[go: up one dir, main page]

JP2002338730A - Polyethylene microporous membrane and battery using the same - Google Patents

Polyethylene microporous membrane and battery using the same

Info

Publication number
JP2002338730A
JP2002338730A JP2001149462A JP2001149462A JP2002338730A JP 2002338730 A JP2002338730 A JP 2002338730A JP 2001149462 A JP2001149462 A JP 2001149462A JP 2001149462 A JP2001149462 A JP 2001149462A JP 2002338730 A JP2002338730 A JP 2002338730A
Authority
JP
Japan
Prior art keywords
polyethylene
weight
battery
microporous
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001149462A
Other languages
Japanese (ja)
Other versions
JP4986199B2 (en
Inventor
Shunsuke Oki
俊介 大木
Yoshifumi Nishimura
佳史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001149462A priority Critical patent/JP4986199B2/en
Publication of JP2002338730A publication Critical patent/JP2002338730A/en
Application granted granted Critical
Publication of JP4986199B2 publication Critical patent/JP4986199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 【課題】 生産性,特性に優れ、且つ完全なヒューズ効
果により実現される優れた安全性を持つ電池に用いられ
るポリエチレン微多孔膜、及びそれを用いた電池を提供
する。 【解決手段】 少なくとも、粘度平均分子量が10万〜
400万の高密度ポリエチレン10〜95重量%と、融
点が125℃を越えて132℃以下のポリエチレン5〜
90重量%を含有している組成物からなることを特徴と
するポリエチレン製微多孔膜を使用する。
PROBLEM TO BE SOLVED: To provide a microporous polyethylene membrane used for a battery having excellent productivity, characteristics and excellent safety realized by a complete fuse effect, and a battery using the same. SOLUTION: At least the viscosity average molecular weight is 100,000-
4 million high-density polyethylene of 10 to 95% by weight and melting point of more than 125 ° C. and 132 ° C. or less of polyethylene 5
A polyethylene microporous membrane characterized by comprising a composition containing 90% by weight is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリエチレン製微
多孔膜、特に負極として、リチウムイオンを挿入可能な
炭素材料、金属リチウム、リチウム合金等を用いている
電池に使用されるイオン透過性、機械特性、安全性に優
れるポリエチレン製微多孔膜、及びそれを使用した電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microporous film made of polyethylene, and more particularly, to an ion-permeable material used for a battery using a carbon material, metal lithium, lithium alloy or the like into which lithium ions can be inserted as a negative electrode. The present invention relates to a microporous polyethylene membrane having excellent characteristics and safety, and a battery using the same.

【0002】[0002]

【従来の技術】近年の携帯電話、ノート型パーソナルコ
ンピュータ、PDAといった情報関連機器の目覚しい発
達に伴い、小型軽量で且つ高エネルギー容量の電池が要
求されている。各種電池が研究・開発・販売されている
中、特にリチウムイオン電池が市場を拡大させており、
それに用いられるセパレータとしてポリエチレン製微多
孔膜が用いられている。
2. Description of the Related Art With the remarkable development of information-related devices such as portable telephones, notebook personal computers, and PDAs in recent years, small and lightweight batteries having a high energy capacity are required. While various types of batteries are being researched, developed, and sold, lithium-ion batteries, in particular, are expanding the market.
A polyethylene microporous membrane is used as a separator used therein.

【0003】このリチウムイオン電池を始めとした電池
用のセパレータとしては、優れた電池特性を発揮するこ
とができる高いイオン透過性、電池組立時や取り扱い時
に耐え得る優れた機械特性、過充電時等の温度上昇時に
孔が閉塞してイオンの流れを遮断し電流を流れなくする
(フューズ効果)といった優れた安全性、等が要求され
る。上記「フューズ効果」についてより詳しく述べる。
電池内にセパレータとして組み込まれているポリエチレ
ン製微多孔膜は、その融点近傍になるまで熱がかかる
と、孔が閉塞してイオンの流れを遮断し電流を流れなく
することにより、その後の電池の発熱を抑えることがで
き、安全性を保つことができる。しかしながら、電池に
極めて急激に熱がかかった場合は、孔の閉塞に遅れが生
じてイオンの流れを遮断することができない可能性があ
る。このような場合でも確実に孔が閉塞してイオンの流
れを遮断し電流を流れなくする機能を持つセパレータが
求められていた。
[0003] As a separator for a battery such as a lithium ion battery, high ion permeability capable of exhibiting excellent battery characteristics, excellent mechanical properties that can withstand battery assembly and handling, and overcharging, etc. When the temperature rises, excellent safety, such as blocking the flow of ions and blocking the flow of current (fuse effect), is required. The “fuse effect” will be described in more detail.
When the microporous polyethylene membrane incorporated as a separator in the battery is heated to near its melting point, the pores are closed and the flow of ions is cut off, preventing current from flowing. Heat generation can be suppressed, and safety can be maintained. However, when heat is applied to the battery very rapidly, there is a possibility that the flow of ions cannot be cut off due to a delay in closing the holes. Even in such a case, there has been a demand for a separator having a function of reliably blocking the pores, blocking the flow of ions and stopping the flow of current.

【0004】上記問題を解決するための一つの手段とし
て、低融点(95〜125℃)のポリエチレンを添加す
るという方法が提案されている(例えば、特開平11−
269289公報)。しかしながら、融点が低過ぎるも
のが添加されていると、孔が閉塞してしまうために微多
孔膜製造時の熱固定(ヒートセット)温度を上げること
ができず、その結果熱収縮の大きなセパレータとなって
しまう、という問題がある。
As one means for solving the above problem, a method has been proposed in which polyethylene having a low melting point (95 to 125 ° C.) is added (for example, Japanese Patent Laid-Open No.
269289). However, if a substance having a too low melting point is added, the pores will be blocked, so that the heat setting (heat setting) temperature during the production of the microporous membrane cannot be increased, and as a result, a separator having a large heat shrinkage will not be obtained. Problem.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、生産
性,特性に優れ、且つ完全なヒューズ効果により実現さ
れる優れた安全性を持つ電池に用いられるポリエチレン
製微多孔膜、及びそれを用いた電池を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a microporous polyethylene membrane used in a battery having excellent productivity and characteristics and having excellent safety realized by a perfect fuse effect, and a polyethylene microporous membrane. It is to provide a used battery.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、(1)少なくとも、粘度平均分子量が1
0万〜400万の高密度ポリエチレン10〜95重量%
と、融点が125℃を越えて132℃以下のポリエチレ
ン5〜90重量%を含有していることを特徴とするポリ
エチレン製微多孔膜、(2)融点が125℃を越えて1
32℃以下のポリエチレンが、エチレンと炭素数が4以
上のα−オレフィンとの共重合体であることを特徴とす
る上記(1)記載のポリエチレン製微多孔膜、(3)融
点が125℃を越えて132℃以下のポリエチレンの密
度が0.86〜0.95g/cm3であり、且つ、数平
均分子量に対する重量平均分子量の比(Mw/Mn)が
3.5〜8.0の範囲であることを特徴とする上記
(1)または(2)記載のポリエチレン製微多孔膜、
(4)融点が125℃を越えて132℃以下のポリエチ
レンが、ポリエチレン中の1000個の炭素原子当たり
0.3個以上の末端ビニル基が存在することを特徴とす
る上記(1)または(2)記載のポリエチレン製微多孔
膜、(5)上記(1)〜(4)のいずれかに記載のポリ
エチレン製微多孔膜からなる電池用セパレータ、(6)
上記(1)〜(4)のいずれかに記載のポリエチレン製
微多孔膜をセパレータとして使用した電池、を提供す
る。
In order to achieve the above object, the present invention provides (1) at least a compound having a viscosity average molecular weight of 1
100,000-4,000,000 high-density polyethylene 10-95% by weight
A polyethylene microporous membrane characterized by containing 5 to 90% by weight of polyethylene having a melting point of more than 125 ° C and 132 ° C or less;
The polyethylene having a temperature of 32 ° C. or less is a copolymer of ethylene and an α-olefin having 4 or more carbon atoms, wherein the polyethylene microporous membrane according to the above (1), When the density of the polyethylene at a temperature exceeding 132 ° C. is 0.86 to 0.95 g / cm 3 and the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is in the range of 3.5 to 8.0. The microporous polyethylene membrane according to the above (1) or (2),
(4) The polyethylene according to (1) or (2), wherein the polyethylene having a melting point of more than 125 ° C. and 132 ° C. or less has at least 0.3 terminal vinyl groups per 1000 carbon atoms in the polyethylene. (5) a battery separator comprising the polyethylene microporous membrane according to any of (1) to (4); (6)
A battery using the microporous polyethylene membrane according to any one of the above (1) to (4) as a separator.

【0007】[0007]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明のポリエチレン製微多孔膜は、少なくとも粘度平
均分子量が10万〜400万の高密度ポリエチレン10
〜95重量%と、融点が125を越えて132℃以下の
ポリエチレン5〜90重量%を含有している組成物から
なることを特徴とするものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The microporous polyethylene membrane of the present invention has a viscosity average molecular weight of at least 100,000 to 4,000,000.
The composition is characterized by comprising a composition containing 5 to 90% by weight of polyethylene having a melting point of more than 125 and 132 ° C. or less.

【0008】本発明に用いられる高密度ポリエチレンと
は、密度が0.941g/cm3以上であり、粘度平均
分子量が10万〜400万、好ましくは15万〜200
万、より好ましくは17万〜100万、さらに好ましく
は20万以上70万未満である。ここで、粘度平均分子
量が10万未満であると、微多孔膜としたときの強度が
不十分となる。また400万を超えると微多孔膜製造時
の混練及び成形が困難になる。尚、粘度平均分子量Mv
は、デカリン溶液中で極限粘度[η]を測定し、以下の
式により求める; ポリエチレン:[η]=6.77×10-4Mv0.67 ポリプロピレン:[η]=1.10×10-4Mv0.80 本発明に用いられる融点が125℃を越え132℃以下
のポリエチレンの一つとして、エチレンとα−オレフィ
ンとの共重合体が挙げられる。α−オレフィンは炭素数
が4以上のものが好ましい。このような共重合体は、チ
ーグラー型触媒を用いて、常圧から100kg/cm2
の圧力下でイオン重合により作り出すことができる。
The high-density polyethylene used in the present invention has a density of 0.941 g / cm 3 or more and a viscosity average molecular weight of 100,000 to 4,000,000, preferably 150,000 to 200,000.
10,000, more preferably 170,000 to 1,000,000, and still more preferably 200,000 or more and less than 700,000. Here, if the viscosity average molecular weight is less than 100,000, the strength of a microporous film becomes insufficient. On the other hand, if it exceeds 4,000,000, kneading and molding at the time of producing a microporous membrane become difficult. The viscosity average molecular weight Mv
Is the intrinsic viscosity [η] measured in a decalin solution and determined by the following equation: Polyethylene: [η] = 6.77 × 10 −4 Mv 0.67 Polypropylene: [η] = 1.10 × 10 −4 Mv 0.80 One of the polyethylenes having a melting point of more than 125 ° C. and 132 ° C. or less used in the present invention is a copolymer of ethylene and an α-olefin. The α-olefin preferably has 4 or more carbon atoms. Such a copolymer is prepared from a normal pressure to 100 kg / cm 2 using a Ziegler type catalyst.
Can be produced by ionic polymerization under a pressure of

【0009】上記共重合体としては、構造不均一性の小
さいポリエチレンを用いることができる。このときの共
重合体の密度は0.86〜0.95g/cm3であるこ
とが好ましい。且つ、数平均分子量に対する重量平均分
子量の比(Mw/Mn)は3.5〜8.0の範囲である
ことが好ましい。このような共重合体は、活性点が1種
類の均一系触媒であるシングルサイト触媒によっても重
合することができる。シングルサイト触媒としては、ビ
ス(シクロペンタジエニル)ジルコニウムクロライドの
ようなメタロセン触媒が挙げられる。尚、Mw及びMn
は以下の方法により測定する; [測定装置]ゲルパーミエーションクロマトグラフィ
(GPC)(Waters製:ALC/GPC 150
型) [測定条件]カラム:昭和電工製AT−807S(1
本)と東ソー製GMH−HT6(2本)を直列に接続 移動相:トリクロロベンゼン(TCB) カラム温度:140℃ 流量:1.0ml/min. 試料調整:20〜30mgのサンプルを、0.1重量%
の2,6−ジ−t−ブチル−4−メチルフェノールを溶
解させたTCB溶液20mlへ140℃に加熱して溶解
させる [算出方法]クロマトグラムにベースラインを引き、さ
らにクロマトグラムをいくつかに等分割して、ベースラ
インからの各分割点の高さHiを求める。次に、各分割
点における分子量Miを分子量既知の標準ポリスチレン
による較正曲線から求める。そして下式よりMw及びM
nを求める; Mw={Σ(Hi・ Mi )}/(ΣHi) Mn=(ΣHi)/{Σ(Hi/Mi)}
As the above-mentioned copolymer, polyethylene having a small structural non-uniformity can be used. At this time, the copolymer preferably has a density of 0.86 to 0.95 g / cm 3 . In addition, the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is preferably in the range of 3.5 to 8.0. Such a copolymer can also be polymerized by a single-site catalyst in which the active site is one kind of homogeneous catalyst. Single site catalysts include metallocene catalysts such as bis (cyclopentadienyl) zirconium chloride. In addition, Mw and Mn
Is measured by the following method: [Measurement device] Gel permeation chromatography (GPC) (manufactured by Waters: ALC / GPC 150)
Type) [Measurement conditions] Column: AT-807S manufactured by Showa Denko (1
) And Tosoh's GMH-HT6 (two) are connected in series. Mobile phase: trichlorobenzene (TCB) Column temperature: 140 ° C Flow rate: 1.0 ml / min. Sample preparation: 20 to 30 mg of sample is 0.1% by weight
Is dissolved in 20 ml of a TCB solution in which 2,6-di-t-butyl-4-methylphenol is dissolved by heating at 140 ° C. [Calculation method] A baseline is drawn on the chromatogram, and the chromatogram is further divided into several. The height Hi of each division point from the baseline is obtained by equal division. Next, the molecular weight Mi at each division point is determined from a calibration curve using standard polystyrene having a known molecular weight. Then, from the following equation, Mw and M
Mn = {(Hi · Mi)} / ({Hi) Mn = ({Hi) / {(Hi / Mi)}}

【0010】また、本発明に用いられる融点が125℃
を越えて132℃以下のポリエチレン、及びエチレンと
炭素数が4以上のα−オレフィンとの共重合体で融点が
125℃を越えて132℃以下のポリエチレンとしては
ポリエチレン中の1000個の炭素原子当たり0.3個
以上の末端ビニル基を有するものでもよい。このような
ポリエチレンは、クロム化合物担持系触媒によって重合
することができる。ここでクロム化合物担持系触媒と
は、例えば、特公平1−12777号公報に示されてい
るようなものである。
The melting point used in the present invention is 125 ° C.
Of polyethylene having a melting point of more than 125 ° C. and less than 132 ° C. of polyethylene having a melting point of more than 132 ° C. and a copolymer of ethylene and an α-olefin having 4 or more carbon atoms per 1000 carbon atoms in the polyethylene It may have a terminal vinyl group of 0.3 or more. Such polyethylene can be polymerized by a chromium compound-supported catalyst. Here, the chromium compound-supported catalyst is, for example, one as disclosed in Japanese Patent Publication No. 1-1277.

【0011】このような触媒を用いて重合した場合、チ
ーグラー型触媒を用いて重合した場合とは異なり、重合
体中の1000個の炭素原子当たり0.3個以上の末端
ビニル基が見られる。理由は明らかではないが、末端ビ
ニル基の存在が多いほど、微多孔膜の孔の閉塞温度が低
くなり好ましい。尚、重合体中の1000個の炭素原子
当たりの末端ビニル基数は以下の方法により導出する;
ポリマーを加熱プレスし、シート状に無孔化したサンプ
ルのIRスペクトルを測定し、910cm-1付近の末端
ビニル基を示すピークのベースラインからの高さ(吸光
度:A)を求める。これを次式に代入し、ポリマー中の
1000個の炭素原子当たりの末端ビニル基数nを求め
る; n=1.14×A/(ρ×t) 上式中、ρ:サンプルの真密度(g/cm3), t:サンプルの厚み(mm) 尚、本発明における融点とは、示差走査熱量計(DS
C)によって得られる吸熱ピークトップの温度のことを
指している。
When polymerized using such a catalyst, unlike the case where polymerization is performed using a Ziegler-type catalyst, 0.3 or more terminal vinyl groups are observed per 1000 carbon atoms in the polymer. Although the reason is not clear, the more vinyl terminal groups are present, the lower the pore closing temperature of the microporous membrane is. Incidentally, the number of terminal vinyl groups per 1000 carbon atoms in the polymer is derived by the following method;
The polymer is heated and pressed to measure the IR spectrum of the sample which has been made nonporous into a sheet, and the height (absorbance: A) of the peak indicating the terminal vinyl group at around 910 cm -1 from the baseline is determined. This is substituted into the following equation to determine the number n of terminal vinyl groups per 1000 carbon atoms in the polymer; n = 1.14 × A / (ρ × t) where ρ: true density of the sample (g / Cm 3 ), t: thickness of sample (mm) The melting point in the present invention means a differential scanning calorimeter (DS
It refers to the temperature of the endothermic peak top obtained by C).

【0012】さらに、セパレータの耐熱性を上げたりす
ること等の目的でポリエチレン以外のポリオレフィン、
例えばポリプロピレンを含有させても良い。このときの
含有量は1〜30重量%であり、より好ましくは1〜2
0重量%、さらに好ましくは3〜10重量%である。ま
た、無機物を充填することも可能であるが、本願におい
ては充填しない方が好ましい。
Further, polyolefins other than polyethylene for the purpose of increasing the heat resistance of the separator, etc.
For example, polypropylene may be contained. The content at this time is 1 to 30% by weight, more preferably 1 to 2% by weight.
0% by weight, more preferably 3 to 10% by weight. Although it is possible to fill with an inorganic substance, it is preferable not to fill with an inorganic substance in the present application.

【0013】次に、本発明のポリエチレン製微多孔膜の
製法について説明する。まず、原料となるポリエチレン
を混合し、これをダイが装着された押出し機内で、その
融点以上、分解温度未満の温度で可塑剤中で溶解させ溶
融混練させる。これをダイリップより押出して冷却ロー
ル上にキャストすることにより数十μmから数mm厚の
シート状にし、ゲル状組成物とする。ここでいう可塑剤
とは、沸点以下の温度でポリエチレンと均一な溶液を形
成し得る有機化合物のことをいう。具体的には、流動パ
ラフィン,デカリン,キシレン,ジオクチルフタレー
ト,ジブチルフタレート,ステアリルアルコール,オレ
イルアルコール,デシルアルコール,ノニルアルコー
ル,ジフェニルエーテル,n−デカン,n−ドデカン等
が挙げられ、特に流動パラフィン,デカリンが好まし
い。
Next, a method for producing the microporous polyethylene membrane of the present invention will be described. First, polyethylene as a raw material is mixed, and this is melted and kneaded in an extruder equipped with a die in a plasticizer at a temperature equal to or higher than its melting point and lower than the decomposition temperature. This is extruded from a die lip and cast on a cooling roll to form a sheet having a thickness of several tens μm to several mm to obtain a gel composition. The plasticizer as used herein refers to an organic compound capable of forming a uniform solution with polyethylene at a temperature equal to or lower than the boiling point. Specific examples include liquid paraffin, decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane and the like, and particularly liquid paraffin and decalin. preferable.

【0014】可塑剤中のポリエチレン濃度は10〜70
重量%、好ましくは25〜50重量%の範囲である。7
0重量%を超えると適当な気孔率を得ることができず、
10重量%未満では粘度が低下して連続シート成形が困
難となる。尚、加熱溶解時にはポリエチレンの酸化を防
止するために、酸化防止剤を添加しておくことが好まし
い。このゲル状組成物を加熱して延伸を行い、延伸膜と
する。延伸温度は常温から高分子ゲルの融点の範囲、好
ましくは80〜130℃,より好ましくは100〜12
5℃の範囲である。
The polyethylene concentration in the plasticizer is 10 to 70.
%, Preferably in the range of 25 to 50% by weight. 7
If it exceeds 0% by weight, an appropriate porosity cannot be obtained,
If it is less than 10% by weight, the viscosity is reduced, and it is difficult to form a continuous sheet. In addition, at the time of heating and melting, it is preferable to add an antioxidant in order to prevent oxidation of polyethylene. The gel composition is heated and stretched to form a stretched film. The stretching temperature is in the range of room temperature to the melting point of the polymer gel, preferably 80 to 130 ° C, more preferably 100 to 12 ° C.
It is in the range of 5 ° C.

【0015】延伸方法はテンター法,ロール法,インフ
レーション法,圧延法もしくはこれらの方法の組み合わ
せ等により所定の倍率で行う。一軸延伸,二軸延伸でも
構わないが、二軸延伸が好ましく、二軸延伸の場合は縦
横同時延伸でも逐次延伸でも構わない。延伸倍率は面積
倍率で4〜400倍、好ましくは8〜200倍、より好
ましくは16〜100倍の範囲である。延伸倍率が4倍
未満であると、セパレータとしての強度が不十分であ
り、400倍を超えると、延伸が困難となる。
The stretching method is performed at a predetermined magnification by a tenter method, a roll method, an inflation method, a rolling method or a combination of these methods. Uniaxial stretching or biaxial stretching may be used, but biaxial stretching is preferred. In the case of biaxial stretching, simultaneous vertical and horizontal stretching or sequential stretching may be used. The stretching ratio is in the range of 4 to 400 times, preferably 8 to 200 times, more preferably 16 to 100 times in area ratio. If the stretching ratio is less than 4 times, the strength as a separator is insufficient, and if it exceeds 400 times, stretching becomes difficult.

【0016】次に、延伸膜から可塑剤を抽出することに
より微多孔膜とする。抽出方法として有機溶剤による抽
出があるが、このときの溶剤としては、メチルエチルケ
トン,塩化メチレン,ヘキサン,ジエチルエーテル等が
使用され、その後、加熱,風乾により乾燥する。可塑剤
としてデカリン等の低沸点化合物を使用する場合は加熱
乾燥によりこれを除去することも可能である。何れの場
合においても、膜の収縮による物性低下を防ぐため、膜
を拘束した状態で行うことが望ましい。
Next, a plasticizer is extracted from the stretched film to obtain a microporous film. As an extraction method, there is an extraction with an organic solvent. As a solvent at this time, methyl ethyl ketone, methylene chloride, hexane, diethyl ether or the like is used, and thereafter, drying is performed by heating and air drying. When a low boiling point compound such as decalin is used as the plasticizer, it can be removed by heating and drying. In any case, in order to prevent a decrease in physical properties due to shrinkage of the film, it is desirable to perform the process with the film restrained.

【0017】以上の後に、寸法安定性を高めたり、熱収
縮率を低減させたりする目的で、熱固定(ヒートセッ
ト)を行うことが望ましい。このときの温度としては、
結晶分散温度から融点の範囲で行うことが好ましい。ま
た、熱固定時には幅方向の延伸を同時に行うが、このと
きの延伸倍率としては1.01〜2.00倍の範囲で行
われ、1.10〜1.80倍の範囲であることが好まし
い。以上のようにして製造されたセパレータの諸物性に
ついて以下に述べる。膜厚は1〜100μmの範囲であ
り、好ましくは5〜50μmである。膜厚が1μm未満
であると機械的強度が不十分であり、100μmを越え
ると硬くなって電池として捲回し難くなる上に、電池容
量としても不利となる。尚、膜厚はダイヤルゲージ(尾
崎製作所製:PEACOCK No.25)にて測定す
る。
After the above, it is desirable to perform heat setting (heat setting) for the purpose of increasing the dimensional stability and reducing the heat shrinkage. At this time,
It is preferable to carry out in a range from the crystal dispersion temperature to the melting point. At the time of heat fixation, stretching in the width direction is performed at the same time, and the stretching ratio at this time is in the range of 1.01 to 2.00, preferably 1.10 to 1.80. . The physical properties of the separator manufactured as described above will be described below. The film thickness is in the range of 1 to 100 μm, preferably 5 to 50 μm. If the film thickness is less than 1 μm, the mechanical strength is insufficient, and if it exceeds 100 μm, the film becomes hard and difficult to be wound as a battery, and the battery capacity is disadvantageous. In addition, the film thickness is measured with a dial gauge (manufactured by Ozaki Seisakusho: PEACK No. 25).

【0018】気孔率は20〜80%、好ましくは30〜
55%である。気孔率が20%未満であるとイオン透過
性が不十分であり、80%より大きいと機械強度が不十
分である。尚、気孔率は以下の方法により算出する; 気孔率={1−(10000×M/ρ)/(X×Y×
T)}×100 上式中、X,Y:サンプルの縦,横長(cm) T:サンプル厚み(μm)、M:サンプル重量(g) ρ:樹脂の真密度(g/cm3) 透気度は10〜2000sec./100cc、好まし
くは30〜1500sec./100cc、より好まし
くは50〜1000sec./100ccである。20
00sec./100ccを超えるとイオン透過性の観
点から好ましくない。尚、透気度は以下の方法により測
定する; [測定装置]JIS P−8117準拠のガーレー式透
気度計 このとき、圧力:0.01276atm,膜面積:6.
424cm2,透過空気量:100cc
The porosity is 20 to 80%, preferably 30 to 80%.
55%. If the porosity is less than 20%, the ion permeability is insufficient, and if it is more than 80%, the mechanical strength is insufficient. The porosity is calculated by the following method; porosity = {1− (10000 × M / ρ) / (X × Y ×
T)} × 100 In the above formula, X, Y: vertical and horizontal length of the sample (cm) T: sample thickness (μm), M: sample weight (g) ρ: true density of resin (g / cm 3 ) The degree is 10 to 2000 sec. / 100cc, preferably 30 to 1500 sec. / 100 cc, more preferably 50 to 1000 sec. / 100cc. 20
00sec. If it exceeds / 100 cc, it is not preferable from the viewpoint of ion permeability. The air permeability is measured by the following method: [Measurement device] Gurley-type air permeability meter according to JIS P-8117 At this time, pressure: 0.01276 atm, membrane area: 6.
424cm 2 , permeated air volume: 100cc

【0019】突刺強度は50g以上、好ましくは100
g以上、より好ましくは150g以上である。50g未
満であると、電池生産時の収率が下がり好ましくない。
尚、突刺強度は以下の方法により測定する; [測定装置]ハンディ圧縮試験機(カトーテック製:K
ES−G5) このとき、針先端曲率半径:0.5mm,突刺速度:2
mm/sec. 孔径は0.01〜1μm、好ましくは0.03〜0.7
μm、さらに好ましくは0.05〜0.5μmである。
孔径が0.01μmより小さいとイオン透過性が十分で
はなく、1μmより大きいと、析出したデンドライト
や、活物質粒子による内部短絡の可能性があり、フュー
ズ効果によるイオンの遮断が遅れることも考えられる。
尚、孔径は以下の方法により測定する; [測定装置]水銀ポロシメータ(島津製作所製:オート
ポア9220) [測定条件]約25mm幅に切断したサンプル0.1〜
0.2gを折りたたんでセルに入れ、初期圧20kPa
から測定する。 [孔径導出]微分細孔体積曲線(横軸:孔径,縦軸:圧
入水銀体積変化量を孔径変化量で割った値)を描き、そ
の曲線のピークトップにおける孔径(モード径)をセパ
レータの孔径として代表させる。
The piercing strength is 50 g or more, preferably 100 g.
g or more, more preferably 150 g or more. If the amount is less than 50 g, the yield during battery production decreases, which is not preferable.
The puncture strength is measured by the following method: [Measurement device] Handy compression tester (Katotech: K
ES-G5) At this time, the needle tip curvature radius: 0.5 mm, the piercing speed: 2
mm / sec. The pore size is 0.01-1 μm, preferably 0.03-0.7.
μm, and more preferably 0.05 to 0.5 μm.
If the pore diameter is smaller than 0.01 μm, the ion permeability is not sufficient. If the pore diameter is larger than 1 μm, there is a possibility that precipitated dendrite or internal short-circuit due to active material particles may occur, and it may be considered that the blocking of ions due to the fuse effect is delayed. .
The pore size is measured by the following method: [Measurement device] Mercury porosimeter (manufactured by Shimadzu Corporation: Autopore 9220) [Measurement conditions] 0.1 to 0.1 mm cut sample
0.2 g is folded and put into the cell, and the initial pressure is 20 kPa
Measure from. [Derivation of pore size] Draw a differential pore volume curve (horizontal axis: pore size, vertical axis: value obtained by dividing the change in volume of the injected mercury volume by the change in pore size), and calculate the pore size (mode diameter) at the peak top of the curve by the pore size of the separator. As a representative.

【0020】[0020]

【実施例】以下、本発明の実施形態について、実施例を
挙げてさらに説明するが、本発明はこれらによって何ら
限定されるものではない。
EXAMPLES Hereinafter, embodiments of the present invention will be further described with reference to examples, but the present invention is not limited thereto.

【0021】[0021]

【実施例1】(1)セパレータの作製 原料ポリエチレンとして、粘度平均分子量が28万であ
る高密度ポリエチレン80重量%と、メタロセン触媒を
用いて重合されたポリエチレン(粘度平均分子量:7
万,融点:127℃,共重合しているα−オレフィンの
炭素数:6,密度0.94g/cm3,Mw/Mn:
4.2)20重量%を用いる。これらポリエチレン45
重量部に対して、55重量部の流動パラフィン,0.3
重量部の酸化防止剤と共に240℃で溶融混練し、Tダ
イより押し出して、冷却ロール上にキャストすることに
より、シート状にする。これを同時二軸延伸機により、
115〜125℃の範囲で巻取り方向7倍×幅方向7倍
に延伸する。この後、メチルエチルケトンにて流動パラ
フィンを抽出して、乾燥する。さらに110〜130℃
の範囲でヒートセットを行うと共に、幅方向に1.3倍
延伸する。このようにして作製できるポリエチレン製微
多孔膜は、厚み25μm,気孔率40%である。
Example 1 (1) Preparation of Separator As raw material polyethylene, 80% by weight of high-density polyethylene having a viscosity average molecular weight of 280,000 and polyethylene polymerized using a metallocene catalyst (viscosity average molecular weight: 7
10,000, melting point: 127 ° C., carbon number of copolymerized α-olefin: 6, density: 0.94 g / cm 3 , Mw / Mn:
4.2) Use 20% by weight. These polyethylene 45
55 parts by weight of liquid paraffin, 0.3 part by weight
The mixture is melt-kneaded at 240 ° C. with a weight part of an antioxidant, extruded from a T-die, and cast on a cooling roll to form a sheet. This is done by a simultaneous biaxial stretching machine.
The film is stretched 7 times in the winding direction and 7 times in the width direction within a range of 115 to 125 ° C. Thereafter, liquid paraffin is extracted with methyl ethyl ketone and dried. 110-130 ° C
, And stretched 1.3 times in the width direction. The microporous polyethylene membrane thus produced has a thickness of 25 μm and a porosity of 40%.

【0022】(2)正極の作製 活物質としてリチウムコバルト複合酸化物LiCoO2
を100重量部、導電剤としてリン片状グラファイトと
アセチレンブラックをそれぞれ2.5重量部、バインダ
ーとしてポリフッ化ビニリデン(PVDF)3.5重量
部をN−メチルピロリドン(NMP)中に分散させてス
ラリーを調製する。このスラリーを正極集電体となる厚
さ20μmのアルミニウム箔の両面にダイコーターで塗
付し、130℃で3分間乾燥後、ロールプレス機で圧縮
成形する。このとき、正極の活物質塗付量は250g/
2、活物質かさ密度は3.00g/cm3になるように
する。これを幅約40mmに切断して帯状にする。
(2) Preparation of Positive Electrode LiCoO 2 Lithium-Cobalt Composite Oxide as Active Material
100 parts by weight, 2.5 parts by weight of flaky graphite and acetylene black as conductive agents, and 3.5 parts by weight of polyvinylidene fluoride (PVDF) as a binder in N-methylpyrrolidone (NMP). Is prepared. This slurry is applied to both sides of a 20 μm-thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression-molded by a roll press. At this time, the active material coating amount of the positive electrode was 250 g /
m 2 , and the bulk density of the active material is adjusted to 3.00 g / cm 3 . This is cut to a width of about 40 mm to form a band.

【0023】(3)負極の作製 活物質としてグラファイト化したメソフェーズピッチカ
ーボンファーバー(MCF)90重量部とリン片状グラ
ファイト10重量部、バインダーとしてカルボキシメチ
ルセルロースのアンモニウム塩1.4重量部とスチレン
−ブタジエン共重合体ラテックス1.8重量部を精製水
中に分散させてスラリーを調製する。このスラリーを負
極集電体となる厚さ12μmの銅箔の両面にダイコータ
ーで塗付し、120℃で3分間乾燥後、ロールプレス機
で圧縮成形する。このとき、負極の活物質塗付量は10
6g/m2、活物質かさ密度は1.35g/cm3になる
ようにする。これを幅約40mmに切断して帯状にす
る。 (4)非水電解液の調整 エチレンカーボネート:エチルメチルカーボネート=
1:2(体積比)の混合溶媒に、溶質としてLiPF6
を濃度1.0mol/リットルとなるように溶解させて
調整する。
(3) Preparation of Negative Electrode 90 parts by weight of graphitized mesophase pitch carbon fiber (MCF) as active material, 10 parts by weight of flake graphite, 1.4 parts by weight of ammonium salt of carboxymethyl cellulose as binder and styrene-butadiene A slurry is prepared by dispersing 1.8 parts by weight of the copolymer latex in purified water. The slurry is applied to both surfaces of a copper foil having a thickness of 12 μm as a negative electrode current collector by a die coater, dried at 120 ° C. for 3 minutes, and then compression-molded by a roll press. At this time, the active material application amount of the negative electrode was 10
The active material has a bulk density of 6 g / m 2 and a bulk density of 1.35 g / cm 3 . This is cut to a width of about 40 mm to form a band. (4) Preparation of non-aqueous electrolyte Ethylene carbonate: Ethyl methyl carbonate =
LiPF 6 as a solute in a 1: 2 (volume ratio) mixed solvent
Is dissolved and adjusted to a concentration of 1.0 mol / liter.

【0024】(5)電池組立 上記の微多孔膜セパレータ,帯状正極及び帯状負極を、
帯状負極、セパレータ、帯状正極、セパレータの順に重
ねて渦巻状に複数回捲回することで電極板積層体を作製
する。この電極板積層体を平板状にプレス後、アルミニ
ウム製容器に収納し、アルミニウム製リードを正極集電
体から導出して電池蓋に、ニッケル製リードを負極集電
体から導出して容器底に溶接する。さらにこの容器内に
前記した非水電解液を注入し封口する。こうして作製さ
れるリチウムイオン電池は、縦(厚み)6.3mm,横
30mm,高さ48mmの大きさで、公称放電容量は6
20mAhである。
(5) Battery assembly The above microporous membrane separator, strip-shaped positive electrode and strip-shaped negative electrode were
The strip-shaped negative electrode, the separator, the strip-shaped positive electrode, and the separator are sequentially stacked and spirally wound to form an electrode plate laminate. After pressing this electrode plate laminate into a flat plate shape, it is housed in an aluminum container, the aluminum lead is led out from the positive electrode current collector, and the nickel lead is pulled out from the negative electrode current collector, and the nickel lead is drawn out from the negative electrode current collector. Weld. Further, the above-mentioned non-aqueous electrolyte is injected into the container and sealed. The lithium ion battery thus manufactured has a size of 6.3 mm in length (thickness), 30 mm in width, and 48 mm in height, and has a nominal discharge capacity of 6 mm.
20 mAh.

【0025】(6)電池評価 上記のようにして組み立てたリチウムイオン電池25℃
雰囲気下、310mA(0.5C)の電流値で電池電圧
4.2Vまで充電し、さらに4.2Vを保持するように
して電流値を310mAから絞り始めるという方法で、
合計6時間電池作製後の最初の充電を行った。充電終了
直前の電流値はほぼ0の値となっていた。そして、25
℃雰囲気下で1週間放置した。その後、25℃雰囲気
下、620mAの電流値で電池電圧4.2Vまで充電
し、さらに4.2Vを保持するようにして電流値を62
0mAから絞り始めるという方法で、合計3時間充電を
行い、そして620mAの電流値で電池電圧3.0Vま
で放電するというサイクルを10回繰り返した。さら
に、上記と同様な方法で4.2V充電状態にした後、過
充電試験を行った。電流値は620mA(1.0C)
で、電流が絞られる電圧値(充電最大電圧値)を10V
とした。
(6) Battery evaluation Lithium-ion battery assembled at 25 ° C.
Under an atmosphere, the battery is charged to a battery voltage of 4.2 V with a current value of 310 mA (0.5 C), and the current value is started to be reduced from 310 mA while maintaining 4.2 V.
The first charge after the production of the battery was performed for a total of 6 hours. The current value immediately before the end of charging was almost zero. And 25
It was left for 1 week in an atmosphere of ° C. Thereafter, the battery was charged to a battery voltage of 4.2 V at a current value of 620 mA in an atmosphere of 25 ° C.
A cycle of charging for a total of 3 hours in a manner of starting to squeeze from 0 mA and discharging to a battery voltage of 3.0 V at a current value of 620 mA was repeated 10 times. Further, after the battery was charged to 4.2 V in the same manner as described above, an overcharge test was performed. The current value is 620 mA (1.0 C)
And the voltage value at which the current is reduced (the maximum charging voltage value) is 10 V
And

【0026】[0026]

【実施例2】原料ポリエチレンとして、粘度平均分子量
が200万である高密度ポリエチレン20重量%と、ク
ロム化合物担持系触媒を用いて重合されたポリエチレン
(粘度平均分子量:40万,融点:132℃,ポリマー
中の1000個の炭素原子当たりの末端ビニル基数:
0.5)80重量%を用いる、という事以外は実施例1
と同様にする。
Example 2 As raw material polyethylene, 20% by weight of high-density polyethylene having a viscosity average molecular weight of 2,000,000 and polyethylene polymerized using a chromium compound-supported catalyst (viscosity average molecular weight: 400,000, melting point: 132 ° C, Number of terminal vinyl groups per 1000 carbon atoms in the polymer:
0.5) Example 1 except that 80% by weight is used
As above.

【0027】[0027]

【比較例1】原料ポリエチレンとして、粘度平均分子量
が28万である高密度ポリエチレンを単独で用いる、と
いう事以外は実施例1,2と同様にする。 [過充電試験結果]実施例1,2ではフューズ効果によ
り発熱が抑えられたのに対し、比較例1ではフューズ効
果が十分でなく、発熱が見られた。
Comparative Example 1 The procedure was the same as in Examples 1 and 2, except that high-density polyethylene having a viscosity average molecular weight of 280,000 was used alone as a raw material polyethylene. [Results of Overcharge Test] In Examples 1 and 2, heat generation was suppressed by the fuse effect, whereas in Comparative Example 1, the fuse effect was not sufficient, and heat generation was observed.

【0028】[0028]

【発明の効果】以上説明したように、本発明のポリエチ
レン製微多孔膜は優れたフューズ効果を持っているた
め、安全性に優れた電池を作製することができる。
As described above, since the polyethylene microporous membrane of the present invention has an excellent fuse effect, a battery excellent in safety can be manufactured.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z Fターム(参考) 4F074 AA17A AA18 AB01 AB03 AD04 AG20 CB31 CB34 CC02X DA13 DA49 4J002 BB03W BB03X BB05X EA046 EC066 EH146 GQ00 5H021 EE04 HH01 HH05 HH06 HH07 5H029 AJ11 AJ12 AK03 AL07 AM03 AM07 EJ14 HJ00 HJ01 HJ08 HJ14 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H01M 10/40 H01M 10/40 Z F term (reference) 4F074 AA17A AA18 AB01 AB03 AD04 AG20 CB31 CB34 CC02X DA13 DA49 4J002 BB03W BB03X BB05X EA046 EC066 EH146 GQ00 5H021 EE04 HH01 HH05 HH06 HH07 5H029 AJ11 AJ12 AK03 AL07 AM03 AM07 EJ14 HJ00 HJ01 HJ08 HJ14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、粘度平均分子量が10万〜
400万の高密度ポリエチレン10〜95重量%と、融
点が125℃を越えて132℃以下のポリエチレン5〜
90重量%を含有している組成物からなることを特徴と
するポリエチレン製微多孔膜。
At least a viscosity average molecular weight of at least 100,000
4 million high-density polyethylene of 10 to 95% by weight and melting point of more than 125 ° C. and 132 ° C. or less of polyethylene 5
A microporous polyethylene membrane, comprising a composition containing 90% by weight.
【請求項2】 融点が125℃を越えて132℃以下の
ポリエチレンが、エチレンと炭素数が4以上のα−オレ
フィンとの共重合体であることを特徴とする請求項1記
載のポリエチレン製微多孔膜。
2. The polyethylene fine particle according to claim 1, wherein the polyethylene having a melting point of more than 125 ° C. and 132 ° C. or less is a copolymer of ethylene and an α-olefin having 4 or more carbon atoms. Porous membrane.
【請求項3】 融点が125℃を越えて132℃以下の
ポリエチレンの密度が0.86〜0.95g/cm3
あり、且つ、数平均分子量に対する重量平均分子量の比
(Mw/Mn)が3.5〜8.0の範囲であることを特
徴とする請求項1または2記載のポリエチレン製微多孔
膜。
3. The polyethylene having a melting point of more than 125 ° C. and 132 ° C. or less has a density of 0.86 to 0.95 g / cm 3 and a ratio of a weight average molecular weight to a number average molecular weight (Mw / Mn). The polyethylene microporous membrane according to claim 1 or 2, wherein the thickness is in the range of 3.5 to 8.0.
【請求項4】 融点が125℃を越えて132℃以下の
ポリエチレンが、ポリエチレン中の1000個の炭素原
子当たり0.3個以上の末端ビニル基が存在することを
特徴とする請求項1または2記載のポリエチレン製微多
孔膜。
4. A polyethylene having a melting point of not less than 125 ° C. and not more than 132 ° C., wherein the polyethylene has at least 0.3 terminal vinyl groups per 1,000 carbon atoms in the polyethylene. The microporous polyethylene membrane as described in the above.
【請求項5】 請求項1〜4のいずれかに記載のポリエ
チレン製微多孔膜からなる電池用セパレータ。
5. A battery separator comprising the polyethylene microporous membrane according to claim 1.
【請求項6】 請求項1〜4のいずれかに記載のポリエ
チレン製微多孔膜をセパレータとして使用した電池。
6. A battery using the microporous polyethylene membrane according to claim 1 as a separator.
JP2001149462A 2001-05-18 2001-05-18 Polyethylene microporous membrane and battery using the same Expired - Fee Related JP4986199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149462A JP4986199B2 (en) 2001-05-18 2001-05-18 Polyethylene microporous membrane and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149462A JP4986199B2 (en) 2001-05-18 2001-05-18 Polyethylene microporous membrane and battery using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012029848A Division JP2012136704A (en) 2012-02-14 2012-02-14 Microporous membrane made of polyethylene and battery using the same

Publications (2)

Publication Number Publication Date
JP2002338730A true JP2002338730A (en) 2002-11-27
JP4986199B2 JP4986199B2 (en) 2012-07-25

Family

ID=18994628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149462A Expired - Fee Related JP4986199B2 (en) 2001-05-18 2001-05-18 Polyethylene microporous membrane and battery using the same

Country Status (1)

Country Link
JP (1) JP4986199B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314544A (en) * 2004-04-28 2005-11-10 Asahi Kasei Chemicals Corp Ultra high molecular weight polyethylene resin composition and molded product obtained therefrom
WO2005121228A1 (en) * 2004-06-11 2005-12-22 Sk Corporation Microporous high density polyethylene film and method of producing the same
WO2006004314A1 (en) * 2004-07-06 2006-01-12 Sk Corporation Microporous polyethylene film and method of producing the same
WO2006123850A1 (en) * 2005-05-16 2006-11-23 Sk Energy Co., Ltd. Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof
WO2006123849A1 (en) * 2005-05-16 2006-11-23 Sk Energy Co., Ltd. Microporous high density polyethylene film and preparing method thereof
WO2007037290A1 (en) * 2005-09-28 2007-04-05 Tonen Chemical Corporation Polyethylene multi-layer porous membrane, process for production thereof, and separators for cells
WO2007073019A1 (en) * 2005-12-21 2007-06-28 Sk Energy Co., Ltd. Microporous film of semicrystalline polymer and method for preparing the same
JP2008501847A (en) * 2004-06-11 2008-01-24 エスケーコーポレイション Polyethylene microporous membrane and method for producing the same
WO2008035806A1 (en) * 2006-09-19 2008-03-27 Tonen Chemical Corporation Electrode assembly and non-aqueous electrolyte battery
JP2010056076A (en) * 2008-08-01 2010-03-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2010114672A1 (en) 2009-03-30 2010-10-07 Tonen Chemical Corporation Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US8057718B2 (en) 2005-04-06 2011-11-15 Sk Innovation Co., Ltd. Microporous polyethylene film having excellent physical properties, productivity, and quality consistency, and method of producing same
JP2012501357A (en) * 2008-09-02 2012-01-19 東レ東燃機能膜合同会社 Microporous polymer membrane, method for producing such membrane, and battery separator film using the same
US20130288102A1 (en) * 2010-12-22 2013-10-31 Toray Battery Separator Film Co., Ltd. Microporous film, methods for making such film, and use for such film as battery separator film
WO2018088209A1 (en) * 2016-11-08 2018-05-17 旭化成株式会社 Ethylene polymer, stretch-formed object, and microporous film
JP2019157060A (en) * 2018-03-16 2019-09-19 東レ株式会社 Polyolefin microporous film
RU2711547C1 (en) * 2018-12-29 2020-01-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Method of producing mesoporous mechanically sensitive polymer materials
CN110714231A (en) * 2018-07-13 2020-01-21 旭化成株式会社 Ethylene polymer fibers
WO2021033736A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous membrane
KR102263236B1 (en) * 2019-12-18 2021-06-09 한화토탈 주식회사 Polyethylene resin for secondary battery separator and its manufacturing method
CN113105695A (en) * 2019-12-24 2021-07-13 韩华道达尔有限公司 Polyethylene resin composition and separation membrane for secondary battery produced from same
CN113717451A (en) * 2020-05-22 2021-11-30 韩华道达尔有限公司 Polyethylene resin composition and separation membrane for secondary battery prepared from same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020883A1 (en) * 1995-12-05 1997-06-12 Asahi Kasei Kogyo Kabushiki Kaisha Microporous polyethylene membranes having low fusing temperatures
WO1997023554A1 (en) * 1995-12-25 1997-07-03 Asahi Kasei Kogyo Kabushiki Kaisha Short circuit-resistant polyethylene microporous film
JPH11269289A (en) * 1998-03-20 1999-10-05 Tonen Kagaku Kk Polyethylene fine porous membrane
JP2000143867A (en) * 1998-11-18 2000-05-26 Sekisui Chem Co Ltd Preparation of porous film for cell separator
JP2000219759A (en) * 1999-02-02 2000-08-08 Nitto Denko Corp Production of porous film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020883A1 (en) * 1995-12-05 1997-06-12 Asahi Kasei Kogyo Kabushiki Kaisha Microporous polyethylene membranes having low fusing temperatures
WO1997023554A1 (en) * 1995-12-25 1997-07-03 Asahi Kasei Kogyo Kabushiki Kaisha Short circuit-resistant polyethylene microporous film
JPH11269289A (en) * 1998-03-20 1999-10-05 Tonen Kagaku Kk Polyethylene fine porous membrane
JP2000143867A (en) * 1998-11-18 2000-05-26 Sekisui Chem Co Ltd Preparation of porous film for cell separator
JP2000219759A (en) * 1999-02-02 2000-08-08 Nitto Denko Corp Production of porous film

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314544A (en) * 2004-04-28 2005-11-10 Asahi Kasei Chemicals Corp Ultra high molecular weight polyethylene resin composition and molded product obtained therefrom
WO2005121228A1 (en) * 2004-06-11 2005-12-22 Sk Corporation Microporous high density polyethylene film and method of producing the same
JP4829233B2 (en) * 2004-06-11 2011-12-07 エスケー エナジー カンパニー リミテッド Production method of polyethylene microporous membrane
JP2011208144A (en) * 2004-06-11 2011-10-20 Sk Energy Co Ltd Polyethylene microporous film
JP2008501847A (en) * 2004-06-11 2008-01-24 エスケーコーポレイション Polyethylene microporous membrane and method for producing the same
US7332531B2 (en) 2004-06-11 2008-02-19 Sk Corporation Microporous high density polyethylene film
US7947752B2 (en) 2004-06-11 2011-05-24 Sk Energy Co., Ltd. Method of producing microporous high density polyethylene film
WO2006004314A1 (en) * 2004-07-06 2006-01-12 Sk Corporation Microporous polyethylene film and method of producing the same
US7435761B2 (en) 2004-07-06 2008-10-14 Sk Energy Co., Ltd. Microporous polyethylene film and method of producing the same
US8057718B2 (en) 2005-04-06 2011-11-15 Sk Innovation Co., Ltd. Microporous polyethylene film having excellent physical properties, productivity, and quality consistency, and method of producing same
WO2006123850A1 (en) * 2005-05-16 2006-11-23 Sk Energy Co., Ltd. Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof
WO2006123849A1 (en) * 2005-05-16 2006-11-23 Sk Energy Co., Ltd. Microporous high density polyethylene film and preparing method thereof
TWI405671B (en) * 2005-09-28 2013-08-21 Polyethylene multiple micro-porous film, process for preparing the same and separator for using in cell
KR101183913B1 (en) 2005-09-28 2012-09-21 토레이 밧데리 세퍼레이터 필름 고도 가이샤 Polyethylene multi-layer porous membrane, process for production thereof, and separators for cells
US7985497B2 (en) 2005-09-28 2011-07-26 Toray Tonen Specialty Separator Godo Kaisha Multi-layer, microporous polyethylene membrane, its production method, and battery separator
JP2007118588A (en) * 2005-09-28 2007-05-17 Tonen Chem Corp Polyethylene multilayer microporous membrane, production method thereof, and separator for battery
WO2007037290A1 (en) * 2005-09-28 2007-04-05 Tonen Chemical Corporation Polyethylene multi-layer porous membrane, process for production thereof, and separators for cells
WO2007073019A1 (en) * 2005-12-21 2007-06-28 Sk Energy Co., Ltd. Microporous film of semicrystalline polymer and method for preparing the same
WO2008035806A1 (en) * 2006-09-19 2008-03-27 Tonen Chemical Corporation Electrode assembly and non-aqueous electrolyte battery
US8679676B2 (en) 2008-08-01 2014-03-25 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery having a nitrile compound and a carboxylic acid ester compound
JP2010056076A (en) * 2008-08-01 2010-03-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2012501357A (en) * 2008-09-02 2012-01-19 東レ東燃機能膜合同会社 Microporous polymer membrane, method for producing such membrane, and battery separator film using the same
WO2010114673A1 (en) 2009-03-30 2010-10-07 Tonen Chemical Corporation Microporous membranes and methods for producing and using such membranes
WO2010114674A1 (en) 2009-03-30 2010-10-07 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
JP2012522106A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous membranes and methods for making and using such membranes (cross-reference of related applications)
JP2012522108A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous membranes, methods for producing such membranes, and use of such membranes as battery separator films
JP2012522107A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous membranes, methods for producing such membranes, and use of such membranes as battery separator films
JP2012522354A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous membrane and methods for making and using such membranes
WO2010114671A1 (en) 2009-03-30 2010-10-07 Tonen Chemical Corporation Microporous polymeric membranes, battery separators, and production methods therefor
JP2012522105A (en) * 2009-03-30 2012-09-20 東レバッテリーセパレータフィルム株式会社 Microporous membranes, methods for producing such membranes, and use of such membranes as battery separator films
US9744500B2 (en) 2009-03-30 2017-08-29 Toray Industries, Inc. Microporous polymeric membranes, battery separators, and production methods therefor
WO2010114672A1 (en) 2009-03-30 2010-10-07 Tonen Chemical Corporation Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US8709641B2 (en) 2009-03-30 2014-04-29 Toray Battery Separator Film Co., Ltd. Microporous membranes and methods for producing and using such membranes
JP2014196508A (en) * 2009-03-30 2014-10-16 東レバッテリーセパレータフィルム株式会社 Microporous film, method of manufacturing the film, use of the film as battery separator film
US9289728B2 (en) 2009-03-30 2016-03-22 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US9295950B2 (en) 2009-03-30 2016-03-29 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US9502705B2 (en) * 2010-12-22 2016-11-22 Toray Battery Separator Film Co., Ltd. Microporous film, methods for making such film, and use for such film as battery separator film
US20130288102A1 (en) * 2010-12-22 2013-10-31 Toray Battery Separator Film Co., Ltd. Microporous film, methods for making such film, and use for such film as battery separator film
CN108290976A (en) * 2016-11-08 2018-07-17 旭化成株式会社 Ethene polymers, drawing and forming body and microporous barrier
CN108290976B (en) * 2016-11-08 2024-12-17 旭化成株式会社 Ethylene polymer, stretch molded body, and microporous film
JPWO2018088209A1 (en) * 2016-11-08 2018-11-08 旭化成株式会社 Ethylene polymer, stretched molded body and microporous membrane
US10947361B2 (en) 2016-11-08 2021-03-16 Asahi Kasei Kabushiki Kaisha Ethylene polymer, stretched molded article and microporous membrane
WO2018088209A1 (en) * 2016-11-08 2018-05-17 旭化成株式会社 Ethylene polymer, stretch-formed object, and microporous film
JP2019157060A (en) * 2018-03-16 2019-09-19 東レ株式会社 Polyolefin microporous film
CN110714231A (en) * 2018-07-13 2020-01-21 旭化成株式会社 Ethylene polymer fibers
RU2711547C1 (en) * 2018-12-29 2020-01-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Method of producing mesoporous mechanically sensitive polymer materials
WO2021033736A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous membrane
JP7639341B2 (en) 2019-08-22 2025-03-05 東レ株式会社 Polyolefin microporous membrane
CN113004446A (en) * 2019-12-18 2021-06-22 韩华道达尔有限公司 Polyethylene resin for secondary battery separator and secondary battery separator comprising same
CN113004446B (en) * 2019-12-18 2022-10-25 韩华道达尔能源有限公司 Polyethylene resin for secondary battery separator and secondary battery separator comprising same
KR102263236B1 (en) * 2019-12-18 2021-06-09 한화토탈 주식회사 Polyethylene resin for secondary battery separator and its manufacturing method
JP2021102744A (en) * 2019-12-24 2021-07-15 ハンファ トータル ペトロケミカル カンパニー リミテッド Polyethylene resin composition, and separation membrane for secondary battery produced from the same
CN113105695B (en) * 2019-12-24 2023-04-25 韩华道达尔能源有限公司 Polyethylene resin composition and separation film for secondary battery produced from same
JP7266013B2 (en) 2019-12-24 2023-04-27 ハンファ トタルエナジーズ ペトロケミカル カンパニー リミテッド Polyethylene resin composition and separation membrane for secondary battery produced therefrom
CN113105695A (en) * 2019-12-24 2021-07-13 韩华道达尔有限公司 Polyethylene resin composition and separation membrane for secondary battery produced from same
CN113717451A (en) * 2020-05-22 2021-11-30 韩华道达尔有限公司 Polyethylene resin composition and separation membrane for secondary battery prepared from same
CN113717451B (en) * 2020-05-22 2023-11-28 韩华道达尔能源有限公司 Polyethylene resin composition and separation film for secondary battery prepared from same

Also Published As

Publication number Publication date
JP4986199B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4986199B2 (en) Polyethylene microporous membrane and battery using the same
TWI700851B (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4470288B2 (en) Battery separator and lithium secondary battery using the same
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
CN108933220B (en) Non-aqueous electrolyte secondary battery
US20090186280A1 (en) Polyolefin microporous membrane
JP6367453B2 (en) Separator for electricity storage device and laminate, wound body, lithium ion secondary battery or electricity storage device using the same
KR20160093096A (en) Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
CN103890998A (en) Nonaqueous secondary battery separator and non-aqueous secondary battery
JP5601681B2 (en) Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
JP4573284B2 (en) Polyethylene microporous membrane
JP6723052B2 (en) Storage device separator
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP2009269941A (en) Microporous polyolefin membrane
JP3681720B2 (en) Polyolefin microporous membrane
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP4209986B2 (en) Polyolefin microporous membrane secondary battery separator
JP2012136704A (en) Microporous membrane made of polyethylene and battery using the same
JP4408016B2 (en) Microporous membrane
JP6877611B1 (en) Lithium ion secondary battery
JP7152435B2 (en) Polyolefin microporous membrane
JP6781565B2 (en) Separator for power storage device
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN114497880A (en) Diaphragm and lithium ion battery comprising same
JP2002358944A (en) Separator for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

R150 Certificate of patent or registration of utility model

Ref document number: 4986199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees