JP2002329872A - Material of protection element for transient overvoltage - Google Patents
Material of protection element for transient overvoltageInfo
- Publication number
- JP2002329872A JP2002329872A JP2001127199A JP2001127199A JP2002329872A JP 2002329872 A JP2002329872 A JP 2002329872A JP 2001127199 A JP2001127199 A JP 2001127199A JP 2001127199 A JP2001127199 A JP 2001127199A JP 2002329872 A JP2002329872 A JP 2002329872A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- overvoltage protection
- transient overvoltage
- protection device
- linear resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Thermistors And Varistors (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は一種のブレークダウ
ン電圧の過渡過電圧保護素子の材料とされ、特に、少な
くとも二種類の粉体材料が均一に混合され、そのうちの
一種類がpn接合を有する粉体材料とされ、この界面が
或いはいわゆる非線形抵抗界面され、もう一種類が導体
粉体とされ、導体粉体がpn接合を有する粉体材料間に
散布されることにより、素子の両電極間のpn接合総数
が相対的に減少し、これにより相対的に素子のブレーク
ダウン電圧が下がる、過渡過電圧保護素子の材料に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a kind of transient overvoltage protection device having a breakdown voltage. Body material, this interface or a so-called non-linear resistance interface, the other kind is a conductor powder, and the conductor powder is dispersed between powder materials having a pn junction, so that the two A material for a transient overvoltage protection device, wherein the total number of pn junctions is relatively reduced, thereby relatively lowering the breakdown voltage of the device.
【0002】[0002]
【従来の技術】周知の酸化亜鉛可変抵抗器の材料及びそ
の構造は、酸化亜鉛とB、Bi、Ba、Si、Sr、P
b、Pr、Co、Mn、Sb或いはCrなどの酸化物或
いはその混合材料で構成され、例えば酸化ビスマスは即
ち酸化亜鉛の粒子間に一つの結晶中間層が形成され、こ
のような材料の構造は、材料密度を理論密度に接近させ
る構造に製造することが要求される。一般には理論密度
の90%以上が、商品化される製品となる。しかし、こ
のような素子は却って高キャパシタンスの欠点を有し
た。結晶中間層は電性表現上、コンデンサに類似し、こ
のためこのような材料で製造された可変抵抗は比較的高
いキャパシタンスを有し、高周波の回路中に適合せず、
これがこのような可変抵抗器の一つの重大な欠点であ
る。本発明の過渡過電圧保護素子の材料は、粉体放散堆
積構造に属し、このためもし同じ材料組成及び同じ素子
設計を使用しても、粉体放散堆積構造に属するため、比
較的低いキャパシタンスとリーク電流を有し、ゆえに高
周波の回路及びアンテナ中に適用される。2. Description of the Related Art The material and structure of a known zinc oxide variable resistor include zinc oxide, B, Bi, Ba, Si, Sr, and P.
It is composed of an oxide such as b, Pr, Co, Mn, Sb or Cr or a mixed material thereof. For example, bismuth oxide forms one crystal intermediate layer between zinc oxide particles, and the structure of such a material is In addition, it is required to manufacture the structure so that the material density approaches the theoretical density. Generally, 90% or more of the theoretical density is a product to be commercialized. However, such devices have the disadvantage of high capacitance. The crystalline intermediate layer is similar in electrical representation to a capacitor, so that a variable resistor made of such a material has a relatively high capacitance and is not compatible in high frequency circuits,
This is one significant drawback of such a variable resistor. The material of the transient overvoltage protection device of the present invention belongs to the powder diffusion structure, and therefore, even if the same material composition and the same device design are used, the material belongs to the powder diffusion structure, so that the relatively low capacitance and leakage current are obtained. It has a current and therefore is applied in high frequency circuits and antennas.
【0003】酸化亜鉛可変抵抗器のブレークダウン電圧
と二つの電極間の酸化亜鉛結晶粒数量は関係し、酸化亜
鉛結晶粒間に一層の結晶中間層が存在する。この結晶中
間層は酸化ビスマスその他の酸化物とされ、一般にはリ
ッチビスマスエリアと称され、酸化亜鉛とリッチビスマ
スエリア間に非線形抵抗界面、或いはpn接合或いはシ
ョットキーバリアが形成される。もし電極の一端からも
う一端まで、Nで酸化亜鉛半導体を表示し、Pでリッチ
ビスマスエリアを表示すると、この抵抗器のP−N構造
は、 E−P−N−P−N−・・・・・・−N−P−N−P−
E となる。そのうち、Eは導体電極、各P−N−P接合は
いずれも一つのブレークダウン電圧Vb1が存在し、電
極間に全部で数個のP−N−P接合が存在すると仮設す
ると、ブレークダウン電圧VbはVb1の総和と説明で
きる。[0003] The breakdown voltage of a zinc oxide variable resistor is related to the number of zinc oxide grains between the two electrodes, and there is a single crystal intermediate layer between the zinc oxide grains. This crystal intermediate layer is made of bismuth oxide or another oxide, and is generally called a rich bismuth area. A nonlinear resistance interface, a pn junction or a Schottky barrier is formed between the zinc oxide and the rich bismuth area. If the zinc oxide semiconductor is represented by N and the rich bismuth area is represented by P from one end to the other end of the electrode, the PN structure of this resistor is EPNPNPN ... ...- N-P-N-P-
E. Among them, E is a conductor electrode, and each P-N-P junction has one breakdown voltage Vb1, and if there are a total of several P-N-P junctions between the electrodes, the breakdown voltage becomes Vb can be described as the sum of Vb1.
【0004】これまでの発明で、現在出願中の特許中
に、pn接合具備の粉体が放散堆積された材料構造が記
載されている。もしN型半導体でP型半導体を被覆して
構成したpn接合の粉体を例とすると、pn接合を具え
た粉体は簡単にはpn粉体と称され、素子の二つの電極
間には複数のpn粉体が存在し、PでP型半導体を、N
でN型半導体を表示すると、電極間のpn接合は以下の
ように表示される。 E−P−N−P−S−P−N−P−・・・−P−N−P
−S−P−N−P−E そのうち、P−N−Pは顆粉体を代表し、Sは粉体と粉
体間のスペーサ層を表示し、Sは空気或いはガラスの絶
縁体とされ、その間のブレークダウン電圧はVsで表示
する。或いは、結晶粒と結晶粒が接触してSが不存在と
されうる。各P−N−Pにブレークダウン電圧Vb2が
存在し、電極間の数個の結晶粒で組成され、これにより
素子のブレークダウン電圧VbはVb2の総和のVsの
総和を加えたものと表示可能である。[0004] In the prior invention, a material structure in which a powder having a pn junction is diffused and deposited is described in a patent pending. If a pn-junction powder formed by coating a P-type semiconductor with an N-type semiconductor is taken as an example, a powder having a pn junction is simply referred to as a pn powder, and between the two electrodes of the element, There are a plurality of pn powders.
When an N-type semiconductor is displayed, the pn junction between the electrodes is displayed as follows. EPNPPPSPNPPP ... PNP
-SPNPPE Among them, PNP represents condyle powder, S represents a spacer layer between powders, and S represents air or glass insulator. , The breakdown voltage between them is denoted by Vs. Alternatively, the crystal grains may come into contact with each other and S may not be present. Each PNP has a breakdown voltage Vb2, which is composed of several crystal grains between the electrodes, whereby the breakdown voltage Vb of the device can be expressed as the sum of Vs of the sum of Vb2 and Vs2. It is.
【0005】過去に発表された過電圧保護素子の材料
に、US Pat.4,726,991に記載のものが
あり、その材料構造は、導体或いは半導体粉末を一層の
絶縁層で被覆する。この絶縁層の厚さは数百Åの厚さよ
り小さく、このような材料構造は実用上、一つの欠点を
有していた。まず、絶縁層の厚さが数百Å内であり、こ
の厚さに制御する製造工程の困難度は極めて高く、被覆
する絶縁層の厚さが非常に薄い時、素子の短絡を形成し
やすく、絶縁層の厚さが僅かに厚いときには、却ってブ
レークダウン電圧を高める可能性があり、これが、導体
或いは半導体粉末表面を絶縁層で被覆する技術の欠点で
あった。[0005] US Pat. No. 4,726,991, which has a material structure in which a conductor or semiconductor powder is covered with a single insulating layer. The thickness of this insulating layer is less than several hundred square meters, and such a material structure has one disadvantage in practice. First, the thickness of the insulating layer is within several hundred square meters, and the difficulty of the manufacturing process to control this thickness is extremely high. When the thickness of the insulating layer to cover is very thin, it is easy to form a short circuit of the element. When the thickness of the insulating layer is slightly thicker, the breakdown voltage may be increased, which is a drawback of the technique of covering the surface of the conductor or semiconductor powder with the insulating layer.
【0006】同様に、被覆型材料には、US Pat.
5,294,374に記載のものがあり、その材料構
造は、一層の絶縁層で被覆した導体粉末と被覆していな
いものの半導体との混合物とされ、その被覆厚さは70
Åから1ミクロンの間とされ、その被覆層材料に半導体
を使用可能である。基本的に、このような材料は、いず
れも、絶縁材料或いは半導体材料で電流の通過を阻止
し、高電気抵抗の目的を達成している。しかし、被覆層
の厚さが直接素子のブレークダウン電圧に影響するた
め、厚さの均一性が十分に重要となった。[0006] Similarly, US Pat.
No. 5,294,374, whose material structure is a mixture of a conductor powder coated with one insulating layer and an uncoated semiconductor.
It can be between Å and 1 micron, and semiconductors can be used for the coating layer material. Basically, any of these materials is an insulating material or a semiconductor material that blocks the passage of electric current and achieves the purpose of high electric resistance. However, since the thickness of the coating layer directly affects the breakdown voltage of the device, uniformity of the thickness has become sufficiently important.
【0007】各種の導体粉末、半導体粉末或いは非導体
粉末が、結合材を含む材料に均一に混合された可変抵抗
材料は、すでに米国特許中に多く発表されており、例え
ば、米国特許番号3,685,026、3,685,0
28、4,977,357、5,068,634、5,
068,634、5,260,848、5,294,3
74、5,393,596、5,807,509があ
る。これらの材料の構造の粉末自体は非線形抵抗の特性
を有していない。そのブレークダウン特性の発揮は、こ
れらの粉末の組成にあり、この原理は本発明に記載の内
容とは異なる。本発明の材料構造は新規性と実用性を有
する。A variable resistance material in which various conductor powders, semiconductor powders or non-conductor powders are uniformly mixed in a material containing a binder has already been published in US patents, for example, US Pat. 685,026,3,685,0
28, 4,977,357, 5,068,634, 5,
068,634, 5,260,848, 5,294,3
74, 5,393,596, 5,807,509. The powders of these material structures themselves do not have non-linear resistance characteristics. Its breakdown properties are exhibited by the composition of these powders, and this principle is different from that described in the present invention. The material structure of the present invention has novelty and practicality.
【0008】[0008]
【発明が解決しようとする課題】本発明は、一種の過渡
過電圧保護素子の材料を提供することを課題とし、それ
は、少なくとも二種類の粉体材料を混合し、そのうちに
一種類は非線形抵抗界面を具え、pn接合、及びショッ
トキーバリアはいずれも非線形抵抗界面に属し、もう一
種類は、導体粉体とされ、均一にこれらの粉体と適当な
接着剤が混合されることにより、これらの粉体が放散堆
積の方式で構成する構造とされ、これにより電極間のp
n接合の総数が導体の存在により減少し、よって素子の
ブレークダウン電圧が低下する。SUMMARY OF THE INVENTION It is an object of the present invention to provide a kind of transient overvoltage protection element material, which comprises mixing at least two kinds of powder materials, one of which is a non-linear resistance interface. The pn junction and the Schottky barrier both belong to the non-linear resistance interface, and the other type is a conductive powder, and these powders are mixed uniformly with an appropriate adhesive to form these. The structure is such that the powder is formed by a diffusion deposition method.
The total number of n-junctions is reduced by the presence of the conductor, thus lowering the breakdown voltage of the device.
【0009】[0009]
【課題を解決するための手段】請求項1の発明は、非線
形抵抗界面を有する少なくとも一種類の粉体材料を均一
に混合し、粉体材料を素子の両電極間に充填することに
より、素子の両電極間に非線形抵抗特性を具備させるこ
とを特徴とする、過渡過電圧保護素子の材料としてい
る。請求項2の発明は、前記非線形抵抗界面を有する粉
体材料が、酸化亜鉛粉体と、B、Bi、Ba、Si、S
r、Pb、Pr、Co、Mn、Sb或いはCrの酸化物
が形成する界面を有することを特徴とする、請求項1に
記載の過渡過電圧保護素子の材料としている。請求項3
の発明は、前記粉体材料の平均粒径が0.01−100
μmであることを特徴とする、請求項1に記載の過渡過
電圧保護素子の材料としている。請求項4の発明は、前
記粉体材料の平均粒径が0.01−100μmの間であ
ることを特徴とする、請求項1に記載の過渡過電圧保護
素子の材料としている。請求項5の発明は、少なくとも
二種類の粉体材料を均一に混合し、そのうち一種類は非
線形抵抗界面を有する粉体材料とし、もう一種類は導体
粉体とし、導体粉体と非線形抵抗界面を有する粉体材料
を均一に混合してなる粉体材料により、素子の両電極間
に非線形抵抗特性を具備させることを特徴とする、過渡
過電圧保護素子の材料としている。請求項6の発明は、
前記非線形抵抗界面を有する粉体材料が、酸化亜鉛粉体
と、B、Bi、Ba、Si、Sr、Pb、Pr、Co、
Mn、Sb或いはCrの酸化物が形成する界面を有する
ことを特徴とする、請求項5に記載の過渡過電圧保護素
子の材料としている。請求項7の発明は、前記導体粉体
が金属粉体とされたことを特徴とする、請求項5に記載
の過渡過電圧保護素子の材料としている。請求項8の発
明は、前記導体粉体が非金属粉体とされたことを特徴と
する、請求項5に記載の過渡過電圧保護素子の材料とし
ている。請求項9の発明は、前記粉体材料の平均粒径が
0.01−100μmであることを特徴とする、請求項
5に記載の過渡過電圧保護素子の材料としている。請求
項10の発明は、前記粉体材料の平均粒径が0.01−
100μmの間であることを特徴とする、請求項5に記
載の過渡過電圧保護素子の材料としている。請求項11
の発明は、前記金属粉体が、アルミニウム、銀、パラジ
ウム、白金、金、ニッケル、銅、タングステン、クロ
ム、鉄、亜鉛、チタン、ニオブ、モリブデン、ルテニウ
ム、鉛、イリジウム粉体のいずれかあることを特徴とす
る、請求項7に記載の過渡過電圧保護素子の材料として
いる。請求項12の発明は、前記金属粉体が、アルミニ
ウム、銀、パラジウム、白金、金、ニッケル、銅、タン
グステン、クロム、鉄、亜鉛、チタン、ニオブ、モリブ
デン、ルテニウム、鉛、イリジウムのうち任意の一つの
元素の合金粉体であることを特徴とする、請求項7に記
載の過渡過電圧保護素子の材料としている。請求項13
の発明は、前記非金属粉体が石墨粉体とされたことを特
徴とする、請求項8に記載の過渡過電圧保護素子の材料
としている。請求項14の発明は、前記非金属粉体が炭
化タングステン、或いは炭化チタン或いは炭化ニオブ或
いはこれらの化合物粉体に代わり使用可能な化合物粉体
とされたことを特徴とする、請求項8に記載の過渡過電
圧保護素子の材料としている。According to the first aspect of the present invention, at least one kind of powder material having a nonlinear resistance interface is uniformly mixed, and the powder material is filled between both electrodes of the device. Characterized in that a non-linear resistance characteristic is provided between the two electrodes. According to a second aspect of the present invention, the powder material having the non-linear resistance interface comprises zinc oxide powder, B, Bi, Ba, Si, S
The material for a transient overvoltage protection device according to claim 1, wherein the material has an interface formed by an oxide of r, Pb, Pr, Co, Mn, Sb, or Cr. Claim 3
In the invention, the average particle size of the powder material is 0.01-100.
The material of the transient overvoltage protection device according to claim 1, wherein the material is μm. According to a fourth aspect of the present invention, there is provided the transient overvoltage protection device according to the first aspect, wherein the powder material has an average particle diameter of 0.01 to 100 μm. According to a fifth aspect of the present invention, at least two types of powder materials are uniformly mixed, one of which is a powder material having a non-linear resistance interface, the other is a conductor powder, and the conductor powder and the non-linear resistance interface are mixed. The transient overvoltage protection device is characterized in that a powder material obtained by uniformly mixing powder materials having the following characteristics is used to provide a nonlinear resistance characteristic between both electrodes of the device. The invention of claim 6 is
The powder material having the non-linear resistance interface is composed of zinc oxide powder, B, Bi, Ba, Si, Sr, Pb, Pr, Co,
The material of the transient overvoltage protection device according to claim 5, wherein the material has an interface formed by an oxide of Mn, Sb, or Cr. The invention according to claim 7 is the material for the transient overvoltage protection element according to claim 5, wherein the conductor powder is metal powder. The invention according to claim 8 is the material for the transient overvoltage protection element according to claim 5, wherein the conductor powder is a non-metallic powder. According to a ninth aspect of the present invention, there is provided the transient overvoltage protection element material according to the fifth aspect, wherein the powder material has an average particle diameter of 0.01 to 100 μm. The invention according to claim 10 is that the powder material has an average particle diameter of 0.01-
The material of the transient overvoltage protection element according to claim 5, wherein the thickness is between 100 μm. Claim 11
In the invention, the metal powder is any one of aluminum, silver, palladium, platinum, gold, nickel, copper, tungsten, chromium, iron, zinc, titanium, niobium, molybdenum, ruthenium, lead, and iridium powder. The material of the transient overvoltage protection element according to claim 7 characterized by the following. The invention according to claim 12 is characterized in that the metal powder is any one of aluminum, silver, palladium, platinum, gold, nickel, copper, tungsten, chromium, iron, zinc, titanium, niobium, molybdenum, ruthenium, lead and iridium. The material of the transient overvoltage protection element according to claim 7, wherein the material is an alloy powder of one element. Claim 13
The invention according to claim 8, wherein the non-metallic powder is graphite powder, wherein the material is a transient overvoltage protection element according to claim 8. The invention according to claim 14 is characterized in that the non-metallic powder is tungsten carbide, titanium carbide, niobium carbide, or a compound powder that can be used instead of these compound powders. Of the transient overvoltage protection element.
【0010】[0010]
【発明の実施の形態】本発明による過渡過電圧保護素子
の材料は、少なくとも二種類の粉体材料を混合し、その
うちに一種類は非線形抵抗界面を具え、pn接合、及び
ショットキーバリアはいずれも非線形抵抗界面に属し、
もう一種類は、導体粉体とされ、均一にこれらの粉体と
適当な接着剤が混合されることにより、これらの粉体が
放散堆積の方式で構成する構造とされ、これにより電極
間のpn接合の総数が導体の存在により減少し、よって
素子のブレークダウン電圧が低下する。BEST MODE FOR CARRYING OUT THE INVENTION The material of the transient overvoltage protection device according to the present invention is a mixture of at least two kinds of powder materials, one of which has a non-linear resistance interface, and the pn junction and the Schottky barrier are both Belongs to the nonlinear resistance interface,
The other type is a structure in which these powders are dispersed and deposited by uniformly mixing these powders and an appropriate adhesive, which is used as a conductor powder. The total number of pn junctions is reduced by the presence of the conductor, thus lowering the breakdown voltage of the device.
【0011】この材料系統で製造された過渡過電圧保護
素子は、多種類の素子構造に適用可能である。例えば、
図1に示されるように、絶縁性基板20を主体とし、ま
ず、導体電極22及び24が基板上に形成され、二つの
導体電極が同一平面上にあり、且つ電極間にギャップ2
8が存在する。本発明の粉体材料28はこのギャップ中
に充填され、さらに適当な加熱処理により、粉体材料が
堆積されて放散構造が敬せされ、即ち一種の素子構造が
得られる。The transient overvoltage protection device manufactured using this material system can be applied to various types of device structures. For example,
As shown in FIG. 1, an insulating substrate 20 is a main component, first, conductor electrodes 22 and 24 are formed on a substrate, two conductor electrodes are on the same plane, and a gap 2 is formed between the electrodes.
There are eight. The powder material 28 of the present invention is filled in this gap, and by appropriate heat treatment, the powder material is deposited and the diffused structure is respected, that is, a kind of element structure is obtained.
【0012】もう一種の実行可能な素子構造は、図2に
示されるように、本発明の粉体材料30が主体とされ、
焼結してブロック状に形成され、材料上方に電極34が
形成され、さらに材料下方にもう一つの電極32が形成
され、こうしてサンドイッチ構造の素子が形成され、即
ち、もう一種類の過渡過電圧保護素子構造とされる。Another viable element structure is, as shown in FIG. 2, mainly composed of a powder material 30 of the present invention.
Sintered to form a block, an electrode 34 is formed above the material, and another electrode 32 is formed below the material, thus forming a sandwich-structured element, ie, another type of transient overvoltage protection. It has an element structure.
【0013】[0013]
【実施例】図3に示される粉体材料のミクロ視構造によ
ると、10は酸化亜鉛粉末とされ、酸化亜鉛自身はN型
半導体で、被覆層12はP型半導体とされる。その組成
は、B、Bi、Ba、Si、Sr、Pb、Pr、Co、
Mn、Sb或いはCr等の酸化物或いはその混合材料で
構成される。この被覆層材料は酸化ビスマスを含み、こ
の被覆層と酸化亜鉛間に、pn接合が形成され、これが
高電気抵抗を有する絶縁層とされ、これにより平常の作
業電圧下で、高電気抵抗の状況を現出し、サージ出現時
に、電圧が迅速に増加して、pn接合のブレークダウン
電圧に達する時、材料が瞬間的にブレークダウンし、こ
の時の材料の電気抵抗が僅かに数Ω−cmとされ、大電
流の通過を許容し、サージエネルギーを接地線に導入
し、サージエネルギーが通過後に、pn接合がもとの高
抵抗状態に回復し、この過程により回路保護の目的を達
成し、この過程を重複して進行できる。EXAMPLE According to the microscopic structure of the powder material shown in FIG. 3, reference numeral 10 denotes zinc oxide powder, zinc oxide itself is an N-type semiconductor, and coating layer 12 is a P-type semiconductor. Its composition is B, Bi, Ba, Si, Sr, Pb, Pr, Co,
It is composed of an oxide such as Mn, Sb or Cr or a mixed material thereof. The coating layer material contains bismuth oxide, and a pn junction is formed between the coating layer and the zinc oxide, which is an insulating layer having a high electrical resistance, and thus, under a normal working voltage, a high electrical resistance state is obtained. When the surge occurs, the voltage increases rapidly, and when the breakdown voltage of the pn junction is reached, the material instantaneously breaks down, and the electrical resistance of the material at this time is slightly several Ω-cm. This allows the passage of large currents, introduces surge energy into the ground wire, and after the surge energy passes, the pn junction recovers to its original high resistance state, thereby achieving the purpose of circuit protection by this process. The process can be repeated.
【0014】電荷が酸化亜鉛粉体Aから酸化亜鉛粉体C
に転移しなければならない時、図3に示されるように比
較的短い経路には三種類があり第1種は、A−B−C
で、Pで被覆層、Nで酸化亜鉛を表示すると、この経路
は、N−P−N−P−Nで表示され、この経路は電荷の
極性に係わらず、いずれもが二つのPN或いはNP接合
を経過する必要がある。第2種はA−D−Cで、この経
路はN−P−D−P−Nと表示でき、電荷の極性に係わ
らず、いずれも一つのPN或いはNP接合、及び一つの
空間Dを経過する。これら二種類の経路のブレークダウ
ン電圧は比較的高い。第3種はA−E−Cで、Eは導体
粉体で、この経路はN−P−E−P−Nで表示される。
Eは導体であるので、ゆえに電荷の極性に係わらず、全
てがただ一つのPN或いはNP接合を経過する必要があ
り、このためブレークダウン電圧は三種類の経路中、最
低であり、且つブレークダウン電圧の値と導体粉体の含
有量は関係があり、導体粉体の含有量が高くなるほど、
そのブレークダウン電圧は低くなる。The charge is from zinc oxide powder A to zinc oxide powder C
When there is a need to transfer to A.B.C., there are three types of relatively short paths as shown in FIG.
When the coating layer is represented by P and the zinc oxide is represented by N, this route is represented by N-P-N-P-N, and both routes are two PN or NP regardless of the polarity of the electric charge. It is necessary to go through bonding. The second type is A-D-C, and this route can be expressed as N-P-D-P-N, and all pass through one PN or NP junction and one space D regardless of the polarity of the charge. I do. The breakdown voltage of these two paths is relatively high. The third type is A-E-C, E is a conductive powder, and this path is denoted by N-P-E-P-N.
Since E is a conductor, it must therefore all pass through a single PN or NP junction, regardless of the polarity of the charge, so that the breakdown voltage is the lowest of the three paths and the breakdown voltage The value of the voltage and the content of the conductor powder are related, and the higher the content of the conductor powder,
Its breakdown voltage will be lower.
【0015】酸化亜鉛粉体が複数の酸化亜鉛結晶格子で
組成される時、即ち一つの粉体内に多層の被覆層が含ま
れるということで、また即ち一組以上のPNP接合があ
るということになり、その相対的状況は本発明の記載の
内容に適用される。When the zinc oxide powder is composed of a plurality of zinc oxide crystal lattices, that is, a plurality of coating layers are contained in one powder, that is, there is one or more PNP junctions. And the relative circumstances apply to the description of the invention.
【0016】導体粉体は金属導体粉体或いは非金属導体
粉体とされ、金属導体粉体は、アルミニウム、銀、パラ
ジウム、白金、金、ニッケル、銅、タングステン、クロ
ム、鉄、亜鉛、チタン、ニオブ、モリブデン、ルテニウ
ム、鉛、イリジウム元素の粉体が好ましい。非金属導体
粉体は、石墨粉体或いは導電炭化物中の、炭化タングス
テン、或いは炭化チタン或いは炭化ニオブ粉体とされう
る。金属導体粉体はまた、アルミニウム、銀、パラジウ
ム、白金、金、ニッケル、銅、タングステン、クロム、
鉄、亜鉛、チタン、ニオブ、モリブデン、ルテニウム、
鉛、イリジウム粉体中の任意の一つの元素の合金粉体と
されうる。The conductor powder is a metal conductor powder or a non-metal conductor powder, and the metal conductor powder is aluminum, silver, palladium, platinum, gold, nickel, copper, tungsten, chromium, iron, zinc, titanium, Powders of niobium, molybdenum, ruthenium, lead and iridium elements are preferred. The non-metallic conductive powder may be tungsten carbide or titanium carbide or niobium carbide powder in graphite powder or conductive carbide. Metal conductor powders also include aluminum, silver, palladium, platinum, gold, nickel, copper, tungsten, chromium,
Iron, zinc, titanium, niobium, molybdenum, ruthenium,
It can be an alloy powder of any one element in the lead and iridium powders.
【0017】本発明の過渡過電圧保護素子の材料の製造
方法は、図4に示されるとおりであり、その各ステップ
について以下に説明する。FIG. 4 shows a method of manufacturing a material for a transient overvoltage protection device according to the present invention, and each step will be described below.
【0018】ステップ1、2: 均一に酸化亜鉛粉体材
料と酸化ビスマス粉体を混合する。そのうち、酸化亜鉛
はN型粉体とされ、その適用される平均粒径は0.01
−100μmで、特に平均粒径が0.1−100μmが
好ましく、使用する粒径の大きさが電極間の粉体数量に
影響し、ゆえに素子のブレークダウン電圧に影響し、そ
の重量百分率は50−97%が好ましい。酸化ビスマス
粉体はP型粉体とされ、酸化ビスマスはP型粉体とさ
れ、その重量百分率は3−50%が好ましい。 ステップ3: ステップ1、2の混合粉末を、800〜
1600℃の温度でプリベークする。プリベークの過程
で、酸化ビスマスを含む粉体は高温下で液相を形成し、
酸化ビスマスの表面を被覆し、被覆相と酸化亜鉛の結晶
格子界面を形成し、この界面は一種のpn接合或いは非
線形抵抗界面と称されるか、或いはショットキーバリア
と称される。 ステップ4: ステップ3で得られた材料を研磨して、
粉末状に形成し、この粉末を非線形抵抗界面の特性を有
する。 ステップ5: ステップ4で得られた粉体材料を、周知
の結合剤或いは溶剤と導体粉体に加える。周知の結合剤
は例えばエチルセルロースその他の高分子、溶剤は機械
アルコール、機械エステルとされ、十分に均一に混合し
た後、運用可能な糊状材料状態を得る。 ステップ6: この糊状材料を厚膜印刷方式で一対の電
極を有する基板上に塗布し、且つ両電極に接触させる。 ステップ7: この糊状材料を焼結して結合剤と溶剤を
除去し、素子の製造を完成し、必要時に材料上方にさら
に保護相を形成して材料を保護する。Steps 1 and 2: The zinc oxide powder material and the bismuth oxide powder are uniformly mixed. Among them, zinc oxide is an N-type powder, and the applied average particle size is 0.01.
-100 μm, and particularly preferably an average particle diameter of 0.1-100 μm. The size of the particle size used affects the amount of powder between the electrodes, and thus affects the breakdown voltage of the device, and its weight percentage is 50%. -97% is preferred. The bismuth oxide powder is a P-type powder, and the bismuth oxide is a P-type powder, and its weight percentage is preferably 3 to 50%. Step 3: The mixed powder of steps 1 and 2 is
Prebake at a temperature of 1600 ° C. In the process of pre-baking, the powder containing bismuth oxide forms a liquid phase at high temperature,
The surface of bismuth oxide is coated to form a crystal lattice interface between the coating phase and zinc oxide, and this interface is called a kind of pn junction or a non-linear resistance interface, or is called a Schottky barrier. Step 4: polishing the material obtained in step 3,
It is formed into a powder, and this powder has the characteristics of a non-linear resistance interface. Step 5: Add the powder material obtained in step 4 to a known binder or solvent and conductive powder. Well-known binders include, for example, ethylcellulose and other polymers, and solvents are mechanical alcohols and mechanical esters. After sufficiently uniform mixing, an operable paste-like material state is obtained. Step 6: This paste-like material is applied on a substrate having a pair of electrodes by a thick-film printing method and brought into contact with both electrodes. Step 7: Sinter the paste-like material to remove the binder and solvent, complete the manufacture of the device and, if necessary, form a further protective phase above the material to protect the material.
【0019】実施例2:図5は本発明の静電放電の反応
曲線を示す。曲線1は静電放電の電流通過素子の反応曲
線であり、静電ソースは8kVで、図より材料ブレーク
ダウン後の状況が分かるが、この時、大量の電流の該素
子の通過が許可され、最大の通過電流は30Aより大き
い。曲線2は電圧曲線を示し、ピーク電圧は僅かに30
0V以下で、即ち8kVの静電出現時に、本発明の素子
を透過し、電圧が300V以下に下がり、これにより十
分に電子回路保護の機能を達成する。その他の電性の表
現は、例えば電容は約0.5pF、リーク電流は約1n
Aである。EXAMPLE 2 FIG. 5 shows a reaction curve of the electrostatic discharge of the present invention. Curve 1 is a response curve of a current passing element of an electrostatic discharge. The electrostatic source is 8 kV, and the situation after material breakdown can be seen from the figure. At this time, a large amount of current is allowed to pass through the element. The maximum passing current is greater than 30A. Curve 2 shows the voltage curve with a peak voltage of only 30
At 0V or less, that is, at the appearance of 8 kV electrostatic, it passes through the device of the present invention, and the voltage drops to 300V or less, thereby sufficiently achieving the function of protecting the electronic circuit. Other electrical expressions are, for example, a capacitance of about 0.5 pF and a leakage current of about 1 n.
A.
【0020】[0020]
【発明の効果】本発明の過渡過電圧保護材料は、過渡過
電圧保護材料の新規性と実用性を具備し、この過渡過電
圧保護材料構造の改変により、得られる過渡過電圧保護
素子は、さらに製造及び特性の安定、リーク電流の低
さ、電容が小さい長所を有し、確実に特許の規定に符合
する。以上は本発明の具体的実施例の説明であり、本発
明の構想により行う改変で、その発生する機能作用が明
細書及び図面に示される精神を越えない時、いずれも本
発明の範囲内に属することをここに申し述べる。The transient overvoltage protection material of the present invention has the novelty and practicality of the transient overvoltage protection material, and the transient overvoltage protection element obtained by the modification of the structure of the transient overvoltage protection material further has manufacturing and characteristics. It has the advantages of high stability, low leakage current and small capacitance, and conforms to the provisions of the patent. The above is a description of a specific embodiment of the present invention, and when modifications and alterations performed in accordance with the concept of the present invention do not cause the resulting functional action to exceed the spirit shown in the specification and drawings, any of the modifications fall within the scope of the present invention. I state here that I belong.
【図1】本発明の実行可能な過渡過電圧保護素子の構造
表示図である。FIG. 1 is a structural representation of a feasible transient overvoltage protection device of the present invention.
【図2】本発明の実行可能な過渡過電圧保護素子の別の
構造表示図である。FIG. 2 is another structural schematic view of a feasible transient overvoltage protection device according to the present invention.
【図3】本発明の粉体材料のミクロ視構造図である。FIG. 3 is a microscopic structural view of the powder material of the present invention.
【図4】本発明の過渡過電圧保護材料製造方法のフロー
チャートである。FIG. 4 is a flowchart of a method for producing a transient overvoltage protection material according to the present invention.
【図5】本発明の静電放電の反応曲線図である。FIG. 5 is a reaction curve diagram of the electrostatic discharge of the present invention.
10 酸化亜鉛 12 被覆層酸化ビスマスの混合物 20 絶縁基板 22 導体電極 24 導体電極 26 過渡過電圧保護材料 28 電極ギャップ 30 過渡過電圧保護材料 32 導体電極 34 導体電極 A 酸化亜鉛粉体 B 酸化亜鉛粉体 C 酸化亜鉛粉体 D 空間 E 導体粉体 Reference Signs List 10 zinc oxide 12 coating layer bismuth oxide mixture 20 insulating substrate 22 conductor electrode 24 conductor electrode 26 transient overvoltage protection material 28 electrode gap 30 transient overvoltage protection material 32 conductor electrode 34 conductor electrode A zinc oxide powder B zinc oxide powder C oxidation Zinc powder D space E Conductive powder
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02H 9/04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02H 9/04
Claims (14)
類の粉体材料を均一に混合し、粉体材料を素子の両電極
間に充填することにより、素子の両電極間に非線形抵抗
特性を具備させることを特徴とする、過渡過電圧保護素
子の材料。At least one kind of powder material having a non-linear resistance interface is uniformly mixed, and the powder material is filled between both electrodes of the device to provide a non-linear resistance characteristic between both electrodes of the device. A material for a transient overvoltage protection element, characterized in that:
が、酸化亜鉛粉体と、B、Bi、Ba、Si、Sr、P
b、Pr、Co、Mn、Sb或いはCrの酸化物が形成
する界面を有することを特徴とする、請求項1に記載の
過渡過電圧保護素子の材料。2. The powder material having the non-linear resistance interface includes zinc oxide powder, B, Bi, Ba, Si, Sr, P
The material of the transient overvoltage protection device according to claim 1, wherein the material has an interface formed by an oxide of b, Pr, Co, Mn, Sb, or Cr.
00μmであることを特徴とする、請求項1に記載の過
渡過電圧保護素子の材料。3. The powder material has an average particle size of 0.01-1.
The material of the transient overvoltage protection device according to claim 1, wherein the material is 00 µm.
00μmの間であることを特徴とする、請求項1に記載
の過渡過電圧保護素子の材料。4. The powder material has an average particle size of 0.01-1.
The material for a transient overvoltage protection device according to claim 1, characterized in that it is between 00 µm.
合し、そのうち一種類は非線形抵抗界面を有する粉体材
料とし、もう一種類は導体粉体とし、導体粉体と非線形
抵抗界面を有する粉体材料を均一に混合してなる粉体材
料により、素子の両電極間に非線形抵抗特性を具備させ
ることを特徴とする、過渡過電圧保護素子の材料。5. At least two kinds of powder materials are uniformly mixed, one of which is a powder material having a non-linear resistance interface, the other is a conductor powder, and has a non-linear resistance interface with the conductor powder. A material for a transient overvoltage protection element, wherein a non-linear resistance characteristic is provided between both electrodes of the element by a powder material obtained by uniformly mixing the powder material.
が、酸化亜鉛粉体と、B、Bi、Ba、Si、Sr、P
b、Pr、Co、Mn、Sb或いはCrの酸化物が形成
する界面を有することを特徴とする、請求項5に記載の
過渡過電圧保護素子の材料。6. The powder material having the non-linear resistance interface comprises zinc oxide powder, B, Bi, Ba, Si, Sr, P
The material of the transient overvoltage protection device according to claim 5, wherein the material has an interface formed by an oxide of b, Pr, Co, Mn, Sb, or Cr.
特徴とする、請求項5に記載の過渡過電圧保護素子の材
料。7. The material for a transient overvoltage protection device according to claim 5, wherein the conductor powder is a metal powder.
を特徴とする、請求項5に記載の過渡過電圧保護素子の
材料。8. The material for a transient overvoltage protection device according to claim 5, wherein the conductive powder is a non-metallic powder.
00μmであることを特徴とする、請求項5に記載の過
渡過電圧保護素子の材料。9. The powder material having an average particle size of 0.01-1.
The material of the transient overvoltage protection device according to claim 5, wherein the thickness is 00 µm.
100μmの間であることを特徴とする、請求項5に記
載の過渡過電圧保護素子の材料。10. The powder material having an average particle size of 0.01-
The material for a transient overvoltage protection device according to claim 5, characterized in that it is between 100 m.
パラジウム、白金、金、ニッケル、銅、タングステン、
クロム、鉄、亜鉛、チタン、ニオブ、モリブデン、ルテ
ニウム、鉛、イリジウム粉体のいずれかあることを特徴
とする、請求項7に記載の過渡過電圧保護素子の材料。11. The method according to claim 11, wherein the metal powder is aluminum, silver,
Palladium, platinum, gold, nickel, copper, tungsten,
8. The material for a transient overvoltage protection device according to claim 7, wherein the material is any one of chromium, iron, zinc, titanium, niobium, molybdenum, ruthenium, lead, and iridium powder.
パラジウム、白金、金、ニッケル、銅、タングステン、
クロム、鉄、亜鉛、チタン、ニオブ、モリブデン、ルテ
ニウム、鉛、イリジウムのうち任意の一つの元素の合金
粉体であることを特徴とする、請求項7に記載の過渡過
電圧保護素子の材料。12. The method according to claim 12, wherein the metal powder is aluminum, silver,
Palladium, platinum, gold, nickel, copper, tungsten,
8. The material for a transient overvoltage protection device according to claim 7, wherein the material is an alloy powder of any one of chromium, iron, zinc, titanium, niobium, molybdenum, ruthenium, lead, and iridium.
とを特徴とする、請求項8に記載の過渡過電圧保護素子
の材料。13. The material for a transient overvoltage protection device according to claim 8, wherein said non-metallic powder is graphite powder.
或いは炭化チタン或いは炭化ニオブ或いはこれらの化合
物粉体に代わり使用可能な化合物粉体とされたことを特
徴とする、請求項8に記載の過渡過電圧保護素子の材
料。14. The non-metallic powder is tungsten carbide,
9. The material for a transient overvoltage protection device according to claim 8, wherein the material is a compound powder that can be used in place of titanium carbide, niobium carbide, or a compound powder thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001127199A JP2002329872A (en) | 2001-04-25 | 2001-04-25 | Material of protection element for transient overvoltage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001127199A JP2002329872A (en) | 2001-04-25 | 2001-04-25 | Material of protection element for transient overvoltage |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002329872A true JP2002329872A (en) | 2002-11-15 |
Family
ID=18976106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001127199A Pending JP2002329872A (en) | 2001-04-25 | 2001-04-25 | Material of protection element for transient overvoltage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002329872A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005276938A (en) * | 2004-03-23 | 2005-10-06 | Tdk Corp | Conductive paste, electronic component and varistor |
JP2006294724A (en) * | 2005-04-07 | 2006-10-26 | Matsushita Electric Ind Co Ltd | Composite electronic component and its manufacturing method |
JP2007134460A (en) * | 2005-11-09 | 2007-05-31 | Hirakawa Seisakusho:Kk | Coherer type surge absorber |
JP2008294324A (en) * | 2007-05-28 | 2008-12-04 | Tateyama Kagaku Kogyo Kk | Electrostatic discharge protection element and method of manufacturing the same |
WO2010016648A1 (en) * | 2008-08-06 | 2010-02-11 | (주)넥스트론 | Method for manufacturing an instant pulse filter using anodic oxidation and instant pulse filter manufactured by said method |
JP2010109311A (en) * | 2008-09-30 | 2010-05-13 | Tdk Corp | Composite electronic component and connection structure thereof |
JP2010109313A (en) * | 2008-09-30 | 2010-05-13 | Tdk Corp | Composite electronic component |
JP2010109312A (en) * | 2008-09-30 | 2010-05-13 | Tdk Corp | Composite electronic component and method for manufacturing the same |
JP2010524384A (en) * | 2007-04-11 | 2010-07-15 | イノチップ テクノロジー シーオー エルティディー | Circuit protection element and manufacturing method thereof |
JP2010171184A (en) * | 2009-01-22 | 2010-08-05 | Tdk Corp | Composite electronic component, and high-speed digital transmission circuit |
JP2011018756A (en) * | 2009-07-08 | 2011-01-27 | Tdk Corp | Composite electronic device |
KR20110031163A (en) * | 2008-05-21 | 2011-03-24 | 에프코스 아게 | Electrical element assembly |
KR101168850B1 (en) | 2008-07-24 | 2012-07-26 | 티디케이가부시기가이샤 | Esd protection device |
US8422190B2 (en) | 2008-09-30 | 2013-04-16 | Tdk Corporation | Composite electronic device, manufacturing method thereof, and connection structure of composite electronic device |
US8426889B2 (en) | 2008-11-26 | 2013-04-23 | Murata Manufacturing Co., Ltd. | ESD protection device and method for manufacturing the same |
US8455918B2 (en) | 2008-11-26 | 2013-06-04 | Murata Manufacturing Co., Ltd. | ESD protection device and method for manufacturing the same |
JP2015050248A (en) * | 2013-08-30 | 2015-03-16 | 国立大学法人大阪大学 | Nonlinear element |
US9077158B2 (en) | 2012-09-28 | 2015-07-07 | Denso Corporation | Spark plug for internal combustion engine |
-
2001
- 2001-04-25 JP JP2001127199A patent/JP2002329872A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005276938A (en) * | 2004-03-23 | 2005-10-06 | Tdk Corp | Conductive paste, electronic component and varistor |
JP2006294724A (en) * | 2005-04-07 | 2006-10-26 | Matsushita Electric Ind Co Ltd | Composite electronic component and its manufacturing method |
JP4519059B2 (en) * | 2005-11-09 | 2010-08-04 | 合資会社 平川製作所 | Coherer type surge absorber |
JP2007134460A (en) * | 2005-11-09 | 2007-05-31 | Hirakawa Seisakusho:Kk | Coherer type surge absorber |
US8493704B2 (en) | 2007-04-11 | 2013-07-23 | Innochips Technology Co., Ltd. | Circuit protection device and method of manufacturing the same |
US9318256B2 (en) | 2007-04-11 | 2016-04-19 | Innochips Technology Co., Ltd. | Circuit protection device and method of manufacturing the same |
JP2010524384A (en) * | 2007-04-11 | 2010-07-15 | イノチップ テクノロジー シーオー エルティディー | Circuit protection element and manufacturing method thereof |
US8865480B2 (en) | 2007-04-11 | 2014-10-21 | Innochips Technology Co., Ltd. | Circuit protection device and method of manufacturing the same |
JP2008294324A (en) * | 2007-05-28 | 2008-12-04 | Tateyama Kagaku Kogyo Kk | Electrostatic discharge protection element and method of manufacturing the same |
KR101666230B1 (en) | 2008-05-21 | 2016-10-13 | 에프코스 아게 | Electric component assembly |
US9177703B2 (en) | 2008-05-21 | 2015-11-03 | Epcos Ag | Electric component assembly |
KR20110031163A (en) * | 2008-05-21 | 2011-03-24 | 에프코스 아게 | Electrical element assembly |
JP2011523778A (en) * | 2008-05-21 | 2011-08-18 | エプコス アクチエンゲゼルシャフト | Electrical component assembly |
KR101168850B1 (en) | 2008-07-24 | 2012-07-26 | 티디케이가부시기가이샤 | Esd protection device |
WO2010016648A1 (en) * | 2008-08-06 | 2010-02-11 | (주)넥스트론 | Method for manufacturing an instant pulse filter using anodic oxidation and instant pulse filter manufactured by said method |
KR100975530B1 (en) | 2008-08-06 | 2010-08-12 | 주식회사 넥스트론 | The instant pulse filter manufacturing method using the anodic oxidation method and the instantaneous pulse filter |
US8129745B2 (en) | 2008-08-06 | 2012-03-06 | Nextron Corporation | Method of manufacturing an instant pulse filter using anodic oxidation and instant pulse filter manufactured by said method |
JP4723005B2 (en) * | 2008-09-30 | 2011-07-13 | Tdk株式会社 | Composite electronic components |
JP4720911B2 (en) * | 2008-09-30 | 2011-07-13 | Tdk株式会社 | Composite electronic component and manufacturing method thereof |
US8422190B2 (en) | 2008-09-30 | 2013-04-16 | Tdk Corporation | Composite electronic device, manufacturing method thereof, and connection structure of composite electronic device |
JP2010109312A (en) * | 2008-09-30 | 2010-05-13 | Tdk Corp | Composite electronic component and method for manufacturing the same |
JP2010109313A (en) * | 2008-09-30 | 2010-05-13 | Tdk Corp | Composite electronic component |
JP2010109311A (en) * | 2008-09-30 | 2010-05-13 | Tdk Corp | Composite electronic component and connection structure thereof |
US8426889B2 (en) | 2008-11-26 | 2013-04-23 | Murata Manufacturing Co., Ltd. | ESD protection device and method for manufacturing the same |
US8455918B2 (en) | 2008-11-26 | 2013-06-04 | Murata Manufacturing Co., Ltd. | ESD protection device and method for manufacturing the same |
US8373954B2 (en) | 2009-01-22 | 2013-02-12 | Tdk Corporation | Composite electronic device and digital transmission circuit using thereof |
JP2010171184A (en) * | 2009-01-22 | 2010-08-05 | Tdk Corp | Composite electronic component, and high-speed digital transmission circuit |
JP2011018756A (en) * | 2009-07-08 | 2011-01-27 | Tdk Corp | Composite electronic device |
US9077158B2 (en) | 2012-09-28 | 2015-07-07 | Denso Corporation | Spark plug for internal combustion engine |
JP2015050248A (en) * | 2013-08-30 | 2015-03-16 | 国立大学法人大阪大学 | Nonlinear element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002329872A (en) | Material of protection element for transient overvoltage | |
US5614727A (en) | Thin film diode having large current capability with low turn-on voltages for integrated devices | |
CN107394587B (en) | Esd protection device | |
JP5221794B1 (en) | Electrostatic protection element and manufacturing method thereof | |
US6645393B2 (en) | Material compositions for transient voltage suppressors | |
WO2013175794A1 (en) | Voltage nonlinear resistor and multilayer varistor using same | |
US4349496A (en) | Method for fabricating free-standing thick-film varistors | |
US20070041141A1 (en) | Over-voltage suppressor and process of preparing over-voltage protection material | |
JP2009117735A (en) | Static electricity countermeasure parts and manufacturing method thereof | |
CA1037616A (en) | Varistors with patterned electrodes | |
CN1251250C (en) | Materials for transient overvoltage protection components | |
JP2002110405A (en) | Overvoltage protective device material and method of manufacturing the same | |
CN101548347A (en) | Antistatic component and manufacturing method thereof | |
TW475183B (en) | Material for transient over-voltage protection device | |
US20100157492A1 (en) | Electronic device and associated method | |
TWI342569B (en) | Esd protective materials and method for making the same | |
JP2507907Y2 (en) | Antistatic circuit structure | |
JPH0373121B2 (en) | ||
JPS62242310A (en) | Voltage nonlinear device | |
JP2000182808A (en) | Nonlinear resistance member | |
JPS62193208A (en) | Voltage nonlinear device | |
JPS62193207A (en) | Voltage nonlinear device | |
JPH10289808A (en) | Functional ceramic element | |
JPS62193215A (en) | Manufacture of voltage nonlinear device | |
JPS62193219A (en) | Manufacture of voltage nonlinear device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040810 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050119 |