JP2002332964A - Refrigerant compressor starting device and refrigerant compressor - Google Patents
Refrigerant compressor starting device and refrigerant compressorInfo
- Publication number
- JP2002332964A JP2002332964A JP2001136036A JP2001136036A JP2002332964A JP 2002332964 A JP2002332964 A JP 2002332964A JP 2001136036 A JP2001136036 A JP 2001136036A JP 2001136036 A JP2001136036 A JP 2001136036A JP 2002332964 A JP2002332964 A JP 2002332964A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant compressor
- refrigerant
- starting
- synchronous motor
- induction synchronous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compressor (AREA)
- Motor And Converter Starters (AREA)
- Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
(57)【要約】
【課題】 冷蔵庫などの冷却装置に関し、冷媒圧縮機の
エネルギー効率を大幅に向上させることで冷凍サイクル
の総合効率を高め冷却装置の消費電力低減を図る。
【解決手段】 冷媒を圧縮する冷媒圧縮機と、冷媒を凝
縮させる凝縮器と、冷媒を乾燥させる乾燥器と、冷媒を
膨張させる膨張機構と、冷媒を蒸発させる蒸発器とを備
え、冷媒圧縮機を駆動する誘導同期電動機の始動装置は
電気抵抗の温度係数が正で所定温度においてその抵抗値
が急変する特性の感熱素子を用いる。
(57) [Summary] [PROBLEMS] For a cooling device such as a refrigerator, the energy efficiency of a refrigerant compressor is significantly improved, thereby increasing the overall efficiency of a refrigeration cycle and reducing the power consumption of the cooling device. SOLUTION: The refrigerant compressor includes a refrigerant compressor for compressing the refrigerant, a condenser for condensing the refrigerant, a dryer for drying the refrigerant, an expansion mechanism for expanding the refrigerant, and an evaporator for evaporating the refrigerant. The starting device of the induction synchronous motor for driving the motor uses a heat sensitive element having a characteristic that the temperature coefficient of the electric resistance is positive and the resistance value changes suddenly at a predetermined temperature.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば冷蔵庫,冷
凍装置のように圧縮機で冷媒を圧縮気化した後液化し、
この液化した冷媒を膨張させる冷凍サイクルを備えた冷
却装置に係わり、特に冷媒圧縮機を駆動する電動機の効
率を改善した冷媒圧縮機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor, such as a refrigerator or a refrigeration apparatus, which compresses and vaporizes a refrigerant and then liquefies the refrigerant.
The present invention relates to a cooling device provided with a refrigeration cycle for expanding the liquefied refrigerant, and more particularly to a refrigerant compressor in which the efficiency of an electric motor driving a refrigerant compressor is improved.
【0002】[0002]
【従来の技術】近年、冷媒圧縮機は冷蔵庫等への適用時
において、消費電力の低減や運転時の騒音低減の要望が
強く求められている。これらの要望に応えるべく冷媒圧
縮機のエネルギー効率(COP)向上が図られている。2. Description of the Related Art In recent years, when a refrigerant compressor is applied to a refrigerator or the like, there is a strong demand for reduction of power consumption and noise during operation. In order to meet these demands, the energy efficiency (COP) of the refrigerant compressor has been improved.
【0003】従来の冷却装置としては特許第29675
74号公報に示されているものがある。A conventional cooling device is disclosed in Japanese Patent No. 29675.
No. 74 is disclosed.
【0004】以下、図面を参照しながら上記従来の冷媒
圧縮機を説明する。Hereinafter, the conventional refrigerant compressor will be described with reference to the drawings.
【0005】図10は、従来の冷媒圧縮機を用いた冷却
装置の冷凍サイクル図である。図10において、交流誘
導電動機を駆動源とする冷媒圧縮機56は、低温,低圧
の冷媒ガス55を圧縮し、高温,高圧の冷媒ガス55を
吐出して凝縮器16に送る。凝縮器16に送られた冷媒
ガス55は、その熱を空気中に放出しながら高温,高圧
の冷媒液となり乾燥器17を経て、膨張機構18(例え
ば膨張弁またはキャピラリーチューブ)に送られる。膨
張機構18を通過する高温,高圧の冷媒液は絞り効果に
より低温,低圧の湿り蒸気となり蒸発器19へ送られ
る。蒸発器19に入った湿り蒸気状の冷媒ガス55は周
囲から熱を吸収して蒸発し、蒸発器19を出た低温,低
圧の冷媒ガス55は圧縮機56に吸込まれ、以下同じサ
イクルが繰り返される。FIG. 10 is a refrigeration cycle diagram of a cooling device using a conventional refrigerant compressor. In FIG. 10, a refrigerant compressor 56 driven by an AC induction motor compresses a low-temperature, low-pressure refrigerant gas 55, discharges a high-temperature, high-pressure refrigerant gas 55 and sends it to the condenser 16. The refrigerant gas 55 sent to the condenser 16 becomes a high-temperature, high-pressure refrigerant liquid while releasing the heat into the air, and is sent to the expansion mechanism 18 (for example, an expansion valve or a capillary tube) via the dryer 17. The high-temperature, high-pressure refrigerant liquid passing through the expansion mechanism 18 becomes low-temperature, low-pressure wet steam by the throttle effect and is sent to the evaporator 19. The wet vapor-like refrigerant gas 55 entering the evaporator 19 absorbs heat from the surroundings and evaporates, and the low-temperature, low-pressure refrigerant gas 55 exiting the evaporator 19 is sucked into the compressor 56, and the same cycle is repeated thereafter. It is.
【0006】また、従来の冷媒圧縮機を駆動する電動機
としては特公昭61−32908号公報に示された交流
誘導電動機が一般的に知られている。An AC induction motor disclosed in Japanese Patent Publication No. 61-32908 is generally known as a conventional motor for driving a refrigerant compressor.
【0007】また、従来の冷媒圧縮機の始動装置として
は特開昭50−1312号公報に示されたものが知られ
ている。冷媒圧縮機の始動装置はチタン酸バリューム系
半導体からなる感熱素子(以下PTCRという)で、そ
の電気抵抗が正の温度係数を有し、キュリー温度におい
て急激に抵抗が変化するものである。As a conventional starting device for a refrigerant compressor, one disclosed in Japanese Patent Application Laid-Open No. 50-1312 is known. The starting device of the refrigerant compressor is a thermosensitive element (hereinafter, referred to as PTCR) made of a titanate-based semiconductor, the electric resistance of which has a positive temperature coefficient, and the resistance changes rapidly at the Curie temperature.
【0008】また、交流誘導電動機は始動性の改善、消
費電力の低減を図る目的で始動コンデンサ,運転コンデ
ンサを備えたものが広く用いられている。Further, an AC induction motor having a starting capacitor and an operating capacitor is widely used for the purpose of improving startability and reducing power consumption.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上記従
来の構成では冷媒圧縮機を駆動する交流誘導電動機の始
動装置がPTCRの抵抗変化を利用しているため、PT
CRの内部抵抗による始動トルクの低下という課題を有
していた。However, in the above-mentioned conventional configuration, the starting device of the AC induction motor for driving the refrigerant compressor uses the resistance change of the PTCR.
There is a problem that the starting torque is reduced due to the internal resistance of the CR.
【0010】本発明は上記従来の課題を解決しようとす
るもので、始動性能を向上させる冷媒圧縮機を提供する
ことを目的とする。An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a refrigerant compressor having improved starting performance.
【0011】また、上記従来の構成は冷却装置の冷凍サ
イクルを構成する冷媒圧縮機を駆動する電動機を回転子
の誘導作用による交流誘導電動機としているため、電動
機の損失が大きくなるという課題を有していた。Further, the above-mentioned conventional configuration has a problem that the loss of the motor is increased because the motor for driving the refrigerant compressor constituting the refrigeration cycle of the cooling device is an AC induction motor by the induction action of the rotor. I was
【0012】本発明は上記従来の課題を解決しようとす
るもので、電動機の損失を小さくすることにより冷媒圧
縮機の効率を大幅に向上させることで冷凍サイクルの総
合効率を高め冷却装置の消費電力低減を図ることを目的
とする。SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned conventional problems. The efficiency of the refrigerant compressor is greatly improved by reducing the loss of the electric motor, thereby increasing the overall efficiency of the refrigeration cycle and increasing the power consumption of the cooling device. The purpose is to achieve reduction.
【0013】[0013]
【課題を解決するための手段】請求項1に記載の発明
は、圧縮要素を駆動する電動要素を始動装置を有する誘
導同期電動機としたものであり、誘導同期電動機の回転
子を同期速度で運転することが可能となり、よって、回
転子の誘導作用による損失をなくせるので、電動機の効
率を高くできるという作用を有する。According to a first aspect of the present invention, an electric element for driving a compression element is an induction synchronous motor having a starting device, and a rotor of the induction synchronous motor is operated at a synchronous speed. Therefore, since the loss due to the induction action of the rotor can be eliminated, there is an effect that the efficiency of the motor can be increased.
【0014】請求項2に記載の発明は、請求項1に記載
の発明に、さらに、誘導同期電動機の補助巻線に始動コ
ンデンサを接続したものであり、誘導同期電動機の始動
トルクを高く設定できるという作用を有する。According to a second aspect of the present invention, in addition to the first aspect, a starting capacitor is connected to the auxiliary winding of the induction synchronous motor, so that the starting torque of the induction synchronous motor can be set high. It has the action of:
【0015】請求項3に記載の発明は、冷媒を圧縮する
冷媒型圧縮機と、前記冷媒を凝縮させる凝縮器と、前記
冷媒を膨張させる膨張機構と、前記冷媒を蒸発させる蒸
発器とを備え、前記冷媒圧縮機は請求項1または請求項
2に記載の冷媒圧縮機としたものであり、冷媒圧縮機を
誘導同期電動機により高効率化し、始動コンデンサによ
り誘導同期電動機の始動トルクを高くできるので冷媒圧
縮機をスムーズに始動をさせることができるという作用
を有する。According to a third aspect of the present invention, there is provided a refrigerant compressor for compressing a refrigerant, a condenser for condensing the refrigerant, an expansion mechanism for expanding the refrigerant, and an evaporator for evaporating the refrigerant. Since the refrigerant compressor is the refrigerant compressor according to claim 1 or 2, the efficiency of the refrigerant compressor is increased by the induction synchronous motor, and the starting condenser can increase the starting torque of the induction synchronous motor. This has the effect that the refrigerant compressor can be started smoothly.
【0016】請求項4に記載の発明は、請求項1または
請求項2に記載の発明に、さらに、誘導同期電動機の始
動装置は電気抵抗の温度係数が正で所定温度においてそ
の抵抗値が急変する特性の感熱素子としたものであり、
誘導同期電動機の始動装置に電気接点を用いないので、
冷媒圧縮機の始動時に電気ノイズがなく、動作音のしな
いスムーズな始動をさせることができるという作用を有
する。According to a fourth aspect of the present invention, in addition to the first or second aspect, the starting device of the induction synchronous motor further has a positive temperature coefficient of electric resistance and a sudden change in the resistance value at a predetermined temperature. Heat-sensitive element with
Since electric contacts are not used for the starting device of the induction synchronous motor,
There is an effect that there is no electric noise at the time of starting the refrigerant compressor and a smooth start without operating noise can be performed.
【0017】請求項5に記載の発明は、請求項4の発明
に、さらに、誘導同期電動機の定格電圧が交流100V
用において、感熱素子の初期抵抗値範囲を2.5ないし
5.0Ωとしたものであり、感熱素子の電気抵抗を適切
な範囲とすることで、感熱素子の耐久性を維持し、始動
トルクの低下を抑えることができるという作用を有す
る。According to a fifth aspect of the present invention, in addition to the fourth aspect, the rated voltage of the induction synchronous motor is 100 V AC.
In use, the initial resistance value range of the thermal element is 2.5 to 5.0Ω, and by setting the electrical resistance of the thermal element to an appropriate range, the durability of the thermal element is maintained and the starting torque of the thermal element is reduced. It has the effect that the decrease can be suppressed.
【0018】請求項6に記載の発明は、請求項4の発明
に、さらに、誘導同期電動機の定格電圧が交流220V
用において、感熱素子の初期抵抗値範囲を9.0ないし
17.0Ωとしたものであり、感熱素子の電気抵抗を適
切な範囲とすることで、感熱素子の耐久性を維持し、始
動トルクの低下を抑えることができるという作用を有す
る。According to a sixth aspect of the present invention, in addition to the fourth aspect, the rated voltage of the induction synchronous motor is 220 V AC.
In use, the initial resistance value range of the thermal element is set to 9.0 to 17.0Ω, and by setting the electric resistance of the thermal element to an appropriate range, the durability of the thermal element is maintained, and the starting torque of the thermal element is reduced. It has the effect that the decrease can be suppressed.
【0019】[0019]
【発明の実施の形態】以下、本発明による冷媒圧縮機の
形態について、図面を参照しながら説明する。なお従来
と同一構成については、同一符号を付して詳細な説明を
省略する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a refrigerant compressor according to the present invention. The same components as those in the related art are denoted by the same reference numerals, and detailed description is omitted.
【0020】(実施の形態1)図1は本発明の実施の形
態1による冷媒圧縮機を用いた冷却装置の冷凍サイクル
図である。図1において符号1で示されるのは密閉容器
2の内部にスプリング3により弾性支持された交流誘導
同期電動機である。この交流誘導同期電動機1は、固定
子4と回転子5とにより構成される。符号6で示すの
は、固定子4に固定されたクランクケースである。クラ
ンクケース6に支持されたクランク軸7は回転子5の回
転をクランクケース6に設けられたシリンダ8内を往復
運動するピストン9にコンロッド10,ピストンピン1
1を介して伝達される。シリンダ8内で圧縮された冷媒
ガス12は吐出ライン13を通して、密閉容器2に設け
られた吐出管14へ導かれ冷媒圧縮機15外へ排出され
る。(Embodiment 1) FIG. 1 is a refrigeration cycle diagram of a cooling device using a refrigerant compressor according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes an AC induction synchronous motor elastically supported by a spring 3 inside a closed container 2. This AC induction synchronous motor 1 includes a stator 4 and a rotor 5. Reference numeral 6 denotes a crankcase fixed to the stator 4. A crankshaft 7 supported by a crankcase 6 rotates a rotor 5 with a connecting rod 10 and a piston pin 1 on a piston 9 reciprocating in a cylinder 8 provided in the crankcase 6.
1 is transmitted. The refrigerant gas 12 compressed in the cylinder 8 is guided to a discharge pipe 14 provided in the closed container 2 through a discharge line 13 and discharged out of the refrigerant compressor 15.
【0021】吐出管14より排出された冷媒ガス12は
冷凍サイクルを構成する凝縮器16,乾燥器17,膨張
機構18,蒸発器19を順次経由して密閉容器2に設け
られた吸入管20に回収される。21は密閉容器2の底
部に貯溜された冷媒圧縮機15の各摺動部を潤滑するた
めの冷凍機油である。The refrigerant gas 12 discharged from the discharge pipe 14 passes through a condenser 16, a dryer 17, an expansion mechanism 18, and an evaporator 19, which constitute a refrigeration cycle, to a suction pipe 20 provided in the closed container 2. Collected. Reference numeral 21 denotes refrigerating machine oil for lubricating each sliding portion of the refrigerant compressor 15 stored at the bottom of the closed casing 2.
【0022】また、図2は本発明の同実施の形態による
冷媒圧縮機の電気回路図を示したものである。図2にお
いて1は冷媒圧縮機を駆動する誘導同期電動機で、固定
子4には主巻線22と主巻線22に対して巻数比が1.
2ないし1.4倍の補助巻線23を巻装している。主巻
線22は交流電源24が印可される配線25,26間に
接続され、補助巻線23は運転コンデンサ27を直列に
介し、また、始動装置28と始動コンデンサ29を直列
に介して配線25,26間に接続されている。30は始
動装置28を構成するPTCRである。31は誘導同期
電動機1の温度過昇防止装置で交流電源24の配線25
中に配してある。FIG. 2 is an electric circuit diagram of the refrigerant compressor according to the embodiment of the present invention. In FIG. 2, reference numeral 1 denotes an induction synchronous motor that drives a refrigerant compressor. The stator 4 has a main winding 22 and a turn ratio to the main winding 22 of 1.
The auxiliary winding 23 is wound by 2 to 1.4 times. The main winding 22 is connected between wirings 25 and 26 to which an AC power supply 24 is applied, and the auxiliary winding 23 is connected in series with an operating capacitor 27, and is connected in wiring 25 with a starting device 28 and a starting capacitor 29 in series. , 26 are connected. Reference numeral 30 denotes a PTCR constituting the starting device 28. Reference numeral 31 denotes a device for preventing the temperature of the induction synchronous motor 1 from excessively rising.
It is arranged inside.
【0023】次に、表1は本発明の同実施の形態による
冷媒圧縮機に用いられる誘導同期電動機の運転効率を従
来型の電動機である誘導電動機およびDCブラシレス電
動機とともに特性比較表として示したものである。Next, Table 1 shows the operation efficiency of the induction synchronous motor used in the refrigerant compressor according to the embodiment of the present invention as a characteristic comparison table together with the conventional motor, the induction motor and the DC brushless motor. It is.
【0024】[0024]
【表1】 [Table 1]
【0025】表1に示すように、誘導同期電動機の効率
は運転コンデンサを有するときに92%、運転コンデン
サを有しないときに90%で高効率の電動機である。D
Cブラシレス電動機も92%と高い効率を示すが、駆動
のための制御装置を必要とし、回路損失を含めた実質の
総合効率は85%程度である。As shown in Table 1, the efficiency of the induction synchronous motor is 92% when the operation capacitor is provided, and 90% when the operation capacitor is not provided. D
The C brushless motor also has a high efficiency of 92%, but requires a control device for driving, and the actual overall efficiency including the circuit loss is about 85%.
【0026】図3は本発明による同実施の形態の冷媒圧
縮機に用いられる誘導同期電動機の速度−トルク特性曲
線を示したものである。FIG. 3 shows a speed-torque characteristic curve of an induction synchronous motor used in the refrigerant compressor of the embodiment according to the present invention.
【0027】図3において符号31で示すのは誘導同期
電動機1の回転速度に対する出力トルクである。また符
号32で指す点線とX軸との交点が最大トルク33を発
生する回転速度を示している。符号34は同期速度にお
ける回転子が同期回転可能な出力トルクで、最大点は脱
調トルクを示している。符号35は引き上げトルクを示
し同期回転となるまでの低回転域における出力トルク3
1の落ち込みで、冷媒圧縮機の始動時における障害とな
る。In FIG. 3, reference numeral 31 denotes an output torque with respect to the rotation speed of the induction synchronous motor 1. The intersection between the dotted line indicated by reference numeral 32 and the X axis indicates the rotation speed at which the maximum torque 33 is generated. Reference numeral 34 denotes an output torque at which the rotor at the synchronous speed can rotate synchronously, and the maximum point indicates a step-out torque. Reference numeral 35 denotes a pulling-up torque, which is an output torque 3 in a low rotation range until synchronous rotation is achieved.
The drop of 1 becomes an obstacle when starting the refrigerant compressor.
【0028】破線36は冷媒圧縮機15の負荷トルクを
示している。37は主巻線および補助巻線による電磁誘
導トルクで回転子に組み込まれた永久磁石によるブレー
キトルク38との和が出力トルク31となる。このブレ
ーキトルク38は誘導電動機適用時には見られず、誘導
同期電動機適用時にのみ制動要因として働く。符号39
は冷媒圧縮機の運転中における同期速度上のポイントト
ルクである。符号40は速度ゼロにおける始動トルクで
ある。The broken line 36 indicates the load torque of the refrigerant compressor 15. Reference numeral 37 denotes an electromagnetic induction torque generated by the main winding and the auxiliary winding, and the sum of the output torque 31 and the brake torque 38 generated by the permanent magnet incorporated in the rotor is used. This brake torque 38 is not seen when an induction motor is applied, and acts as a braking factor only when an induction synchronous motor is applied. Symbol 39
Is the point torque on the synchronous speed during the operation of the refrigerant compressor. Reference numeral 40 denotes a starting torque at zero speed.
【0029】また、図4は本発明による同実施の形態に
よる冷媒圧縮機に用いられる誘導同期電動機のコンデン
サ容量−始動トルク特性を示したものである。図4にお
いて誘導同期電動機1の始動トルクはX軸で示される運
転コンデンサ27と始動コンデンサ29の各コンデンサ
容量の和に比例している。FIG. 4 shows the capacitor capacity-starting torque characteristic of the induction synchronous motor used in the refrigerant compressor according to the embodiment of the present invention. 4, the starting torque of the induction synchronous motor 1 is proportional to the sum of the respective capacitances of the operating capacitor 27 and the starting capacitor 29 indicated by the X axis.
【0030】また、コンデンサ容量の和が一定容量を越
えると始動トルクが低下する極大値を有する特性をもっ
ている。The starting torque is reduced when the sum of the capacitor capacities exceeds a certain value.
【0031】図5は本発明の同実施の形態による冷媒圧
縮機の始動装置を構成するPTCRの温度−抵抗特性を
示したものである。FIG. 5 shows a temperature-resistance characteristic of the PTCR constituting the starting device of the refrigerant compressor according to the embodiment of the present invention.
【0032】図5において、破線41とY軸との交点は
始動装置28を構成するPTCR30の初期抵抗値であ
る。Y軸は温度25℃における期抵抗値に対する抵抗比
で示したものである。In FIG. 5, the intersection of the broken line 41 and the Y axis is the initial resistance value of the PTCR 30 constituting the starting device 28. The Y axis shows the resistance ratio to the initial resistance value at a temperature of 25 ° C.
【0033】PTCR30の抵抗値は温度の上昇ととも
にややその値を減じながら破線43とX軸との交点で示
されるキュリー温度(135℃)付近を境に急激にその
値を増す特性を有している。電動機運転中はPTCR3
0自体の保持電力により破線44とY軸との交点で示さ
れる使用時温度(170〜180℃)を保持する。破線
45で示される使用時抵抗値は概略初期抵抗値の1×1
0の5乗倍の著しく高い値を維持しているので始動コン
デンサ29への通電を阻止することができる。The resistance value of the PTCR 30 has a characteristic that, while slightly decreasing as the temperature rises, the value rapidly increases near the Curie temperature (135 ° C.) indicated by the intersection of the broken line 43 and the X axis. I have. PTCR3 during motor operation
The in-use temperature (170 to 180 ° C.) indicated by the intersection of the dashed line 44 and the Y axis is held by the holding power of 0 itself. The in-use resistance value indicated by the broken line 45 is approximately 1 × 1 of the initial resistance value.
Since the value is maintained at an extremely high value of 5 times 0, it is possible to prevent the starting capacitor 29 from being energized.
【0034】図6は本発明による同実施の形態による冷
媒圧縮機を用いた冷却装置の冷凍サイクルに適用される
冷媒ガスの温度−飽和圧力特性を示したものである。FIG. 6 shows the temperature-saturation pressure characteristics of the refrigerant gas applied to the refrigeration cycle of the cooling device using the refrigerant compressor according to the embodiment of the present invention.
【0035】図6において、符号45,46で示すのは
HFC系冷媒フロン134aとCFC系冷媒フロン12
の各温度に対する飽和圧力である。破線47とX軸との
交点はフロン134aとフロン12の飽和圧力が同一と
なるクロスポイント48の温度を示している。クロスポ
イント48を境に高温度域ではフロン134aの飽和圧
力が高く、低温度域ではフロン12の飽和圧力が高くな
る。クロスポイント48の温度はおよそ17℃である。In FIG. 6, reference numerals 45 and 46 denote HFC-based refrigerant Freon 134a and CFC-based refrigerant Freon 12a.
Is the saturation pressure for each temperature. The intersection of the dashed line 47 and the X axis indicates the temperature of the cross point 48 where the saturation pressures of the Freon 134a and Freon 12 are the same. The saturation pressure of Freon 134a is high in a high temperature range at the cross point 48, and the saturation pressure of Freon 12 is high in a low temperature range. The temperature at cross point 48 is approximately 17 ° C.
【0036】また、破線49,50とX軸との交点は冷
却装置として広く使用されている冷凍冷蔵庫等の冷却中
における蒸発器19の蒸発温度範囲51の下限温度と上
限温度を示している。蒸発温度範囲51は−30℃〜−
5℃である。The intersections between the broken lines 49 and 50 and the X axis indicate the lower limit temperature and the upper limit temperature of the evaporation temperature range 51 of the evaporator 19 during cooling of a refrigerator or the like widely used as a cooling device. The evaporation temperature range 51 is −30 ° C. to −
5 ° C.
【0037】また破線52とX軸との交点は蒸発器19
に附着した霜を定期的に取り除くために除霜ヒータ(図
示せず)による加温時の蒸発器19の到達温度である。The intersection of the dashed line 52 and the X-axis is
Is the ultimate temperature of the evaporator 19 when the heater is heated by a defrost heater (not shown) to periodically remove the frost attached to the evaporator 19.
【0038】以上のように構成された冷媒圧縮機につい
て以下その動作を説明する。誘導同期電動機1は、従来
の冷媒圧縮機53に用いられる誘導電動機と同様のかご
形二次導体を有する回転子の鉄芯内部に永久磁石を埋め
込んだ構成(図示せず)のものである。そして、このか
ご形導体による電磁誘導作用で始動し、同期引き入れを
行ったのち、永久磁石の磁束を利用して同期運転される
ものである。したがって運転中の励磁(磁気回路の構
成)の必要がないので誘導電動機のように励磁するため
の電力が必要なく、同期速度で運転することによる回転
子の二次導体損失も極小なので、冷媒圧縮機の冷凍能力
が向上し、電動機の運転入力が低下する。その結果冷媒
圧縮機の効率が向上する。The operation of the refrigerant compressor configured as described above will be described below. The induction synchronous motor 1 has a configuration (not shown) in which a permanent magnet is embedded in an iron core of a rotor having a cage secondary conductor similar to the induction motor used in the conventional refrigerant compressor 53. Then, after starting by the electromagnetic induction action of the cage conductor and performing synchronous pull-in, synchronous operation is performed using the magnetic flux of the permanent magnet. Therefore, there is no need for excitation during operation (the configuration of the magnetic circuit), so there is no need for power to excite like an induction motor, and the secondary conductor loss of the rotor due to operation at synchronous speed is also minimal, so refrigerant compression The refrigeration capacity of the machine is improved, and the operation input of the motor is reduced. As a result, the efficiency of the refrigerant compressor is improved.
【0039】また、誘導同期電動機1の始動トルク40
は次式 Ts∝4α・Im・Ia・sinθ 但しTs:始動トルク α:巻数比 Im:主巻線電流 Ia:補助巻線電流 θ:ImとIaのベクトル角度 で示される。The starting torque 40 of the induction synchronous motor 1 is
Is represented by the following equation: Ts∝4α · Im · Ia · sin θ where Ts: starting torque α: turns ratio Im: main winding current Ia: auxiliary winding current θ: vector angle of Im and Ia
【0040】誘導同期電動機の補助巻線に始動コンデン
サを接続しコンデンサ容量を調整することで、主巻線電
流Imと補助巻線電流Iaのベクトル角度θをほぼ90
度に設定でき、始動コンデンサを用いることで大幅な始
動トルクの向上を図ることができる。By connecting a starting capacitor to the auxiliary winding of the induction synchronous motor and adjusting the capacitor capacity, the vector angle θ between the main winding current Im and the auxiliary winding current Ia becomes approximately 90 degrees.
The starting torque can be greatly improved by using a starting capacitor.
【0041】以上のように本実施の形態の冷媒圧縮機は
密閉容器と、前記密閉容器内に圧縮要素と、前記圧縮要
素を駆動する電動要素を備え、前記電動要素は誘導同期
電動機としたので、冷媒圧縮機の高効率が達成できる。As described above, the refrigerant compressor of the present embodiment is provided with the closed container, the compression element in the closed container, and the electric element for driving the compression element, and the electric element is an induction synchronous motor. In addition, high efficiency of the refrigerant compressor can be achieved.
【0042】また、誘導同期電動機の補助巻線に始動コ
ンデンサを付加したので、誘導同期電動機に働くブレー
キトルクをカバーし負荷トルクを乗り切る始動トルク,
引上トルクを得ることができ冷媒圧縮機の始動性能を向
上できる。Also, since a starting capacitor is added to the auxiliary winding of the induction synchronous motor, the starting torque that covers the brake torque acting on the induction synchronous motor and overcomes the load torque is provided.
A pulling torque can be obtained, and the starting performance of the refrigerant compressor can be improved.
【0043】また、冷却装置の冷凍サイクルにHFC冷
媒を用いたので、除霜後の高負荷でも冷媒圧縮機をスム
ーズに始動させることができる。Also, since the HFC refrigerant is used in the refrigeration cycle of the cooling device, the refrigerant compressor can be started smoothly even under a high load after defrosting.
【0044】(実施の形態2)図7は本発明の実施の形
態2による冷媒圧縮機を用いた冷却装置の冷凍サイクル
図である。冷媒は炭化水素系冷媒(例えばフロン600
a)を適用している。図7において冷媒ガス53は冷媒
圧縮機54で圧縮され、凝縮器16,乾燥器17,膨張
機構18を経て、蒸発器19にて吸熱され、再び冷媒圧
縮機54へと順次してなる冷凍サイクル内に封入されて
いる。(Embodiment 2) FIG. 7 is a refrigeration cycle diagram of a cooling device using a refrigerant compressor according to Embodiment 2 of the present invention. The refrigerant is a hydrocarbon-based refrigerant (for example, Freon 600).
a) is applied. In FIG. 7, the refrigerant gas 53 is compressed by the refrigerant compressor 54, passes through the condenser 16, the dryer 17, and the expansion mechanism 18, absorbs heat in the evaporator 19, and returns to the refrigerant compressor 54 in order. Enclosed within.
【0045】また、冷媒圧縮機54を駆動する電動機は
誘導同期電動機が用いられ、図2で示すように、補助巻
線に始動コンデンサが接続され、始動装置としてPTC
Rを用いた同じ電気回路図を構成している。As a motor for driving the refrigerant compressor 54, an induction synchronous motor is used. As shown in FIG. 2, a starting capacitor is connected to the auxiliary winding, and a PTC is used as a starting device.
The same electric circuit diagram using R is configured.
【0046】次に、表2は本発明による同実施の形態に
よる冷媒圧縮機に適用する冷媒フロン600aの特性表
をHFC134aと対比して示したものである。Next, Table 2 shows a characteristic table of refrigerant Freon 600a applied to the refrigerant compressor according to the embodiment of the present invention in comparison with HFC134a.
【0047】フロン600aはフロン134aの欠点で
ある地球温暖化係数(GWPという)を改善するもの
で、GWPがフロン12を1としたとき0である。ま
た、フロン600aはオゾン破壊係数(ODPという)
もフロン12を1としたとき0であり、地球環境面から
みて優れた冷媒ガスである。CFC 600a is for improving the global warming potential (referred to as GWP), which is a drawback of CFC 134a, and is 0 when GWP is 1 for CFC12. Also, Freon 600a has an ozone depletion potential (ODP)
Is 0 when Freon 12 is set to 1, which is an excellent refrigerant gas from the viewpoint of the global environment.
【0048】[0048]
【表2】 [Table 2]
【0049】表2において、冷媒種フロン600aとフ
ロン134aのそれぞれを、0℃、ガス冷媒容積、CE
COMAF(欧州冷凍機の製造メーカ委員会)条件によ
る冷凍能力,冷媒圧縮機の気筒容積について比較してい
る。In Table 2, the refrigerant types of chlorofluorocarbon 600a and chlorofluorocarbon 134a were respectively set to 0 ° C., gas refrigerant volume, CE
The refrigerating capacity and the cylinder capacity of the refrigerant compressor are compared under the conditions of COMAF (European Refrigeration Manufacturers Committee).
【0050】以上のように構成された冷媒圧縮機につい
て以下その動作について説明する。The operation of the refrigerant compressor configured as described above will be described below.
【0051】HC冷媒600aはHFC冷媒フロン13
4aに比べて比容積が倍であるので、同一の冷凍能力を
発生させるために大よそ倍の気筒容積を必要とする。ほ
ぼ同一の冷凍能力を有するフロン600aとフロン13
4aの冷媒圧縮機では圧縮仕事量がほぼ同等であるた
め、ほぼ同出力の誘導同期電動機が適用される。詳しく
は気筒容積(シリンダ容積に応じた構成部品の可動重
量)が大きくなるのでフロン600aを用いた冷媒圧縮
機の方が同一冷凍性能時で負荷トルクが増す。この負荷
トルクの違いは傾向として始動時の負荷トルク増大とし
て表れる。The HC refrigerant 600a is HFC refrigerant Freon 13
Since the specific volume is twice as large as 4a, approximately twice the cylinder volume is required to generate the same refrigeration capacity. Freon 600a and Freon 13 having substantially the same refrigeration capacity
Since the compression work of the refrigerant compressor 4a is substantially equal, an induction synchronous motor having substantially the same output is applied. More specifically, since the cylinder capacity (movable weight of the components according to the cylinder capacity) becomes large, the load torque of the refrigerant compressor using Freon 600a increases at the same refrigeration performance. This difference in load torque tends to appear as an increase in load torque at the start.
【0052】したがって冷媒圧縮機54に誘導同期電動
機を適用することにより冷却装置の消費電力の低減がで
き、冷凍サイクルのエネルギー効率が大幅に改善される
こととなる。そして始動コンデンサにより引き上げトル
クを大きくできるので誘導同期電動機の始動を確保する
ことができ、誘導同期電動機の始動装置を構成する感熱
素子の初期抵抗値範囲を最適範囲に設定したので始動装
置の信頼性が高く、かつ、誘導同期電動機の始動トルク
低下を抑えることができる。Therefore, by applying the induction synchronous motor to the refrigerant compressor 54, the power consumption of the cooling device can be reduced, and the energy efficiency of the refrigeration cycle is greatly improved. The starting capacitor can increase the pull-up torque, so that the starting of the induction synchronous motor can be ensured. The initial resistance value range of the thermal element that constitutes the starting device of the induction synchronous motor is set to the optimum range, so the reliability of the starting device is improved. And a reduction in the starting torque of the induction synchronous motor can be suppressed.
【0053】(実施の形態3)図8は本発明の実施の形
態3による冷媒圧縮機の始動装置において、PTCRの
初期抵抗に対する始動トルクを示したもので、X軸はP
TCRの初期抵抗値を、Y軸はPTCRの初期抵抗値に
おける誘導同期電動機の始動トルクを比として表してい
る。密閉型圧縮機に用いる電動機は誘導同期電動機で、
電気回路図は図2と同じである。(Embodiment 3) FIG. 8 shows the starting torque with respect to the initial resistance of the PTCR in the starting apparatus for a refrigerant compressor according to Embodiment 3 of the present invention.
The initial resistance value of the TCR is shown, and the Y axis represents the starting torque of the induction synchronous motor at the initial resistance value of the PTCR as a ratio. The motor used for the hermetic compressor is an induction synchronous motor,
The electric circuit diagram is the same as FIG.
【0054】図8において、破線A,Bで示す曲線は定
格電圧が100Vの誘導同期電動機における始動コンデ
ンサの容量が40,120μFの場合のPTCRの初期
抵抗値に対する始動トルク比である。PTCRの初期抵
抗値の増加とともに始動トルクが低下する傾向を示して
いる。次に実線C,Dは定格電圧が220Vの誘導同期
電動機における始動コンデンサの容量が12,34μF
の場合のPTCRの初期抵抗値に対する始動トルク比で
ある。100定格品と同じく、PTCRの初期抵抗値の
増加とともに始動トルクが低下する傾向を示している。In FIG. 8, the curves indicated by broken lines A and B represent the starting torque ratio with respect to the initial resistance value of the PTCR when the capacity of the starting capacitor in an induction synchronous motor having a rated voltage of 100 V is 40 and 120 μF. It shows a tendency that the starting torque decreases as the initial resistance value of the PTCR increases. Next, the solid lines C and D indicate that the capacity of the starting capacitor in the induction synchronous motor with the rated voltage of 220 V is 12,34 μF.
Is the starting torque ratio with respect to the initial resistance value of the PTCR in the case of. As with the 100-rated product, the starting torque tends to decrease as the initial resistance value of the PTCR increases.
【0055】誘導同期電動機は主巻線に対して補助巻線
の巻数比は1.2ないし1.4倍の値となるように巻装
している。誘導同期電動機1の補助巻線23に誘起され
る電圧は交流電源24の電圧が100Vの場合120V
ないし160Vとなる。The induction synchronous motor is wound so that the turn ratio of the auxiliary winding to the main winding is 1.2 to 1.4 times. The voltage induced in the auxiliary winding 23 of the induction synchronous motor 1 is 120 V when the voltage of the AC power supply 24 is 100 V.
Or 160V.
【0056】また、始動コンデンサ29のコンデンサ容
量は交流電源24の電圧が100Vの場合、40ないし
120μFが、交流電源24の電圧が220Vの場合、
12ないし34μFが一般的に用いられている。When the voltage of the AC power supply 24 is 100 V, the capacitance of the starting capacitor 29 is 40 to 120 μF. When the voltage of the AC power supply 24 is 220 V,
12 to 34 μF is commonly used.
【0057】図9は本発明の同実施の形態による冷媒圧
縮機の始動装置のPTCRの初期抵抗に対する動作時間
を示したものである。図9において破線a,bで示す曲
線は定格電圧が100Vの誘導同期電動機における始動
コンデンサの容量が40,120μFの場合において、
PTCRの初期抵抗値に対する始動時間を示している。
動作時間とはPTCRが温度上昇し、始動コンデンサへ
の電流を切離すまでの時間である。PTCRの初期抵抗
値の増加とともに始動時間が短くなる傾向を示してい
る。次に実線c,dは定格電圧が220Vの誘導同期電
動機における始動コンデンサの容量が12,34μFの
場合において、PTCRの初期抵抗値に対する始動時間
を示している。100定格品と同じく、PTCRの初期
抵抗値の増加とともに始動時間が短くなる傾向を示して
いる。FIG. 9 shows the operation time with respect to the initial resistance of the PTCR of the starting device of the refrigerant compressor according to the embodiment of the present invention. In FIG. 9, the curves indicated by broken lines a and b indicate the case where the capacity of the starting capacitor in the induction synchronous motor having the rated voltage of 100 V is 40 and 120 μF.
The starting time with respect to the initial resistance value of the PTCR is shown.
The operating time is the time from when the temperature of the PTCR rises to when the current to the starting capacitor is cut off. The starting time tends to become shorter as the initial resistance value of the PTCR increases. Next, solid lines c and d show the starting time with respect to the initial resistance value of the PTCR when the capacity of the starting capacitor in the induction synchronous motor having the rated voltage of 220 V is 12,34 μF. Like the 100-rated product, the starting time tends to be shorter as the initial resistance value of the PTCR increases.
【0058】誘導同期電動機を用いた冷媒圧縮機にPT
CRを有する始動装置を用いた場合、PTCRの初期抵
抗値分による始動トルクの低下が重要な問題となる。冷
蔵庫等の冷却装置に使用する冷媒圧縮機の最低始動トル
クを設定するに当たっては電源電圧の変動および電動機
の品質安定面を考慮することが必要であり、かかる見地
から始動トルク比80%以上が必要となってくる。A refrigerant compressor using an induction synchronous motor has a PT
When a starting device having a CR is used, the reduction of the starting torque due to the initial resistance value of the PTCR becomes an important problem. In setting the minimum starting torque of a refrigerant compressor used in a cooling device such as a refrigerator, it is necessary to consider fluctuations in power supply voltage and quality stability of an electric motor, and from this viewpoint, a starting torque ratio of 80% or more is required. It becomes.
【0059】以上のことから図8の特性を参考にして、
冷媒圧縮機の安定した始動性能を得るPTCRの初期抵
抗値は定格電圧が100V用の始動コンデンサを有する
誘導同期電動機の場合で最大値が10Ωであり、220
V用の始動コンデンサを有する誘導同期電動機の場合で
最大値が20Ωであることが判る。From the above, referring to the characteristics of FIG.
The initial resistance value of the PTCR for obtaining a stable starting performance of the refrigerant compressor is 10Ω in the case of an induction synchronous motor having a starting capacitor for a rated voltage of 100 V, and is 220Ω.
It can be seen that the maximum value is 20Ω for an induction synchronous motor having a starting capacitor for V.
【0060】また、冷媒圧縮機の始動前にPTCRが温
度上昇して動作すると始動ミスとなり始動性能に大きな
影響を及ぼす。冷蔵庫等の冷却装置に使用する冷媒圧縮
機の始動に要する時間は概ね0.5sであり、安定した
冷媒圧縮機の始動性能を得るにはこの時間、0.5s以
上の動作時間が要る。また、PTCRの動作時間が不要
に長すぎると始動時の電動機消費電力が増大することと
なるので、最大1.0sが望ましい。Further, if the PTCR operates with a rise in temperature before the start of the refrigerant compressor, a start error will occur and the start performance will be greatly affected. The time required for starting the refrigerant compressor used in a cooling device such as a refrigerator is approximately 0.5 s, and the operation time of 0.5 s or more is required to obtain a stable starting performance of the refrigerant compressor. Further, if the operation time of the PTCR is unnecessarily long, the power consumption of the motor at the time of starting increases, so that a maximum of 1.0 s is desirable.
【0061】以上のことから図9の特性を参考にして、
冷媒圧縮機の安定した始動性能を得るPTCRの初期抵
抗値は定格電圧が100V用の始動コンデンサを有する
誘導同期電動機の場合で2.5ないし5.0Ωであり、
定格電圧が220V用の始動コンデンサを有する誘導同
期電動機の場合で9.0ないし17.0Ωであることが
判る。From the above, referring to the characteristics of FIG.
The initial resistance of the PTCR for obtaining a stable starting performance of the refrigerant compressor is 2.5 to 5.0Ω in the case of an induction synchronous motor having a starting capacitor for a rated voltage of 100 V,
It can be seen that the rated voltage is 9.0 to 17.0Ω for an induction synchronous motor having a 220V starting capacitor.
【0062】したがって誘導同期電動機の補助巻線に始
動コンデンサを接続し始動装置に初期抵抗値を限定した
PTCRを適用することで、誘導同期電動機の始動トル
ク低下を抑え、安定した始動性能と始動時の電力消費を
抑えることができる。Therefore, by applying a starting capacitor to the auxiliary winding of the induction synchronous motor and applying a PTCR having a limited initial resistance value to the starting device, a reduction in the starting torque of the induction synchronous motor is suppressed, and stable starting performance and stable start-up are achieved. Power consumption can be suppressed.
【0063】また、本実施の形態の冷媒圧縮機の始動装
置は、始動コンデンサの切離し手段としてPTCRを用
いたので、PTCRが補助巻線への始動電流による自己
加熱によって温度上昇しキュリー温度に達すると抵抗値
が増大し流入電流を阻止することで始動コンデンサを実
質切り離すことができ、電気ノイズ,機械音の発生がな
くなる。Further, since the starting device of the refrigerant compressor of this embodiment uses the PTCR as the disconnecting means of the starting capacitor, the temperature of the PTCR rises by self-heating by the starting current to the auxiliary winding and reaches the Curie temperature. As a result, the starting capacitor can be substantially disconnected by increasing the resistance value and blocking the inflow current, thereby eliminating the generation of electric noise and mechanical noise.
【0064】[0064]
【発明の効果】以上説明したように本発明の冷媒圧縮機
によれば、圧縮要素を駆動する電動要素を誘導同期電動
機としたものであるので、冷媒圧縮機を高効率で運転で
きるという効果がある。As described above, according to the refrigerant compressor of the present invention, since the electric element driving the compression element is an induction synchronous motor, the refrigerant compressor can be operated with high efficiency. is there.
【0065】また本発明の冷媒圧縮機は誘導同期電動機
の補助巻線に始動コンデンサを接続したので始動トルク
を高くすることができ、冷媒圧縮機をスムーズに始動さ
せる効果がある。In the refrigerant compressor of the present invention, since the starting capacitor is connected to the auxiliary winding of the induction synchronous motor, the starting torque can be increased and the refrigerant compressor can be started smoothly.
【0066】また本発明の冷媒圧縮機は電動機に誘導同
期電動機を用い、補助巻線に始動コンデンサを接続した
ので、冷却装置の消費電力低減が図れ、さらにスムーズ
な運転をさせることができる。In the refrigerant compressor of the present invention, the induction motor is used as the electric motor, and the starting capacitor is connected to the auxiliary winding, so that the power consumption of the cooling device can be reduced and the operation can be performed more smoothly.
【0067】また本発明の冷媒圧縮機の始動装置は電気
的,音響的ノイズのないスムーズな冷媒圧縮機の始動が
できるという効果がある。Further, the starting device for a refrigerant compressor according to the present invention has an effect that the refrigerant compressor can be started smoothly without electric or acoustic noise.
【0068】また本発明の冷媒圧縮機の始動装置は感熱
素子の初期抵抗値範囲を誘導同期電動機の定格が交流1
00V用において最適範囲の2.5ないし5.0Ωとし
たので信頼性が高く、誘導同期電動機の始動トルク低下
を抑えるという効果がある。The starting device for a refrigerant compressor according to the present invention is arranged such that the initial resistance value range of the heat-sensitive element is adjusted to the rated value of the induction synchronous motor.
Since the optimum range is set to 2.5 to 5.0Ω for 00V, the reliability is high and there is an effect that the starting torque of the induction synchronous motor is prevented from lowering.
【0069】また本発明の冷媒圧縮機の始動装置は感熱
素子の初期抵抗値範囲を誘導同期電動機の定格が交流2
20V用において最適範囲の9.0ないし17.0Ωと
したので信頼性が高く、誘導同期電動機の始動トルク低
下を抑えるという効果がある。The starting device for a refrigerant compressor according to the present invention is arranged so that the initial resistance value range of the heat-sensitive element is adjusted to the rated value of the induction synchronous motor.
Since the optimum range is set to 9.0 to 17.0 Ω for 20 V, the reliability is high and there is an effect of suppressing a decrease in the starting torque of the induction synchronous motor.
【図1】本発明による冷媒圧縮機を用いた冷凍サイクル
図FIG. 1 is a refrigeration cycle diagram using a refrigerant compressor according to the present invention.
【図2】同実施の形態の冷媒圧縮機の電気回路図FIG. 2 is an electric circuit diagram of the refrigerant compressor of the embodiment.
【図3】同実施の形態の冷媒圧縮機の誘導同期電動機の
速度−トルク特性図FIG. 3 is a speed-torque characteristic diagram of the induction synchronous motor of the refrigerant compressor of the embodiment.
【図4】同実施の形態の冷媒圧縮機の誘導同期電動機の
コンデンサ容量−始動トルク特性図FIG. 4 is a diagram showing a relationship between a capacitor capacity and a starting torque of the induction synchronous motor of the refrigerant compressor according to the embodiment;
【図5】同実施の形態の冷媒圧縮機の始動装置の感熱素
子温度−抵抗特性図FIG. 5 is a temperature-resistance characteristic diagram of a heat-sensitive element of the starting device of the refrigerant compressor according to the embodiment.
【図6】同実施の形態の冷媒圧縮機に適用する冷媒の温
度−飽和圧力特性図FIG. 6 is a temperature-saturation pressure characteristic diagram of a refrigerant applied to the refrigerant compressor of the embodiment.
【図7】本発明による冷媒圧縮機を用いた冷凍サイクル
図FIG. 7 is a refrigeration cycle diagram using a refrigerant compressor according to the present invention.
【図8】本発明による冷媒圧縮機の始動装置の感熱素子
抵抗−始動トルク特性図FIG. 8 is a diagram showing a resistance-starting torque characteristic of a heat-sensitive element of a starting device of a refrigerant compressor according to the present invention.
【図9】同実施の形態の冷媒圧縮機の始動装置の感熱素
子抵抗−動作時間特性図FIG. 9 is a diagram showing a resistance-operating time characteristic of a heat-sensitive element of the starting device of the refrigerant compressor according to the embodiment.
【図10】従来例による冷媒圧縮機を用いた冷凍サイク
ル図FIG. 10 is a refrigeration cycle diagram using a conventional refrigerant compressor.
1 誘導同期電動機 2 密閉容器 12 冷媒ガス 15 冷媒圧縮機 16 凝縮器 18 膨張機構 19 蒸発器 23 補助巻線 28 始動装置 29 始動コンデンサ 30 感熱素子 53 冷媒ガス 54 冷媒圧縮機 DESCRIPTION OF SYMBOLS 1 Induction synchronous motor 2 Airtight container 12 Refrigerant gas 15 Refrigerant compressor 16 Condenser 18 Expansion mechanism 19 Evaporator 23 Auxiliary winding 28 Starting device 29 Starting capacitor 30 Heat sensitive element 53 Refrigerant gas 54 Refrigerant compressor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯塚 辰幸 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 佐々木 健治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3H003 AA02 AB03 AC03 CF04 5H001 AA02 AB02 5H619 AA13 BB01 BB06 PP31 5H621 AA01 BB07 BB08 GB10 HH01 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tatsuyuki Iizuka 4-5-2-5 Takaidahondori, Higashiosaka-shi, Osaka Inside Matsushita Refrigerating Machinery Co., Ltd. F-term (reference) in Sangyo Co., Ltd. 3H003 AA02 AB03 AC03 CF04 5H001 AA02 AB02 5H619 AA13 BB01 BB06 PP31 5H621 AA01 BB07 BB08 GB10 HH01
Claims (6)
動要素を備え、前記電動要素は始動装置を有する誘導同
期電動機を用いたことを特徴とする冷媒圧縮機。1. A refrigerant compressor comprising a compression element and an electric element for driving the compression element, wherein the electric element uses an induction synchronous motor having a starting device.
ンサを接続したことを特徴とする請求項1に記載の冷媒
圧縮機。2. The refrigerant compressor according to claim 1, wherein a starting capacitor is connected to an auxiliary winding of the induction synchronous motor.
を凝縮させる凝縮器と、前記冷媒を膨張させる膨張機構
と、前記冷媒を蒸発させる蒸発器とを備え、前記冷媒圧
縮機は請求項1または請求項2に記載の冷媒圧縮機を用
いたことを特徴とする冷却装置。3. A refrigerant compressor comprising: a refrigerant compressor for compressing a refrigerant; a condenser for condensing the refrigerant; an expansion mechanism for expanding the refrigerant; and an evaporator for evaporating the refrigerant. A cooling device using the refrigerant compressor according to claim 1 or 2.
の温度係数が正で所定温度においてその抵抗値が急変す
る特性の感熱素子を用いたことを特徴とする請求項1ま
たは請求項2に記載の冷媒圧縮機の始動装置。4. The starting device for an induction synchronous motor according to claim 1, wherein a temperature coefficient of the electric resistance is positive and a thermosensitive element having a characteristic that its resistance value changes rapidly at a predetermined temperature is used. A starting device for the refrigerant compressor according to claim 1.
V用において、感熱素子の初期抵抗値範囲を2.5ない
し5.0Ωとしたことを特徴とする請求項4に記載の冷
媒圧縮機の始動装置。5. The rated voltage of the induction synchronous motor is 100 AC.
5. The starting device for a refrigerant compressor according to claim 4, wherein the initial resistance value range of the thermosensitive element for V is 2.5 to 5.0Ω.
V用において、感熱素子の初期抵抗値範囲を9.0ない
し17.0Ωとしたことを特徴とする請求項4に記載の
冷媒圧縮機の始動装置。6. The rated voltage of an induction synchronous motor is AC 220
5. The starting device for a refrigerant compressor according to claim 4, wherein the initial resistance value range of the thermal element is set to 9.0 to 17.0Ω for V.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001136036A JP2002332964A (en) | 2001-05-07 | 2001-05-07 | Refrigerant compressor starting device and refrigerant compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001136036A JP2002332964A (en) | 2001-05-07 | 2001-05-07 | Refrigerant compressor starting device and refrigerant compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002332964A true JP2002332964A (en) | 2002-11-22 |
Family
ID=18983403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001136036A Pending JP2002332964A (en) | 2001-05-07 | 2001-05-07 | Refrigerant compressor starting device and refrigerant compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002332964A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040073268A (en) * | 2003-02-12 | 2004-08-19 | 마츠시타 덴끼 산교 가부시키가이샤 | Electric compressor |
JP2006166532A (en) * | 2004-12-03 | 2006-06-22 | Tsubaki Emerson Co | Motor and drive device |
JP2006194574A (en) * | 2004-12-16 | 2006-07-27 | Matsushita Electric Ind Co Ltd | refrigerator |
JP2007505600A (en) * | 2003-09-10 | 2007-03-08 | ウェイブクレスト ラボラトリーズ リミテッド ライアビリティ カンパニー | Multiphase motor winding topology and control |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501312A (en) * | 1973-05-12 | 1975-01-08 | ||
JPS59230476A (en) * | 1984-05-18 | 1984-12-25 | Matsushita Refrig Co | Starting circuit of single phase induction motor |
JPH0638467A (en) * | 1992-07-09 | 1994-02-10 | Yamada Denki Seizo Kk | Starter for single-phase induction motor |
JP2001073948A (en) * | 1999-07-02 | 2001-03-21 | Matsushita Refrig Co Ltd | Electric compressor |
JP2002300763A (en) * | 2001-03-30 | 2002-10-11 | Sanyo Electric Co Ltd | Drive device for induction synchronous motor |
-
2001
- 2001-05-07 JP JP2001136036A patent/JP2002332964A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501312A (en) * | 1973-05-12 | 1975-01-08 | ||
JPS59230476A (en) * | 1984-05-18 | 1984-12-25 | Matsushita Refrig Co | Starting circuit of single phase induction motor |
JPH0638467A (en) * | 1992-07-09 | 1994-02-10 | Yamada Denki Seizo Kk | Starter for single-phase induction motor |
JP2001073948A (en) * | 1999-07-02 | 2001-03-21 | Matsushita Refrig Co Ltd | Electric compressor |
JP2002300763A (en) * | 2001-03-30 | 2002-10-11 | Sanyo Electric Co Ltd | Drive device for induction synchronous motor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040073268A (en) * | 2003-02-12 | 2004-08-19 | 마츠시타 덴끼 산교 가부시키가이샤 | Electric compressor |
JP2007505600A (en) * | 2003-09-10 | 2007-03-08 | ウェイブクレスト ラボラトリーズ リミテッド ライアビリティ カンパニー | Multiphase motor winding topology and control |
KR101086591B1 (en) * | 2003-09-10 | 2011-11-23 | 웨이브크레스트 래버러토리스, 엘엘씨 | Multiphase brushless electric motor and apparatus having same |
JP2006166532A (en) * | 2004-12-03 | 2006-06-22 | Tsubaki Emerson Co | Motor and drive device |
JP2006194574A (en) * | 2004-12-16 | 2006-07-27 | Matsushita Electric Ind Co Ltd | refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101067550B1 (en) | Air conditioning system and its control method | |
JP6689464B2 (en) | Drive device, compressor, air conditioner, and method for driving permanent magnet embedded motor | |
JP6710336B2 (en) | Driving device, air conditioner, and driving method | |
JP6710325B2 (en) | Air conditioner and operation control method for air conditioner | |
WO2013088638A1 (en) | Refrigerating cycle device | |
JPWO2019021450A1 (en) | Air conditioner, air conditioning system, and control method of air conditioner | |
JP2001174075A (en) | Refrigeration equipment | |
JP4155084B2 (en) | Electric compressor | |
US11280525B2 (en) | Refrigeration apparatus | |
US7782008B2 (en) | Motor and method for controlling operation of motor | |
JP2002332964A (en) | Refrigerant compressor starting device and refrigerant compressor | |
JP7705958B2 (en) | Cryogenic refrigeration system and cryogenic pump | |
JP6906138B2 (en) | Refrigeration cycle equipment | |
JP2020169782A (en) | Refrigeration cycle equipment | |
JP6877580B2 (en) | Refrigeration cycle equipment | |
KR100287718B1 (en) | Control method for preheating of compressor in heat pump | |
JPH11303745A (en) | Sealed motor-driven compressor | |
JP3471204B2 (en) | Cooling system | |
WO2022176148A1 (en) | Refrigeration cycle device | |
JPH094933A (en) | Refrigerator with deep freezer | |
JP6927911B2 (en) | Refrigeration cycle equipment | |
JP6872686B2 (en) | Refrigeration cycle equipment | |
JP3633897B2 (en) | Freezer refrigerator | |
JP2008095506A (en) | Refrigerant compressor and heat pump water heater equipped with the same | |
JP2002300763A (en) | Drive device for induction synchronous motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080123 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080227 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080227 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080425 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100805 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101109 |