[go: up one dir, main page]

JP2002329820A - Method of manufacturing heat conducting body with fin - Google Patents

Method of manufacturing heat conducting body with fin

Info

Publication number
JP2002329820A
JP2002329820A JP2001130727A JP2001130727A JP2002329820A JP 2002329820 A JP2002329820 A JP 2002329820A JP 2001130727 A JP2001130727 A JP 2001130727A JP 2001130727 A JP2001130727 A JP 2001130727A JP 2002329820 A JP2002329820 A JP 2002329820A
Authority
JP
Japan
Prior art keywords
cutting
heat transfer
fin
fins
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001130727A
Other languages
Japanese (ja)
Other versions
JP4464579B2 (en
Inventor
Satoru Iwata
哲 岩田
Yoshiharu Sugano
快治 菅野
Toshiro Koizumi
登志郎 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001130727A priority Critical patent/JP4464579B2/en
Publication of JP2002329820A publication Critical patent/JP2002329820A/en
Application granted granted Critical
Publication of JP4464579B2 publication Critical patent/JP4464579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/068Shaving, skiving or scarifying for forming lifted portions, e.g. slices or barbs, on the surface of the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a heat conducting body which can secure a sufficiently large heat conducting surface area by reducing the overhung amounts of bent fins and increasing the number of formed fins per prescribed length of the heat conduction body and, at the same time, can be reduced in ventilation resistance to ventilated air and does not cause fluctuation in the quality, such as the thicknesses, heights, etc., of the formed fins. SOLUTION: The fins 3 are formed by skiving the heat conducting body 20 by means of a cutting tool 20 having an included angle α of 40-55 deg. in a state where the cutting incident angle θ of the tool 20 to the surface of the body 2 is set at 4.5-9.5 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば、パソコ
ン、産業機器等の機器の制御部(半導体等)の冷却装置
やペルチェ装置等における放熱フィン等として用いられ
るフィン付伝熱体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a finned heat transfer member used as a cooling fin of a control unit (semiconductor or the like) of a device such as a personal computer or an industrial device or a radiation fin in a Peltier device. .

【0002】[0002]

【従来の技術】従来より、放熱フィンとしては、金属製
の伝熱板の表面をバイト等の切削工具で薄く削るスカイ
ブ切削加工を行うことで、図3(ロ)に示すような伝熱
板(100)の表面に外方に向けて湾曲状に延びるフィ
ン(101)が多数設けられたものが用いられている。
このようなフィンは、押出材製の放熱フィンと比較して
フィン高さ、フィンピッチを自由に設定できるため、フ
ィンの伝熱性能を向上させることができる。
2. Description of the Related Art Conventionally, a heat transfer fin as shown in FIG. 3 (b) has been obtained by performing skive cutting in which the surface of a metal heat transfer plate is thinly cut with a cutting tool such as a cutting tool. The (100) surface is provided with a large number of fins (101) extending outward in a curved shape.
Since the fin height and the fin pitch of such a fin can be freely set as compared with the radiation fin made of an extruded material, the heat transfer performance of the fin can be improved.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記ス
カイブ切削加工により形成されたフィン(101)は、
図3(ロ)に示すように、大きく湾曲していてその張り
出し量(Fx)が大きくなるために、フィン1枚あたり
の空間占有率が大きく、従って伝熱板(100)の所定
長さ(L)に対して形成し得るフィン枚数に制約を受け
るものであった、即ちフィン枚数を増大せしめるのが困
難であった。そのため、伝熱表面積の増大を図ることが
できず、伝熱性能の更なる向上を図ることができないと
いう問題があった。更に、フィン(101)が大きく湾
曲しているために、伝熱板表面に対してほぼ垂直に送風
される空気に対する通気抵抗が比較的大きなものになる
し、また端部のフィンの湾曲内側に熱交換に寄与しない
大きなスペース(A)が形成され(図3(ロ)参照)、
このスペース(A)を空気が抜けてしまうために、伝熱
性能の向上が困難になるという問題もあった。
However, the fin (101) formed by the skive cutting is
As shown in FIG. 3 (b), since the fin is greatly curved and the overhang amount (Fx) is large, the space occupancy per fin is large, and therefore, the predetermined length of the heat transfer plate (100) ( L), the number of fins that can be formed is limited, that is, it is difficult to increase the number of fins. Therefore, the heat transfer surface area cannot be increased, and the heat transfer performance cannot be further improved. Further, since the fin (101) is greatly curved, the airflow resistance to air blown almost perpendicularly to the surface of the heat transfer plate becomes relatively large. A large space (A) that does not contribute to heat exchange is formed (see FIG. 3B),
Since air escapes from the space (A), there is a problem that it is difficult to improve the heat transfer performance.

【0004】これらの問題点を解消するためには、フィ
ン(101)の張り出し量(Fx)を小さくすれば良
い。そこで、本発明者はフィン(101)の立ち上げ角
度(H)が大きくなるように設定して製造を試みたとこ
ろ、フィン(101)の張り出し量(Fx)の低減は可
能になったものの、切削前のフィンすくい取り厚さ(s
inθ×Fp)と、切削後のフィン厚さ(Ft)との間
に大きなばらつきを生じて、形成されるフィンの厚さ、
フィン高さ等の品質が安定せず、製品として到底供し得
ないものとなることが判明した。即ち、単にフィンの立
ち上げ角度(H)が大きくなるように切削工具の刃先角
度(α)及び切削入射角度(θ)を大きく設定すれば解
決できるのではないことがわかった(図2参照)。
In order to solve these problems, it is necessary to reduce the overhang amount (Fx) of the fin (101). Then, the present inventor tried to manufacture the fin (101) by setting the rising angle (H) of the fin (101) so as to be large. Fin thickness before cutting (s)
inθ × Fp) and the fin thickness after cutting (Ft), causing a large variation, and the thickness of the formed fin,
It has been found that the quality such as the fin height is not stable and cannot be provided as a product at all. That is, it was found that the problem could not be solved simply by setting the cutting edge angle (α) and the cutting incident angle (θ) of the cutting tool to be large so that the rising angle (H) of the fin became large (see FIG. 2). .

【0005】この発明は、かかる技術的背景に鑑みてな
されたものであって、スカイブ湾曲フィンの張り出し量
を低減することができて、伝熱体の所定長さ当たりの形
成フィン枚数を増大させることができて伝熱表面積を十
分に確保できると共に、送風される空気に対する通気抵
抗も低減でき、かつ形成されるフィンの厚さ、高さ等の
品質にばらつきを生じないフィン付伝熱体の製造方法を
提供することを目的とする。
The present invention has been made in view of such technical background, and can reduce the amount of protrusion of a skived curved fin and increase the number of fins formed per predetermined length of a heat transfer body. The heat transfer surface area of the finned heat transfer body can be sufficiently secured, the airflow resistance to the blown air can be reduced, and the quality of the formed fins, such as thickness and height, does not vary. It is intended to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明者は、湾曲フィン
の張り出し量を低減できつつ、フィンの厚さ、高さのば
らつきを生じないものとできる製造方法を鋭意研究した
結果、切削工具の刃先角度及び切削工具の切削入射角度
をそれぞれ特定範囲に規定した状態でスカイブ切削加工
を行うことにより、上記目的を達成できることを見出す
に至り、この発明を完成したものである。
The inventor of the present invention has conducted intensive studies on a manufacturing method capable of reducing the amount of overhang of the curved fin and not causing variations in the thickness and height of the fin. The inventors have found that the above-mentioned object can be achieved by performing skive cutting with the cutting edge angle and the cutting incidence angle of the cutting tool defined in specific ranges, respectively, and have completed the present invention.

【0007】即ち、この発明に係るフィン付伝熱体の製
造方法は、金属製の伝熱板等の伝熱体の表面を工具で薄
く削るスカイブ切削加工を行うことにより、表面に外方
に向けて湾曲状に延びるフィンが多数設けられたフィン
付伝熱体を製造する方法において、前記工具として刃先
角度が40°〜55°の範囲のものを用いて、前記伝熱
体表面に対する工具の切削入射角度を4.5°〜9.5
°に設定した状態でスカイブ切削加工を行うことを特徴
とするものである。
That is, according to the method of manufacturing a finned heat transfer body of the present invention, the surface of a heat transfer body such as a metal heat transfer plate is skived by thinning with a tool, so that the surface is outwardly exposed. In the method for manufacturing a finned heat transfer body provided with a large number of fins extending in a curved shape toward the heat transfer body, a tool having a blade edge angle in a range of 40 ° to 55 ° is used as the tool. 4.5 ° to 9.5 cutting incident angle
It is characterized in that skive cutting is performed in a state set to °.

【0008】刃先角度が40°〜55°の切削工具を用
いるから、湾曲フィンの張り出し量を低減できると共に
フィンの厚さ、高さ等の品質のばらつきも小さくなる。
また、切削工具を伝熱体表面に対して4.5°〜9.5
°の入射角度で入射してスカイブ切削を行うので、形成
されるフィンの厚さのばらつきを小さくできて高品質化
を図ることができると共に安定状態にスカイブ切削加工
をなし得る。上記のようにフィンの張り出し量を低減で
きるので、伝熱体の所定長さ当たりの形成フィン枚数を
増大させることができて伝熱表面積を十分に確保できる
と共に、送風される空気に対する通気抵抗も低減できる
し、空気の流れが各部で均一になって安定した伝熱性能
を確保できる。また、フィンの張り出し量を低減できる
ので、端部フィンの湾曲内側に熱交換に寄与しないスペ
ースが殆どなくなり、これにより伝熱性能が一層向上さ
れる。
Since a cutting tool having a cutting edge angle of 40 ° to 55 ° is used, the amount of protrusion of the curved fin can be reduced, and variations in quality such as the thickness and height of the fin can be reduced.
Further, the cutting tool is set at 4.5 ° to 9.5 with respect to the heat transfer member surface.
Since skive cutting is performed at an incident angle of °, variations in the thickness of the fins formed can be reduced, high quality can be achieved, and skive cutting can be performed in a stable state. Since the protrusion amount of the fins can be reduced as described above, the number of fins formed per predetermined length of the heat transfer body can be increased, and the heat transfer surface area can be sufficiently secured. In addition, the air flow is uniform at each part, and stable heat transfer performance can be secured. Also, since the amount of protrusion of the fins can be reduced, there is almost no space inside the curved portion of the end fins that does not contribute to heat exchange, thereby further improving the heat transfer performance.

【0009】[0009]

【発明の実施の形態】この発明の製造方法は、アルミニ
ウム等の金属製の伝熱板等の伝熱体(2)の表面を切削
工具で薄く削るスカイブ切削加工を行うことによって、
表面に外方に向けて湾曲状に延びるフィン(3)が多数
設けられたフィン付伝熱体(1)を製造する方法であっ
て、切削工具(20)として刃先角度(α)が40°〜
55°の範囲のものを用いると共に、伝熱体(2)表面
に対する切削工具(20)の切削入射角度(θ)を4.
5°〜9.5°に設定した状態でスカイブ切削加工を行
うことを特徴とするものである(図1参照)。
BEST MODE FOR CARRYING OUT THE INVENTION The manufacturing method according to the present invention is characterized in that a skive cutting process for thinly cutting the surface of a heat transfer body (2) such as a heat transfer plate made of metal such as aluminum with a cutting tool is performed.
A method for manufacturing a finned heat transfer body (1) provided with a large number of fins (3) extending outward in a curved shape on a surface, wherein a cutting edge (α) is 40 ° as a cutting tool (20). ~
The angle of incidence (θ) of the cutting tool (20) with respect to the surface of the heat transfer body (2) is set to 3.
It is characterized in that skive cutting is performed in a state set at 5 ° to 9.5 ° (see FIG. 1).

【0010】切削工具(20)としては、その刃先角度
(α)が40°〜55°の範囲のものを用いる。40°
未満では刃先が細くなり切削加工の際に刃先が欠損しや
すくなるし、フィン(3)の張り出し量(Fx)も大き
いものとなる。このように張り出し量(Fx)が大きく
なると伝熱体の所定長さ当たりに形成できるフィンの枚
数が少なくなる。具体例で示すと、例えば図3に対比し
て示すように、フィン(101)の張り出し量(Fx)
の大きい図3(ロ)に示される従来のフィン付伝熱体で
は、伝熱体(100)の所定長さ(L)当たりに形成で
きるフィン(101)の数は、b1〜b8の8枚であるの
に対し、フィン(3)の張り出し量(Fx)の小さい図
3(イ)に示されるフィン付伝熱体(1)では、同じ長
さ(L)当たりに形成できるフィン(3)の数は、a1
〜a9の9枚であり、伝熱体(2)の所定長さ当たりに
形成できるフィン(3)の数は増大する。
As the cutting tool (20), one having a cutting edge angle (α) in the range of 40 ° to 55 ° is used. 40 °
If it is less than 1, the cutting edge becomes thin and the cutting edge is liable to break during cutting, and the overhang amount (Fx) of the fin (3) becomes large. When the overhang amount (Fx) increases as described above, the number of fins that can be formed per a predetermined length of the heat transfer body decreases. In a specific example, for example, as shown in comparison with FIG. 3, the overhang amount (Fx) of the fin (101)
3B, the number of fins (101) that can be formed per predetermined length (L) of the heat transfer body (100) is b 1 to b 8 . While the number of the fins is eight, the finned heat transfer element (1) shown in FIG. The number in 3) is a 1
A nine ~a 9, the number of fins (3) which can be formed per a predetermined length of the heat transfer body (2) is increased.

【0011】一方、刃先角度(α)が55°を超える
と、図7に示すように、切削後のフィン厚さFtを、切
削前のフィンすくい取り厚さ(sinθ×Fp)(図1
参照)に対してプロットした図において両者の間に直線
関係が成り立たなくなる、即ち直線からのばらつきの大
きいものとなってしまう(Fp:フィンピッチ)。換言
すると、Ftの(sinθ×Fp)に対する比率のばら
つきが大きくなってしまう。これはフィン(3)の切削
加工前後での厚さのばらつきが大きくなることを意味
し、これはフィン高さ等の品質のばらつきとなり、製品
としては到底供し得ないものである。これに対して、刃
先角度(α)が40°〜55°の切削工具(20)を用
いてスカイブ切削加工を行った場合には、図4〜6に示
すように、フィン厚さFtを(sinθ×Fp)に対し
てプロットした図において両者の間に良好な直線関係が
成り立っており、フィン(3)の厚さ、高さ等の品質の
ばらつきの少ないものとなし得る。
On the other hand, when the cutting edge angle (α) exceeds 55 °, as shown in FIG. 7, the fin thickness Ft after cutting is reduced by the fin scooping thickness (sin θ × Fp) before cutting (FIG. 1).
In the figure plotted with respect to (b), a linear relationship is not established between the two, that is, the variation from the straight line is large (Fp: fin pitch). In other words, the ratio of Ft to (sin θ × Fp) varies greatly. This means that the thickness of the fin (3) before and after the cutting process has a large variation, which results in a variation in the quality such as the fin height, which cannot be provided as a product at all. On the other hand, when skive cutting is performed using a cutting tool (20) having a cutting edge angle (α) of 40 ° to 55 °, as shown in FIGS. In the figure plotted with respect to (sin θ × Fp), a good linear relationship is established between the two, and fins (3) can be made to have little variation in quality such as thickness and height.

【0012】このような理由から、切削工具(20)と
しては、その刃先角度(α)が40°〜55°の範囲の
ものを用いるのであるが、中でも、フィン(3)の張り
出し量(Fx)を極力小さくするためには、刃先角度
(α)は48°〜55°の範囲に設定するのが好まし
く、より好ましくは49°〜54°の範囲であり、より
一層好ましくは50°〜53°の範囲である。
For such a reason, the cutting tool (20) whose cutting edge angle (α) is in the range of 40 ° to 55 ° is used. In particular, the overhang amount (Fx) of the fin (3) is used. Is preferably set in the range of 48 ° to 55 °, more preferably in the range of 49 ° to 54 °, and even more preferably in the range of 50 ° to 53 °. ° range.

【0013】また、フィン(3)の厚さ、高さ等の品質
のばらつきを極力小さくするためには、刃先角度(α)
は40°〜47°の範囲に設定するのが好ましく、より
好ましくは41°〜46°の範囲であり、より一層好ま
しくは42°〜45°の範囲である。
In order to minimize variations in quality such as the thickness and height of the fin (3), the cutting edge angle (α)
Is preferably set in the range of 40 ° to 47 °, more preferably in the range of 41 ° to 46 °, and still more preferably in the range of 42 ° to 45 °.

【0014】また、フィン(3)の張り出し量(Fx)
と、フィン(3)の品質のばらつきの両方をバランス良
く低減する観点からは、刃先角度(α)は43°〜52
°の範囲に設定するのが好ましく、より好ましくは45
°〜50°の範囲であり、より一層好ましくは46°〜
49°の範囲である。
The overhang amount (Fx) of the fin (3)
From the viewpoint of reducing both the variation in the quality of the fins (3) and the balance, the cutting edge angle (α) is 43 ° to 52 °.
° is preferably set, more preferably 45
° to 50 °, more preferably 46 ° to
The range is 49 °.

【0015】この発明の製造方法において、伝熱体
(2)表面に対する切削工具(20)の切削入射角度
(すくい角)(θ)は4.5°〜9.5°に設定するも
のとする。4.5°未満では、形成されるフィン(3)
の厚さのばらつきが大きくなるし、一方9.5°を超え
るとフィン厚さの大きいものとなってしまい例えば厚さ
0.2mm程度にまで薄く成形することが困難となる
し、スカイブ切削加工を安定状態に行うのが困難とな
る。中でも、切削工具の切削入射角度(θ)は5°〜9
°に設定するのが好ましく、特に好ましいのは6°〜8
°である。
In the manufacturing method of the present invention, the cutting incident angle (rake angle) (θ) of the cutting tool (20) with respect to the surface of the heat transfer body (2) is set to 4.5 ° to 9.5 °. . Below 4.5 ° the fins (3) formed
When the thickness exceeds 9.5 °, the fin thickness becomes large, making it difficult to form a thin fin having a thickness of, for example, about 0.2 mm. In a stable state. Above all, the cutting incidence angle (θ) of the cutting tool is 5 ° to 9 °.
Is preferably set to 6 °, particularly preferably 6 ° to 8 °.
°.

【0016】[0016]

【実施例】次に、この発明の具体的実施例について比較
例との対比において説明する。
Next, specific examples of the present invention will be described in comparison with comparative examples.

【0017】<実施例1>この発明の製造方法に基いて
図3(イ)に示すようなアルミニウム製のフィン付伝熱
板を作製した。即ち、刃先角度(α)が40°の切削工
具を用いて、切削入射角度(θ)を7°に設定した状態
でスカイブ切削加工を行った。なお、フィンピッチ(F
p)は2.0mmに設定した。この伝熱板のサイズは、
幅80mm、長さ100mm、厚さ5mmであり、該伝
熱板の片面に高さ30mmのフィンが湾曲状に突設され
たものであり、形成できたフィン枚数は48枚であっ
た。
Example 1 A heat transfer plate with aluminum fins as shown in FIG. 3A was manufactured based on the manufacturing method of the present invention. That is, skive cutting was performed using a cutting tool having a cutting edge angle (α) of 40 ° and a cutting incident angle (θ) of 7 °. The fin pitch (F
p) was set to 2.0 mm. The size of this heat transfer plate is
The heat transfer plate had a width of 80 mm, a length of 100 mm, and a thickness of 5 mm. Fins having a height of 30 mm were protruded in a curved shape on one surface of the heat transfer plate. The number of fins formed was 48.

【0018】<実施例2>刃先角度(α)が43°の切
削工具を用いた以外は、実施例1と同様にスカイブ切削
加工を行ってフィン付伝熱板を作製した。形成できたフ
ィン枚数は48枚であった。
<Example 2> A heat transfer plate with fins was manufactured by performing skive cutting in the same manner as in Example 1 except that a cutting tool having a blade edge angle (α) of 43 ° was used. The number of fins formed was 48.

【0019】<実施例3>刃先角度(α)が45°の切
削工具を用いた以外は、実施例1と同様にスカイブ切削
加工を行ってフィン付伝熱板を作製した。形成できたフ
ィン枚数は49枚であった。
<Example 3> A heat transfer plate with fins was manufactured by skive cutting in the same manner as in Example 1 except that a cutting tool having a blade edge angle (α) of 45 ° was used. The number of fins that could be formed was 49.

【0020】<実施例4>刃先角度(α)が47°の切
削工具を用い、切削入射角度(θ)を6.5°に設定し
た以外は、実施例1と同様にスカイブ切削加工を行って
フィン付伝熱板を作製した。形成できたフィン枚数は4
9枚であった。
<Embodiment 4> Skive cutting was performed in the same manner as in Embodiment 1 except that a cutting tool having a cutting edge angle (α) of 47 ° was used and the cutting incident angle (θ) was set to 6.5 °. To produce a finned heat transfer plate. The number of fins that can be formed is 4
There were nine.

【0021】<実施例5>刃先角度(α)が50°の切
削工具を用い、切削入射角度(θ)を7.5°に設定し
た以外は、実施例1と同様にスカイブ切削加工を行って
フィン付伝熱板を作製した。形成できたフィン枚数は4
9枚であった。
<Embodiment 5> Skive cutting was performed in the same manner as in Embodiment 1 except that a cutting tool having a cutting edge angle (α) of 50 ° was used and the cutting incidence angle (θ) was set to 7.5 °. To produce a finned heat transfer plate. The number of fins that can be formed is 4
There were nine.

【0022】<実施例6>刃先角度(α)が55°の切
削工具を用い、切削入射角度(θ)を7.2°に設定し
た以外は、実施例1と同様にスカイブ切削加工を行って
フィン付伝熱板を作製した。形成できたフィン枚数は4
8枚であった。
<Sixth Embodiment> Skive cutting is performed in the same manner as in the first embodiment except that a cutting tool having a cutting edge angle (α) of 55 ° is used and a cutting incident angle (θ) is set to 7.2 °. To produce a finned heat transfer plate. The number of fins that can be formed is 4
There were eight.

【0023】上記実施例1〜6のフィン付伝熱板は、い
ずれもフィンの厚さ、高さ等の品質のばらつきの小さい
ものであった。
The finned heat transfer plates of Examples 1 to 6 all had small variations in quality such as fin thickness and height.

【0024】<比較例1>刃先角度(α)が37°の切
削工具を用いた以外は、実施例1と同様にスカイブ切削
加工を行ってフィン付伝熱板を作製した。形成できたフ
ィン枚数は46枚であった。
Comparative Example 1 A heat transfer plate with fins was produced by skive cutting in the same manner as in Example 1 except that a cutting tool having a cutting edge angle (α) of 37 ° was used. The number of fins that could be formed was 46.

【0025】<比較例2>刃先角度(α)が60°の切
削工具を用いた以外は、実施例1と同様にスカイブ切削
加工を行ってフィン付伝熱板を作製した。この伝熱板
は、フィンの厚さ、高さのばらつきが大きく製品として
供し得ないものであった。
Comparative Example 2 A finned heat transfer plate was produced by skive cutting in the same manner as in Example 1 except that a cutting tool having a blade edge angle (α) of 60 ° was used. This heat transfer plate had a large variation in the thickness and height of the fins and could not be provided as a product.

【0026】実施例1〜6のフィン付伝熱体は、所定長
さ当たりの形成フィン枚数を(同一フィン厚さ・同一フ
ィンピッチで)比較例1の従来品よりも増加させること
ができ、これにより比較例1の従来品と比較して伝熱性
能が約8%向上していることが認められた。即ち、同一
体積(同一空間容積)で比較して実施例1〜6のフィン
付伝熱体の方が約8%伝熱性能が向上していた。
The finned heat transfer bodies of Examples 1 to 6 can increase the number of fins formed per predetermined length (with the same fin thickness and the same fin pitch) as compared with the conventional product of Comparative Example 1; Thereby, it was recognized that the heat transfer performance was improved by about 8% as compared with the conventional product of Comparative Example 1. That is, the finned heat transfer bodies of Examples 1 to 6 had improved heat transfer performance by about 8% compared with the same volume (same space volume).

【0027】[0027]

【発明の効果】この発明の製造方法は、刃先角度が40
°〜55°の切削工具を用いてスカイブ切削加工を行う
から、湾曲フィンの張り出し量を低減できると共にフィ
ンの厚さ、高さ等の品質のばらつきも小さくできる。こ
のようにフィンの張り出し量を低減できるので、伝熱体
の所定長さ当たりの形成フィン枚数を増大させることが
できて伝熱表面積を十分に確保でき伝熱性能に優れたも
のとなると共に、送風される空気に対する通気抵抗も低
減できるし、更には端部フィンの湾曲内側に熱交換に寄
与しないスペースが殆どなくなるので、伝熱性能を一段
と向上できる。更に、切削工具を伝熱体表面に対して
4.5°〜9.5°の入射角度で入射させてスカイブ切
削を行うので、形成されるフィンの厚さのばらつきを小
さくできると共に安定状態にスカイブ切削加工を行うこ
とができる。このように切削工具の刃先角度及び切削入
射角度をそれぞれ特定範囲に規定したことによって、高
品質でかつ高性能なフィン付伝熱体の製造が可能となっ
たものである。
According to the manufacturing method of the present invention, the cutting edge angle is 40
Since skive cutting is performed using a cutting tool at an angle of 55 ° to 55 °, the amount of protrusion of the curved fins can be reduced, and variations in quality such as the thickness and height of the fins can be reduced. In this way, since the amount of protrusion of the fins can be reduced, the number of fins formed per predetermined length of the heat transfer body can be increased, the heat transfer surface area can be sufficiently secured, and excellent heat transfer performance can be obtained. The airflow resistance to the blown air can be reduced, and furthermore, there is almost no space inside the curved portion of the end fin that does not contribute to heat exchange, so that the heat transfer performance can be further improved. Furthermore, since the skive cutting is performed by causing the cutting tool to enter the heat transfer member at an incident angle of 4.5 ° to 9.5 °, the variation in the thickness of the fins formed can be reduced and a stable state is achieved. Skive cutting can be performed. By defining the cutting edge angle and the cutting incident angle of the cutting tool in the specific ranges as described above, a high-quality and high-performance finned heat transfer body can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スカイブ切削加工によるフィンの立ち上げ成形
の模式的説明図である。
FIG. 1 is a schematic explanatory diagram of fin start-up forming by skive cutting.

【図2】刃先角度、切削入射角度およびフィン立上角度
の相関関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a correlation among a cutting edge angle, a cutting incidence angle, and a fin rising angle.

【図3】(イ)はこの発明の製造方法で製造されたフィ
ン付伝熱体の側面図、(ロ)は従来の製造方法で製造さ
れたフィン付伝熱体の側面図である。
FIG. 3A is a side view of a finned heat transfer body manufactured by the manufacturing method of the present invention, and FIG. 3B is a side view of a finned heat transfer body manufactured by a conventional manufacturing method.

【図4】Ftと(sinθ×Fp)との相関関係をプロットした
図であり、(イ)は刃先角度α=40°での測定図、
(ロ)は刃先角度α=43°での測定図である。
FIG. 4 is a diagram plotting a correlation between Ft and (sinθ × Fp), wherein (a) is a measurement diagram at a blade angle α = 40 °
(B) is a measurement diagram at a blade edge angle α = 43 °.

【図5】Ftと(sinθ×Fp)との相関関係をプロットした
図であり、(イ)は刃先角度α=45°での測定図、
(ロ)は刃先角度α=47°での測定図である。
FIG. 5 is a diagram plotting a correlation between Ft and (sin θ × Fp);
(B) is a measurement diagram at a blade edge angle α = 47 °.

【図6】Ftと(sinθ×Fp)との相関関係をプロットした
図であり、(イ)は刃先角度α=50°での測定図、
(ロ)は刃先角度α=55°での測定図である。
FIG. 6 is a diagram plotting a correlation between Ft and (sinθ × Fp);
(B) is a measurement diagram at the blade edge angle α = 55 °.

【図7】Ftと(sinθ×Fp)との相関関係をプロットした
図であり、刃先角度α=60°での測定図である。
FIG. 7 is a diagram plotting a correlation between Ft and (sin θ × Fp), and is a measurement diagram at a cutting edge angle α = 60 °.

【符号の説明】[Explanation of symbols]

1…フィン付伝熱体 2…伝熱体 3…フィン 20…切削工具 α…刃先角度 θ…切削入射角度 H…フィン立上角度 Ft…フィン厚さ Fx…張り出し量 Fp…フィンピッチ DESCRIPTION OF SYMBOLS 1 ... Heat transfer body with fins 2 ... Heat transfer body 3 ... Fins 20 ... Cutting tool α ... Cutting edge angle θ ... Cutting incident angle H ... Fin rising angle Ft ... Fin thickness Fx ... Overhang amount Fp ... Fin pitch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小泉 登志郎 栃木県小山市犬塚1丁目480番地 昭和電 工株式会社小山事業所内 Fターム(参考) 5F036 AA01 BB06 BD03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshiro Koizumi 1-480 Inuzuka, Oyama-shi, Tochigi Prefecture Showa Denko KK Oyama Office F-term (reference) 5F036 AA01 BB06 BD03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属製の伝熱板等の伝熱体の表面を切削
工具で薄く削るスカイブ切削加工を行うことにより、表
面に外方に向けて湾曲状に延びるフィンが多数設けられ
たフィン付伝熱体を製造する方法において、 前記切削工具として刃先角度が40°〜55°の範囲の
ものを用いて、前記伝熱体表面に対する工具の切削入射
角度を4.5°〜9.5°に設定した状態でスカイブ切
削加工を行うことを特徴とするフィン付伝熱体の製造方
法。
1. A fin having a large number of fins extending outward in a curved shape on a surface thereof by performing skive cutting for thinly cutting the surface of a heat transfer body such as a metal heat transfer plate with a cutting tool. In the method for manufacturing a heat transfer member, the cutting incident angle of the tool with respect to the surface of the heat transfer member is 4.5 ° to 9.5, using a cutting tool having a blade edge angle in a range of 40 ° to 55 °. A method for producing a finned heat transfer body, wherein skive cutting is performed in a state of setting the temperature to 0 °.
JP2001130727A 2001-04-27 2001-04-27 Manufacturing method of heat transfer body with fins Expired - Fee Related JP4464579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001130727A JP4464579B2 (en) 2001-04-27 2001-04-27 Manufacturing method of heat transfer body with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001130727A JP4464579B2 (en) 2001-04-27 2001-04-27 Manufacturing method of heat transfer body with fins

Publications (2)

Publication Number Publication Date
JP2002329820A true JP2002329820A (en) 2002-11-15
JP4464579B2 JP4464579B2 (en) 2010-05-19

Family

ID=18979039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001130727A Expired - Fee Related JP4464579B2 (en) 2001-04-27 2001-04-27 Manufacturing method of heat transfer body with fins

Country Status (1)

Country Link
JP (1) JP4464579B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021311A (en) * 2008-07-10 2010-01-28 Nippon Soken Inc Heat sink for cooling semiconductor element
CN101293319B (en) * 2007-04-29 2011-07-20 深圳山源电器股份有限公司 Method for processing heat change line products
CN103619146A (en) * 2013-11-07 2014-03-05 四川华力电子有限公司 Processing method of heat dissipation sheet having toothed sheet relative angle
US20140305619A1 (en) * 2013-04-11 2014-10-16 Solid State Cooling Systems High efficiency thermal transfer plate
CN108511405A (en) * 2018-05-23 2018-09-07 成都共同散热器有限公司 One kind having composite teeth sheet heat radiator and its processing technology
TWI635385B (en) * 2012-11-09 2018-09-11 技嘉科技股份有限公司 Heat sink and method of manufacturing thereof
US10865975B2 (en) 2015-08-04 2020-12-15 Signify Holding B.V. Heat sink lighting device and method for manufacturing a heat sink

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293319B (en) * 2007-04-29 2011-07-20 深圳山源电器股份有限公司 Method for processing heat change line products
JP2010021311A (en) * 2008-07-10 2010-01-28 Nippon Soken Inc Heat sink for cooling semiconductor element
TWI635385B (en) * 2012-11-09 2018-09-11 技嘉科技股份有限公司 Heat sink and method of manufacturing thereof
US20140305619A1 (en) * 2013-04-11 2014-10-16 Solid State Cooling Systems High efficiency thermal transfer plate
US9952004B2 (en) * 2013-04-11 2018-04-24 Solid State Cooling Systems High efficiency thermal transfer plate
CN103619146A (en) * 2013-11-07 2014-03-05 四川华力电子有限公司 Processing method of heat dissipation sheet having toothed sheet relative angle
CN103619146B (en) * 2013-11-07 2016-06-15 四川华力电子有限公司 A kind of processing method of the fin with gear piece relative angle
US10865975B2 (en) 2015-08-04 2020-12-15 Signify Holding B.V. Heat sink lighting device and method for manufacturing a heat sink
CN108511405A (en) * 2018-05-23 2018-09-07 成都共同散热器有限公司 One kind having composite teeth sheet heat radiator and its processing technology

Also Published As

Publication number Publication date
JP4464579B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JPH08320194A (en) Corrugated radiating fins for cooling LSI packages
US20080180912A1 (en) Radiator, heat sink fan, and radiator manufacturing method
JP2002329820A (en) Method of manufacturing heat conducting body with fin
WO2005024309A1 (en) Finned heat exchanger and method of manufacturing the same
US6640883B2 (en) Computer heat sink
WO2005004235A1 (en) Heat exchanger
JP2006245577A (en) Forced air-cooling chip cooler and its manufacturing process
US6705144B2 (en) Manufacturing process for a radial fin heat sink
JP3953004B2 (en) Manufacturing method of copper integrated heat sink
JP2001326308A (en) Skive heat dissipation member
JP2013019578A (en) Finned tube heat exchanger
JP3623055B2 (en) Radiation fin and method of manufacturing the same
US10415893B2 (en) Heat transfer surface
CN215647994U (en) Radiator and air conditioner
JP2002257489A (en) Finned heat transfer body and manufacturing method thereof
JP2552828Y2 (en) Heat sink
JP2003060135A (en) Radiation fin
JP2002228391A (en) Air heat exchanger with fins
JP2021077835A (en) Method of manufacturing heat sink and heat sink
CN103841794A (en) Radiator and method of manufacturing the same
KR20130021635A (en) Heat sink module
JP2003078081A (en) Forming method of heatsink
CN115038301A (en) A flower-shaped heat sink and a heat sink
CN2465323Y (en) Heat sink for integrated circuits
TW511449B (en) Shaped finned heat sink, shaping tool and machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees