon was taken out, fine powder was removed with a 3 mm mesh sieve, the weight ratio on the 3 mm sieve with respect to the input activated carbon weight was determined, and the logarithmic strength was determined by the following equation (1). The log strength tester is shown in FIG.
【数1】 (Equation 1)
【0011】〈SOx 吸着能〉粒径を1 〜3mm に調整し
た活性炭試料10ccに合成ガス(SO2 2vol%、O2 5vol%、N2
83vol% 、H2O 10vol%) を3Nリットル/minの流量にて10
0 ℃で3 時間接触させSO2 ガスを吸着させる。その後、
400 ℃で1.5 時間N2気流下で加熱し、この間N2に同伴さ
れ排出される、前操作にて吸着したSO2 ガスを全量H2O2
3% 水溶液に吸収させる。(SO2+H2O2 →H2SO4 、硫酸と
して回収) 吸収液をJIS K-0103に記載されるアルセナゾ
III法による中和滴定により決定されるSO2 吸着量をSO
x 吸着能とした。活性炭1gあたりのSO2 吸着量をmg/g
-ac の単位で表す。尚、ac:activated carbon(活性炭)
である。<SO x adsorption capacity> Synthesis gas (SO 2 vol%, O 2 5 vol%, N 2) was added to 10 cc of activated carbon sample whose particle diameter was adjusted to 1 to 3 mm.
83vol%, the H 2 O 10vol%) at a flow rate of 3N liters / min 10
0 3 hours of contact at ℃ adsorbing the SO 2 gas. afterwards,
Was heated for 1.5 hours a stream of N 2 under 400 ° C., during which entrained and discharged into N 2, SO 2 gas the total amount H 2 O 2 adsorbed in the previous operation
Absorb in 3% aqueous solution. (SO 2 + H 2 O 2 → H 2 SO 4 , recovered as sulfuric acid) The absorption solution was arsenazo described in JIS K-0103.
The SO 2 adsorption amount determined by neutralization titration with Method III SO
x Adsorption capacity. Mg / g of SO 2 adsorption amount per 1 g of activated carbon
Expressed in the unit of -ac. In addition, ac: activated carbon (activated carbon)
It is.
【0012】〈脱硝率〉直径φ50の円筒カラム (脱硝試
験反応容器) 内に170cc の活性炭を充填し90℃に加熱す
る。合成ガス(SO2 135ppm 、NO 160ppm 、NH3 450ppm、
O2 10%、H2O 10% 、残りN2) を90℃に加熱し、2Nリット
ル/minの流量にて活性炭充填層に接触させる。合成ガス
を20時間通気した後の活性炭充填層入側と出側のNO濃度
を測定し、下記(2) 式にて脱硝率を決定した。<Denitration rate> A cylindrical column having a diameter of 50 (a denitration test reaction vessel) is filled with 170 cc of activated carbon and heated to 90 ° C. Syngas (SO 2 135 ppm, NO 160 ppm, NH 3 450 ppm,
O 2 10%, H 2 O 10%, remaining N 2 ) are heated to 90 ° C. and brought into contact with the activated carbon packed bed at a flow rate of 2 N l / min. After the synthesis gas was aerated for 20 hours, the NO concentrations on the inlet and outlet sides of the activated carbon packed bed were measured, and the denitration rate was determined by the following equation (2).
【数2】 (Equation 2)
【0013】〈硫安生成による粉化率〉直径φ50の円筒
カラム (脱硝試験反応容器) 内に170cc の活性炭を充填
し90℃に加熱する。合成ガス(SO2 135ppm 、NO 160ppm
、NH3 450ppm、O2 10%、H2O 10% 、残りN2) を2Nリッ
トル/minの流量にて活性炭充填層に接触させる。合成ガ
スを100 時間通気した後、円筒カラムより活性炭全量を
抜き出し、ビーカー中で水に含浸させ軽く攪拌する。次
いで、1mm 金網で濾過し、濾液( 活性炭微粉を含む) と
活性炭ペレットに分ける。濾液から活性炭微粉をさらに
濾過抽出し、乾燥した後重量を測定し、活性炭微粉重量
とする。活性炭ペレットは400 ℃で1.5 時間N2気流下で
加熱し再生処理を行った後、重量を測定し、再生後の活
性炭ペレット全重量とする。前記の活性炭微粉重量と再
生後の活性炭ペレット重量を合計して再生後の活性炭全
重量とする。再生した活性炭ペレットは3mm の篩にか
け、篩下重量と活性炭微粉重量を合計し-3mm重量を測定
し、(3) 式にて求めた量を硫安生成による粉化率とし
た。なお、図8に脱硝率、硫安生成による粉化率の測定
装置を示した。<Powderation rate due to production of ammonium sulfate> A cylindrical column (reaction vessel for denitration test) having a diameter of φ50 is filled with 170 cc of activated carbon and heated to 90 ° C. Syngas (SO 2 135ppm, NO 160ppm
, NH 3 450 ppm, O 2 10%, H 2 O 10%, and the remaining N 2 ) are brought into contact with the activated carbon packed bed at a flow rate of 2 Nl / min. After syngas is aerated for 100 hours, the entire amount of activated carbon is extracted from the cylindrical column, impregnated with water in a beaker, and gently stirred. Next, the mixture is filtered through a 1 mm wire mesh to separate the filtrate (including activated carbon fines) and activated carbon pellets. Activated carbon fine powder is further extracted from the filtrate by filtration, dried and weighed to obtain the activated carbon fine powder weight. The activated carbon pellets are heated under a stream of N 2 at 400 ° C. for 1.5 hours, subjected to a regeneration treatment, and then weighed to obtain the total weight of the activated carbon pellets after regeneration. The weight of the activated carbon fine powder and the weight of the activated carbon pellet after regeneration are summed up to obtain the total weight of activated carbon after regeneration. The regenerated activated carbon pellets were sieved through a 3 mm sieve, the weight under the sieve and the weight of the activated carbon fine powder were totaled, and the weight was determined as -3 mm. FIG. 8 shows an apparatus for measuring the denitration rate and the powdering rate due to the production of ammonium sulfate.
【数3】 (Equation 3)
【0014】さて、図1において、1は低温乾留を施す
ことにより主原料半成コークスの原料炭とする石炭であ
るが、この石炭はその軟化溶融温度域に相当する温度で
のNMR測定結果から算出した易動性水素成分量が30%
以下、好ましくは15%以上30%以下の範囲のものであ
る。軟化溶融温度域に相当する温度でのNMR測定結果
から算出した易動性水素成分量を前記した範囲とするの
は、易動性水素成分量が30%を超えるとSOx 分子の吸
着に効果を発揮する直径10Å付近のミクロ孔容積が低下
し、一方、15%未満としてもSOx 吸着能の向上効果
は飽和し大きな向上は望めないからである。In FIG. 1, reference numeral 1 denotes a coal which is subjected to low-temperature dry distillation to be used as a raw coal of semi-coke as a main raw material. This coal is obtained from NMR measurement results at a temperature corresponding to the softening and melting temperature range. Calculated mobile hydrogen content is 30%
Or less, preferably 15% or more and 30% or less. The amount of the mobile hydrogen component calculated from the result of NMR measurement at a temperature corresponding to the softening and melting temperature range is set to the above-mentioned range, because the content of the mobile hydrogen component exceeding 30% has an effect on the adsorption of SO x molecules. This is because the micropore volume in the vicinity of 10 mm in diameter, which exerts the effect of the above, is reduced, while the effect of improving the SO x adsorption capacity is saturated even if it is less than 15%, so that a large improvement cannot be expected.
【0015】この石炭1は低温乾留炉2に装入して6%
以下の酸素濃度で、300 ℃以上600℃以下、好ましくは4
00 ℃以上550 ℃以下の加熱雰囲気中で、炉内加熱部で
の滞留時間が15分以上120 分以下、好ましくは25分以上
80分以下の条件にて低温乾留することにより半成コーク
スとする。低温乾留条件を前記のようにしたのは、加熱
雰囲気の温度が300 ℃以下、あるいは炉内での滞留時間
が15分以下では半成コークスとして坦持すべき細孔構造
を形成するために十分な揮発分の消失が進行せず、この
ため、単に結晶水と若干の揮発分のみが揮発しただけの
細孔構造に乏しい半成コークスとなり、このような加熱
が不十分の半成コークスを主原料として活性炭を製造し
ようとしても、賦活工程で蒸気等の賦活ガスとの賦活反
応が十分に進行せず、SOx の吸着能力が乏しい活性炭
しか得られず、−方、加熱雰囲気の温度が600 ℃以上、
あるいは炉内での滞留時間が120 分以上になると、細孔
構造形成に十分な揮発分の消失は進行するが、半成コー
クス自体の基質の黒鉛化が過度に進行する。黒鉛結晶は
構成する炭素原子が規則的に配列した安定な組織である
ため、活性炭中に多く存在するとSOx の吸着能のみな
らず、脱硝のための触媒活性が著しく低下してしまう。The coal 1 is charged into the low-temperature carbonization furnace 2 and charged to 6%
At an oxygen concentration of not more than 300 ° C and not more than 600 ° C, preferably 4 ° C
In a heating atmosphere of 00 ° C or more and 550 ° C or less, the residence time in the heating section in the furnace is 15 minutes or more and 120 minutes or less, preferably 25 minutes or more.
Semi-coke is obtained by low-temperature carbonization under conditions of 80 minutes or less. The reason why the low-temperature carbonization conditions are as described above is that if the temperature of the heating atmosphere is 300 ° C or less, or the residence time in the furnace is 15 minutes or less, it is sufficient to form a pore structure to be supported as semi-coke. As a result, semi-coke with a poor pore structure, in which only water of crystallization and only a small amount of volatiles have volatilized, is mainly used. if you try to production of the activated carbon as a raw material, the activation reaction of the activated gas such as steam in the activation process does not progress sufficiently, the adsorption capacity of the sO x poor activated carbon obtained only, - how the temperature of the heating atmosphere 600 Over ℃,
Alternatively, when the residence time in the furnace is 120 minutes or more, the disappearance of volatiles sufficient for forming the pore structure proceeds, but the graphitization of the substrate of semi-coke itself proceeds excessively. Since graphite crystals have a stable structure in which the constituent carbon atoms are regularly arranged, if they are present in a large amount in activated carbon, not only the adsorption capacity of SO x but also the catalytic activity for denitration will be significantly reduced.
【0016】主原料となる半成コークスは、その微細気
孔と、多少残存する粘結性によって製品となる活性炭の
SOx の吸着能や強度を決定付けるため、半成コークス
を製造するための原料となる石炭の選定が大きな問題と
なる。活性炭として高いSO x 吸着能を坦持させるに
は、主原料として用いる半成コークスの状態でSOx 分
子を吸着するために適した気孔径の細孔が多数形成され
ていることが望ましい。表1に石炭化度の異なる16種
類の石炭について、軟化溶融温度域に相当する温度での
NMR測定結果から算出した易動性水素成分の量を示
す。なお、対象とした石炭の軟化溶融温度は350 ℃から
510 ℃の範囲であった。The semi-coke used as the main raw material is
Activated carbon, which becomes a product due to pores and some residual caking
SOxSemi-coke to determine the adsorption capacity and strength of
The selection of coal as a raw material for
Become. High SO as activated carbon xTo maintain adsorption capacity
Is SO2 in the state of semi-coke used as a main raw material.xMinute
Many pores with pore sizes suitable for adsorbing particles are formed.
Is desirable. Table 1 shows 16 types with different degrees of coalification.
Coal at a temperature corresponding to the softening and melting temperature range.
Shows the amount of mobile hydrogen component calculated from NMR measurement results
You. The softening and melting temperature of the target coal was 350 ° C.
The temperature range was 510 ° C.
【0017】また、副原料として配合する粘結性石炭の
NMR測定結果から算出した易動性水素成分量は35〜45
%とするのが望ましい。その理由は易動性水素成分量が
35%未満の石炭を副原料として用いた場合には、得られ
る活性炭の外観は良好であるが、ロガ強度が大幅に低下
するからであり、一方、易動性水素成分量が45%を超え
る石炭を副原料として用いた場合には、得られる活性炭
が粘結性過多により膨れて亀裂が発生するとともに、内
部に孔径の大きい気孔が多数形成されてロガ強度が低下
してしまうからである。The amount of the mobile hydrogen component calculated from the NMR measurement results of the caking coal blended as an auxiliary material is 35 to 45.
% Is desirable. The reason is that the amount of mobile hydrogen
When less than 35% of coal is used as an auxiliary material, the appearance of the obtained activated carbon is good, but the logarithmic strength is greatly reduced, while the amount of mobile hydrogen component exceeds 45% When coal is used as an auxiliary raw material, the obtained activated carbon swells due to excessive caking and cracks occur, and a large number of pores having a large pore size are formed inside, thereby lowering the logarithmic strength.
【0018】[0018]
【表1】 [Table 1]
【0019】図2に上記16種の石炭を450 ℃で60分間
加熱し製造した半成コークスの細孔径分布の測定結果一
例を示す。製造した半成コークスの細孔径分布を測定し
た結果、上記石炭は細孔径が10Å付近の細孔容積の発達
度合いからA、B、C、Dの4つに分類することが可能
である。すなわち、易動性水素成分の量が30%以下とな
るA分類に属する石炭から製造した半成コークスでは、
易動性水素成分の量が30%を超えるB、C、D分類に属
する石炭から製造する半成コークスに対し、同一加熱条
件でも特異的に直径10Å付近のミクロ孔容積が発達した
構造を持つ。また、B、C、D分類に属する石炭から製
造した半成コークスでは易動性水素成分の量が増加する
に従い、直径10Å付近のミクロ孔容積が低下する。B分
類に属するものでは外観上膨れや膨張は見られないが、
C分類およぴD分類のものでは著しく膨れが生じ、該半
成コークスの破断面は粗大な気孔とともに、半成コーク
スの外観も膨れや膨張による粗大な気孔が多く発生す
る。特に、D領域のものでは石炭の原形を止めないほど
石炭粒子が膨れ、粒子同士も烈しい溶着が生じるため、
活性炭を製造するための操業上問題となる。FIG. 2 shows an example of the measurement results of the pore size distribution of semi-coke produced by heating the above 16 types of coal at 450 ° C. for 60 minutes. As a result of measuring the pore size distribution of the produced semi-coke, the coal can be classified into four types, A, B, C, and D, based on the degree of development of the pore volume where the pore size is around 10 °. In other words, in semi-coke produced from coal belonging to Class A where the amount of mobile hydrogen component is 30% or less,
For semi-coke produced from coal belonging to the B, C, and D classes where the amount of mobile hydrogen components exceeds 30%, it has a structure in which the micropore volume around 10 mm in diameter has developed specifically under the same heating conditions. . In addition, in semi-coke produced from coal belonging to the B, C, and D classes, as the amount of the mobile hydrogen component increases, the micropore volume around 10 mm in diameter decreases. No swelling or swelling is seen in the B class,
In the cases of the C class and the D class, remarkable swelling occurs, and the fractured surface of the semi-coke has coarse pores as well as a large number of coarse pores due to the swelling and expansion of the semi-coke appearance. In particular, in the case of the D region, the coal particles swell so that the original shape of the coal is not stopped, and the particles are strongly welded to each other.
This is an operational problem for producing activated carbon.
【0020】次に、図3に450 ℃で低温乾留を行った際
の、加熱時間と製造した半成コークスのSOx 吸着能の
測定結果を示す。この結果によれば、A分類に属する石
炭から製造した半成コークスが最もSOx の吸着能に優
れ、石炭中の易動性水素成分の量が増加するに従いSO
x の吸着能は低下する。すなわち、主原料として用いる
半成コークスの状態でSOx の吸着能を有効に高めるた
めには、直径10Å付近のミクロ孔容積をできる限り増加
させる必要があり、このためには軟化溶融温度領域での
NMR測定結果から求める易動性水素成分の量が30%以
下となるA領域に属する石炭に低温乾留を行った半成コ
ークスを主原料とすることが望ましい。Next, FIG. 3 shows the measurement results of the heating time and the SO x adsorption capacity of the semi-coke produced when low-temperature carbonization was performed at 450 ° C. According to this result, semi-coke produced from coal belonging to Class A has the highest SO x adsorption capacity, and as the amount of mobile hydrogen component in coal increases, SO
The adsorption capacity of x decreases. That is, in order to effectively increase the SO x adsorption capacity in the semi-coke used as the main raw material, it is necessary to increase the micropore volume around 10 mm in diameter as much as possible. It is preferable to use, as a main raw material, semi-coke obtained by performing low-temperature carbonization on coal belonging to the region A in which the amount of the mobile hydrogen component determined from the NMR measurement results is 30% or less.
【0021】この半成コークスは主原料として粉砕機3
に投入して粉砕する。また、副原料として用いる粘結性
石炭4も粉砕機3に投入して粉砕する。次いで、粉砕し
た主原料の半成コークスと副原料の粘結性石炭4とを
9:1 から 5:5 の割合、好ましくは 8:2 から 6:4
の割合で混合して混合粉砕物粒とする。この混合粉砕物
粒は混練機7に移されるが、その際、結合剤5としてタ
ール、ピッチ等の石炭系あるいは石油系重質油、パルプ
製造廃液等の他、成形助剤6を加えて混練する。この混
練したものを成形機8に導入して径5 〜20φ、長さ5 〜
30mmの多数の成形物粒に成形し、次いで、各成形物粒は
炭化賦活炉9、例えばロータリーキルン等に定量的に装
入し、蒸気10、窒素ガス11を賦活が有効に進行する
よう添加しつつ、750 〜900 ℃の温度で炭化、賦活する
ことによって製品12、即ち高強度、高脱硫脱硝能を有す
る活性炭を製造することができる.This semi-coke is used as a main raw material in a pulverizer 3
And pulverize. In addition, the caking coal 4 used as an auxiliary material is also charged into the pulverizer 3 and pulverized. Next, the crushed semi-coke as the main raw material and the caking coal 4 as the auxiliary raw material are mixed.
9: 1 to 5: 5 ratio, preferably 8: 2 to 6: 4
At a ratio of 2 to obtain mixed and pulverized particles. The mixed and pulverized particles are transferred to a kneader 7, in which, in addition to coal or petroleum heavy oil such as tar and pitch as a binder 5, pulp production waste liquid, and the like, a molding aid 6 is added and kneaded. I do. The kneaded product is introduced into a molding machine 8 to have a diameter of 5 to 20φ and a length of 5 to
Each of the formed particles is quantitatively charged into a carbonization activation furnace 9 such as a rotary kiln, and steam 10 and nitrogen gas 11 are added so that the activation proceeds effectively. Meanwhile, by carbonizing and activating at a temperature of 750 to 900 ° C., it is possible to produce a product 12, that is, activated carbon having high strength and high desulfurization and denitration ability.
【0022】図4に主原料とともに混合する副原料石炭
の添加量とロガ強度の関係について示す。ここで主原料
の半成コークスはA領域に属する銘柄の石炭1を450 ℃
で60分間加熱したものを用いている。副原料として配合
する粘結性石炭がAおよぴB領域に属するものを使用し
た活性炭では、外観上、膨れや膨張による亀裂の発生は
見られず製品形状は良好であり、分布の狭い粒度構成で
あるが、ロガ強度が既製活性炭より大幅に低い値とな
る。また、副原料として配合する粘結性石炭がD領域に
属するものを使用した活性炭では粘結性過多による膨れ
が発生し、内部破断面も孔径の大きい気孔が多数形成さ
れ、ロガ強度も既製活性炭よりも低い値となる。−方、
副原料として配合する粘結性石炭がC領域に属するもの
を使用した活性炭では、主原料の半成コークスと副原料
の粘結性石炭の配合割合が 9:1ないし 5:5 の範囲にお
いて、膨れや膨張による亀裂の発生が無く製品形状が良
好で分布の狭い粒度構成で、かつロガ強度が既製活性炭
よりも高い活性炭が得られる。すなわち、堅牢な活性炭
を得ようとする場合、軟化溶融温度域に相当する温度で
のNMR測定結果から算出した易動性水素成分量が35%
以上45%以下の範囲にある粘結性石炭を副原料として選
定することが重要である。FIG. 4 shows the relationship between the added amount of auxiliary raw coal mixed with the main raw material and the logarithmic strength. Here, semi-coke, the main raw material, was obtained by heating coal 1 of brand A belonging to area A to 450 ° C.
For 60 minutes. Activated carbon that uses cohesive coals that belong to the A and B regions as admixed raw materials has good appearance, no cracks due to swelling or expansion, good product shape, and narrow particle size distribution. Although it is a configuration, the logger strength is a value significantly lower than that of ready-made activated carbon. In addition, in the activated carbon in which the caking coal blended as an auxiliary material belongs to the D region, swelling due to excessive caking occurs, a large number of pores are formed in the internal fracture surface, and the logarithmic strength is reduced. It will be a lower value. -Way,
In activated carbon using caking coal to be blended as an auxiliary material belonging to the C region, the mixing ratio of semi-coke as a main material and caking coal as an auxiliary material is in the range of 9: 1 to 5: 5. An activated carbon having a good product shape, a narrow particle size distribution, and a logarithmic strength higher than that of ready-made activated carbon is obtained without generation of cracks due to swelling or expansion. In other words, when obtaining a robust activated carbon, the amount of the mobile hydrogen component calculated from the NMR measurement results at a temperature corresponding to the softening and melting temperature range is 35%.
It is important to select caking coal within the range of 45% or less as an auxiliary material.
【0023】[0023]
【実施例】上記方法により製造した活性炭の比表面積と
SOx 吸着能の関係を比較例と併せて図5に示す。表1
に示した易動性水素成分の量が異なる石炭16種のうち、
易動性水素成分の量が30%以下であるA領域に属する石
炭6種に低温乾留を行い得られる半成コークスを主原料
として活性炭を製造した。A領域に属する石炭を粒径50
mm以下に粗粉砕し、外熱式ロータリーキルンに導き、酸
素濃度が2%以下、加熱雰囲気温度が450 ℃で炉内の滞
留時間が60分になるよう乾留して半成コークスとし、そ
の後この半成コークスを粉砕機3にて粉砕して主原料と
した。また、このとき表1に示す易動性水素成分の異な
る石炭16種のうち、易動性水素成分の溶融指数が40.2
%の瀝青炭系石炭を粉砕機3にて粉砕して副原料とし
た。これらの主原料と副原料とを質量比で 8:2 になる
よう配合したものに、結合剤5として石炭系軟ピッチを
20質量%、成形助剤6として水を15質量%添加し、混練
機7にて十分混練したものを押し出し成形機8により直
径10φ、長さ10mmの円柱状に成形した。この成形物を外
熱式口一タリーキルンに導き、酸素濃度1 %、賦活蒸気
吹き込み量が成形物1kg 当たり1.Okg の雰囲気下で、成
形物の最高到達温度830 ℃、平均の昇温速度が18℃/mi
n 、800 ℃以上での保持時間が40min となるよう加熱
し、炭化、賦活することによって活性炭を製造した.こ
のようにして得られた活性炭は、ロガ強度97.9 〜98.8
%、SOx 吸着能72.0〜80.2mg/g-ac 、脱硝率48%、硫
安生成による粉化率0.01%と脱硫脱硝用活性炭として非
常に優れていた。EXAMPLES together with comparative examples the relation between specific surface area and SO x adsorption capacity of the activated carbon produced by the method shown in FIG. Table 1
Of the 16 types of coal with different amounts of mobile hydrogen components shown in
Activated carbon was produced using semi-coke obtained as a main raw material by performing low-temperature carbonization on six types of coal belonging to region A in which the amount of mobile hydrogen components was 30% or less. Particle size 50 of coal belonging to area A
coarsely pulverized to less than 2 mm, guided to an externally heated rotary kiln, dry-dried to obtain a semi-coke with an oxygen concentration of 2% or less, a heating atmosphere temperature of 450 ° C, and a residence time of 60 minutes in the furnace. The formed coke was pulverized by the pulverizer 3 to obtain a main raw material. At this time, the melting index of the mobile hydrogen component was 40.2 among the 16 types of coal having different mobile hydrogen components shown in Table 1.
% Of bituminous coal is pulverized by the pulverizer 3 to obtain an auxiliary material. A mixture of the main raw material and the auxiliary raw material in a mass ratio of 8: 2, and soft coal pitch as a binder 5 was used.
20% by mass and 15% by mass of water as a molding aid 6 were added, and the mixture was sufficiently kneaded by a kneader 7 and formed into a columnar shape having a diameter of 10φ and a length of 10 mm by an extruder 8. The molded product is guided to an external heating type tally kiln, and the maximum temperature of the molded product is 830 ° C and the average heating rate is 1% in an atmosphere with an oxygen concentration of 1% and an activated steam injection rate of 1.0 kg per kg of the molded product. 18 ℃ / mi
Activated carbon was manufactured by heating at a temperature of 800 ° C or higher for 40 min, carbonizing and activating. The activated carbon thus obtained has a logarithmic strength of 97.9 to 98.8.
% SO x adsorption capacity 72.0~80.2mg / g-ac, denitrification rate 48%, was very good as powdering rate of 0.01% and desulfurization and denitration active carbon with ammonium sulfate product.
【0024】[比較例1]表1に示した易動性水素成分
の量が異なる石炭16種のうち、易動性水素成分の量が30
%を超え35%未満であるB領域に属する石炭2種に低温
乾留を行い得られた半成コークスを主原料として活性炭
を製造した。B領域に属する石炭を粒径50mm以下に粗粉
砕し、外熱式ロータリーキルンに導き、酸素濃度義度が
2 %以下、加熱雰囲気温度が450 ℃で炉内の滞留時間が
60分になるよう乾留して半成コークスとし、その後この
半成コークスを粉砕機3にて粉砕して主原料とした。ま
た、このとき表1に示す易動性水素成分の異なる石炭16
種のうち、易動性水素成分の溶融指数が40.2 %の瀝青
炭系石炭を粉砕機にて粉砕して副原料とした。これらの
主原料と副原料とを質量比で8 :2 になるよう配合した
配合炭に、結合剤5として石炭系軟ピッチを配合炭に対
して20質量%、成形助剤6として水を15質量%添加し、
混練機7にて十分混練したものを押し出し成形機8によ
り直径10φ、長さ10mmの円柱状に成形した。この成形物
を外熱式ロータリーキルンに導き、酸素濃度1 %、賦活
蒸気吹き込み量が成形物1kg 当たり1.0kg の雰囲気下
で、成形物の最高到達温度830 ℃、平均の昇温速度が 1
8 ℃/min、800 ℃以上での保持時間が40min となるよう
加熱し、炭化、賦活することによって活性炭を製造し
た。このようにして得られた活性炭は、ロガ強度が97.1
〜98.2%と十分であったが、SOx 吸着能が45.5〜47.O
mg/g-ac 、脱硝率38%、硫安生成による粉化率0.9 %と
実施例に比べ著しく劣るものであった。Comparative Example 1 Of the 16 types of coal having different amounts of mobile hydrogen components shown in Table 1, the amount of mobile hydrogen components was 30
% Of the coal belonging to the region B, which is more than 35% and less than 35%, was subjected to low-temperature carbonization, and activated carbon was produced using semi-coke obtained as a main raw material. Coal belonging to the B area is coarsely pulverized to a particle size of 50 mm or less and led to an externally heated rotary kiln.
2% or less, heating atmosphere temperature is 450 ℃, residence time in furnace
Semi-coke was obtained by dry distillation for 60 minutes, and then this semi-coke was pulverized by the pulverizer 3 to obtain a main raw material. In addition, at this time, coal 16 having different mobile hydrogen components shown in Table 1 was used.
Among the seeds, bituminous coal containing a mobile hydrogen component having a melting index of 40.2% was pulverized by a pulverizer as an auxiliary material. To a blended coal obtained by blending these main raw materials and sub-raw materials in a mass ratio of 8: 2, coal-based soft pitch was used as a binder 5 in an amount of 20% by mass relative to the blended coal, and water was used as a forming aid 6 in a water-soluble mixture. Mass%,
The mixture sufficiently kneaded by the kneading machine 7 was formed into a cylindrical shape having a diameter of 10φ and a length of 10 mm by the extrusion molding machine 8. The molded product is guided to an externally heated rotary kiln, and the maximum temperature of the molded product is 830 ° C. and the average heating rate is 1 in an atmosphere with an oxygen concentration of 1% and an activated steam blowing rate of 1.0 kg / kg of the molded product.
Activated carbon was manufactured by heating at 8 ° C / min and at a holding time of 800 ° C or more for 40min, carbonizing and activating. The activated carbon thus obtained has a logarithmic strength of 97.1.
9898.2%, but the SO x adsorption capacity was 45.5-47.O.
mg / g-ac, denitration rate 38%, powdering rate due to production of ammonium sulfate 0.9%, which were remarkably inferior to the examples.
【0025】[比較例2]表1に示した易動性水素成分
の量が異なる石炭16種のうち、易動性水素成分の量が35
%以上45%以下であるC領域に属する石炭6種に低温乾
留を行い得られた半成コークスを主原料として活性炭を
製造した。C領域に属する石炭を粒径50mm以下に粗粉砕
し、外熱式口一タリーキルンに導き、酸素濃度が2 %以
下、加熱雰囲気温度が450 ℃で炉内の滞留時間が60分に
なるよう乾留して半成コークスとし、その後この半成コ
ークスを粉砕機にて粉砕して主原料とした。また、この
とき表1に示す易動性水素成分の異なる石炭16種のう
ち、易動性水素成分の溶融指数が40.2 %の瀝青炭系石
炭を粉砕機にて粉砕して副原料とした。これらの主原料
と副原料を重量比で8 :2 になるよう配合した配合炭
に、結合剤5として石炭系軟ピッチを配合炭に対して20
質量%、成形助剤6として水を配合炭に対して15質量%
添加し、混練機7にて十分混練したものを押し出し成形
機8により直径10φ、長さ10mmの円杜状に成形した。こ
の成形物を外熱式ロータリーキルンに導き、酸素濃度1
%、賦活蒸気吹き込み量が成形物1kg 当たり 1.0kgの雰
囲気下で、成形物の最高到達温度830 ℃、平均の昇温速
度が18℃/min 、800 ℃以上での保持時間が40min とな
るよう加熱し、炭化、賦活することによって活性炭を製
造した。このようにして得られた活性炭は、ロガ強度が
92.0〜94.8%、SOx 吸着能が33.0〜36.Omg/g-ac 、脱
硝率38%、硫安生成による粉化率1.2 %であり、何れの
性能も実施例に対して著しく劣るものであった。Comparative Example 2 Of the 16 types of coal having different amounts of mobile hydrogen components shown in Table 1, the amount of mobile hydrogen components was 35
Activated carbon was produced using semi-coke obtained as a main raw material by performing low-temperature carbonization on six types of coal belonging to the C region of not less than 45% and not more than 45%. Coal belonging to area C is coarsely pulverized to a particle size of 50 mm or less and guided to an externally heated tally kiln, where the oxygen concentration is 2% or less, the heating atmosphere temperature is 450 ° C, and the carbonization time is 60 minutes in the furnace. The semi-coke was then pulverized with a pulverizer to obtain a main raw material. At this time, of the 16 types of coal having different mobile hydrogen components shown in Table 1, bituminous coal having a melting index of the mobile hydrogen component of 40.2% was pulverized by a pulverizer to be used as an auxiliary material. . A coal-based soft pitch as a binder 5 was added to the blended coal in which the main raw material and the auxiliary raw material were blended in a weight ratio of 8: 2 to the blended coal.
Mass%, water as shaping aid 6 15 mass% based on coal blend
The mixture was kneaded sufficiently by a kneader 7 and extruded into a round shape having a diameter of 10φ and a length of 10 mm by an extruder 8. This molded product is guided to an externally heated rotary kiln, where the oxygen concentration is 1
%, The maximum steam temperature of the molded product is 830 ° C, the average temperature rise rate is 18 ° C / min, and the holding time at 800 ° C or more is 40min in an atmosphere where the amount of activated steam blown is 1.0kg per kg of the molded product. Activated carbon was produced by heating, carbonizing and activating. The activated carbon thus obtained has a logarithmic strength
From 92.0 to 94.8% SO x adsorption capacity 33.0~36.Omg / g-ac, denitrification rate 38%, a powdering ratio of 1.2% with ammonium sulfate product, be those significantly inferior relative also Example either performance Was.
【0026】[比較例3]表1に示した易動性水素成分
の量が異なる石炭16種のうち、易動性水素成分の量が45
%を超えるD領域に属する石炭3種に低温乾留を行い得
られる半成コークスを主原料として活性炭を製造した。
D領域に属する石炭を粒径50mm以下に粗粉砕し、外熱式
ロータリーキルンに導き、酸素濃度が2 %以下、加熱雰
囲気温度が450 ℃で炉内の滞留時間が60分になるよう乾
留して半成コークスとした後、該半成コークスを粉砕機
にて粉砕して主原料とした。また、このとき表1に示す
易動性水素成分の異なる石炭16種のうち、易動性水素成
分の溶融指数が40.2 %の瀝青炭系石炭を粉砕機3にて
粉砕して副原料とした。これらの主原料と副原料を重量
比で8 :2 になるよう配合した配合炭に、結合剤5とし
て石炭系軟ピッチを配合炭に対して20質量%、成形助剤
6として水を15質量%添加し、混練機7にて十分混練し
たものを押し出し成形機8により直径10φ、長さ10mmの
円柱状に成形した。この成形物を外熱式口一タリーキル
ンに導き、酸素濃度1 %、賦活蒸気吹き込み量が成形物
1kg 当たり1.0kg の雰囲気下で、成形物の最高到達温度
830 ℃、平均の昇温速度が18℃/min、800 ℃以上での保
持時間が40min となるよう加熱し、炭化、賦活すること
によって活性炭を製造した。このようにして得られた活
性炭は、ロガ強度が90.2〜92.1%、SOx 吸着能が10.8
〜12.0mg/g-ac 、脱硝率5%、硫安生成による粉化率1.0
%であり、何れの性能も実施例に比べて著しく劣るも
のであった。Comparative Example 3 Of the 16 types of coal having different amounts of mobile hydrogen components shown in Table 1, the amount of mobile hydrogen components was 45%.
% Activated carbon was produced by using semi-coke obtained as a main raw material by performing low-temperature carbonization on three types of coal belonging to the D region exceeding 3%.
Coal belonging to area D is coarsely pulverized to a particle size of 50 mm or less, and guided to an externally heated rotary kiln, and carbonized so that the oxygen concentration is 2% or less, the heating atmosphere temperature is 450 ° C, and the residence time in the furnace is 60 minutes. After the semi-coke was formed, the semi-coke was pulverized by a pulverizer to obtain a main raw material. At this time, of the 16 types of coal having different mobile hydrogen components shown in Table 1, bituminous coal having a melting index of the mobile hydrogen component of 40.2% was pulverized by the pulverizer 3 and used as an auxiliary material. did. In a coal blend in which the main raw material and the auxiliary raw material were blended in a weight ratio of 8: 2, 20 wt% of coal-based soft pitch was used as a binder 5 with respect to the coal blend, and 15 wt% of water was used as a forming aid 6 with respect to the coal blend. % And kneaded sufficiently with a kneading machine 7 to form a cylinder having a diameter of 10φ and a length of 10 mm by an extrusion molding machine 8. This molded product is guided to an externally heated tally kiln, and the oxygen concentration is 1% and the amount of activated steam blown is
Maximum temperature of the molded product in an atmosphere of 1.0 kg per 1 kg
Activated carbon was produced by heating at 830 ° C., an average heating rate of 18 ° C./min, and a holding time at 800 ° C. or higher of 40 min, carbonizing and activating. Activated carbon thus obtained is, logger strength from 90.2 to 92.1%, the SO x adsorption capacity 10.8
~ 12.0mg / g-ac, denitration rate 5%, powdering rate 1.0 due to ammonium sulfate formation
%, All of which were significantly inferior to the examples.
【0027】なお、図5にはミクロ孔形成による比表面
積の増大によるSOx の吸着能の向上を示すが、大きな
比表面積を有するA領域の石炭により製造された活性炭
が高い脱硫性能を有することが分かる。このような比表
面積は、図6に示すように、低温乾留での加熱雰囲気温
度によって大きく変動するので、乾留温度を適切に設定
することが望まれる。FIG. 5 shows an improvement in the SO x adsorption capacity due to an increase in the specific surface area due to the formation of micropores. The activated carbon produced from coal in the region A having a large specific surface area has a high desulfurization performance. I understand. As shown in FIG. 6, such a specific surface area greatly varies depending on the temperature of the heating atmosphere in low-temperature carbonization, so that it is desired to appropriately set the carbonization temperature.
【0028】[0028]
【発明の効果】以上に説明したように、本発明の活性炭
の製造方法は、低温乾留を施して主原料の半成コークス
とする石炭として、軟化溶融温度でのNMR測定結果か
ら算出した易動性水素成分量が30%以下のものを用いる
ことにより、SOx 分子を吸着するために適した直径10
Å付近のミクロ孔を多数形成することができて、これか
ら製造した活性炭を高強度で脱硫性能(例えばSOx 吸
着能)に優れたものとすることができる。また、主原料
である半成コークスと混合する副原料として、NMR測
定結果から算出した易動性水素成分量が35〜45%である
粘結性石炭を用いることによって、さらに外観が良好で
高いロガ強度と良好な脱硫(SOx 吸着能) 性能及び低
い硫安生成による粉化率を有する活性炭を製造すること
ができる。更に脱硫脱硝用活性炭として優れたものが得
られる。As described above, according to the method for producing activated carbon of the present invention, as a coal which is subjected to low-temperature carbonization to form a semi-coke as a main raw material, it can be easily calculated from NMR measurement results at a softening melting temperature. By using an element having a hydrogen content of 30% or less, a diameter 10 suitable for adsorbing SO x molecules can be obtained.
A large number of micropores near Å can be formed, and the activated carbon produced therefrom can have high strength and excellent desulfurization performance (eg, SO x adsorption capability). In addition, by using a caking coal having a mobile hydrogen component amount of 35 to 45% calculated from NMR measurement results as a secondary raw material mixed with semi-coke as a main raw material, the appearance is further improved and high. Activated carbon having logarithmic strength, good desulfurization (SO x adsorption ability) performance, and low powdering rate due to low ammonium sulfate production can be produced. Further, an excellent activated carbon for desulfurization and denitration can be obtained.
【図1】 活性炭を製造する工程のフロー図である。FIG. 1 is a flowchart of a process for producing activated carbon.
【図2】 易動性水素成分の量によって分類された4種
の石炭のミクロ孔の体積分布を示す説明図である。FIG. 2 is an explanatory diagram showing the volume distribution of micropores of four types of coal classified according to the amount of mobile hydrogen components.
【図3】 低温乾留時間と半成コークスのSOx の吸着
能との関係図である。FIG. 3 is a diagram showing the relationship between the low-temperature carbonization time and the SO x adsorption capacity of semi-coke.
【図4】 副原料である粘結性を有する石炭の種類、配
合割合とロガ強度との関係図である。FIG. 4 is a graph showing the relationship between the type and blending ratio of coal having cohesiveness as an auxiliary raw material and logarithmic strength.
【図5】 主原料となる半成コークスの原料石炭の種類
と比表面積の増大によるSOx の吸着能の向上を示す関
係図である。FIG. 5 is a graph showing the relationship between the type of raw coal and the specific surface area of semi-coke as a main raw material, and the improvement of the SO x adsorption ability by increasing the specific surface area.
【図6】 低温乾留の温度による活性炭の比表面積変化
を示す関係図である。FIG. 6 is a relationship diagram showing a change in specific surface area of activated carbon depending on the temperature of low-temperature carbonization.
【図7】 ロガ強度試験機の説明図である。FIG. 7 is an explanatory diagram of a logger strength tester.
【図8】 脱硝率、硫安生成による粉化率の測定方法を
示す説明図である。FIG. 8 is an explanatory diagram showing a method for measuring a denitration rate and a powdering rate due to production of ammonium sulfate.
1 半成コークスとする石炭 2 低温乾留炉 3 粉砕機 4 粘結性石炭 5 結合剤 6 成形助剤 7 混練機 8 成形機 9 炭化、賦活炉 10 蒸気 11 窒素ガス 12 製品 DESCRIPTION OF SYMBOLS 1 Coal used as semi-coke 2 Low temperature carbonization furnace 3 Crusher 4 Caking coal 5 Binder 6 Molding aid 7 Kneader 8 Molding machine 9 Carbonization and activation furnace 10 Steam 11 Nitrogen gas 12 Product
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/81 B01D 53/34 ZAB 4H012 53/94 132Z B01J 20/20 53/36 102F 20/30 C04B 35/52 A C04B 35/52 C10B 57/04 (72)発明者 神山 久朗 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 齋藤 公児 神奈川県川崎市中原区井田3−35−1 新 日本製鐵株式会社技術開発本部内 (72)発明者 木下 征亜 北海道室蘭市寿町3−1−3 太平工業株 式会社室蘭支店内 (72)発明者 中馬 義則 愛知県東海市荒尾町丸根52−5 太平工業 株式会社東海支店内 (72)発明者 高橋 紀道 愛知県東海市荒尾町丸根52−5 太平工業 株式会社東海支店内 Fターム(参考) 4D002 AA02 AA12 BA03 DA41 HA01 4D048 AA02 AA06 BA05X BB01 CC41 EA04 4G032 AA02 BA00 GA01 4G046 HA05 HB02 HC16 4G066 AA04D AA05B AC08A AC08D CA23 CA28 DA02 FA18 FA23 FA34 FA37 4H012 MA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 53/81 B01D 53/34 ZAB 4H012 53/94 132Z B01J 20/20 53/36 102F 20/30 C04B 35 / 52 A C04B 35/52 C10B 57/04 (72) Inventor Hisao Kamiyama 5-3 Tokai-cho, Tokai-shi, Aichi Pref. Inside Nagoya Works, Nippon Steel Corporation (72) Inventor Koji Saito, Kawasaki-shi, Kanagawa 3-35-1, Ida, Nakahara-ku New Nippon Steel Corporation Technology Development Division (72) Inventor Seita Kinoshita 3-1-3 Kotobukicho, Muroran-shi, Hokkaido Taihei Kogyo Co., Ltd. Muroran Branch (72) Inventor Naka Yoshinori Ma 52-5 Marune, Arao-cho, Tokai-shi, Aichi Prefecture Taihei Kogyo Co., Ltd. (72) Inventor Norimichi Takahashi 52-5 Marune, Arao-cho, Tokai-shi, Aichi Prefecture Taihei Kogyo Co., Ltd. F term in the Tokai branch of the company (reference) 4D002 AA02 AA12 BA03 DA41 HA01 4D048 AA02 AA06 BA05X BB01 CC41 EA04 4G032 AA02 BA00 GA01 4G046 HA05 HB02 HC16 4G066 AA04D AA05B AC08A AC08D CA23 CA28 DA02 FA18 FA23 FA01 FA01
Claims (2)
施した半成コークスを主原料とし、粘結性を有する石炭
を副原料とし、これらを結合剤とともに混合成形した成
形物に炭化、賦活処理を行なって活性炭とする活性炭の
製造方法において、主原料である半成コークスの原料炭
として、軟化溶融状態にある温度でのNMR測定結果か
ら算出した易動性水素成分の量が30%以下である石炭を
用いることを特徴とする活性炭の製造方法。(1) A semi-coke obtained by subjecting coal to low-temperature carbonization at a temperature of 300 to 600 ° C. as a main raw material, a coal having cohesiveness as a sub-raw material, and carbonization into a molded product obtained by mixing and forming these with a binder. In the method for producing activated carbon obtained by performing an activation treatment to obtain activated carbon, the amount of a mobile hydrogen component calculated from NMR measurement results at a temperature in a softened and molten state is 30 as raw coal of semi-coke as a main raw material. % Of activated carbon.
て、軟化溶融状態にある温度でのNMR測定結果から算
出した易動性水素成分の量が35〜45%である石炭を用い
る請求項1に記載の活性炭の製造方法。2. A coal having 35 to 45% of a mobile hydrogen component calculated from NMR measurement results at a temperature in a softened and molten state as a coal having caking properties as an auxiliary raw material. 2. The method for producing activated carbon according to 1.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001162881A JP4017360B2 (en) | 2001-05-30 | 2001-05-30 | Method for producing activated carbon |
KR10-2003-7001370A KR100516528B1 (en) | 2001-05-30 | 2002-01-24 | Activated carbon and method for production thereof |
AU2002226715A AU2002226715B2 (en) | 2001-05-30 | 2002-01-24 | Activated carbon and method for production thereof |
EP02716367A EP1394110A4 (en) | 2001-05-30 | 2002-01-24 | ACTIVE CARBON AND PROCESS FOR PRODUCING THE SAME |
BR0205445-0A BR0205445A (en) | 2001-05-30 | 2002-01-24 | Activated carbon and process to produce the same |
PCT/JP2002/000522 WO2002098793A1 (en) | 2001-05-30 | 2002-01-24 | Activated carbon and method for production thereof |
CN028018591A CN1463247B (en) | 2001-05-30 | 2002-01-24 | Activated carbon and method for production thereof |
TW091101591A TWI257374B (en) | 2001-05-30 | 2002-01-30 | Activated carbon and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001162881A JP4017360B2 (en) | 2001-05-30 | 2001-05-30 | Method for producing activated carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002348111A true JP2002348111A (en) | 2002-12-04 |
JP4017360B2 JP4017360B2 (en) | 2007-12-05 |
Family
ID=19005940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001162881A Expired - Lifetime JP4017360B2 (en) | 2001-05-30 | 2001-05-30 | Method for producing activated carbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4017360B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004037686A1 (en) * | 2002-10-22 | 2004-05-06 | Kokuyo Co., Ltd. | Container |
JP2007098309A (en) * | 2005-10-05 | 2007-04-19 | Nippon Steel Corp | Denitration method of exhaust gas |
RU2321612C1 (en) * | 2006-09-11 | 2008-04-10 | Общество с ограниченной ответственностью "Научно-технический центр "Альтернатива" | Mode and installation for receiving activated carbon |
CN101920211A (en) * | 2010-06-22 | 2010-12-22 | 中国海洋大学 | A preparation method of semi-coke flue gas denitrification agent for low-temperature catalytic oxidation |
CN103693805A (en) * | 2013-12-02 | 2014-04-02 | 陕西煤业化工技术研究院有限责任公司 | Device and method for recycling coal pyrolysis waste |
CN103801387A (en) * | 2012-11-15 | 2014-05-21 | 中国海洋大学 | Carbocoal-based photo-catalytic oxidation fuel gas desulfurization and denitration agent and preparation method thereof |
US9845439B2 (en) | 2012-03-27 | 2017-12-19 | Jfe Steel Corporation | Method for blending coals for cokemaking and method for producing coke |
CN109179407A (en) * | 2018-09-21 | 2019-01-11 | 西安建筑科技大学 | A kind of semi-coke base activated coke and preparation method thereof |
RU2698831C1 (en) * | 2018-06-19 | 2019-08-30 | Илья Николаевич Новиков | Method and apparatus for processing carbon-containing material |
CN112938972A (en) * | 2021-04-01 | 2021-06-11 | 淮北市大华环保科技有限公司 | Production method of coal-based molded activated carbon integrated with carbon activation |
-
2001
- 2001-05-30 JP JP2001162881A patent/JP4017360B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004037686A1 (en) * | 2002-10-22 | 2004-05-06 | Kokuyo Co., Ltd. | Container |
JP2007098309A (en) * | 2005-10-05 | 2007-04-19 | Nippon Steel Corp | Denitration method of exhaust gas |
RU2321612C1 (en) * | 2006-09-11 | 2008-04-10 | Общество с ограниченной ответственностью "Научно-технический центр "Альтернатива" | Mode and installation for receiving activated carbon |
CN101920211A (en) * | 2010-06-22 | 2010-12-22 | 中国海洋大学 | A preparation method of semi-coke flue gas denitrification agent for low-temperature catalytic oxidation |
CN101920211B (en) * | 2010-06-22 | 2012-08-22 | 中国海洋大学 | Preparation method of semi-coke flue gas denitrfying agent used in low-temperature catalytic oxidation |
US9845439B2 (en) | 2012-03-27 | 2017-12-19 | Jfe Steel Corporation | Method for blending coals for cokemaking and method for producing coke |
CN103801387A (en) * | 2012-11-15 | 2014-05-21 | 中国海洋大学 | Carbocoal-based photo-catalytic oxidation fuel gas desulfurization and denitration agent and preparation method thereof |
CN103693805A (en) * | 2013-12-02 | 2014-04-02 | 陕西煤业化工技术研究院有限责任公司 | Device and method for recycling coal pyrolysis waste |
CN103693805B (en) * | 2013-12-02 | 2014-12-10 | 陕西煤业化工技术研究院有限责任公司 | Device and method for recycling coal pyrolysis waste |
RU2698831C1 (en) * | 2018-06-19 | 2019-08-30 | Илья Николаевич Новиков | Method and apparatus for processing carbon-containing material |
CN109179407A (en) * | 2018-09-21 | 2019-01-11 | 西安建筑科技大学 | A kind of semi-coke base activated coke and preparation method thereof |
CN112938972A (en) * | 2021-04-01 | 2021-06-11 | 淮北市大华环保科技有限公司 | Production method of coal-based molded activated carbon integrated with carbon activation |
Also Published As
Publication number | Publication date |
---|---|
JP4017360B2 (en) | 2007-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5905953B2 (en) | Composition and method for sealing flue gas mercury in concrete | |
JP3669373B2 (en) | Process for producing activated coke for simultaneous desulfurization and denitrification | |
DE69320385T2 (en) | Very dense and very active activated carbon and process for its production | |
US5304527A (en) | Preparation for high activity, high density carbon | |
DE19912154A1 (en) | Production of active carbon by drying, carbonizing and steam activating a spherically shaped starting material in a rotary oven under an inert atmosphere | |
JP4418079B2 (en) | Method for producing activated coke having high strength and high adsorption capacity | |
JP2002348111A (en) | Activated carbon production method | |
JP3746509B1 (en) | Spherical activated carbon and its manufacturing method | |
Wigmans | Fundamentals and practical implications of activated carbon production by partial gasification of carbonaceous materials | |
JPH07267619A (en) | Production of granular activated carbon | |
KR100516528B1 (en) | Activated carbon and method for production thereof | |
EP0004044B1 (en) | Granular activated carbon manufacture from sub-bituminous coal treated with dilute inorganic acid: direct activation method | |
JP2002102689A (en) | Carbonaceous adsorbent | |
Çuhadar | Production and characterization of activated carbon from hazelnut shell and hazelnut husk | |
JP3174601B2 (en) | Method for producing molded active coke | |
JP2020023420A (en) | Active carbon and manufacturing method of active carbon, and decoloration method | |
JP2727001B2 (en) | Manufacturing method of carbon material for desulfurization | |
EP0025099A1 (en) | Process for manufacturing hard granular activated carbon from sub-bituminous coal | |
JPH10501174A (en) | Air purification in enclosed space | |
US20210300764A1 (en) | Process for forming a pure carbon powder | |
JPS6320762B2 (en) | ||
JPH11349317A (en) | Method for producing activated coke having high strength and high adsorption capacity | |
CN118988251A (en) | Active coke material, preparation method and application | |
JPH11349318A (en) | Activated carbon production method | |
KR20250058612A (en) | Manufacturing method of active carbon for exhaust gas removal and active carbon manufactured by thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20031216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4017360 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |