JP2002329528A - Nonaqueous electrolyte, secondary battery using it and additive for electrolyte - Google Patents
Nonaqueous electrolyte, secondary battery using it and additive for electrolyteInfo
- Publication number
- JP2002329528A JP2002329528A JP2001151863A JP2001151863A JP2002329528A JP 2002329528 A JP2002329528 A JP 2002329528A JP 2001151863 A JP2001151863 A JP 2001151863A JP 2001151863 A JP2001151863 A JP 2001151863A JP 2002329528 A JP2002329528 A JP 2002329528A
- Authority
- JP
- Japan
- Prior art keywords
- carbonate
- aqueous electrolyte
- electrolyte
- battery
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 93
- 239000003792 electrolyte Substances 0.000 title claims abstract description 64
- 239000000654 additive Substances 0.000 title claims abstract description 33
- 230000000996 additive effect Effects 0.000 title claims abstract description 22
- 150000008053 sultones Chemical class 0.000 claims abstract description 45
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 10
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 7
- 239000011737 fluorine Substances 0.000 claims abstract description 7
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 87
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical group O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 58
- 239000008151 electrolyte solution Substances 0.000 claims description 54
- -1 cyclic carboxylate Chemical class 0.000 claims description 53
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 33
- 239000000010 aprotic solvent Substances 0.000 claims description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 26
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 26
- 229910052744 lithium Inorganic materials 0.000 claims description 26
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 25
- 239000003125 aqueous solvent Substances 0.000 claims description 24
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 19
- 229910001416 lithium ion Inorganic materials 0.000 claims description 19
- 125000004122 cyclic group Chemical group 0.000 claims description 17
- 239000003575 carbonaceous material Substances 0.000 claims description 16
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical class O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 15
- 239000007773 negative electrode material Substances 0.000 claims description 15
- 229910003002 lithium salt Inorganic materials 0.000 claims description 14
- 159000000002 lithium salts Chemical class 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 229910001868 water Inorganic materials 0.000 claims description 14
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 13
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical group CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 claims description 12
- 150000005678 chain carbonates Chemical group 0.000 claims description 12
- 150000005676 cyclic carbonates Chemical group 0.000 claims description 11
- 229910052723 transition metal Inorganic materials 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910013872 LiPF Inorganic materials 0.000 claims description 4
- 101150058243 Lipf gene Proteins 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229920001940 conductive polymer Polymers 0.000 claims description 3
- 125000001153 fluoro group Chemical group F* 0.000 claims description 3
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 claims description 3
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 claims description 2
- 239000002000 Electrolyte additive Substances 0.000 claims description 2
- 229910013131 LiN Inorganic materials 0.000 claims description 2
- 238000002441 X-ray diffraction Methods 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 claims description 2
- 229910001290 LiPF6 Inorganic materials 0.000 claims 2
- 229910013833 LiOSO2 Inorganic materials 0.000 claims 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 claims 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 28
- 239000002904 solvent Substances 0.000 abstract description 19
- 238000000354 decomposition reaction Methods 0.000 abstract description 15
- 239000007789 gas Substances 0.000 abstract description 14
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 230000000452 restraining effect Effects 0.000 abstract 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 18
- 229910002804 graphite Inorganic materials 0.000 description 17
- 239000010439 graphite Substances 0.000 description 17
- 230000002829 reductive effect Effects 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 13
- 230000032683 aging Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 229910021382 natural graphite Inorganic materials 0.000 description 12
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 229910013063 LiBF 4 Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- QLVWOKQMDLQXNN-UHFFFAOYSA-N dibutyl carbonate Chemical compound CCCCOC(=O)OCCCC QLVWOKQMDLQXNN-UHFFFAOYSA-N 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002931 mesocarbon microbead Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 150000003457 sulfones Chemical class 0.000 description 3
- 229910000314 transition metal oxide Inorganic materials 0.000 description 3
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 2
- VKSWWACDZPRJAP-UHFFFAOYSA-N 1,3-dioxepan-2-one Chemical compound O=C1OCCCCO1 VKSWWACDZPRJAP-UHFFFAOYSA-N 0.000 description 2
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- FWBMVXOCTXTBAD-UHFFFAOYSA-N butyl methyl carbonate Chemical compound CCCCOC(=O)OC FWBMVXOCTXTBAD-UHFFFAOYSA-N 0.000 description 2
- 229930188620 butyrolactone Natural products 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- NCYNKWQXFADUOZ-UHFFFAOYSA-N 1,1-dioxo-2,1$l^{6}-benzoxathiol-3-one Chemical compound C1=CC=C2C(=O)OS(=O)(=O)C2=C1 NCYNKWQXFADUOZ-UHFFFAOYSA-N 0.000 description 1
- ZPFAVCIQZKRBGF-UHFFFAOYSA-N 1,3,2-dioxathiolane 2,2-dioxide Chemical compound O=S1(=O)OCCO1 ZPFAVCIQZKRBGF-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- 125000006021 1-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- QTLDNGFPYAWPLR-UHFFFAOYSA-N 2,1$l^{6},3$l^{6}-benzoxadithiole 1,1,3,3-tetraoxide Chemical compound C1=CC=C2S(=O)(=O)OS(=O)(=O)C2=C1 QTLDNGFPYAWPLR-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000006022 2-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- YHGNXQAFNHCBTK-UHFFFAOYSA-N 3-hexenedioic acid Chemical compound OC(=O)CC=CCC(O)=O YHGNXQAFNHCBTK-UHFFFAOYSA-N 0.000 description 1
- XUKLTPZEKXTPBT-UHFFFAOYSA-N 3-oxatricyclo[5.2.1.01,5]dec-5-ene-2,4-dione Chemical compound C1CC2C=C3C(=O)OC(=O)C13C2 XUKLTPZEKXTPBT-UHFFFAOYSA-N 0.000 description 1
- QYIOFABFKUOIBV-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxol-2-one Chemical compound CC=1OC(=O)OC=1C QYIOFABFKUOIBV-UHFFFAOYSA-N 0.000 description 1
- LWLOKSXSAUHTJO-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1C LWLOKSXSAUHTJO-UHFFFAOYSA-N 0.000 description 1
- DOWVFPAIJRADGF-UHFFFAOYSA-N 4-ethenyl-2-benzofuran-1,3-dione Chemical compound C=CC1=CC=CC2=C1C(=O)OC2=O DOWVFPAIJRADGF-UHFFFAOYSA-N 0.000 description 1
- LSUWCXHZPFTZSF-UHFFFAOYSA-N 4-ethyl-5-methyl-1,3-dioxolan-2-one Chemical compound CCC1OC(=O)OC1C LSUWCXHZPFTZSF-UHFFFAOYSA-N 0.000 description 1
- VCJUSEFXUWAMHH-UHFFFAOYSA-N 4-ethynyl-2-benzofuran-1,3-dione Chemical compound C1=CC=C(C#C)C2=C1C(=O)OC2=O VCJUSEFXUWAMHH-UHFFFAOYSA-N 0.000 description 1
- AUXJVUDWWLIGRU-UHFFFAOYSA-N 4-propyl-1,3-dioxolan-2-one Chemical compound CCCC1COC(=O)O1 AUXJVUDWWLIGRU-UHFFFAOYSA-N 0.000 description 1
- ZMGMDXCADSRNCX-UHFFFAOYSA-N 5,6-dihydroxy-1,3-diazepan-2-one Chemical compound OC1CNC(=O)NCC1O ZMGMDXCADSRNCX-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- MRLXXVBQGOUYDU-UHFFFAOYSA-L C1(=CC=C(C=C1)S(=O)(=O)[O-])S(=O)(=O)[O-].[Li+].[Li+] Chemical compound C1(=CC=C(C=C1)S(=O)(=O)[O-])S(=O)(=O)[O-].[Li+].[Li+] MRLXXVBQGOUYDU-UHFFFAOYSA-L 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910015204 LiMF Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013398 LiN(SO2CF2CF3)2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910013100 LiNix Inorganic materials 0.000 description 1
- 229910013172 LiNixCoy Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000681 Silicon-tin Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910003092 TiS2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 150000008107 benzenesulfonic acids Chemical class 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- ZTCLFSRIWSZUHZ-UHFFFAOYSA-N but-1-yne;carbonic acid Chemical compound CCC#C.OC(O)=O ZTCLFSRIWSZUHZ-UHFFFAOYSA-N 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- DOAYJNMCHKRFLA-UHFFFAOYSA-N carbonic acid;hex-3-yne Chemical compound OC(O)=O.CCC#CCC DOAYJNMCHKRFLA-UHFFFAOYSA-N 0.000 description 1
- DYCIODWFEIGZLV-UHFFFAOYSA-N carbonic acid;oct-4-yne Chemical compound OC(O)=O.CCCC#CCCC DYCIODWFEIGZLV-UHFFFAOYSA-N 0.000 description 1
- ANTVXUWVWRKHPP-UHFFFAOYSA-N carbonic acid;pent-1-ene Chemical compound OC(O)=O.CCCC=C ANTVXUWVWRKHPP-UHFFFAOYSA-N 0.000 description 1
- SYLNJGIBLUVXCG-UHFFFAOYSA-N carbonic acid;prop-1-yne Chemical compound CC#C.OC(O)=O SYLNJGIBLUVXCG-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002180 crystalline carbon material Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OZJPLYNZGCXSJM-UHFFFAOYSA-N delta-Valerolactone Natural products O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 125000006001 difluoroethyl group Chemical group 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 125000004212 difluorophenyl group Chemical group 0.000 description 1
- ZYKOICDLSSOLAN-UHFFFAOYSA-N diheptyl carbonate Chemical compound CCCCCCCOC(=O)OCCCCCCC ZYKOICDLSSOLAN-UHFFFAOYSA-N 0.000 description 1
- OBQDQVXDOMOBPC-UHFFFAOYSA-N dimethyl benzene-1,4-disulfonate Chemical compound COS(=O)(=O)C1=CC=C(S(=O)(=O)OC)C=C1 OBQDQVXDOMOBPC-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- PUPFATUGTIQBQA-UZQPLGKSSA-N fluorophen Chemical compound C([C@@]1(C)C2=CC(O)=CC=C2C[C@H]2[C@@H]1C)CN2CCC1=CC=C(F)C=C1 PUPFATUGTIQBQA-UZQPLGKSSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IBTAFYOTPNVGLR-UHFFFAOYSA-N heptyl methyl carbonate Chemical compound CCCCCCCOC(=O)OC IBTAFYOTPNVGLR-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- GBPVMEKUJUKTBA-UHFFFAOYSA-N methyl 2,2,2-trifluoroethyl carbonate Chemical compound COC(=O)OCC(F)(F)F GBPVMEKUJUKTBA-UHFFFAOYSA-N 0.000 description 1
- CZXGXYBOQYQXQD-UHFFFAOYSA-N methyl benzenesulfonate Chemical compound COS(=O)(=O)C1=CC=CC=C1 CZXGXYBOQYQXQD-UHFFFAOYSA-N 0.000 description 1
- SELYJABLPLKXOY-UHFFFAOYSA-N methyl n,n-dimethylcarbamate Chemical compound COC(=O)N(C)C SELYJABLPLKXOY-UHFFFAOYSA-N 0.000 description 1
- RCIJMMSZBQEWKW-UHFFFAOYSA-N methyl propan-2-yl carbonate Chemical compound COC(=O)OC(C)C RCIJMMSZBQEWKW-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical group O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005459 perfluorocyclohexyl group Chemical group 0.000 description 1
- 125000005804 perfluoroheptyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005005 perfluorohexyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 125000005008 perfluoropentyl group Chemical group FC(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 125000005062 perfluorophenyl group Chemical group FC1=C(C(=C(C(=C1F)F)F)F)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000004360 trifluorophenyl group Chemical group 0.000 description 1
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- IIVDETMOCZWPPU-UHFFFAOYSA-N trimethylsilyloxyboronic acid Chemical compound C[Si](C)(C)OB(O)O IIVDETMOCZWPPU-UHFFFAOYSA-N 0.000 description 1
- DTBRTYHFHGNZFX-UHFFFAOYSA-N trioctyl borate Chemical compound CCCCCCCCOB(OCCCCCCCC)OCCCCCCCC DTBRTYHFHGNZFX-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、寿命特性に優れた
非水電解液およびそれを用いた二次電池、並びに電解液
用添加剤に関する。またさらに寿命特性に優れ引火点が
高く安全性に優れた非水電解液およびそれを用いた二次
電池、並びに電解液用添加剤に関する。より詳細には、
不飽和スルトンを含有するリチウム二次電池に適した非
水電解液およびそれを用いた二次電池、並びに電解液用
添加剤に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte having excellent life characteristics, a secondary battery using the same, and an additive for the electrolyte. Further, the present invention relates to a non-aqueous electrolyte having excellent life characteristics, a high flash point, and excellent safety, a secondary battery using the same, and an electrolyte additive. More specifically,
The present invention relates to a non-aqueous electrolyte suitable for a lithium secondary battery containing unsaturated sultone, a secondary battery using the same, and an additive for an electrolyte.
【0002】[0002]
【発明の技術的背景】非水電解液を用いた電池は、高電
圧でかつ高エネルギー密度を有しており、また貯蔵性な
どの信頼性も高いので、民生用電子機器の電源として広
く用いられている。BACKGROUND OF THE INVENTION A battery using a non-aqueous electrolyte has a high voltage, a high energy density, and a high reliability such as storability, so that it is widely used as a power source for consumer electronic devices. Have been.
【0003】このような電池として非水電解液二次電池
があり、その代表はリチウム電池である。それに用いら
れる電解液として、非プロトン性有機溶媒に、LiBF
4、LiPF6、LiClO4、LiAsF6、LiC
F3SO3、Li2SiF6などのLi電解質を混合し
た溶液が用いられている(Jean-Paul Gabano編、"Lithi
um Battery",ACADEMIC PRESS(1983) )。[0003] As such a battery, there is a non-aqueous electrolyte secondary battery, a typical example of which is a lithium battery. As an electrolytic solution used for this, LiBF is added to an aprotic organic solvent.
4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiC
A solution in which a Li electrolyte such as F 3 SO 3 and Li 2 SiF 6 is mixed is used (edited by Jean-Paul Gabano, “Lithi
um Battery ", ACADEMIC PRESS (1983)).
【0004】非プロトン性有機溶媒の代表として、カー
ボネート類が知られており、エチレンカーボネート、プ
ロピレンカーボネート、ジメチルカーボネートなどの各
種カーボネート化合物の使用が提案されている(特開平
4−184872号、特開平10−27625号な
ど)。その他に使用しうる非プロトン性溶媒として、イ
オウ系溶媒が多数提案されている。例えば、環状スルホ
ン(特開昭57−187878号、特開昭61−164
78号)、鎖状スルホン(特開平3−152879号、
特開平8−241732号)、スルホキシド類(特開昭
57−141878号、特開昭61―16478号な
ど)、スルトン類(特開昭63−102173号)、ス
ルファイト類(特開昭61−64080号)などを例示
することができる。また、エステル類(特開平4―14
769号、特開平4−284374号)、芳香族化合物
類(特開平4―249870号)の使用なども提案され
ている。[0004] As representatives of aprotic organic solvents, carbonates are known, and the use of various carbonate compounds such as ethylene carbonate, propylene carbonate, dimethyl carbonate and the like has been proposed (JP-A-4-184872, JP-A-4-184872). No. 10-27625). Many other sulfur-based solvents have been proposed as other aprotic solvents that can be used. For example, cyclic sulfones (JP-A-57-187878, JP-A-61-164)
No. 78), chain sulfones (JP-A-3-152879,
JP-A-8-241732, sulfoxides (JP-A-57-141878, JP-A-61-16478, etc.), sultones (JP-A-63-102173), and sulfites (JP-A-61-172173). No. 64080) and the like. In addition, esters (Japanese Patent Laid-Open No.
No. 769, JP-A-4-284374), use of aromatic compounds (JP-A-4-249870) and the like have also been proposed.
【0005】現在主流のリチウム二次電池の一つとし
て、リチウムイオン二次電池を挙げることができる。こ
の電池は、リチウムを吸蔵、放出が可能な活物質からな
る負極、リチウムと遷移金属の複合酸化物からなる正
極、電解液などから構成されている。One of the mainstream lithium secondary batteries at present is a lithium ion secondary battery. This battery includes a negative electrode made of an active material capable of inserting and extracting lithium, a positive electrode made of a composite oxide of lithium and a transition metal, an electrolyte, and the like.
【0006】リチウムイオン二次電池の負極活物質に
は、リチウムの吸蔵、放出が可能な炭素材料が多く使用
されており、特に黒鉛などの高結晶性炭素は、放電電位
が平坦であり、真密度が高く、かつ充填性が良いなどの
特徴を有しており、現在市販されているリチウムイオン
二次電池の大半の負極活物質として採用されている。As a negative electrode active material of a lithium ion secondary battery, a carbon material capable of occluding and releasing lithium is often used. In particular, highly crystalline carbon such as graphite has a flat discharge potential and a true discharge potential. It has features such as high density and good filling properties, and has been adopted as most negative electrode active materials of currently marketed lithium ion secondary batteries.
【0007】また電解液には、プロピレンカーボネー
ト、エチレンカーボネートなどの高誘電率カーボネート
溶媒と、ジエチルカーボネート、メチルエチルカーボネ
ートやジメチルカーボネートなどの低粘度カーボネート
溶媒の混合溶媒に、LiBF4、LiPF6、LiN
(SO2CF3)2やLiN(SO2CF2CF3)2
などのLi電解質を混合した溶液が用いられている。[0007] In addition, a mixed solvent of a high dielectric constant carbonate solvent such as propylene carbonate and ethylene carbonate and a low viscosity carbonate solvent such as diethyl carbonate, methyl ethyl carbonate and dimethyl carbonate is used in the electrolyte solution, and LiBF 4 , LiPF 6 , LiN
(SO 2 CF 3 ) 2 and LiN (SO 2 CF 2 CF 3 ) 2
For example, a solution in which a Li electrolyte is mixed is used.
【0008】ところが、黒鉛などの高結晶性炭素を負極
に用いる場合、黒鉛負極上で電解液の還元分解反応が起
こるという課題を抑制する必要がある。例えば、高誘電
率カーボネート溶媒に、プロピレンカーボネートや1,
2‐ブチレンカーボネートを用いた電解液は、初回充電
時に黒鉛のエッジ面のはがれ(exfoliation)を伴いな
がら、溶媒の還元分解反応が激しく起こり、活物質であ
るリチウムイオンの黒鉛への挿入反応が進行しにくくな
る。その結果、初回の充放電効率が低下し、電池のエネ
ルギー密度が低下することが知られている(J.Electroc
hem.Soc.,146(5)1664-1671(1999)など)。However, when highly crystalline carbon such as graphite is used for the negative electrode, it is necessary to suppress the problem that a reductive decomposition reaction of the electrolytic solution occurs on the graphite negative electrode. For example, propylene carbonate or 1,1,
In the electrolyte using 2-butylene carbonate, the reductive decomposition reaction of the solvent occurs violently while exfoliation of the graphite edge surface occurs at the time of the first charge, and the insertion reaction of lithium ion, an active material, into the graphite proceeds. It becomes difficult to do. As a result, it is known that the initial charge / discharge efficiency decreases and the energy density of the battery decreases (J. Electroc.
hem. Soc., 146 (5) 1664-1671 (1999)).
【0009】この課題を解決する試みとして、電解液に
使用される高誘電率の非水溶媒として、常温で固体では
あるものの、還元分解反応が継続的に起こりにくいエチ
レンカーボネートを使用したり、エチレンカーボネート
とプロピレンカーボネートの混合溶媒を使用する提案が
知られている(J.Electrochem.Soc.,146(5)1664-1671(1
999))。 また、エチレンカーボネートを使用しても、
負極表面で微量の電解液の還元分解反応が継続して起こ
ることが知られており(J.Electrochem.Soc.,147(10)36
28-3632(2000)、J.Electrochem.Soc.,146(11)4014-4018
(1999)、J.Power Sources 81-82(1999)8-12)、例え
ば、充放電を何度も長期間繰り返すサイクル使用や、高
温で電池を貯蔵したりすると、電池の容量が低下するこ
とが考えられる。[0009] As an attempt to solve this problem, as a non-aqueous solvent having a high dielectric constant used in an electrolytic solution, ethylene carbonate which is solid at ordinary temperature but hardly undergoes reductive decomposition reaction continuously is used. A proposal to use a mixed solvent of carbonate and propylene carbonate is known (J. Electrochem. Soc., 146 (5) 1664-1671 (1.
999)). Also, even if ethylene carbonate is used,
It is known that a reductive decomposition reaction of a small amount of electrolyte continuously occurs on the negative electrode surface (J. Electrochem. Soc., 147 (10) 36).
28-3632 (2000), J. Electrochem. Soc., 146 (11) 4014-4018
(1999), J. Power Sources 81-82 (1999) 8-12) For example, the battery capacity decreases when the battery is cycled repeatedly for a long time and stored at high temperature. Can be considered.
【0010】そこで、負極上での溶媒の還元分解反応を
さらに抑制する試みとして、電解液の還元分解を抑制す
る化合物を電解液に添加することが数多く報告されてい
る。[0010] Therefore, as an attempt to further suppress the reductive decomposition reaction of the solvent on the negative electrode, many reports have been made on adding a compound that suppresses the reductive decomposition of the electrolytic solution to the electrolytic solution.
【0011】例えば、ビニレンカーボネートを含有させ
ることによって、電池の貯蔵特性やサイクル特性が向上
すること(特開平5−13088号、特開平6−528
87号、特開平7−122296号、特開平9−347
778号)、黒鉛負極のエッジ面で還元分解を受けるプ
ロピレンカーボネートを使用できること(第10回リチ
ウム電池国際会議、抄録 No.286、特願平10−15
0420号公報)などが報告されている。For example, by incorporating vinylene carbonate, the storage characteristics and cycle characteristics of the battery are improved (Japanese Patent Application Laid-Open Nos. 5-13088 and 6-528).
No. 87, JP-A-7-122296, JP-A-9-347
778) that propylene carbonate undergoing reductive decomposition at the edge surface of the graphite anode can be used (10th International Conference on Lithium Batteries, Abstract No. 286, Japanese Patent Application No. 10-15)
No. 0420).
【0012】その他の例として、イオウ系酸類を添加す
ることが報告されている。例えば、エチレンサルフェー
ト(J.Electrochem.Soc.146(2)470-472(1999) 、第10
回リチウム電池国際会議、抄録 No.289、特開平11
−73990号)やSO3(J.Electrochem.Soc.,143,L
195(1996))は黒鉛負極でプロピレンカーボネートを使
用可能にすることや、スルトン類(特開平11−162
511号、特開平11−339850号、特開2000
−3724号、特開2000−3725号、特開200
0−123868号、特開2000―77098号)、
スルホン酸エステル類(特開平9−245834号、特
開平10−189041号、特開2000−13330
4号)が、サイクル特性を向上する添加剤として提案さ
れている。As another example, it has been reported that sulfur acids are added. For example, ethylene sulfate (J. Electrochem. Soc. 146 (2) 470-472 (1999), No. 10
Lithium Battery International Conference, Abstract No. 289, JP-A-11
No. 73990) and SO 3 (J. Electrochem. Soc., 143, L
195 (1996)) makes it possible to use propylene carbonate in a graphite negative electrode, and to use sultones (JP-A-11-162).
No. 511, JP-A-11-339850, JP-A-2000
-3724, JP-A-2000-3725, JP-A-200
0-123868, JP-A-2000-77098),
Sulfonic esters (JP-A-9-245834, JP-A-10-189041, JP-A-2000-13330)
No. 4) has been proposed as an additive for improving cycle characteristics.
【0013】また、ビニレンカーボネートは、黒鉛負極
用の一般的な溶媒であるエチレンカーボネートに炭素炭
素不飽和結合を導入した構造であることから、前述の一
般的な溶媒や添加剤類に、炭素炭素不飽和結合を含有さ
せて、改良効果を持たせようという試みが数多くなされ
てきた。Further, vinylene carbonate has a structure in which a carbon-carbon unsaturated bond is introduced into ethylene carbonate, which is a general solvent for a graphite negative electrode. Many attempts have been made to include an unsaturated bond to have an improving effect.
【0014】例えば、ビニル基を有する環状カーボネー
ト(特開2000−40526号)、二重結合を含有す
る酸無水物(特開平7−122297号)、二重結合を
含有するスルホン類(特開平11−329494号、特
開2000−294278号)、三重結合を導入したエ
ステル類、ベンゼン類、スルホン類(特開2000−1
95545号)、また、二重結合を含有するエステル類
(特開平11―273725号、特開平11−2737
24号、特開平11−273723号、特開2000−
182666号)などが挙げられる。For example, a cyclic carbonate having a vinyl group (JP-A-2000-40526), an acid anhydride containing a double bond (JP-A-7-122297), and a sulfone containing a double bond (Japanese Patent Laid-Open No. -329494, JP-A-2000-294278), esters, benzenes and sulfones having a triple bond introduced therein (JP-A-2000-1).
95545) and esters containing a double bond (JP-A-11-273725, JP-A-11-2737).
No. 24, JP-A-11-273723, JP-A-2000-
No. 182666).
【0015】これらの炭素炭素不飽和結合を含有する添
加剤類は、黒鉛負極においてプロピレンカーボネートを
使用可能にすることでは一定の効果を挙げたものの、高
温保存特性やサイクル特性の向上については、ビニレン
カーボネートと同等以上の効果を発現するには至ってい
ない。Although these carbon-carbon-unsaturated-additives have a certain effect by allowing propylene carbonate to be used in a graphite negative electrode, improvement in high-temperature storage characteristics and cycle characteristics is not achieved by vinylene. It has not yet achieved the same or better effects as carbonate.
【0016】例えば、本発明者の検討では、前述の炭素
炭素不飽和結合を含有するイオウ系化合物を添加した電
解液は、特に高温で電池を貯蔵した場合は、電気分解に
伴う自己放電がかえって多くなり、望んだ効果が発現し
ていない。For example, in the study of the present inventor, it has been found that the above-mentioned electrolytic solution to which a sulfur-based compound containing a carbon-carbon unsaturated bond is added, in particular, when the battery is stored at a high temperature, self-discharge accompanying the electrolysis rather occurs. The desired effect has not been realized.
【0017】以上のように、種々の電解液の検討が行わ
れてきたが、ビニレンカーボネートを含めて未だ満足す
るものは得られておらず、高温保存や充放電サイクルを
繰り返した場合に起こる電解液の還元分解反応をさらに
抑制し、電池の負荷特性の劣化や電池容量の低下をさら
に改善する電解液が求められている。As described above, various electrolytic solutions have been studied. However, no satisfactory electrolytic solution including vinylene carbonate has been obtained, and the electrolytic solution that occurs when the high-temperature storage and charge / discharge cycles are repeated is not obtained. There is a need for an electrolyte solution that further suppresses the reductive decomposition reaction of the solution and further improves the deterioration of the load characteristics of the battery and the decrease in the battery capacity.
【0018】そこで本発明者は、上記の課題を解決する
為に鋭意検討を行なったところ、本発明に到達したので
ある。本発明によって、高温保存時の電解液の還元分解
が大きく抑制され、その結果、自己放電が小さく、負荷
特性や抵抗の劣化が大幅に抑制され、電池内のガス発生
量が少ない電池を得ることができることを見出した。The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and have reached the present invention. According to the present invention, it is possible to obtain a battery in which reductive decomposition of an electrolytic solution during high-temperature storage is greatly suppressed, and as a result, self-discharge is small, load characteristics and resistance deterioration are largely suppressed, and gas generation in the battery is small. I found that I can do it.
【0019】[0019]
【発明が解決しようとする課題】本発明は前記の要請に
応えるために、負極上での溶媒の分解反応が抑制され、
高温保存を行なっても、電池の容量低下、ガス発生の抑
制、および電池の負荷特性の劣化が抑制される非水電解
液を提供することを目的とする。また寿命特性に優れ引
火点が高く安全性に優れた非水電解液を提供することを
目的とする。さらに電池にすぐれた負荷特性及び低温特
性を与える非水電解液の提供を目的とする。本発明は、
この非水電解液を含む二次電池を提供することを目的と
する。さらに本発明は、このような機能を電解液に付与
する電解液用添加剤を提供することを目的とする。SUMMARY OF THE INVENTION In order to meet the above demand, the present invention suppresses the decomposition reaction of a solvent on a negative electrode,
It is an object of the present invention to provide a non-aqueous electrolyte in which the capacity of a battery is reduced, generation of gas is suppressed, and deterioration of load characteristics of the battery is suppressed even when stored at high temperatures. Another object of the present invention is to provide a non-aqueous electrolyte having excellent life characteristics, a high flash point and excellent safety. It is another object of the present invention to provide a non-aqueous electrolyte which gives a battery excellent load characteristics and low-temperature characteristics. The present invention
It is an object to provide a secondary battery containing this non-aqueous electrolyte. It is a further object of the present invention to provide an additive for an electrolytic solution that imparts such a function to the electrolytic solution.
【0020】[0020]
【課題を解決するための手段】本発明は、不飽和スルト
ンを含有する非水電解液を提供する。不飽和スルトンが
下記一般式(1)で表わされる化合物である非水電解液
は本発明の好ましい態様である。The present invention provides a non-aqueous electrolyte containing unsaturated sultone. A non-aqueous electrolyte in which the unsaturated sultone is a compound represented by the following general formula (1) is a preferred embodiment of the present invention.
【化4】 ここで、R1〜R4は、水素、フッ素、又は、炭素数1
〜12のフッ素を含んでもよい炭化水素基であり、nは
0〜3の整数である。Embedded image Here, R 1 to R 4 are hydrogen, fluorine, or carbon 1
A hydrocarbon group which may contain from 12 to 12 fluorine atoms, and n is an integer from 0 to 3.
【0021】本発明は、前記不飽和スルトン、非水溶媒
および電解質を含む非水電解液を提供する。The present invention provides a non-aqueous electrolyte containing the unsaturated sultone, a non-aqueous solvent and an electrolyte.
【0022】非水溶媒が環状の非プロトン性溶媒および
/または鎖状の非プロトン性溶媒である非水電解液は、
本発明の好ましい態様である。The non-aqueous electrolyte in which the non-aqueous solvent is a cyclic aprotic solvent and / or a chain aprotic solvent is
This is a preferred embodiment of the present invention.
【0023】非水溶媒が、γ−ブチロラクトン、または
γ−ブチロラクトンと、エチレンカーボネート、プロピ
レンカーボネート、ブチレンカーボネート、スルホラン
およびメチルスルホランから選ばれた少なくとも1種と
の混合物である非水電解液は、本発明の好ましい態様で
ある。The non-aqueous electrolyte in which the non-aqueous solvent is γ-butyrolactone or a mixture of γ-butyrolactone and at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, sulfolane and methyl sulfolane is This is a preferred embodiment of the present invention.
【0024】下記一般式(3)で表されるビニレンカー
ボネート誘導体をさらに含有する非水電解液は、本発明
の好ましい態様である。A non-aqueous electrolyte further containing a vinylene carbonate derivative represented by the following general formula (3) is a preferred embodiment of the present invention.
【化5】 (R5、R6は、水素、メチル基、エチル基、またはプ
ロピル基である。)Embedded image (R 5 and R 6 are hydrogen, a methyl group, an ethyl group, or a propyl group.)
【0025】電解質がリチウム塩である前記の非水電解
液は、本発明の好ましい態様である。The above non-aqueous electrolyte in which the electrolyte is a lithium salt is a preferred embodiment of the present invention.
【0026】また、本発明は、不飽和スルトンおよびγ
−ブチロラクトンを含む非水溶媒と、LiPF6を含む
電解質を含む非水電解液を提供する。The present invention also relates to an unsaturated sultone and γ
- providing a non-aqueous solvent containing butyrolactone, the non-aqueous electrolyte containing an electrolyte containing LiPF 6.
【0027】さらに、本発明は、負極活物質として金属
リチウム、リチウム含有合金、リチウムとの合金化が可
能な金属もしくは合金、リチウムイオンのドープ・脱ド
ープが可能な酸化物、リチウムイオンのドープ・脱ドー
プが可能な遷移金属窒素化物、リチウムイオンのドープ
・脱ドープが可能な炭素材料、またはこれらの混合物か
ら選ばれた少なくとも一つを含む負極と、正極活物質と
して遷移金属酸化物、遷移金属硫化物、リチウムと遷移
金属の複合酸化物、導電性高分子材料、炭素材料から選
ばれた少なくとも一つを含む正極と、前記の非水電解液
とを含むリチウム二次電池を提供する。Further, the present invention provides a negative electrode active material comprising metallic lithium, a lithium-containing alloy, a metal or alloy capable of being alloyed with lithium, an oxide capable of doping / dedoping lithium ions, and a lithium ion doping / doping. A negative electrode including at least one selected from a undoped transition metal nitride, a carbon material capable of doping / dedoping lithium ions, or a mixture thereof, and a transition metal oxide or a transition metal as a positive electrode active material. Provided is a lithium secondary battery including a positive electrode including at least one selected from a sulfide, a composite oxide of lithium and a transition metal, a conductive polymer material, and a carbon material, and the nonaqueous electrolyte.
【0028】さらにまた本発明は、不飽和スルトンより
なる電解液用添加剤を提供する。Further, the present invention provides an additive for an electrolytic solution comprising an unsaturated sultone.
【0029】[0029]
【発明の実施の具体的形態】本発明に係る非水電解液お
よびこの非水電解液を用いた非水電解液二次電池、並び
に電解液用添加剤について具体的に説明する。本発明の
非水電解液は、不飽和スルトンを含有する非水電解液で
ある。本発明の好ましい態様は不飽和スルトン、非水溶
媒および電解質を含む非水電解液である。本発明は、ま
た該非水電解液を用いた非水電解液二次電池を提供する
ものであり、また本発明は特定構造の不飽和スルトンよ
りなる電解液用添加剤を提供する。BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte according to the present invention, a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte, and additives for the electrolyte will be specifically described. The non-aqueous electrolyte of the present invention is a non-aqueous electrolyte containing unsaturated sultone. A preferred embodiment of the present invention is a non-aqueous electrolyte comprising an unsaturated sultone, a non-aqueous solvent and an electrolyte. The present invention also provides a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte, and the present invention provides an additive for an electrolyte comprising an unsaturated sultone having a specific structure.
【0030】不飽和スルトン 本発明の不飽和スルトンは、環状スルホン酸エステルで
あって環内に炭素−炭素不飽和結合を有するスルトン化
合物である。本発明の不飽和スルトンの好ましい例とし
ては、下記一般式(1)で表わされる特定構造の不飽和
スルトンを挙げることができる。Unsaturated sultone The unsaturated sultone of the present invention is a sultone compound which is a cyclic sulfonic acid ester and has a carbon-carbon unsaturated bond in the ring. Preferred examples of the unsaturated sultone of the present invention include unsaturated sultone having a specific structure represented by the following general formula (1).
【化6】 ここで、R1〜R4は、水素、フッ素、又は、炭素数1
〜12のフッ素を含んでもよい炭化水素基であり、nは
0〜3の整数である。Embedded image Here, R 1 to R 4 are hydrogen, fluorine, or carbon 1
A hydrocarbon group which may contain from 12 to 12 fluorine atoms, and n is an integer from 0 to 3.
【0031】nとしては、n=0〜3いずれも効果があ
るが、n=1または2の方が好ましく、さらに好ましく
はn=1である。As n, n = 0 to 3 are effective, but n = 1 or 2 is more preferable, and n = 1 is more preferable.
【0032】炭素数1〜12のフッ素を含んでもよい炭
化水素基として、具体的には、メチル基、エチル基、ビ
ニル基、エチニル基、プロピル基、イソプロピル基、1-
プロペニル基、2-プロペニル基、1-プロピニル基、2-プ
ロピニル基、ブチル基、sec-ブチル基、t-ブチル基、1-
ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-2
-プロペニル基、1-メチレンプロピル基、1-メチル-2-プ
ロペニル基、1,2-ジメチルビニル基、1-ブチニル基、2-
ブチニル基、3-ブチニル基、ペンチル基、1-メチルブチ
ル基、2-メチルブチル基、3-メチルブチル基、1-メチル
-2-メチルプロピル基、2,2-ジメチルプロピル基、フェ
ニル基、メチルフェニル基、エチルフェニル基、ビニル
フェニル基、エチニルフェニル基、ヘキシル基、シクロ
ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシ
ル基、ウンデシル基、ドデシル基、ジフルオロメチル
基、モノフルオロメチル基、トリフルオロメチル基、ト
リフルオロエチル基、ジフルオロエチル基、ペンタフル
オロエチル基、、ペンタフルオロプロピル基、テトラフ
ルオロプロピル基、パーフルオロブチル基、パーフルオ
ロペンチル基、パーフルオロヘキシル基、パーフルオロ
シクロヘキシル基、パーフルオロヘプチル基、パーフル
オロオクチル基、パーフルオロノニル基、パーフルオロ
デシル基、パーフルオロウンデシル基、パーフルオロド
デシル基、フルオロフェニル基、ジフルオロフェニル
基、トリフルオロフェニル基、パーフルオロフェニル
基、トリフルオロメチルフェニル基、ナフチル基、ビフ
ェニル基などが例示される。Specific examples of the hydrocarbon group having 1 to 12 carbon atoms which may contain fluorine include a methyl group, an ethyl group, a vinyl group, an ethynyl group, a propyl group, an isopropyl group,
Propenyl group, 2-propenyl group, 1-propynyl group, 2-propynyl group, butyl group, sec-butyl group, t-butyl group, 1-
Butenyl group, 2-butenyl group, 3-butenyl group, 2-methyl-2
-Propenyl group, 1-methylenepropyl group, 1-methyl-2-propenyl group, 1,2-dimethylvinyl group, 1-butynyl group, 2-
Butynyl group, 3-butynyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-methyl
-2-methylpropyl group, 2,2-dimethylpropyl group, phenyl group, methylphenyl group, ethylphenyl group, vinylphenyl group, ethynylphenyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl Group, undecyl group, dodecyl group, difluoromethyl group, monofluoromethyl group, trifluoromethyl group, trifluoroethyl group, difluoroethyl group, pentafluoroethyl group, pentafluoropropyl group, tetrafluoropropyl group, perfluorobutyl Group, perfluoropentyl group, perfluorohexyl group, perfluorocyclohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, perfluoroundecyl group, perfluorododecyl group, fluorophen Examples thereof include a phenyl group, a difluorophenyl group, a trifluorophenyl group, a perfluorophenyl group, a trifluoromethylphenyl group, a naphthyl group and a biphenyl group.
【0033】R1〜R4の炭素数は1〜12が好ましい
が、電解液への溶解性の点から、4以下であることがよ
り好ましく、さらに好ましくは2以下である。最も好ま
しいR1〜R4は、それらがともに水素であることであ
る。The number of carbon atoms of R 1 to R 4 is preferably 1 to 12, but is more preferably 4 or less, and still more preferably 2 or less, from the viewpoint of solubility in an electrolytic solution. Most preferred R 1 -R 4 are that they are both hydrogen.
【0034】本発明の上記一般式(1)で表される本発
明の不飽和スルトンとして、具体的には、以下の化合物
を例示することができる。Specific examples of the unsaturated sultone of the present invention represented by the above general formula (1) include the following compounds.
【0035】[0035]
【化7】 Embedded image
【0036】[0036]
【化8】 Embedded image
【0037】これらの中で最も好ましい化合物は、下記
式(2)で示される1,3―プロペンスルトンである。The most preferred compound among these is 1,3-propene sultone represented by the following formula (2).
【化9】 Embedded image
【0038】この化合物は、以下の文献に記載される方
法などで合成することができる。Angew.Chem./70.Jahr
g.1958/Nr.16、Ger.Pat. 1146870(1963)(CA 59,11259(1
963))、Can.J.Chem.,48,3704(1970)、Synlett,1411(198
8)、Chem.Commun.,611(1997)、Tetrahedron 55、2245(19
99)This compound can be synthesized by the method described in the following literature. Angew.Chem./70.Jahr
g.1958 / Nr.16, Ger.Pat.1146870 (1963) (CA 59 , 11259 (1
963)), Can.J.Chem., 48 , 3704 (1970), Synlett, 1411 (198
8), Chem. Commun., 611 (1997), Tetrahedron 55 , 2245 (19
99)
【0039】本発明の不飽和スルトンを添加した電解液
は、負極上の電解液の還元分解反応を抑制する効果が高
く、高温保存試験やサイクル試験時の電池の容量低下を
抑制し、電解液の分解に伴うガス発生を抑制する。ま
た、作用は不明であるが、高温保存試験やサイクル試験
時の正極の界面インピーダンスの上昇を抑制して、負荷
特性の劣化を抑制する。本発明の不飽和スルトンは電解
液用添加剤として有効であり、本発明の不飽和スルトン
よりなる電解液用添加剤は、電解液にすぐれた特性を付
与することができる。The electrolytic solution of the present invention to which the unsaturated sultone is added has a high effect of suppressing the reductive decomposition reaction of the electrolytic solution on the negative electrode, and suppresses a decrease in the capacity of the battery during a high-temperature storage test or a cycle test. Suppresses gas generation accompanying the decomposition of Although the function is unknown, it suppresses an increase in interfacial impedance of the positive electrode during a high-temperature storage test or a cycle test, thereby suppressing deterioration in load characteristics. The unsaturated sultone of the present invention is effective as an additive for an electrolytic solution, and the additive for an electrolytic solution comprising the unsaturated sultone of the present invention can impart excellent characteristics to the electrolytic solution.
【0040】本発明の不飽和スルトンは、添加量が少な
すぎると効果が発現し難くなるおそれがあり、多すぎる
場合には、負極の界面インピーダンスが上昇するおそれ
がある。そのため本発明の不飽和スルトンの電解液中へ
の添加量(電解液中の含有量)は、電解液全体に対して
0.0001重量%〜30重量%が好ましく、0.00
1重量%〜10重量%がより好ましく、0.1重量%〜
7重量%がさらに好ましく、0.2重量%〜5重量%が
特に好ましい。If the amount of the unsaturated sultone of the present invention is too small, the effect may not be easily exhibited, and if it is too large, the interface impedance of the negative electrode may increase. Therefore, the addition amount (content in the electrolyte solution) of the unsaturated sultone of the present invention to the electrolyte solution is preferably 0.0001% by weight to 30% by weight, and
1 wt% to 10 wt% is more preferable, and 0.1 wt% to
7% by weight is more preferred, and 0.2-5% by weight is particularly preferred.
【0041】本発明の不飽和スルトンは、負極表面に電
解液の還元分解を防ぐ不動態皮膜を形成して効果を発現
すると推定されるので、添加量は電池の負極活物質表面
積および電池に含有させる電解液量から決定してもよ
い。添加量が少なすぎる場合は十分な不動態皮膜が形成
されず、添加量が多すぎる場合は負極活物質の界面イン
ピーダンスを過度に大きくするおそれがある。The unsaturated sultone of the present invention is presumed to form a passivation film for preventing the reductive decomposition of the electrolytic solution on the surface of the negative electrode and exert its effect. It may be determined from the amount of electrolyte to be made. If the addition amount is too small, a sufficient passive film will not be formed, and if the addition amount is too large, the interface impedance of the negative electrode active material may be excessively increased.
【0042】この観点から本発明の不飽和スルトンは、
負極活物質のBET表面積あたり0.1mg/m2〜1
00mg/m2が好ましく、0.5mg/m2〜50m
g/m2がより好ましく、1mg/m2〜20mg/m
2がさらに好ましく、2mg/m2〜10mg/m2が
特に好ましい。From this viewpoint, the unsaturated sultone of the present invention is:
0.1 mg / m 2 to 1 per BET surface area of the negative electrode active material
00 mg / m 2 is preferred, and 0.5 mg / m 2 to 50 m
g / m 2 is more preferable, and 1 mg / m 2 to 20 mg / m
2 is more preferred, and 2 mg / m 2 to 10 mg / m 2 is particularly preferred.
【0043】この場合、本発明の不飽和スルトンの電解
液への添加量は、電池中に使用される電解液と負極活物
質量比、および負極活物質のBET表面積を勘案して決
定される。In this case, the amount of the unsaturated sultone of the present invention added to the electrolytic solution is determined in consideration of the ratio of the electrolytic solution used in the battery to the negative electrode active material, and the BET surface area of the negative electrode active material. .
【0044】電解液と負極活物質量比、負極のBET表
面積は、電池によって異なると思われるため、好ましい
電解液あたりの添加量の範囲を一定に定めることはでき
ないが、一般的には前述のように、電解液全体に対して
0.0001重量%〜30重量%が好ましく、0.00
1重量%〜10重量%がより好ましく、0.1重量%〜
7重量%がさらに好ましく、0.2重量%〜5重量%が
特に好ましい。Since the ratio of the amount of the electrolyte to the amount of the negative electrode active material and the BET surface area of the negative electrode are considered to vary depending on the battery, the preferable range of the amount added per electrolyte cannot be fixed. Thus, the content is preferably 0.0001% by weight to 30% by weight based on the whole electrolytic solution,
1 wt% to 10 wt% is more preferable, and 0.1 wt% to
7% by weight is more preferred, and 0.2-5% by weight is particularly preferred.
【0045】非水溶媒 本発明で使用される非水溶媒は、適宜選択することがで
きるが、特には、環状の非プロトン性溶媒および/また
は鎖状の非プロトン性溶媒とからなることが好ましい。Non-aqueous solvent The non-aqueous solvent used in the present invention can be appropriately selected, and particularly preferably comprises a cyclic aprotic solvent and / or a chain aprotic solvent. .
【0046】環状の非プロトン性溶媒としては、エチレ
ンカーボネートのような環状カーボネート、γ−ブチロ
ラクトンのような環状カルボン酸エステル、スルホラン
のような環状スルホン、ジオキソランのような環状エー
テルが例示され、鎖状の非プロトン性溶媒としては、ジ
メチルカーボネートのような鎖状カーボネート、プロピ
オン酸メチルのような鎖状カルボン酸エステル、ジメト
キシエタンのような鎖状エーテル、リン酸トリメチルの
ような鎖状リン酸エステルが例示される。これらの非プ
ロトン性溶媒は単独で使用してもいいし、複数種を混合
して使用してもよい。Examples of the cyclic aprotic solvent include a cyclic carbonate such as ethylene carbonate, a cyclic carboxylic acid ester such as γ-butyrolactone, a cyclic sulfone such as sulfolane, and a cyclic ether such as dioxolan. Examples of the aprotic solvent include a chain carbonate such as dimethyl carbonate, a chain carboxylate such as methyl propionate, a chain ether such as dimethoxyethane, and a chain phosphate such as trimethyl phosphate. Is exemplified. These aprotic solvents may be used alone or as a mixture of two or more.
【0047】電池の負荷特性、低温特性の向上を特に意
図した場合は、非水溶媒を環状の非プロトン性溶媒と鎖
状の非プロトン性溶媒の組み合わせにすることが望まし
い。さらに、電解液の電気化学的安定性から、環状の非
プロトン性溶媒には環状カーボネートを、鎖状の非プロ
トン性溶媒には鎖状カーボネートを適用することが最も
好ましい。When the load characteristics and low-temperature characteristics of the battery are particularly intended to be improved, it is desirable that the non-aqueous solvent be a combination of a cyclic aprotic solvent and a chain aprotic solvent. Further, from the electrochemical stability of the electrolytic solution, it is most preferable to apply a cyclic carbonate to the cyclic aprotic solvent and to apply a chain carbonate to the chain aprotic solvent.
【0048】また環状カルボン酸エステルと環状カーボ
ネートおよび/または鎖状カーボネートの組合せによっ
ても電池の充放電特性に関わる電解液の伝導度を高める
ことができる。Also, the conductivity of the electrolytic solution relating to the charge / discharge characteristics of the battery can be increased by the combination of the cyclic carboxylate and the cyclic carbonate and / or chain carbonate.
【0049】環状カーボネートの例として具体的には、
エチレンカーボネート、プロピレンカーボネート、1,
2‐ブチレンカーボネート、2,3‐ブチレンカーボネ
ート、1,2‐ペンチレンカーボネート、2,3‐ペンチ
レンカーボネートなどが挙げられる。特に、誘電率が高
いエチレンカーボネートとプロピレンカーボネートが好
適に使用される。負極活物質に黒鉛を使用した電池の場
合は、特にエチレンカーボネートが好ましい。また、こ
れら環状カーボネートは2種以上混合して使用してもよ
い。Specific examples of the cyclic carbonate include:
Ethylene carbonate, propylene carbonate, 1,
Examples thereof include 2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, and 2,3-pentylene carbonate. In particular, ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used. In the case of a battery using graphite as the negative electrode active material, ethylene carbonate is particularly preferred. Further, these cyclic carbonates may be used as a mixture of two or more kinds.
【0050】鎖状カーボネートとして具体的には、ジメ
チルカーボネート、メチルエチルカーボネート、ジエチ
ルカーボネート、メチルプロピルカーボネート、メチル
イソプロピルカーボネート、ジプロピルカーボネート、
メチルブチルカーボネート、ジブチルカーボネート、エ
チルプロピルカーボネート、メチルトリフルオロエチル
カーボネートなどが挙げられる。特に、粘度が低い、ジ
メチルカーボネート、メチルエチルカーボネート、ジエ
チルカーボネートが好適に使用される。これら鎖状カー
ボネートは2種以上混合して使用してもよい。Specific examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate,
Methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate, methyl trifluoroethyl carbonate and the like can be mentioned. In particular, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate having low viscosity are preferably used. These chain carbonates may be used as a mixture of two or more kinds.
【0051】環状カルボン酸エステルとして、具体的に
はγ−ブチロラクトン、γ−バレロラクトン、δ−バレ
ロラクトン、あるいはメチルγ−ブチロラクトン、エチ
ルγ−バレロラクトン、エチルδ−バレロラクトンなど
のアルキル置換体などを例示することができる。Specific examples of the cyclic carboxylic acid ester include γ-butyrolactone, γ-valerolactone, δ-valerolactone, and alkyl-substituted products such as methyl γ-butyrolactone, ethyl γ-valerolactone, and ethyl δ-valerolactone. Can be exemplified.
【0052】環状カーボネートと鎖状カーボネートの組
合せとして具体的には、エチレンカーボネートとジメチ
ルカーボネート、エチレンカーボネートとメチルエチル
カーボネート、エチレンカーボネートとジエチルカーボ
ネート、プロピレンカーボネートとジメチルカーボネー
ト、プロピレンカーボネートとメチルエチルカーボネー
ト、プロピレンカーボネートとジエチルカーボネート、
エチレンカーボネートとプロピレンカーボネートとジメ
チルカーボネート、エチレンカーボネートとプロピレン
カーボネートとメチルエチルカーボネート、エチレンカ
ーボネートとプロピレンカーボネートとジエチルカーボ
ネート、エチレンカーボネートとジメチルカーボネート
とメチルエチルカーボネート、エチレンカーボネートと
ジメチルカーボネートとジエチルカーボネート、エチレ
ンカーボネートとメチルエチルカーボネートとジエチル
カーボネート、エチレンカーボネートとジメチルカーボ
ネートとメチルエチルカーボネートとジエチルカーボネ
ート、エチレンカーボネートとプロピレンカーボネート
とジメチルカーボネートとメチルエチルカーボネート、
エチレンカーボネートとプロピレンカーボネートとジメ
チルカーボネートとジエチルカーボネート、エチレンカ
ーボネートとプロピレンカーボネートとメチルエチルカ
ーボネートとジエチルカーボネート、エチレンカーボネ
ートとプロピレンカーボネートとジメチルカーボネート
とメチルエチルカーボネートとジエチルカーボネートな
どが挙げられる。Specific examples of the combination of a cyclic carbonate and a chain carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, and propylene. Carbonate and diethyl carbonate,
Ethylene carbonate, propylene carbonate and dimethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and Methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and methyl ethyl carbonate,
Examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, ethylene carbonate, propylene carbonate, methyl ethyl carbonate, and diethyl carbonate, and ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.
【0053】環状カーボネートと鎖状カーボネートの混
合割合は、重量比で表して、環状カーボネート:鎖状カ
ーボネートが、5:95〜80:20、さらに好ましく
は10:90〜70:30、特に好ましくは15:85
〜55:45である。このような比率にすることによっ
て、電解液の粘度上昇を抑制し、電解質の解離度を高め
ることができるため、電池の充放電特性に関わる電解液
の伝導度を高めることができ、また、電解質の溶解度を
さらに高めることができる。よって、常温または低温で
の電気伝導性に優れた電解液とすることできるため、常
温から低温での電池の負荷特性を改善することができ
る。The mixing ratio of the cyclic carbonate and the chain carbonate is represented by a weight ratio, and the ratio of the cyclic carbonate to the chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably. 15:85
55:45. With such a ratio, the increase in the viscosity of the electrolyte can be suppressed, and the degree of dissociation of the electrolyte can be increased. Therefore, the conductivity of the electrolyte relating to the charge / discharge characteristics of the battery can be increased, and Can be further increased in solubility. Therefore, an electrolyte having excellent electrical conductivity at normal temperature or low temperature can be obtained, and the load characteristics of the battery at normal temperature to low temperature can be improved.
【0054】環状カルボン酸エステルと環状カーボネー
トおよび/または鎖状カーボネートの組合せの例とし
て、具体的には、γ−ブチロラクトンとエチレンカーボ
ネート、γ−ブチロラクトンとエチレンカーボネートと
ジメチルカーボネート、γ−ブチロラクトンとエチレン
カーボネートとメチルエチルカーボネート、γ−ブチロ
ラクトンとエチレンカーボネートとジエチルカーボネー
ト、γ−ブチロラクトンとプロピレンカーボネート、γ
−ブチロラクトンとプロピレンカーボネートとジメチル
カーボネート、γ−ブチロラクトンとプロピレンカーボ
ネートとメチルエチルカーボネート、γ−ブチロラクト
ンとプロピレンカーボネートとジエチルカーボネート、
γ−ブチロラクトンとエチレンカーボネートとプロピレ
ンカーボネート、γ−ブチロラクトンとエチレンカーボ
ネートとプロピレンカーボネートとジメチルカーボネー
ト、γ−ブチロラクトンとエチレンカーボネートとプロ
ピレンカーボネートとメチルエチルカーボネート、γ−
ブチロラクトンとエチレンカーボネートとプロピレンカ
ーボネートとジエチルカーボネート、γ−ブチロラクト
ンとエチレンカーボネートとジメチルカーボネートとメ
チルエチルカーボネート、γ−ブチロラクトンとエチレ
ンカーボネートとジメチルカーボネートとジエチルカー
ボネート、γ−ブチロラクトンとエチレンカーボネート
とメチルエチルカーボネートとジエチルカーボネート、
γ−ブチロラクトンとエチレンカーボネートとジメチル
カーボネートとメチルエチルカーボネートとジエチルカ
ーボネート、γ−ブチロラクトンとエチレンカーボネー
トとプロピレンカーボネートとジメチルカーボネートと
メチルエチルカーボネート、γ−ブチロラクトンとエチ
レンカーボネートとプロピレンカーボネートとジメチル
カーボネートとジエチルカーボネート、γ−ブチロラク
トンとエチレンカーボネートとプロピレンカーボネート
とメチルエチルカーボネートとジエチルカーボネート、
γ−ブチロラクトンとエチレンカーボネートとプロピレ
ンカーボネートとジメチルカーボネートとメチルエチル
カーボネートとジエチルカーボネート、γ−ブチロラク
トンとスルホラン、γ−ブチロラクトンとエチレンカー
ボネートとスルホラン、γ−ブチロラクトンとプロピレ
ンカーボネートとスルホラン、γ−ブチロラクトンとエ
チレンカーボネートとプロピレンカーボネートとスルホ
ラン、γ−ブチロラクトンとスルホランとジメチルカー
ボネートなどが挙げられる。Specific examples of the combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or chain carbonate include, specifically, γ-butyrolactone and ethylene carbonate, γ-butyrolactone, ethylene carbonate and dimethyl carbonate, and γ-butyrolactone and ethylene carbonate. And methyl ethyl carbonate, γ-butyrolactone and ethylene carbonate and diethyl carbonate, γ-butyrolactone and propylene carbonate, γ
-Butyrolactone and propylene carbonate and dimethyl carbonate, γ-butyrolactone and propylene carbonate and methyl ethyl carbonate, γ-butyrolactone and propylene carbonate and diethyl carbonate,
γ-butyrolactone, ethylene carbonate, propylene carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, methyl ethyl carbonate, γ-
Butyrolactone, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate, methyl ethyl carbonate, diethyl Carbonate,
γ-butyrolactone, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, methyl ethyl carbonate and diethyl carbonate,
γ-butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone and sulfolane, γ-butyrolactone and ethylene carbonate and sulfolane, γ-butyrolactone and propylene carbonate and sulfolane, γ-butyrolactone and ethylene carbonate And propylene carbonate and sulfolane, and γ-butyrolactone, sulfolane and dimethyl carbonate.
【0055】環状カルボン酸エステルの非水溶媒中の混
合割合は、重量比で表して、100〜10%、さらに好
ましくは90〜20%、特に好ましくは80〜30%で
ある。このような比率にすることによって、電池の充放
電特性に関わる電解液の伝導度を高めることができる。The mixing ratio of the cyclic carboxylic acid ester in the non-aqueous solvent is from 100 to 10%, more preferably from 90 to 20%, particularly preferably from 80 to 30%, by weight. With such a ratio, the conductivity of the electrolytic solution relating to the charge / discharge characteristics of the battery can be increased.
【0056】電池の安全性向上のために、溶媒の引火点
の向上を志向する場合は、非水溶媒として、環状の非プ
ロトン性溶媒を使用することが好ましい。環状の非プロ
トン性溶媒を単独で使用してもいいし、複数種混合して
使用してもよい。また環状の非プロトン性溶媒と鎖状の
非プロトン性溶媒を混合して使用してもよいが、鎖状の
非プロトン性溶媒を混合して使用するこの場合は、鎖状
の非プロトン性溶媒の混合量は非水溶媒全体に対して重
量比で20%未満程度とすることが好ましい。In order to improve the flash point of the solvent in order to improve the safety of the battery, it is preferable to use a cyclic aprotic solvent as the non-aqueous solvent. Cyclic aprotic solvents may be used alone or in combination of two or more. Further, a mixture of a cyclic aprotic solvent and a chain aprotic solvent may be used, but in this case where a mixture of a chain aprotic solvent is used, in this case, the chain aprotic solvent is used. Is preferably less than about 20% by weight based on the whole non-aqueous solvent.
【0057】γ−ブチロラクトンのような環状カルボン
酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率
が高い。このため、電解液の引火点と電解質の解離度を
下げることなく電解液の粘度を下げることができる。こ
のため、電解液の引火性を高くすることなく電池の放電
特性に関わる指標である電解液の伝導度を高めることが
できるという特徴を有するので、溶媒の引火点の向上を
志向する場合は、前記環状の非プロトン性溶媒として環
状カルボン酸エステルを使用することが好ましい。A cyclic carboxylate such as γ-butyrolactone has a low vapor pressure, a low viscosity and a high dielectric constant. For this reason, the viscosity of the electrolyte can be reduced without lowering the flash point of the electrolyte and the degree of dissociation of the electrolyte. For this reason, since it has the feature that the conductivity of the electrolyte, which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolyte, if the aim is to improve the flash point of the solvent, It is preferable to use a cyclic carboxylate as the cyclic aprotic solvent.
【0058】溶媒の引火点の向上を志向する場合の好ま
しい非水溶媒は、環状カルボン酸エステル単独でもよい
が、環状カルボン酸エステルと他の環状の非プロトン性
溶媒との好ましい混合物が好ましい。A preferred non-aqueous solvent for improving the flash point of the solvent is a cyclic carboxylate alone, but a preferred mixture of a cyclic carboxylate and another cyclic aprotic solvent is preferred.
【0059】環状カルボン酸エステルと他の環状の非プ
ロトン性溶媒との混合物の好ましい組み合わせの例とし
て、γ−ブチロラクトンとエチレンカーボネート、γ−
ブチロラクトンとプロピレンカーボネート、γ−ブチロ
ラクトンとエチレンカーボネートとプロピレンカーボネ
ート、γ−ブチロラクトンとエチレンカーボネートとス
ルホランを例示することができる。Examples of preferred combinations of a mixture of a cyclic carboxylic acid ester and another cyclic aprotic solvent include γ-butyrolactone and ethylene carbonate, γ-butyrolactone,
Butyrolactone and propylene carbonate, γ-butyrolactone, ethylene carbonate and propylene carbonate, γ-butyrolactone, ethylene carbonate and sulfolane can be exemplified.
【0060】電池の安全性向上のために、溶媒の引火点
の向上を志向する場合に、環状の非プロトン性溶媒を用
いるときの、他の好ましい具体的例としては、エチレン
カーボネート、プロピレンカーボネート、スルホラン、
N−メチルオキサゾリジノンから選ばれる1種またはこ
れらの混合物を挙げることができる。混合物の具体的組
合せとしては、エチレンカーボネートとプロピレンカー
ボネート、エチレンカーボネートとスルホラン、エチレ
ンカーボネートとプロピレンカーボネートとスルホラ
ン、エチレンカーボネートとN−メチルオキサゾリジノ
ンなどを挙げることができる。When a cyclic aprotic solvent is used to improve the flash point of the solvent in order to improve the safety of the battery, other preferable specific examples include ethylene carbonate, propylene carbonate, and the like. Sulfolane,
One kind selected from N-methyloxazolidinone or a mixture thereof can be mentioned. Specific combinations of the mixture include ethylene carbonate and propylene carbonate, ethylene carbonate and sulfolane, ethylene carbonate and propylene carbonate and sulfolane, and ethylene carbonate and N-methyloxazolidinone.
【0061】電池の安全性向上のために、溶媒の引火点
の向上を志向する場合に、混合して使用してよい鎖状の
非プロトン性溶媒として、鎖状カーボネート、鎖状カル
ボン酸エステル、鎖状リン酸エステルが例示され、特
に、ジメチルカーボネート、ジエチルカーボネート、ジ
プロピルカーボネート、ジブチルカーボネート、ジヘプ
チルカーボネート、メチルエチルカーボネート、メチル
プロピルカーボネート、メチルブチルカーボネート、メ
チルヘプチルカーボネートなどの鎖状カーボネートが好
ましい。In order to improve the flash point of the solvent in order to improve the safety of the battery, chain carbonates, chain carboxylic esters, and chain aprotic solvents which may be mixed and used may be used. Chain phosphates are exemplified, and chain carbonates such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, diheptyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl butyl carbonate, and methyl heptyl carbonate are particularly preferable. .
【0062】本発明に係る非水電解液では、非水溶媒と
して、上記以外の他の溶媒を含んでいてもよい。他の溶
媒としては、具体的には、ジメチルホルムアミドなどの
アミド、メチル‐N,N‐ジメチルカーバメートなどの鎖
状カーバメート、N‐メチルピロリドンなどの環状アミ
ド、N,N‐ジメチルイミダゾリジノンなどの環状ウレ
ア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリ
ブチル、ほう酸トリオクチル、ほう酸トリメチルシリル
等の含ホウ素化合物、および下記一般式で表わされるポ
リエチレングリコール誘導体などを挙げることができ
る。HO(CH2CH 2O)aH、HO{CH2CH
(CH3)O}bH、CH3O(CH2CH2O)
cH、CH3O{CH2CH(CH3)O}dH、CH
3O(CH2CH2O)eCH3、CH3O{CH2C
H(CH3)O}fCH3、C9H19PhO(CH2
CH2O)g{CH(CH3)O}hCH3(Phはフ
ェニル基)、CH3O{CH2CH(CH3)O}iC
O{OCH(CH3)CH2}jOCH 3(前記の式
中、a〜fは5〜250の整数、g〜jは2〜249の
整数、5≦g+h≦250、5≦i+j≦250であ
る。)In the non-aqueous electrolyte according to the present invention, the non-aqueous solvent
Then, other solvents other than the above may be included. Other melting
As the medium, specifically, dimethylformamide or the like
Chains of amide, methyl-N, N-dimethylcarbamate, etc.
Cyclic amines such as carbamates and N-methylpyrrolidone
Cyclic urea such as N, N, N-dimethylimidazolidinone
A, trimethyl borate, triethyl borate, triborate
Butyl, trioctyl borate, trimethylsilyl borate
And a boron-containing compound represented by the following general formula:
And ethylene glycol derivatives.
You. HO (CH2CH 2O)aH, HO {CH2CH
(CH3) O}bH, CH3O (CH2CH2O)
cH, CH3O @ CH2CH (CH3) O}dH, CH
3O (CH2CH2O)eCH3, CH3O {CH2C
H (CH3) O}fCH3, C9H19PhO (CH2
CH2O)g{CH (CH3) O}hCH3(Ph is
Enyl group), CH3O @ CH2CH (CH3) O}iC
O {OCH (CH3) CH2}jOCH 3(The above equation
Wherein a to f are integers of 5 to 250, and g to j are 2 to 249.
Integer, 5 ≦ g + h ≦ 250, 5 ≦ i + j ≦ 250
You. )
【0063】他の添加剤 本発明において、本発明の不飽和スルトンのほかに、他
の添加剤を共に含有させることにより、電解液にさらに
優れた特性を付与することが可能である。Other Additives In the present invention, by further containing other additives in addition to the unsaturated sultone of the present invention, it is possible to impart more excellent characteristics to the electrolytic solution.
【0064】本発明において添加してもよい他の添加剤
として、それ単独でも負極上の電気分解を抑制する作用
を持つものを選ぶと、負極上の電気分解がさらに抑制さ
れ、さらに電池の自己放電を小さく抑制できる。この結
果、電池の負荷特性、高温保存特性、サイクル特性が向
上する様になるという効果が得られる。If other additives that may be added in the present invention alone have a function of suppressing the electrolysis on the negative electrode, the electrolysis on the negative electrode is further suppressed, and the self-removal of the battery is further suppressed. Discharge can be suppressed small. As a result, an effect is obtained that the load characteristics, high-temperature storage characteristics, and cycle characteristics of the battery are improved.
【0065】このような負極上の電気分解を抑制する作
用を持つ化合物としては、下記一般式(3)で表される
ビニレンカーボネート誘導体As such a compound having an effect of suppressing electrolysis on the negative electrode, a vinylene carbonate derivative represented by the following general formula (3):
【化10】 (R5、R6は、水素、メチル基、エチル基、またはプ
ロピル基である。);Embedded image (R 5 and R 6 are hydrogen, methyl, ethyl, or propyl.);
【0066】無水マレイン酸、ノルボルネンジカルボン
酸無水物、ジグリコール酸、エチニル無水フタル酸、ビ
ニル無水フタル酸、スルホ安息香酸無水物などのカルボ
ン酸無水物類;ベンゼンジスルホン酸無水物、ジベンゼ
ンスルホン酸無水物、ベンゼンスルホン酸メチルエステ
ル、o−,m−,p−ベンゼンジスルホン酸ジメチルエ
ステル、o−,m−,p−ベンゼンジスルホン酸ジリチ
ウム塩などのフェニルスルホン酸類;1,3−プロパン
スルトン、1,4−ブタンスルトンなどの飽和炭化水素
置換基からなるスルトン類などが例示される。Carboxylic anhydrides such as maleic anhydride, norbornene dicarboxylic anhydride, diglycolic acid, ethynyl phthalic anhydride, vinyl phthalic anhydride and sulfobenzoic anhydride; benzenedisulfonic anhydride, dibenzenesulfonic acid Phenylsulfonic acids such as anhydrides, benzenesulfonic acid methyl ester, o-, m-, p-benzenedisulfonic acid dimethyl ester, o-, m-, p-benzenedisulfonic acid dilithium salt; 1,3-propane sultone; And sultones comprising a saturated hydrocarbon substituent such as 1,4-butane sultone.
【0067】これらの化合物のうち、一般式(3)で表
されるビニレンカーボネート誘導体が最も好ましい。Of these compounds, vinylene carbonate derivatives represented by the general formula (3) are most preferred.
【0068】一般式(3)で表されるビニレンカーボネ
ート誘導体として、具体的には、ビニレンカーボネー
ト、メチルビニレンカーボネート、エチルビニレンカー
ボネート、プロピルエチレンカーボネート、ジメチルビ
ニレンカーボネート、ジエチルビニレンカーボネート、
ジプロピルビニレンカーボネートなどが例示される。こ
れらのうちでビニレンカーボネートが最も好ましい。Specific examples of the vinylene carbonate derivative represented by the general formula (3) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl ethylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate,
Dipropyl vinylene carbonate and the like are exemplified. Of these, vinylene carbonate is most preferred.
【0069】上記の他の添加剤を、本発明の不飽和スル
トンと共に、電解液に含有させる場合、本発明の不飽和
スルトンとその他の添加剤との比率は、重量比で1:1
00〜100:1が好ましく、1:20〜20:1がさ
らに好ましく、1:10〜20:1が特に好ましい。特
に他の添加剤がビニレンカーボネートの場合は、上記比
率が好ましく、最も好ましい比率として1:5〜20:
1を挙げることができる。また、本発明の不飽和スルト
ンと、上記の他の添加剤を電解液に共に含有させる場
合、その合計量は電解液全体に対して30重量%以下が
好ましい。When the above other additives are contained in the electrolyte together with the unsaturated sultone of the present invention, the ratio of the unsaturated sultone of the present invention to the other additives is 1: 1 by weight.
It is preferably from 100 to 100: 1, more preferably from 1:20 to 20: 1, and particularly preferably from 1:10 to 20: 1. In particular, when the other additive is vinylene carbonate, the above ratio is preferable, and the most preferable ratio is 1: 5 to 20:
1 can be mentioned. When the unsaturated sultone of the present invention and the above-mentioned other additives are both contained in the electrolytic solution, the total amount thereof is preferably 30% by weight or less based on the whole electrolytic solution.
【0070】非水電解液 本発明の非水電解液は、本発明の不飽和スルトンを含む
非水電解液である。より好ましくは、本発明の不飽和ス
ルトンと非水溶媒と電解質とからなっている。使用され
る電解質としては、通常、非水電解液用電解質として使
用されているものであれば、いずれをも使用することが
できる。Nonaqueous Electrolyte The nonaqueous electrolyte of the present invention is a nonaqueous electrolyte containing the unsaturated sultone of the present invention. More preferably, it comprises the unsaturated sultone of the present invention, a non-aqueous solvent and an electrolyte. As the electrolyte to be used, any electrolyte which is usually used as an electrolyte for a non-aqueous electrolyte can be used.
【0071】電解質の具体例としては、(C2H5)4
NPF6、(C2H5)4NBF4、(C2H5)4N
ClO4、(C2H5)4NAsF6、(C2H5)4
N2SiF6、(C2H5)4NOSO2CkF
(2k+1) (k=1〜8の整数)、(C2H5)4
NPFn(CkF(2k+1))(6−n) (n=1〜
5、k=1〜8の整数)などのテトラアルキルアンモニ
ウム塩、LiPF6、LiBF4、LiClO4、Li
AsF6、Li2SiF6、LiOSO2CkF(2
k+1) (k=1〜8の整数)、LiPFn(CkF
(2k+1))(6−n ) (n=1〜5、k=1〜8
の整数)などのリチウム塩が挙げられる。また、次の一
般式で示されるリチウム塩も使用することができる。L
iC(SO2R7)(SO2R8)(SO2R9)、L
iN(SO2OR10)(SO2OR11)、LiN
(SO2R12)(SO2OR13)(ここで、R7〜
R13は、互いに同一であっても異なっていてもよく、
炭素数1〜8のパーフルオロアルキル基である)。これ
らのリチウム塩は単独で使用してもよく、また2種以上
を混合して使用してもよい。As a specific example of the electrolyte, (C 2 H 5 ) 4
NPF 6 , (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 N
ClO 4 , (C 2 H 5 ) 4 NAsF 6 , (C 2 H 5 ) 4
N 2 SiF 6 , (C 2 H 5 ) 4 NOSO 2 C k F
(2k + 1) (k = 1 to 8), (C 2 H 5 ) 4
NPF n (C k F (2k + 1)) (6-n) (n = 1~
5, k = 1 to 8), such as a tetraalkylammonium salt, LiPF 6 , LiBF 4 , LiClO 4 , Li
AsF 6, Li 2 SiF 6, LiOSO 2 C k F (2
k + 1) (k = 1 to 8), LiPF n (C k F
(2k + 1) ) (6-n ) (n = 1-5, k = 1-8)
And an integer of 1). Further, a lithium salt represented by the following general formula can also be used. L
iC (SO 2 R 7 ) (SO 2 R 8 ) (SO 2 R 9 ), L
iN (SO 2 OR 10 ) (SO 2 OR 11 ), LiN
(SO 2 R 12 ) (SO 2 OR 13 ) (where R 7 to
R 13 may be the same or different from each other,
A perfluoroalkyl group having 1 to 8 carbon atoms). These lithium salts may be used alone or as a mixture of two or more.
【0072】これらのうち、特にリチウム塩が望まし
く、さらに、LiPF6、LiBF4、LiOSO2C
kF(2k+1) (k=1〜8の整数)、LiCl
O4、LiAsF6、LiN(SO2CkF
(2k+1))2 (k=1〜8の整数)、LiPFn
(CkF(2k+1))(6−n)(n=1〜5、k=
1〜8の整数)が好ましい。Of these, lithium salts are particularly desirable, and LiPF 6 , LiBF 4 , LiOSO 2 C
k F (2k + 1) (k = 1 to 8), LiCl
O 4 , LiAsF 6 , LiN (SO 2 C k F
(2k + 1) ) 2 (k = 1 to 8), LiPF n
(C k F (2k + 1 )) (6-n) (n = 1~5, k =
(An integer of 1 to 8) is preferred.
【0073】本発明の電解液において、非水溶媒とし
て、γ−ブチロラクトンなどの環状カルボン酸エステル
を併用する場合には、特にLiPF6を含有することが
望ましい。LiPF6は、解離度が高いため電解液の伝
導度を高めることができ、さらに負極上での電解液の還
元分解反応を抑制する作用がある。When a cyclic carboxylic acid ester such as γ-butyrolactone is used in combination as the non-aqueous solvent in the electrolytic solution of the present invention, it is particularly desirable to contain LiPF 6 . Since LiPF 6 has a high degree of dissociation, it can increase the conductivity of the electrolytic solution, and has an effect of suppressing the reductive decomposition reaction of the electrolytic solution on the negative electrode.
【0074】本発明の電解液において、LiPF6を単
独で使用するか、LiPF6とそれ以外のリチウム塩を
使用することが推奨される。LiPF6以外に使用され
る電解質としては、通常、非水電解液用電解質として使
用されているものであれば、いずれをも使用することが
できる。具体的には、前記したリチウム塩の具体例のう
ちLiPF6以外のリチウム塩を例示することができ
る。In the electrolytic solution of the present invention, it is recommended to use LiPF 6 alone or use LiPF 6 and another lithium salt. As the electrolyte used other than LiPF 6 , any electrolyte which is usually used as a non-aqueous electrolyte electrolyte can be used. Specifically, among the specific examples of the lithium salt described above, lithium salts other than LiPF 6 can be exemplified.
【0075】LiPF6と他のリチウム塩との組み合わ
せの具体例としては、LiPF6とLiBF4、LiP
F6とLiN(SO2CkF(2k+1))2 (k=
1〜8の整数)、LiPF6とLiBF4とLiN(S
O2CkF(2k+1))2(k=1〜8の整数)など
が例示される。Specific examples of the combination of LiPF 6 and another lithium salt include LiPF 6 , LiBF 4 and LiP
F 6 and LiN (SO 2 C k F (2k + 1) ) 2 (k =
1-8), LiPF 6 , LiBF 4 and LiN (S
O 2 C k F (2k + 1) ) 2 (k = 1 to 8).
【0076】リチウム塩中に占めるLiPF6の比率
は、100〜1重量%、好ましくは100〜10重量
%、さらに好ましくは100〜50重量%が望ましい。The ratio of LiPF 6 in the lithium salt is 100 to 1% by weight, preferably 100 to 10% by weight, and more preferably 100 to 50% by weight.
【0077】このような電解質は、0.1〜3モル/リ
ットル、好ましくは0.5〜2モル/リットルの濃度で
非水電解液中に含まれていることが好ましい。Such an electrolyte is preferably contained in the non-aqueous electrolyte at a concentration of 0.1 to 3 mol / l, preferably 0.5 to 2 mol / l.
【0078】本発明における非水電解液は、本発明の不
飽和スルトンと非水溶媒と電解質とを必須構成成分とし
て含むものが好ましいが、必要に応じて前述した他の添
加剤、他の溶媒などを加えてもよい。本発明の電解液に
は、前述した他の添加剤のほかにフッ化水素、水、酸
素、窒素などを存在させることができる。The non-aqueous electrolytic solution of the present invention preferably contains the unsaturated sultone of the present invention, a non-aqueous solvent and an electrolyte as essential components. If necessary, the above-mentioned other additives and other solvents may be used. Etc. may be added. In the electrolytic solution of the present invention, hydrogen fluoride, water, oxygen, nitrogen, and the like can be present in addition to the other additives described above.
【0079】フッ化水素を添加剤に使用する場合、電解
液への添加方法は、直接、電解液にフッ化水素ガスを所
定量吹き込むことが挙げられる。また、本発明で使用す
るリチウム塩がLiPF6やLiBF4などのフッ素を
含有するリチウム塩である場合は、下記(式1)に示し
た水と電解質の反応を利用して、水を電解液に添加し、
電解液中で発生させても良い。 LiMFn + H2O → LiPF(n−2)O +2HF (式1) (ただし、M=P、Bなど、 MがPの時はn=6、M
がBの時はn=4)When hydrogen fluoride is used as an additive, a method for adding hydrogen fluoride to the electrolyte is to directly blow a predetermined amount of hydrogen fluoride gas into the electrolyte. When the lithium salt used in the present invention is a lithium salt containing fluorine such as LiPF 6 or LiBF 4 , the water is converted into an electrolyte by utilizing a reaction between water and an electrolyte shown in the following (formula 1). Added to
It may be generated in an electrolytic solution. LiMF n + H 2 O → LiPF (n-2) O + 2HF ( Equation 1) (where, M = P, B, etc., when M is P, n = 6, M
When B is n = 4)
【0080】水を電解液に添加する方法は、電解液に直
接水を添加しても良いし、電池の電極中にあらかじめ水
を含有させて、電池中に電解液を注液した後に、電極中
から電解液中に水を供給させても良い。As a method of adding water to the electrolyte, water may be directly added to the electrolyte or water may be previously contained in the electrode of the battery, and after the electrolyte is injected into the battery, Water may be supplied from inside to the electrolyte.
【0081】水を電解液に添加し、間接的にHFを電解
液中に生成させる場合、水1分子からHFがほぼ定量的
に2分子生成するので、水の添加量は、望みのHF添加
濃度にあわせて計算し添加する。具体的には、所望のH
F量の0.45倍(重量比)の水を添加する。When water is added to the electrolyte and HF is generated indirectly in the electrolyte, two molecules of HF are generated almost quantitatively from one molecule of water. Calculate and add according to the concentration. Specifically, the desired H
Water of 0.45 times (weight ratio) the amount of F is added.
【0082】電解質と水の反応を利用して、HFを発生
させる化合物は、水以外にも酸性度の強いプロトン性化
合物を使用できる。このような化合物として、具体的に
は、メタノール、エタノール、エチレングリコール、プ
ロピレングリコール、酢酸、アクリル酸、マレイン酸、
1,4―ジカルボキシー2―ブテンなどを上げることが
できる。フッ化水素としての添加量は電解液全体に対し
て0.0001〜0.7重量%が好ましく、0.001
〜0.3重量%がより好ましく、0.001〜0.2重
量%がさらに好ましく、0.001〜0.1重量%が特
に好ましい。As the compound that generates HF by utilizing the reaction between the electrolyte and water, a protic compound having a strong acidity other than water can be used. As such a compound, specifically, methanol, ethanol, ethylene glycol, propylene glycol, acetic acid, acrylic acid, maleic acid,
1,4-dicarboxy-2-butene and the like can be raised. The addition amount of hydrogen fluoride is preferably 0.0001 to 0.7% by weight based on the whole electrolytic solution, and 0.001 to 0.7% by weight.
-0.3 wt% is more preferable, 0.001-0.2 wt% is more preferable, and 0.001-0.1 wt% is particularly preferable.
【0083】以上のような本発明に係る非水電解液は、
リチウム二次電池用の非水電解液として好適であるばか
りでなく、一次電池用の非水電解液、電気化学キャパシ
タ用の非水電解液、電気二重層キャパシタ、アルミ電解
コンデンサ用の電解液としても用いることができる。The non-aqueous electrolyte according to the present invention as described above
Not only suitable as a non-aqueous electrolyte for lithium secondary batteries, but also as a non-aqueous electrolyte for primary batteries, a non-aqueous electrolyte for electrochemical capacitors, an electric double layer capacitor, an electrolyte for aluminum electrolytic capacitors Can also be used.
【0084】二次電池 本発明に係る非水電解液二次電池は、負極と、正極と、
前記の非水電解液とを基本的に含んで構成されており、
通常、負極と正極との間にセパレータが設けられてい
る。Secondary Battery The non-aqueous electrolyte secondary battery according to the present invention comprises a negative electrode, a positive electrode,
The non-aqueous electrolyte is basically configured to include,
Usually, a separator is provided between the negative electrode and the positive electrode.
【0085】負極を構成する負極活物質としては、金属
リチウム、リチウム含有合金、リチウムとの合金化が可
能な金属もしくは合金、リチウムイオンのドープ・脱ド
ープが可能な酸化物、リチウムイオンのドープ・脱ドー
プが可能な遷移金属窒素化物、リチウムイオンのドープ
・脱ドープが可能な炭素材料、またはこれらの混合物の
いずれをも用いることができる。The negative electrode active material constituting the negative electrode includes lithium metal, a lithium-containing alloy, a metal or alloy capable of being alloyed with lithium, an oxide capable of doping and undoping lithium ions, and a lithium ion doping / dedoping. Either a transition metal nitride which can be de-doped, a carbon material which can be doped or de-doped with lithium ions, or a mixture thereof can be used.
【0086】リチウムとの合金化が可能な金属もしくは
合金としては、シリコン、シリコン合金、スズ、スズ合
金などを挙げることができる。リチウムイオンのドープ
・脱ドープが可能な酸化物としては、酸化スズ、酸化シ
リコンや、リチウムイオンのドープ・脱ドープが可能な
遷移金属酸化物などを挙げることができる。Examples of the metal or alloy that can be alloyed with lithium include silicon, silicon alloy, tin, and tin alloy. Examples of oxides that can be doped and undoped with lithium ions include tin oxide and silicon oxide, and transition metal oxides that can be doped and undoped with lithium ions.
【0087】これらの中でもリチウムイオンをドーブ・
脱ドーブすることが可能な炭素材料が好ましい。このよ
うな炭素材料は、カーボンブラック、活性炭、人造黒
鉛、天然黒鉛であっても非晶質炭素であってもよく、繊
維状、球状、ポテト状、フレーク状いずれの形態であっ
てもよい。Among them, lithium ions are
Carbon materials that can be de-dove are preferred. Such a carbon material may be carbon black, activated carbon, artificial graphite, natural graphite or amorphous carbon, and may be in any form of fibrous, spherical, potato, or flake.
【0088】非晶質炭素材料として具体的には、ハード
カーボン、コークス、1500℃以下に焼成したメソカ
ーボンマイクロビーズ(MCMB)、メソフェーズピッ
チカーボンファイバー(MCF)などが例示され、黒鉛
材料としては、天然黒鉛、人造黒鉛があり、人造黒鉛と
しては、黒鉛化MCMB、黒鉛化MCFなどが用いられ
る。また、黒鉛材料としては、ホウ素を含有するものな
ども用いることができ、また、金、白金、銀、銅、Sn
などの金属で被覆した物、非晶質炭素で被覆したり、非
晶質炭素と黒鉛を混合した物も使用することができる。
これらの炭素材料は、1種類で使用してもよく、2種類
以上混合して使用してもよい。Specific examples of the amorphous carbon material include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or lower, mesophase pitch carbon fiber (MCF), and the like. There are natural graphite and artificial graphite, and as the artificial graphite, graphitized MCMB, graphitized MCF and the like are used. Further, as the graphite material, a material containing boron or the like can be used, and gold, platinum, silver, copper, Sn
A material coated with such a metal, a material coated with amorphous carbon, or a mixture of amorphous carbon and graphite can also be used.
These carbon materials may be used alone or in combination of two or more.
【0089】炭素材料としては、特にX線解析で測定し
た(002)面の面間隔d(002 )が0.340nm
以下の炭素材料が好ましく、真密度が1.70g/cm
3以上である黒鉛またはそれに近い性質を有する高結晶
性炭素材料が好ましい。このような炭素材料を使用する
と、電池のエネルギー密度を高くすることができる。As the carbon material, the plane distance d (002 ) of the (002) plane measured by X-ray analysis is 0.340 nm.
The following carbon materials are preferable, and the true density is 1.70 g / cm
Graphite of 3 or more or a highly crystalline carbon material having properties close thereto is preferred. When such a carbon material is used, the energy density of the battery can be increased.
【0090】正極を構成する正極活物質としては、Fe
S2、MoS2、TiS2、MnO 2、V2O5などの
遷移金属酸化物または遷移金属硫化物、LiCoO2、
LiMnO2、LiMn2O4、LiNiO2、LiNix
Co(1−x)O2、LiNixCoyMn
(1−x−y)O2などのリチウムと遷移金属とからな
る複合酸化物、ポリアニリン、ポリチオフェン、ポリピ
ロール、ポリアセチレン、ポリアセン、ジメルカプトチ
アジアゾール/ポリアニリン複合体などの導電性高分子
材料、フッ素化炭素、活性炭などの炭素材料等が挙げら
れる。As the positive electrode active material constituting the positive electrode, Fe
S2, MoS2, TiS2, MnO 2, V2O5Such as
Transition metal oxide or transition metal sulfide, LiCoO2,
LiMnO2, LiMn2O4, LiNiO2, LiNix
Co(1-x)O2, LiNixCoyMn
(1-xy)O2Such as lithium and transition metal
Composite oxide, polyaniline, polythiophene,
Roll, polyacetylene, polyacene, dimercaptochi
Conductive polymers such as azizole / polyaniline composite
Materials, carbon materials such as fluorinated carbon, activated carbon, etc.
It is.
【0091】これらの中でも、特にリチウムと遷移金属
とからなる複合酸化物が好ましい。正極活物質は1種類
で使用してもよく、2種類以上混合して使用してもよ
い。正極活物質は通常導電性が不十分であるため、導電
助剤とともに使用して正極を構成する。導電助剤として
は、カーボンブラック、アモルファスウィスカー、グラ
ファイトなどの炭素材料を例示することができる。Among these, a composite oxide composed of lithium and a transition metal is particularly preferred. One type of the positive electrode active material may be used, or two or more types may be used in combination. Since the positive electrode active material generally has insufficient conductivity, the positive electrode is used together with a conductive auxiliary to constitute a positive electrode. Examples of the conductive assistant include carbon materials such as carbon black, amorphous whiskers, and graphite.
【0092】セパレータは正極と負極を電気的に絶縁し
かつリチウムイオンを透過する膜であって、多孔性膜や
高分子電解質が例示される。多孔性膜としては微多孔性
高分子フィルムが好適に使用され、材質としてポリオレ
フィン、ポリイミド、ポリフッ化ビニリデン、ポリエス
テル等が例示される。特に、多孔性ポリオレフィンフィ
ルムが好ましく、具体的には多孔性ポリエチレンフィル
ム、多孔性ポリプロピレンフィルム、または多孔性のポ
リエチレンフィルムとポリプロピレンとの多層フィルム
を例示することができる。多孔性ポリオレフィンフィル
ム上には、熱安定性に優れる他の樹脂がコーティングさ
れていても良い。The separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte. As the porous film, a microporous polymer film is suitably used, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester, and the like. In particular, a porous polyolefin film is preferable, and specific examples thereof include a porous polyethylene film, a porous polypropylene film, and a multilayer film of a porous polyethylene film and polypropylene. Other resins having excellent thermal stability may be coated on the porous polyolefin film.
【0093】高分子電解質としては、リチウム塩を溶解
した高分子や、電解液で膨潤させた高分子等が挙げられ
る。本発明の電解液は、高分子を膨潤させて高分子電解
質を得る目的で使用しても良い。Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swelled with an electrolytic solution, and the like. The electrolyte of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
【0094】このような非水電解液二次電池は、円筒
型、コイン型、角型、フィルム型その他任意の形状に形
成することができる。しかし、電池の基本構造は形状に
よらず同じであり、目的に応じて設計変更を施すことが
できる。次に、円筒型およびコイン型電池の構造につい
て説明するが、各電池を構成する負極活物質、正極活物
質およびセパレータは、前記したものが共通して使用さ
れる。Such a non-aqueous electrolyte secondary battery can be formed in a cylindrical shape, a coin shape, a square shape, a film shape or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose. Next, the structures of the cylindrical and coin type batteries will be described. The negative electrode active material, the positive electrode active material, and the separator constituting each battery are commonly used.
【0095】例えば、円筒型非水電解液二次電池の場合
には、銅箔などの負極集電体に負極活物質を塗布してな
る負極と、Al箔などの正極集電体に正極活物質を塗布
してなる正極とを、非水電解液を注入したセパレータを
介して巻回し、巻回体の上下に絶縁板を載置した状態で
電池缶に収納されている。For example, in the case of a cylindrical nonaqueous electrolyte secondary battery, a negative electrode obtained by applying a negative electrode active material to a negative electrode current collector such as a copper foil and a positive electrode current collector such as an Al foil A positive electrode coated with a substance is wound around a separator into which a non-aqueous electrolyte is injected, and is housed in a battery can with an insulating plate placed above and below the wound body.
【0096】また、本発明に係る非水電解液二次電池
は、コイン型非水電解液二次電池にも適用することがで
きる。コイン型電池では、円盤状負極、非水電解液を注
入したセパレータ、円盤状正極、必要に応じて、ステン
レス、またはアルミニウムなどのスペーサー板が、この
順序に積層された状態でコイン型電池缶に収納されてい
る。The non-aqueous electrolyte secondary battery according to the present invention can be applied to a coin-type non-aqueous electrolyte secondary battery. In a coin-type battery, a disc-shaped negative electrode, a separator filled with a non-aqueous electrolyte, a disc-shaped positive electrode, and, if necessary, a spacer plate of stainless steel or aluminum are stacked in this order on a coin-type battery can. It is stored.
【0097】[0097]
【実施例】以下に実施例によって本発明をより具体的に
説明するが、本発明はこれら実施例によって何ら制限さ
れるものではない。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.
【0098】(実施例1〜6および参考例1)1.コイン型電池の作製 <非水電解液の調製>エチレンカーボネート(EC)と
メチルエチルカーボネート(MEC)を、EC:MEC
=4:6(重量比)の割合で混合し、次に電解質である
LiPF6を非水溶媒に溶解し、電解質濃度が1.0モ
ル/リットルとなるように非水電解液を調製した。次に
この非水溶媒に対して、添加剤としてそれぞれ1、3−
プロペンスルトン0.5重量%(実施例1)、1.0重
量%(実施例2)、1.5重量%(実施例3)、2.0
重量%(実施例4)、2.5重量%(実施例5)3.0
重量%(実施例6)を添加して、本発明の非水電解液を
得た。また、添加剤の添加を省略した場合を参考例1
(ブランク)とした。[0098] (Examples 1 to 6 and Reference Example 1). Preparation of coin-type battery < Preparation of non-aqueous electrolyte> Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed with EC: MEC.
= 4: 6 (weight ratio), and then LiPF 6 as an electrolyte was dissolved in a non-aqueous solvent to prepare a non-aqueous electrolyte so that the electrolyte concentration was 1.0 mol / L. Next, 1,3-
Propene sultone 0.5% by weight (Example 1), 1.0% by weight (Example 2), 1.5% by weight (Example 3), 2.0%
% By weight (Example 4), 2.5% by weight (Example 5) 3.0
By weight (Example 6), a non-aqueous electrolyte of the present invention was obtained. In addition, the case where the addition of the additive was omitted is shown in Reference Example 1.
(Blank).
【0099】<負極の作製>天然黒鉛(中越黒鉛製LF
−18A)87重量部と結着剤のポリフッ化ビニリデン
(PVDF)13重量部を混合し、溶剤のN−メチルピ
ロリジノンに分散させ、天然黒鉛合剤スラリーを調製し
た。次に、この負極合剤スラリーを厚さ18μmの帯状
銅箔製の負極集電体に塗布し、乾燥した。これを圧縮成
型し、14mmの円盤状に打ち抜いて、コイン状の天然
黒鉛電極を得た。この天然黒鉛電極合剤の厚さは110
μmであり、重量は直径14mmの円の面積あたり20
mgであった。<Preparation of Negative Electrode> Natural graphite (LF made of Chuetsu graphite)
-18A) 87 parts by weight and 13 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed and dispersed in N-methylpyrrolidinone as a solvent to prepare a natural graphite mixture slurry. Next, this negative electrode mixture slurry was applied to a 18-μm-thick strip-shaped copper foil-made negative electrode current collector, and dried. This was compression-molded and punched into a 14 mm disc to obtain a coin-shaped natural graphite electrode. The thickness of this natural graphite electrode mixture is 110
μm and weighs 20 per area of a 14 mm diameter circle.
mg.
【0100】<LiCoO2電極の作製>LiCoO2
(本荘FMCエナジーシステムズ(株)製 HLC−2
1)90重量部と、導電剤の黒鉛6重量部及びアセチレ
ンブラック1重量部と結着剤のポリフッ化ビニリデン3
重量部を混合し、溶剤のN−メチルピロリドンに分散さ
せ、LiCoO2合剤スラリーを調製した。このLiC
oO2合剤スラリーを厚さ20μmのアルミ箔に塗布、
乾燥した。これを圧縮成型し、13.5mmの円盤状に
うちぬき、コイン状のLiCoO2電極を得た。このL
iCoO2合剤の厚さは90μmであり、重量は直径1
3.5mmの円の面積あたり40mgであった。<Preparation of LiCoO 2 electrode> LiCoO 2
(HLC-2 manufactured by Honjo FMC Energy Systems Co., Ltd.)
1) 90 parts by weight, 6 parts by weight of graphite as a conductive agent, 1 part by weight of acetylene black, and polyvinylidene fluoride 3 as a binder
Parts by weight were mixed and dispersed in N-methylpyrrolidone as a solvent to prepare a LiCoO 2 mixture slurry. This LiC
The oO 2 mixture slurry is applied to a 20 μm thick aluminum foil,
Dried. This was compression-molded and punched into a 13.5 mm disk to obtain a coin-shaped LiCoO 2 electrode. This L
The thickness of the iCoO 2 mixture is 90 μm and the weight is 1
The weight was 40 mg per 3.5 mm circle area.
【0101】<電池の作製>直径14mmの天然黒鉛電
極、直径13.5mmのLiCoO2電極、厚さ25μ
m、直径16mmの微多孔性ポリプロピレンフィルムか
らできたセパレータを、ステンレス製の2032サイズ
の電池缶内に、天然黒鉛電極、セパレーター、LiCo
O2電極の順序で積層した。その後、セパレータに前記
で調整した非水電解液0.03mlを注入し、アルミニ
ウム製の板(厚さ1.2mm、直径16mm、およびバ
ネを収納した。最後に、ポリプロピレン製のガスケット
を介して、電池缶蓋をかしめることにより、電池内の気
密性を保持し、直径20mm、高さ3.2mmのコイン
型電池を作製した。<Production of Battery> A natural graphite electrode having a diameter of 14 mm, a LiCoO 2 electrode having a diameter of 13.5 mm, and a thickness of 25 μm
A separator made of a microporous polypropylene film having a diameter of 16 mm and a diameter of 16 mm was placed in a stainless steel battery can of 2032 size using a natural graphite electrode, a separator, and LiCo.
It was laminated in the order of O 2 electrodes. Thereafter, 0.03 ml of the non-aqueous electrolyte prepared above was injected into the separator, and an aluminum plate (thickness: 1.2 mm, diameter: 16 mm, and a spring was housed. Finally, via a gasket made of polypropylene, By caulking the battery can lid, airtightness in the battery was maintained, and a coin-type battery having a diameter of 20 mm and a height of 3.2 mm was produced.
【0102】3.電池特性の評価 <電池による高温保存特性の評価>前述のように作製し
たコイン型電池を使用し、この電池を0.3mA定電流
4.2V定電圧の条件で、4.2V定電圧の時の電流値
が0.05mAになるまで充電し、その後、1mA定電
流3.0V定電圧の条件で、3.0V定電圧の時の電流
値が0.05mAになるまで放電した。次に、この電池
を1mA定電流3.85V定電圧の条件で、3.85V
定電圧の時の電流値が0.05mAになるまで充電し
た。その後、この電池を、45℃の恒温槽で7日間保存
(「エージング」)を行なった。[0102] 3. Evaluation of battery characteristics < Evaluation of high-temperature storage characteristics by battery> A coin-type battery prepared as described above was used, and the battery was operated at a constant voltage of 0.3 mA, a constant voltage of 4.2 V, and a constant voltage of 4.2 V. Was charged until the current value became 0.05 mA, and then discharged under the condition of 1 mA constant current and 3.0 V constant voltage until the current value at the time of 3.0 V constant voltage became 0.05 mA. Next, the battery was subjected to 3.85 V under the condition of 1 mA constant current and 3.85 V constant voltage.
The battery was charged until the current value at the time of constant voltage became 0.05 mA. Thereafter, the battery was stored (“aging”) in a thermostat at 45 ° C. for 7 days.
【0103】エージング後、1mAの定電流・定電圧条
件で、終了条件を定電圧時の電流値0.05mAとし
て、4.2V〜3.0Vの充放電を一回行ない放電容量
(「低負荷放電容量」)を測定した。この時に、放電開
始から2分後の電池電圧の変化から、電池の抵抗(「エ
ージング後の抵抗」)を求めた。次に、同様の条件で
4.2Vに充電した後、10mA定電流放電し、電池電
圧が3.0Vになった時点で放電を終了する条件で放電
を行い放電容量(「高負荷放電容量」)を測定した。な
お、実施例20〜22および参考例3では、定電流放電
の電流を10mAに代えて5mAで測定を行った。そし
て、この時の低負荷放電容量に対する高負荷放電容量の
比率をもとめ、これを「エージング後の負荷特性指標」
とした。After aging, under the conditions of a constant current and a constant voltage of 1 mA, the termination condition was a current value of 0.05 mA at the time of a constant voltage, and a charge / discharge of 4.2 V to 3.0 V was performed once to discharge capacity (“low load”). Discharge capacity ") was measured. At this time, the resistance of the battery ("resistance after aging") was determined from the change in the battery voltage two minutes after the start of discharging. Next, the battery was charged to 4.2 V under the same conditions, then discharged at a constant current of 10 mA, and discharged when the battery voltage reached 3.0 V. ) Was measured. In Examples 20 to 22 and Reference Example 3, the measurement was performed at a constant current discharge current of 5 mA instead of 10 mA. Then, the ratio of the high load discharge capacity to the low load discharge capacity at this time is determined, and this is referred to as “load characteristic index after aging”.
And
【0104】この電池を一旦3.0Vに放電した後、再
び4.2Vに充電した時の容量(「充電容量」)を測定
した後、60℃で4日間保存(「高温保存」)を行っ
た。After the battery was once discharged to 3.0 V, the capacity when recharged to 4.2 V (“charge capacity”) was measured, and then stored at 60 ° C. for 4 days (“high-temperature storage”). Was.
【0105】高温保存後に3.0Vまで放電した時の容
量(「残存容量」)を測定した。また、エージング時と
同じ方法で「低負荷放電容量」および「高負荷放電容
量」を測定し「高温保存後の負荷特性指標」を求めた。
また、「エージング後の抵抗」に相当する「高温保存後
の抵抗」を測定した。After storage at high temperature, the capacity when discharged to 3.0 V (“remaining capacity”) was measured. Further, "low load discharge capacity" and "high load discharge capacity" were measured in the same manner as in aging, and "load characteristic index after high temperature storage" was obtained.
Further, "resistance after high-temperature storage" corresponding to "resistance after aging" was measured.
【0106】以上の実施例の結果を以下の指標から解析
した。「エージング後の負荷特性指標」に対する「高温
保存後の負荷特性指標」の比率を「負荷特性変化率」と
した。 負荷特性変化率=(「高温保存後の負荷特性指標」/
「エージング後の負荷特性指標」)×100(%) 「エージング後の抵抗」に対する「高温保存後の抵抗」
の比率を「抵抗変化率」とした。 抵抗変化率=(「高温保存後の抵抗」/「高温保存前
(エージング後)の抵抗」)×100(%)The results of the above examples were analyzed based on the following indices. The ratio of the “load characteristic index after high-temperature storage” to the “load characteristic index after aging” was defined as “load characteristic change rate”. Load characteristic change rate = (“Load characteristic index after high temperature storage” /
"Load characteristic index after aging") x 100 (%) "resistance after high temperature storage" against "resistance after aging"
Is defined as the “resistance change rate”. Resistance change rate = (“resistance after high-temperature storage” / “resistance before high-temperature storage (after aging)”) × 100 (%)
【0107】また、 電池の自己放電性、すなわち、電
解液の電気分解性を表わす指標として、エージング後高
温保存前の充電容量と高温保存後の残存容量の差分(充
電容量―残存容量)を求めた。添加剤無添加の場合の電
解液(参考例1、ブランク)の差分に対する電解液の差
分の比率を「自己放電比」として求めた。 自己放電比={(電解液の充電容量―残存容量)/(ブ
ランクの充電容量−ブランクの残存容量)}× 100
(%) 評価した電池特性の測定結果を表1に示した。The difference between the charge capacity after aging and before storage at high temperature and the remaining capacity after storage at high temperature (charge capacity-remaining capacity) was obtained as an index indicating the self-discharge property of the battery, that is, the electrolytic property of the electrolyte. Was. The ratio of the difference of the electrolytic solution to the difference of the electrolytic solution (Reference Example 1, blank) when no additive was added was determined as the “self-discharge ratio”. Self-discharge ratio = {(charge capacity of electrolyte−remaining capacity) / (charge capacity of blank−remaining capacity of blank)} × 100
(%) Table 1 shows the measurement results of the evaluated battery characteristics.
【0108】(比較例1〜13)実施例1で、<非水電
解液の調整>において添加剤として1、3−プロペンス
ルトンを0.5重量%添加するのに代えて、表1に示し
た添加剤を同表の添加量で添加するほかは同様にしてコ
イン型電池を作製し、その電池特性を測定した。結果を
表1に示した。(Comparative Examples 1 to 13) Table 1 shows the results obtained in Example 1 in place of adding 0.5% by weight of 1,3-propene sultone as an additive in <Preparation of nonaqueous electrolyte>. A coin-type battery was prepared in the same manner except that the above additives were added in the amounts shown in the same table, and the battery characteristics were measured. The results are shown in Table 1.
【0109】[0109]
【表1】 [Table 1]
【0110】以上の結果から、比較例に対して、本発明
の1,3−プロペンスルトンを添加した電解液は、自己
放電比、負荷特性および抵抗の劣化抑制のすべてについ
て、優れた効果を有することがわかる。From the above results, the electrolytic solution to which 1,3-propene sultone of the present invention is added has an excellent effect on the self-discharge ratio, the load characteristics and the suppression of the deterioration of the resistance in comparison with the comparative example. You can see that.
【0111】(実施例7〜15)実施例1で、<非水電
解液の調整>において添加剤である1,3−プロペンス
ルトンに加えて、ビニレンカーボネートを添加し、それ
ぞれを表2に示す添加量で添加するほかは同様にしてコ
イン型電池を作製し、その電池特性を測定した。結果を
表2に示した。(Examples 7 to 15) In Example 1, in <Preparation of non-aqueous electrolyte>, vinylene carbonate was added in addition to 1,3-propene sultone as an additive. A coin-type battery was prepared in the same manner except that the amount was added, and the battery characteristics were measured. The results are shown in Table 2.
【0112】[0112]
【表2】 [Table 2]
【0113】以上の結果から、本発明の1,3―プロペ
ンスルトンは単独でも優れた作用を示すが、電解液への
添加量を一定にして比較した場合、ビニレンカーボネー
トと併用した場合に、自己放電率比がさらに低下し、か
つ負荷特性および抵抗の劣化抑制効果を高いレベルに維
持できることが分かる。From the above results, the 1,3-propene sultone of the present invention shows an excellent action even when used alone. However, when the amount of addition to the electrolytic solution was kept constant, when 1,3-propene sultone was used together with vinylene carbonate, It can be seen that the discharge rate ratio is further reduced, and the effect of suppressing the deterioration of the load characteristics and the resistance can be maintained at a high level.
【0114】(参考例2)ラミネート電池を作製し高温
保存試験中の電池内でのガス発生量を測定した。 1.ラミネート電池の作製 <非水電解液の調製>非水電解液として前記参考例1で
調整した非水電解液を用いた。Reference Example 2 A laminated battery was manufactured, and the amount of gas generated in the battery during a high-temperature storage test was measured. 1. Preparation of Laminated Battery <Preparation of Nonaqueous Electrolyte> The nonaqueous electrolyte prepared in Reference Example 1 was used as the nonaqueous electrolyte.
【0115】<負極の作製>天然黒鉛(中越黒鉛製LF
−18A)87重量部と結着剤のポリフッ化ビニリデン
(PVDF)13重量部を混合し、溶剤のN−メチルピ
ロリジノンに分散させ、天然黒鉛合剤スラリーを調製し
た。次に、この負極合剤スラリーを厚さ18μmの帯状
銅箔製の負極集電体に塗布し乾燥した。この天然黒鉛電
極合剤の厚さは110μmであった。これを85mm×
50mmに打ち抜き銅製のリード線を取り付けた。<Preparation of Negative Electrode> Natural graphite (LF made of Chuetsu graphite)
-18A) 87 parts by weight and 13 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed and dispersed in N-methylpyrrolidinone as a solvent to prepare a natural graphite mixture slurry. Next, this negative electrode mixture slurry was applied to a 18 μm-thick negative electrode current collector made of a strip-shaped copper foil and dried. The thickness of this natural graphite electrode mixture was 110 μm. 85mm ×
A lead wire made of stamped copper was attached to 50 mm.
【0116】<LiCoO2電極の作製>LiCoO2
(本荘FMCエナジーシステムズ(株)製 HLC−2
1)90重量部と、導電剤の黒鉛6重量部及びアセチレ
ンブラック1重量部と結着剤のポリフッ化ビニリデン3
重量部を混合し、溶剤のN−メチルピロリドンに分散さ
せ、LiCoO2合剤スラリーを調製した。このLiC
oO2合剤スラリーを厚さ20μmのアルミ箔に塗布、
乾燥した。これを76mm×46mmに打ち抜き白金製
のリード線を取り付けた。<Preparation of LiCoO 2 electrode> LiCoO 2
(HLC-2 manufactured by Honjo FMC Energy Systems Co., Ltd.)
1) 90 parts by weight, 6 parts by weight of graphite as a conductive agent, 1 part by weight of acetylene black, and polyvinylidene fluoride 3 as a binder
Parts by weight were mixed and dispersed in N-methylpyrrolidone as a solvent to prepare a LiCoO 2 mixture slurry. This LiC
The oO 2 mixture slurry is applied to a 20 μm thick aluminum foil,
Dried. This was punched out to 76 mm x 46 mm, and a lead wire made of platinum was attached.
【0117】<ラミネート電池の作製>寸法85mm×
50mmの天然黒鉛電極、寸法76mm×46mmのL
iCoO2電極を、幅55mm長さ110mmの微多孔
性ポリプロピレンフィルムからできたセパレータを介し
て対向させて電極群とした。この電極群を、アルミニウ
ムラミネートフィルム(昭和ラミネート社製)で作製し
た筒状の袋に、正極、負極の両リード線が片方の開放部
から引き出されるように収容し、まず、リード線が引き
出された側を熱融着して閉じた。次に、前記で調整した
非水電解液1.4mlを電極群に注入し含浸させた後、
残った開放部を熱融着して電極群を袋中に密封し、ラミ
ネート電池を得た。<Preparation of Laminated Battery> Dimension 85 mm ×
50mm natural graphite electrode, L of size 76mm x 46mm
The iCoO 2 electrodes were opposed to each other via a separator made of a microporous polypropylene film having a width of 55 mm and a length of 110 mm to form an electrode group. This electrode group is housed in a cylindrical bag made of an aluminum laminate film (manufactured by Showa Laminate) so that both the positive and negative lead wires are pulled out from one open part. The other side was heat-sealed and closed. Next, 1.4 ml of the nonaqueous electrolyte solution prepared above was injected into the electrode group and impregnated.
The remaining open portion was heat-sealed to seal the electrode group in a bag, thereby obtaining a laminated battery.
【0118】2.ラミネート電池による高温保存中のガ
ス発生量の測定 前述のように作製したラミネート電池を使用し、この電
池を10mA定電流4.2V定電圧の条件で、4.2V
定電圧の時の電流値が0.05mAになるまで充電し、
その後10mA定電流放電し、電池電圧が3.0Vにな
った時点で放電を終了する条件で放電を行った。次に、
この電池を10mA定電流3.85V定電圧の条件で、
3.85V定電圧の時の電流値が0.05mAになるま
で充電した。[0118] 2. Measurement of gas generation amount during high-temperature storage using a laminated battery A laminated battery prepared as described above was used, and this battery was subjected to 4.2 V at a constant current of 10 mA and a constant voltage of 4.2 V.
Charge until the current value at the time of constant voltage becomes 0.05 mA,
Thereafter, the battery was discharged at a constant current of 10 mA, and the battery was discharged under the condition that the discharge was terminated when the battery voltage reached 3.0 V. next,
Under the condition of 10 mA constant current and 3.85 V constant voltage,
The battery was charged until the current value at a constant voltage of 3.85 V became 0.05 mA.
【0119】その後、この電池を、45℃の恒温槽で7
日間エージングを行なった。エージング後、10mA定
電流放電し、電池電圧が3.0Vになった時点で放電を
終了する条件で放電を行った。次に、この電池を10m
A定電流4.2V定電圧の条件で、4.2V定電圧の時
の電流値が0.05mAになるまで充電した。この電池
を、85℃で3日間高温保存した。Thereafter, the battery was placed in a thermostat at 45 ° C. for 7 hours.
Aged for days. After the aging, the battery was discharged at a constant current of 10 mA, and the battery was discharged under the condition that the discharge was stopped when the battery voltage reached 3.0 V. Next, this battery is
The battery was charged under the condition of A constant current of 4.2 V constant voltage until the current value at the time of 4.2 V constant voltage became 0.05 mA. The battery was stored at 85 ° C. for 3 days.
【0120】ラミネート電池作製直後、および高温保存
後に、電池の容積を測定し、その差分をガス発生量とし
た。結果を表3に示す。Immediately after the production of a laminated battery and after storage at a high temperature, the volume of the battery was measured, and the difference was defined as the amount of gas generated. Table 3 shows the results.
【0121】(実施例16)非水電解液として実施例1
0で調整した非水電解液を使用するほかは、参考例2と
同様にして、ラミネート電池を作製し、高温保存中のガ
ス発生量を測定した。結果を表3に示す。(Example 16) Example 1 was used as a non-aqueous electrolyte.
A laminated battery was prepared in the same manner as in Reference Example 2 except that the non-aqueous electrolyte adjusted at 0 was used, and the amount of gas generated during high-temperature storage was measured. Table 3 shows the results.
【0122】(実施例17)非水電解液として実施例1
で調整した非水電解液を使用するほかは、参考例2と同
様にして、ラミネート電池を作製し、高温保存中のガス
発生量を測定した。結果を表3に示す。(Example 17) Example 1 using a non-aqueous electrolyte
A laminated battery was prepared in the same manner as in Reference Example 2 except that the non-aqueous electrolyte prepared in the above was used, and the amount of gas generated during high-temperature storage was measured. Table 3 shows the results.
【0123】(実施例18)非水電解液として実施例1
1で調整した非水電解液を使用するほかは、参考例2と
同様にして、ラミネート電池を作製し、高温保存中のガ
ス発生量を測定した。結果を表3に示す。(Example 18) Example 1 using a non-aqueous electrolyte
A laminated battery was prepared in the same manner as in Reference Example 2 except that the non-aqueous electrolyte prepared in 1 was used, and the amount of gas generated during high-temperature storage was measured. Table 3 shows the results.
【0124】(実施例19)非水電解液として実施例3
で調整した非水電解液を使用するほかは、参考例2と同
様にして、ラミネート電池を作製し、高温保存中のガス
発生量を測定した。結果を表3に示す。(Embodiment 19) Embodiment 3 using a non-aqueous electrolyte
A laminated battery was prepared in the same manner as in Reference Example 2 except that the non-aqueous electrolyte prepared in the above was used, and the amount of gas generated during high-temperature storage was measured. Table 3 shows the results.
【0125】(比較例14)非水電解液として、実施例
3の<非水電解液の調製>において、添加剤として1,
3−プロペンスルトン1.5重量%に代えて、1,3−
プロパンスルトン1.5重量%を添加するほかは同様に
して調整した非水電解液を使用し、参考例2と同様にし
て、ラミネート電池を作製し、高温保存中のガス発生量
を測定した。結果を表3に示す。(Comparative Example 14) As a non-aqueous electrolytic solution, in Example 3, <Preparation of non-aqueous electrolytic solution>,
Instead of 1.5% by weight of 3-propene sultone, 1,3-
Using a non-aqueous electrolyte prepared in the same manner except that 1.5% by weight of propane sultone was added, a laminated battery was prepared in the same manner as in Reference Example 2, and the amount of gas generated during high-temperature storage was measured. Table 3 shows the results.
【0126】[0126]
【表3】 [Table 3]
【0127】(実施例20〜22)実施例1において、
<非水電解液の調製>で非水溶媒としてエチレンカーボ
ネート(EC)とγ−ブチロラクトン(γ−BL)とジ
ブチルカーボネート(DBC)を、EC:γ−BL:D
BC=30:65:5(重量比)の割合で混合し、次に
電解質として、LiPF6を電解質濃度が1モル/リッ
トルとなるように非水電解液を調製し、次にこの非水溶
媒に対して、添加剤としてそれぞれ1,3−プロペンス
ルトン1重量%(実施例20)、1,3−プロペンスル
トン2重量%(実施例21)、1,3−プロペンスルト
ン2重量%とビニレンカーボネート2重量%の混合物
(実施例22)を添加して、非水電解液を得るほかは同
様にしてコイン型電池を作成し、その電池特性を測定し
た。また、添加剤の添加を省略した場合を参考例3とし
た。結果を表4に示した。(Examples 20 to 22) In Example 1,
In <Preparation of Non-Aqueous Electrolyte>, ethylene carbonate (EC), γ-butyrolactone (γ-BL) and dibutyl carbonate (DBC) were used as non-aqueous solvents, and EC: γ-BL: D
BC = 30: 65: 5 (weight ratio), and then, as an electrolyte, LiPF 6 was prepared as a non-aqueous electrolyte so as to have an electrolyte concentration of 1 mol / liter. 1% by weight of 1,3-propene sultone (Example 20), 2% by weight of 1,3-propene sultone (Example 21), 2% by weight of 1,3-propene sultone and vinylene carbonate A coin-type battery was prepared in the same manner except that a 2% by weight mixture (Example 22) was added to obtain a non-aqueous electrolyte, and the battery characteristics were measured. The case where the addition of the additive was omitted was referred to as Reference Example 3. The results are shown in Table 4.
【0128】[0128]
【表4】 [Table 4]
【0129】[0129]
【発明の効果】本発明の不飽和スルトンを添加した電解
液を使用することによって、自己放電が小さく、負荷特
性、抵抗の劣化が大幅に抑制され、かつ、電池内のガス
発生量が大きく減じられた非水電解液二次電池を得るこ
とができる。また、本発明の組成特定の非水溶媒によっ
て、低温特性、負荷特性にも優れた非水電解液二次電池
を得ることができる。According to the present invention, the use of the electrolytic solution to which the unsaturated sultone is added makes it possible to reduce self-discharge, greatly suppress the deterioration of load characteristics and resistance, and greatly reduce the amount of gas generated in the battery. The obtained non-aqueous electrolyte secondary battery can be obtained. Further, the non-aqueous solvent having a specific composition according to the present invention can provide a non-aqueous electrolyte secondary battery having excellent low-temperature characteristics and load characteristics.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 千穂 千葉県袖ヶ浦市長浦580−32 三井化学株 式会社内 (72)発明者 林 剛史 千葉県袖ヶ浦市長浦580−32 三井化学株 式会社内 Fターム(参考) 5H029 AJ02 AJ04 AJ06 AJ07 AK03 AL02 AL07 AL12 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ12 BJ14 DJ08 DJ17 HJ01 HJ02 HJ13 5H050 AA02 AA09 AA12 AA13 BA16 BA17 CA02 CA07 CA08 CA11 CA20 CB01 CB02 CB07 CB08 CB12 FA02 FA05 FA19 HA01 HA02 HA13 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Chiho Hirano 580-32 Nagaura, Sodegaura-shi, Chiba Mitsui Chemicals Co., Ltd. (72) Inventor Takeshi Hayashi 580-32 Nagaura, Sodegaura-shi, Chiba Mitsui Chemicals F Terms (Reference) 5H029 AJ02 AJ04 AJ06 AJ07 AK03 AL02 AL07 AL12 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ12 BJ14 DJ08 DJ17 HJ01 HJ02 HJ13 5H050 AA02 AA09 AA12 AA13 BA16 BA17 CA02 CA07 CA08 CA11 CA02 CB01 CB01
Claims (27)
表わされる化合物であることを特徴とする請求項1に記
載の非水電解液。 【化1】 ここで、R1〜R4は、水素、フッ素、又は、炭素数1
〜12のフッ素を含んでもよい炭化水素基であり、nは
0〜3の整数である。2. The non-aqueous electrolyte according to claim 1, wherein the unsaturated sultone is a compound represented by the following general formula (1). Embedded image Here, R 1 to R 4 are hydrogen, fluorine, or carbon 1
A hydrocarbon group which may contain from 12 to 12 fluorine atoms, and n is an integer from 0 to 3.
ともに水素であることを特徴とする請求項2記載の非水
電解液。3. The non-aqueous electrolyte according to claim 2, wherein in the general formula (1), R 1 to R 4 are both hydrogen.
ことを特徴とする請求項2または3に記載の非水電解
液。4. The non-aqueous electrolyte according to claim 2, wherein n in the general formula (1) is 1.
表される1,3―プロペンスルトンである請求項1に記
載の非水電解液。 【化2】 5. The non-aqueous electrolyte according to claim 1, wherein the unsaturated sultone is 1,3-propene sultone represented by the following formula (2). Embedded image
解液全体に対して0.001重量%〜10重量%である
ことを特徴とする請求項1〜5のいずれかに記載の非水
電解液。6. The non-aqueous electrolyte according to claim 1, wherein the amount of the unsaturated sultone is 0.001% by weight to 10% by weight based on the whole non-aqueous electrolyte. Water electrolyte.
および電解質を含むことを特徴とする請求項1〜6のい
ずれかに記載の非水電解液。7. The non-aqueous electrolyte according to claim 1, further comprising a non-aqueous solvent and an electrolyte in addition to the unsaturated sultone.
び/または鎖状の非プロトン性溶媒を含むことを特徴と
する請求項7に記載の非水電解液。8. The non-aqueous electrolytic solution according to claim 7, wherein the non-aqueous solvent contains a cyclic aprotic solvent and / or a chain aprotic solvent.
ネート、環状カルボン酸エステル、環状スルホンまたは
それらの混合物であることを特徴とする請求項8に記載
の非水電解液。9. The non-aqueous electrolyte according to claim 8, wherein the cyclic aprotic solvent is a cyclic carbonate, a cyclic carboxylate, a cyclic sulfone, or a mixture thereof.
カーボネート、プロピレンカーボネート、ブチレンカー
ボネート、γ−ブチロラクトン、スルホランまたはそれ
らの混合物であることを特徴とする請求項9に記載の非
水電解液。10. The non-aqueous electrolyte according to claim 9, wherein the cyclic aprotic solvent is ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane or a mixture thereof.
ロラクトン、またはγ−ブチロラクトンとエチレンカー
ボネート、プロピレンカーボネート、ブチレンカーボネ
ート、スルホランおよびメチルスルホランから選ばれた
少なくとも1種との混合物であることを特徴とする請求
項9に記載の非水電解液。11. The cyclic aprotic solvent is γ-butyrolactone or a mixture of γ-butyrolactone and at least one selected from ethylene carbonate, propylene carbonate, butylene carbonate, sulfolane and methylsulfolane. The non-aqueous electrolyte according to claim 9, wherein
ボネート、鎖状エステルまたはそれらの混合物であるこ
とを特徴とする請求項8〜11のいずれかに記載の非水
電解液。12. The non-aqueous electrolyte according to claim 8, wherein the chain aprotic solvent is a chain carbonate, a chain ester, or a mixture thereof.
カーボネート、ジエチルカーボネート、メチルエチルカ
ーボネート、メチルプロピルカーボネートのいずれか、
またはそれらの混合物であることを特徴とする請求項1
2に記載の非水電解液。13. The linear aprotic solvent is any of dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate,
Or a mixture thereof.
3. The non-aqueous electrolyte according to 2.
と鎖状の非プロトン性溶媒の重量比率が15:85〜5
5:45であることを特徴とする請求項8〜13のいず
れかに記載の非水電解液。14. The weight ratio of the cyclic aprotic solvent to the chain aprotic solvent in the non-aqueous solvent is 15:85 to 5:
The non-aqueous electrolyte according to any one of claims 8 to 13, wherein the ratio is 5:45.
カーボネート誘導体をさらに含有することを特徴とする
請求項1〜14のいずれかに記載の非水電解液。 【化3】 (R5、R6は、水素、メチル基、エチル基、またはプ
ロピル基である。)15. The non-aqueous electrolyte according to claim 1, further comprising a vinylene carbonate derivative represented by the following general formula (3). Embedded image (R 5 and R 6 are hydrogen, a methyl group, an ethyl group, or a propyl group.)
(3)に示すビニレンカーボネート誘導体の添加比率
が、重量比で、1:100〜100:1であることを特
徴とする請求項15記載の非水電解液。16. The method according to claim 15, wherein the addition ratio of the unsaturated sultone to the vinylene carbonate derivative represented by the general formula (3) is 1: 100 to 100: 1 by weight. Water electrolyte.
16のいずれかに記載の非水電解液。17. The electrolyte according to claim 1, wherein the electrolyte is a lithium salt.
17. The non-aqueous electrolyte according to any one of 16.
F4、LiOSO2CkF (2k+1)(k=1〜8の
整数)、LiClO4、LiAsF6、LiN(SO 2C
kF(2k+1))2(k=1〜8の整数)、LiPF
n(CkF(2k+ 1))(6−n)(n=1〜5、k
=1〜8の整数)から選ばれた少なくとも一つであるこ
とを特徴とする請求項17記載の非水電解液。18. The lithium salt is LiPF6, LiB
F4, LiOSO2CkF (2k + 1)(K = 1-8
Integer), LiClO4, LiAsF6, LiN (SO 2C
kF(2k + 1))2(K = 1 to 8), LiPF
n(CkF(2k + 1))(6-n)(N = 1-5, k
= 1 to 8)
18. The non-aqueous electrolyte according to claim 17, wherein:
トンを含む非水溶媒と、LiPF6を含む電解質を含む
非水電解液。19. A non-aqueous electrolyte containing a non-aqueous solvent containing unsaturated sultone and γ-butyrolactone, and an electrolyte containing LiPF6.
ウム含有合金、リチウムとの合金化が可能な金属もしく
は合金、リチウムイオンのドープ・脱ドープが可能な酸
化物、リチウムイオンのドープ・脱ドープが可能な遷移
金属窒素化物、リチウムイオンのドープ・脱ドープが可
能な炭素材料、またはこれらの混合物から選ばれた少な
くとも一つを含む負極と、正極活物質として遷移金属酸
化物、遷移金属硫化物、リチウムと遷移金属の複合酸化
物、導電性高分子材料、炭素材料から選ばれた少なくと
も一つを含む正極と、請求項1〜19のいずれかに記載
の非水電解液とを含むリチウム二次電池。20. As the negative electrode active material, metallic lithium, a lithium-containing alloy, a metal or alloy capable of being alloyed with lithium, an oxide capable of doping and undoping lithium ions, and a doping and undoping of lithium ions A negative electrode containing at least one selected from a transition metal nitride, a carbon material capable of doping / dedoping lithium ions, or a mixture thereof; A lithium secondary battery comprising: a positive electrode including at least one selected from a composite oxide of a transition metal, a conductive polymer material, and a carbon material; and the nonaqueous electrolyte according to claim 1. .
・脱ドープが可能な炭素材料であることを特徴とする請
求項20に記載のリチウム二次電池。21. The lithium secondary battery according to claim 20, wherein the negative electrode active material is a carbon material capable of doping / dedoping lithium ions.
ープ・脱ドープが可能な炭素材料の、X線解析で測定し
た(002)面における面間隔距離d(002 )が、
0.340nm以下であるであることを特徴とする請求
項21記載のリチウム二次電池。22. The inter-plane distance d (002 ) of the (002) plane of a carbon material capable of being doped / dedoped with lithium ions as a negative electrode active material, as measured by X-ray analysis,
The lithium secondary battery according to claim 21, wherein the thickness is 0.340 nm or less.
剤。23. An electrolyte additive comprising an unsaturated sultone.
で表わされる化合物であることを特徴とする請求項23
に記載の電解液用添加剤。24. An unsaturated sultone having the general formula (1)
24. A compound represented by the formula:
The additive for an electrolytic solution according to 1.
が水素であることを特徴とする請求項24記載の電解液
用添加剤。25. In the general formula (1), R 1 to R 4
25. The additive for an electrolytic solution according to claim 24, wherein is hydrogen.
ることを特徴とする請求項24または25記載の電解液
用添加剤。26. The additive for an electrolytic solution according to claim 24, wherein n is 1 in the general formula (1).
される1,3―プロペンスルトンである請求項23記載
の電解液用添加剤。27. The additive for an electrolytic solution according to claim 23, wherein the unsaturated sultone is 1,3-propene sultone represented by the formula (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001151863A JP4190162B2 (en) | 2001-03-01 | 2001-05-22 | Nonaqueous electrolyte, secondary battery using the same, and additive for electrolyte |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001057437 | 2001-03-01 | ||
JP2001-57437 | 2001-03-01 | ||
JP2001151863A JP4190162B2 (en) | 2001-03-01 | 2001-05-22 | Nonaqueous electrolyte, secondary battery using the same, and additive for electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002329528A true JP2002329528A (en) | 2002-11-15 |
JP4190162B2 JP4190162B2 (en) | 2008-12-03 |
Family
ID=26610470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001151863A Expired - Lifetime JP4190162B2 (en) | 2001-03-01 | 2001-05-22 | Nonaqueous electrolyte, secondary battery using the same, and additive for electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4190162B2 (en) |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004012284A1 (en) * | 2002-07-25 | 2004-02-05 | Kabushiki Kaisha Toshiba | Non-aqueous electrolyte secondary battery |
WO2004023589A1 (en) * | 2002-08-29 | 2004-03-18 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary cell |
WO2004023590A1 (en) * | 2002-08-29 | 2004-03-18 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary cell |
WO2004042859A1 (en) * | 2002-11-06 | 2004-05-21 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
WO2004042860A1 (en) * | 2002-11-06 | 2004-05-21 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
JP2004171981A (en) * | 2002-11-21 | 2004-06-17 | Mitsui Chemicals Inc | Nonaqueous electrolytic solution and secondary battery using the same |
WO2004102700A1 (en) * | 2003-05-15 | 2004-11-25 | Yuasa Corporation | Nonaqueous electrolyte battery |
JP2004342607A (en) * | 2003-04-25 | 2004-12-02 | Mitsui Chemicals Inc | Nonaqueous electrolytic solution for lithium battery and its manufacturing method, and lithium ion secondary battery |
JP2005038722A (en) * | 2003-07-15 | 2005-02-10 | Samsung Sdi Co Ltd | Electrolyte for lithium secondary battery and lithium secondary battery |
JP2005100851A (en) * | 2003-09-25 | 2005-04-14 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2005116398A (en) * | 2003-10-09 | 2005-04-28 | Nec Corp | Nonaqueous electrolyte solution secondary battery |
JP2005135701A (en) * | 2003-10-29 | 2005-05-26 | Nec Corp | Electrolyte for secondary battery and secondary battery using it |
JP2005259381A (en) * | 2004-03-09 | 2005-09-22 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2006004811A (en) * | 2004-06-18 | 2006-01-05 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2006172950A (en) * | 2004-12-16 | 2006-06-29 | Nec Corp | Electrolyte for secondary battery, and the secondary battery |
JP2007128765A (en) * | 2005-11-04 | 2007-05-24 | Sony Corp | Battery |
JP2007207723A (en) * | 2006-02-06 | 2007-08-16 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte secondary battery |
JP2008027837A (en) * | 2006-07-25 | 2008-02-07 | Sony Corp | Electrolyte and battery |
WO2008015987A1 (en) * | 2006-08-04 | 2008-02-07 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte battery, battery pack and vehicle |
CN100389512C (en) * | 2003-05-15 | 2008-05-21 | 株式会社杰士汤浅 | Nonaqueous electrolyte battery |
JP2008153078A (en) * | 2006-12-18 | 2008-07-03 | Sony Corp | Anode and battery |
JP2008165986A (en) * | 2006-12-26 | 2008-07-17 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte and nonaqueous electrolyte battery |
JP2008186803A (en) * | 2007-01-04 | 2008-08-14 | Toshiba Corp | Nonaqueous electrolyte battery, battery pack, and automobile |
US7455933B2 (en) | 2002-11-06 | 2008-11-25 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
WO2009057232A1 (en) * | 2007-11-02 | 2009-05-07 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
WO2009131419A2 (en) | 2008-04-25 | 2009-10-29 | Lg Chem, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same |
JPWO2008032657A1 (en) * | 2006-09-12 | 2010-01-21 | 株式会社ジーエス・ユアサコーポレーション | Method for producing non-aqueous electrolyte secondary battery |
WO2010016520A1 (en) * | 2008-08-06 | 2010-02-11 | 三井化学株式会社 | Nonaqueous electrolyte solution and lithium secondary battery |
JP2010044883A (en) * | 2008-08-08 | 2010-02-25 | Mitsui Chemicals Inc | Nonaqueous electrolyte and lithium secondary battery |
JP2010061851A (en) * | 2008-09-01 | 2010-03-18 | Mitsui Chemicals Inc | Nonaqueous electrolyte solution containing diisothiocyanate derivative, and secondary battery containing the same |
JP2010092698A (en) * | 2008-10-07 | 2010-04-22 | Gs Yuasa Corporation | Nonaqueous electrolyte secondary battery |
WO2011016440A1 (en) * | 2009-08-04 | 2011-02-10 | 和光純薬工業株式会社 | Method for producing cyclic sulfonic acid ester and intermediate thereof |
KR101018142B1 (en) | 2007-01-17 | 2011-02-25 | 주식회사 엘지화학 | Non-aqueous electrolyte and secondary battery comprising same |
KR101069511B1 (en) | 2008-02-01 | 2011-09-30 | 주식회사 엘지화학 | Non-aqueous electrolyte and secondary battery comprising same |
JP2012049106A (en) * | 2010-05-12 | 2012-03-08 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte secondary battery |
WO2012105510A1 (en) | 2011-01-31 | 2012-08-09 | 三菱化学株式会社 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
WO2012132393A1 (en) * | 2011-03-28 | 2012-10-04 | パナソニック株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using same |
WO2012147818A1 (en) * | 2011-04-26 | 2012-11-01 | 宇部興産株式会社 | Non-aqueous electrolytic solution, electrical storage device utilizing same, and cyclic sulfonic acid ester compound |
JP2014027196A (en) * | 2012-07-30 | 2014-02-06 | Jm Energy Corp | Power storage device |
WO2014038174A1 (en) * | 2012-09-06 | 2014-03-13 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery |
JP2014523609A (en) * | 2011-06-14 | 2014-09-11 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Liquid electrolytes for lithium batteries containing ternary mixtures of non-aqueous organic solvents |
US8865350B2 (en) | 2010-02-18 | 2014-10-21 | Sony Corporation | Nonaqueous electrolyte battery |
US9005821B2 (en) | 2009-02-25 | 2015-04-14 | Sony Corporation | Secondary battery |
EP2860797A1 (en) * | 2013-10-11 | 2015-04-15 | Automotive Energy Supply Corporation | Nonaqueous electrolyte secondary battery |
WO2015076261A1 (en) * | 2013-11-19 | 2015-05-28 | 旭化成株式会社 | Non-aqueous lithium-type power storage element |
JP2015099849A (en) * | 2013-11-19 | 2015-05-28 | 旭化成株式会社 | Nonaqueous lithium type power-storage device |
EP2928005A1 (en) | 2014-04-02 | 2015-10-07 | Panax Etec Co., Ltd. | Electrolyte for long cycle life secondary battery and secondary battery containing the same |
KR20150131509A (en) | 2014-05-15 | 2015-11-25 | 파낙스 이텍(주) | electrolyte for lithium secondary battery and lithium secondary battery containing the same |
US9209479B2 (en) | 2005-10-12 | 2015-12-08 | Mitsui Chemicals, Inc. | Nonaqueous electrolyte solution and lithium secondary battery using same |
CN105390745A (en) * | 2014-08-28 | 2016-03-09 | 株式会社杰士汤浅国际 | Energy storage device |
JP2016186883A (en) * | 2015-03-27 | 2016-10-27 | 株式会社Gsユアサ | Electricity storage element |
JP2016189242A (en) * | 2015-03-30 | 2016-11-04 | 日立マクセル株式会社 | Non-aqueous electrolyte battery |
KR20170021335A (en) | 2014-07-02 | 2017-02-27 | 샌트랄 글래스 컴퍼니 리미티드 | Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method |
US20170117577A1 (en) * | 2012-02-28 | 2017-04-27 | Sony Corporation | Secondary battery |
WO2017138452A1 (en) | 2016-02-08 | 2017-08-17 | セントラル硝子株式会社 | Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same |
US10186733B2 (en) | 2015-01-23 | 2019-01-22 | Central Glass Co., Ltd. | Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery |
WO2019054417A1 (en) | 2017-09-12 | 2019-03-21 | セントラル硝子株式会社 | Additive for non-aqueous electrolyte, electrolyte for non-aqueous-electrolyte cell, and non-aqueous-electrolyte cell |
WO2019111983A1 (en) | 2017-12-06 | 2019-06-13 | セントラル硝子株式会社 | Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same |
WO2019111958A1 (en) | 2017-12-06 | 2019-06-13 | セントラル硝子株式会社 | Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used |
US10355312B2 (en) | 2014-03-27 | 2019-07-16 | Daikin Industries, Ltd. | Electrolyte and electrochemical device |
JP2019175577A (en) * | 2018-03-27 | 2019-10-10 | 三井化学株式会社 | Nonaqueous electrolyte solution for battery and lithium secondary battery |
JP2019179614A (en) * | 2018-03-30 | 2019-10-17 | 三井化学株式会社 | Electrolyte solution for batteries and lithium secondary battery |
US10454139B2 (en) | 2015-01-23 | 2019-10-22 | Central Glass Co., Ltd. | Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery |
KR20200094782A (en) | 2017-12-06 | 2020-08-07 | 샌트랄 글래스 컴퍼니 리미티드 | Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same |
KR20200094784A (en) | 2017-12-06 | 2020-08-07 | 샌트랄 글래스 컴퍼니 리미티드 | Electrolyte for nonaqueous electrolyte batteries and nonaqueous electrolyte batteries using the same |
WO2021006302A1 (en) | 2019-07-08 | 2021-01-14 | セントラル硝子株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same |
CN112421109A (en) * | 2020-11-19 | 2021-02-26 | 中节能万润股份有限公司 | Cyclic sulfonate lithium ion battery electrolyte additive, preparation method and application thereof |
US11114693B2 (en) | 2015-08-12 | 2021-09-07 | Central Glass Company, Ltd. | Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery |
JP2021136172A (en) * | 2020-02-27 | 2021-09-13 | 三井化学株式会社 | Lithium secondary battery and manufacturing method of lithium secondary battery |
CN113678283A (en) * | 2019-04-10 | 2021-11-19 | 武藏能源解决方案有限公司 | Method for manufacturing electrode and method for manufacturing power storage device |
KR20220048354A (en) | 2020-10-12 | 2022-04-19 | 주식회사 엘지에너지솔루션 | Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same |
KR20220055725A (en) | 2020-10-27 | 2022-05-04 | 주식회사 엘지에너지솔루션 | Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same |
WO2024082979A1 (en) * | 2022-10-18 | 2024-04-25 | 珠海冠宇电池股份有限公司 | Electrolyte and battery comprising electrolyte |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014170689A (en) * | 2013-03-04 | 2014-09-18 | Mitsui Chemicals Inc | Nonaqueous electrolyte and lithium secondary battery |
JP6735777B2 (en) | 2015-07-16 | 2020-08-05 | エスケー ケミカルズ カンパニー リミテッド | Electrolyte additive for secondary battery, electrolyte containing the same, and secondary battery |
KR20170031530A (en) | 2015-09-11 | 2017-03-21 | 에스케이케미칼주식회사 | Electrolyte additives for secondary battery and electrolyte for secondary battery comprising same |
KR20170039369A (en) | 2015-10-01 | 2017-04-11 | 에스케이케미칼주식회사 | Electrolyte additives for secondary battery and secondary battery comprising same |
CN113690481B (en) | 2019-07-10 | 2022-08-05 | 宁德时代新能源科技股份有限公司 | Lithium ion battery and electric equipment comprising same |
EP4318711A1 (en) | 2021-03-30 | 2024-02-07 | Central Glass Co., Ltd. | Nonaqueous electrolyic solution, nonaqueous electrolytic solution battery, and method for producing nonaqueous electrolytic solution battery |
CN120226185A (en) | 2022-11-24 | 2025-06-27 | 松下新能源株式会社 | Nonaqueous electrolyte for secondary battery and secondary battery |
-
2001
- 2001-05-22 JP JP2001151863A patent/JP4190162B2/en not_active Expired - Lifetime
Cited By (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7261972B2 (en) | 2002-07-25 | 2007-08-28 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
WO2004012284A1 (en) * | 2002-07-25 | 2004-02-05 | Kabushiki Kaisha Toshiba | Non-aqueous electrolyte secondary battery |
US7642015B2 (en) | 2002-07-25 | 2010-01-05 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
WO2004023589A1 (en) * | 2002-08-29 | 2004-03-18 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary cell |
WO2004023590A1 (en) * | 2002-08-29 | 2004-03-18 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary cell |
JPWO2004023589A1 (en) * | 2002-08-29 | 2006-01-05 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
JPWO2004023590A1 (en) * | 2002-08-29 | 2006-01-05 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
JP4537851B2 (en) * | 2002-08-29 | 2010-09-08 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
JP4909512B2 (en) * | 2002-08-29 | 2012-04-04 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
WO2004042859A1 (en) * | 2002-11-06 | 2004-05-21 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
US7455933B2 (en) | 2002-11-06 | 2008-11-25 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
WO2004042860A1 (en) * | 2002-11-06 | 2004-05-21 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
JP2004171981A (en) * | 2002-11-21 | 2004-06-17 | Mitsui Chemicals Inc | Nonaqueous electrolytic solution and secondary battery using the same |
JP2004342607A (en) * | 2003-04-25 | 2004-12-02 | Mitsui Chemicals Inc | Nonaqueous electrolytic solution for lithium battery and its manufacturing method, and lithium ion secondary battery |
JP4803486B2 (en) * | 2003-05-15 | 2011-10-26 | 株式会社Gsユアサ | Non-aqueous electrolyte battery |
JPWO2004102700A1 (en) * | 2003-05-15 | 2006-07-13 | 株式会社ジーエス・ユアサコーポレーション | Non-aqueous electrolyte battery |
WO2004102700A1 (en) * | 2003-05-15 | 2004-11-25 | Yuasa Corporation | Nonaqueous electrolyte battery |
CN100389512C (en) * | 2003-05-15 | 2008-05-21 | 株式会社杰士汤浅 | Nonaqueous electrolyte battery |
JP2005038722A (en) * | 2003-07-15 | 2005-02-10 | Samsung Sdi Co Ltd | Electrolyte for lithium secondary battery and lithium secondary battery |
JP2005100851A (en) * | 2003-09-25 | 2005-04-14 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2005116398A (en) * | 2003-10-09 | 2005-04-28 | Nec Corp | Nonaqueous electrolyte solution secondary battery |
JP2005135701A (en) * | 2003-10-29 | 2005-05-26 | Nec Corp | Electrolyte for secondary battery and secondary battery using it |
JP2005259381A (en) * | 2004-03-09 | 2005-09-22 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2006004811A (en) * | 2004-06-18 | 2006-01-05 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2006172950A (en) * | 2004-12-16 | 2006-06-29 | Nec Corp | Electrolyte for secondary battery, and the secondary battery |
US9209479B2 (en) | 2005-10-12 | 2015-12-08 | Mitsui Chemicals, Inc. | Nonaqueous electrolyte solution and lithium secondary battery using same |
JP2007128765A (en) * | 2005-11-04 | 2007-05-24 | Sony Corp | Battery |
JP2007207723A (en) * | 2006-02-06 | 2007-08-16 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte secondary battery |
JP2008027837A (en) * | 2006-07-25 | 2008-02-07 | Sony Corp | Electrolyte and battery |
US8663850B2 (en) | 2006-08-04 | 2014-03-04 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte battery, battery pack and vehicle |
WO2008015987A1 (en) * | 2006-08-04 | 2008-02-07 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte battery, battery pack and vehicle |
US8211336B2 (en) | 2006-09-12 | 2012-07-03 | Gs Yuasa International Ltd. | Method for producing nonaqueous electrolyte secondary battery |
JPWO2008032657A1 (en) * | 2006-09-12 | 2010-01-21 | 株式会社ジーエス・ユアサコーポレーション | Method for producing non-aqueous electrolyte secondary battery |
JP2008153078A (en) * | 2006-12-18 | 2008-07-03 | Sony Corp | Anode and battery |
US10141562B2 (en) | 2006-12-18 | 2018-11-27 | Murata Manufacturing Co., Ltd. | Anode and battery |
US10476070B2 (en) | 2006-12-18 | 2019-11-12 | Murata Manufacturing Co., Ltd. | Anode and battery |
JP2008165986A (en) * | 2006-12-26 | 2008-07-17 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte and nonaqueous electrolyte battery |
JP2008186803A (en) * | 2007-01-04 | 2008-08-14 | Toshiba Corp | Nonaqueous electrolyte battery, battery pack, and automobile |
US9728809B2 (en) | 2007-01-04 | 2017-08-08 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte battery, battery pack and vehicle |
KR101018142B1 (en) | 2007-01-17 | 2011-02-25 | 주식회사 엘지화학 | Non-aqueous electrolyte and secondary battery comprising same |
WO2009057232A1 (en) * | 2007-11-02 | 2009-05-07 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
KR101069511B1 (en) | 2008-02-01 | 2011-09-30 | 주식회사 엘지화학 | Non-aqueous electrolyte and secondary battery comprising same |
WO2009131419A2 (en) | 2008-04-25 | 2009-10-29 | Lg Chem, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same |
JP2011519133A (en) * | 2008-04-25 | 2011-06-30 | エルジー・ケム・リミテッド | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including the same |
WO2010016520A1 (en) * | 2008-08-06 | 2010-02-11 | 三井化学株式会社 | Nonaqueous electrolyte solution and lithium secondary battery |
JPWO2010016520A1 (en) * | 2008-08-06 | 2012-01-26 | 三井化学株式会社 | Non-aqueous electrolyte and lithium secondary battery |
US9130243B2 (en) | 2008-08-06 | 2015-09-08 | Mitsui Chemicals, Inc. | Non-aqueous electrolytic solution and lithium secondary battery |
JP2010044883A (en) * | 2008-08-08 | 2010-02-25 | Mitsui Chemicals Inc | Nonaqueous electrolyte and lithium secondary battery |
JP2010061851A (en) * | 2008-09-01 | 2010-03-18 | Mitsui Chemicals Inc | Nonaqueous electrolyte solution containing diisothiocyanate derivative, and secondary battery containing the same |
JP2010092698A (en) * | 2008-10-07 | 2010-04-22 | Gs Yuasa Corporation | Nonaqueous electrolyte secondary battery |
US9005821B2 (en) | 2009-02-25 | 2015-04-14 | Sony Corporation | Secondary battery |
JP5668684B2 (en) * | 2009-08-04 | 2015-02-12 | 和光純薬工業株式会社 | Method for producing cyclic sulfonate ester and intermediate thereof |
US8969591B2 (en) | 2009-08-04 | 2015-03-03 | Wako Pure Chemical Industries, Ltd. | Method for producing cyclic sulfonic acid ester and intermediate thereof |
WO2011016440A1 (en) * | 2009-08-04 | 2011-02-10 | 和光純薬工業株式会社 | Method for producing cyclic sulfonic acid ester and intermediate thereof |
CN102471305A (en) * | 2009-08-04 | 2012-05-23 | 和光纯药工业株式会社 | Method for producing cyclic sulfonic acid ester and intermediate thereof |
CN103833723B (en) * | 2009-08-04 | 2016-08-17 | 和光纯药工业株式会社 | The manufacture method of cyclic sulfonic acid ester and intermediate thereof |
US8673963B2 (en) | 2009-08-04 | 2014-03-18 | Wako Pure Chemical Industries, Ltd. | Method for producing cyclic sulfonic acid ester and intermediate thereof |
CN103833723A (en) * | 2009-08-04 | 2014-06-04 | 和光纯药工业株式会社 | Method for producing cyclic sulfonic acid ester and intermediate thereof |
EP2757102A1 (en) | 2009-08-04 | 2014-07-23 | Wako Pure Chemical Industries, Ltd. | 1,3-propanesultone derivative useful in the preparation of a 1,3-propenesultone derivative |
TWI469957B (en) * | 2009-08-04 | 2015-01-21 | Wako Pure Chem Ind Ltd | Method for making cyclic sulfonic acid ester and intermediate thereof |
US8865350B2 (en) | 2010-02-18 | 2014-10-21 | Sony Corporation | Nonaqueous electrolyte battery |
JP2012049106A (en) * | 2010-05-12 | 2012-03-08 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte secondary battery |
US9806375B2 (en) | 2011-01-31 | 2017-10-31 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
KR20190025032A (en) | 2011-01-31 | 2019-03-08 | 미쯔비시 케미컬 주식회사 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
WO2012105510A1 (en) | 2011-01-31 | 2012-08-09 | 三菱化学株式会社 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
US11688881B2 (en) | 2011-01-31 | 2023-06-27 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
JP5089828B2 (en) * | 2011-03-28 | 2012-12-05 | パナソニック株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
US20130330636A1 (en) * | 2011-03-28 | 2013-12-12 | Panasonic Corporation | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using same |
WO2012132393A1 (en) * | 2011-03-28 | 2012-10-04 | パナソニック株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using same |
CN103283076A (en) * | 2011-03-28 | 2013-09-04 | 松下电器产业株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using same |
WO2012147818A1 (en) * | 2011-04-26 | 2012-11-01 | 宇部興産株式会社 | Non-aqueous electrolytic solution, electrical storage device utilizing same, and cyclic sulfonic acid ester compound |
US9608287B2 (en) | 2011-04-26 | 2017-03-28 | Ube Industries, Ltd. | Non-aqueous electrolytic solution, electrical storage device utilizing same, and cyclic sulfonic acid ester compound |
JP6036687B2 (en) * | 2011-04-26 | 2016-11-30 | 宇部興産株式会社 | Non-aqueous electrolyte, power storage device using the same, and cyclic sulfonate compound |
JP2014523609A (en) * | 2011-06-14 | 2014-09-11 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Liquid electrolytes for lithium batteries containing ternary mixtures of non-aqueous organic solvents |
US20170117577A1 (en) * | 2012-02-28 | 2017-04-27 | Sony Corporation | Secondary battery |
US10833362B2 (en) * | 2012-02-28 | 2020-11-10 | Murata Manufacturing Co., Ltd. | Secondary battery including electrolyte having an unsaturated cyclic ester carbonate |
JP2014027196A (en) * | 2012-07-30 | 2014-02-06 | Jm Energy Corp | Power storage device |
WO2014038174A1 (en) * | 2012-09-06 | 2014-03-13 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery |
JPWO2014038174A1 (en) * | 2012-09-06 | 2016-08-08 | 株式会社Gsユアサ | Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery |
EP2860797A1 (en) * | 2013-10-11 | 2015-04-15 | Automotive Energy Supply Corporation | Nonaqueous electrolyte secondary battery |
WO2015076261A1 (en) * | 2013-11-19 | 2015-05-28 | 旭化成株式会社 | Non-aqueous lithium-type power storage element |
CN105723483A (en) * | 2013-11-19 | 2016-06-29 | 旭化成株式会社 | Non-aqueous lithium-type power storage element |
US10242809B2 (en) | 2013-11-19 | 2019-03-26 | Asahi Kasei Kabushiki Kaisha | Non-aqueous lithium-type power storage element |
JPWO2015076261A1 (en) * | 2013-11-19 | 2017-03-16 | 旭化成株式会社 | Non-aqueous lithium storage element |
JP2015099849A (en) * | 2013-11-19 | 2015-05-28 | 旭化成株式会社 | Nonaqueous lithium type power-storage device |
US10355312B2 (en) | 2014-03-27 | 2019-07-16 | Daikin Industries, Ltd. | Electrolyte and electrochemical device |
EP2928005A1 (en) | 2014-04-02 | 2015-10-07 | Panax Etec Co., Ltd. | Electrolyte for long cycle life secondary battery and secondary battery containing the same |
KR20150131509A (en) | 2014-05-15 | 2015-11-25 | 파낙스 이텍(주) | electrolyte for lithium secondary battery and lithium secondary battery containing the same |
KR20170021335A (en) | 2014-07-02 | 2017-02-27 | 샌트랄 글래스 컴퍼니 리미티드 | Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method |
US10424794B2 (en) | 2014-07-02 | 2019-09-24 | Central Glass Co., Ltd. | Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method |
CN105390745B (en) * | 2014-08-28 | 2020-06-23 | 株式会社杰士汤浅国际 | Electric storage element |
CN105390745A (en) * | 2014-08-28 | 2016-03-09 | 株式会社杰士汤浅国际 | Energy storage device |
US10186733B2 (en) | 2015-01-23 | 2019-01-22 | Central Glass Co., Ltd. | Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery |
US10454139B2 (en) | 2015-01-23 | 2019-10-22 | Central Glass Co., Ltd. | Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery |
JP2016186883A (en) * | 2015-03-27 | 2016-10-27 | 株式会社Gsユアサ | Electricity storage element |
JP2016189242A (en) * | 2015-03-30 | 2016-11-04 | 日立マクセル株式会社 | Non-aqueous electrolyte battery |
US11114693B2 (en) | 2015-08-12 | 2021-09-07 | Central Glass Company, Ltd. | Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery |
KR20210013779A (en) | 2016-02-08 | 2021-02-05 | 샌트랄 글래스 컴퍼니 리미티드 | Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same |
WO2017138452A1 (en) | 2016-02-08 | 2017-08-17 | セントラル硝子株式会社 | Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same |
US11302964B2 (en) | 2016-02-08 | 2022-04-12 | Central Glass Company, Limited | Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same |
EP4455154A2 (en) | 2017-09-12 | 2024-10-30 | Central Glass Company, Limited | Additive for non-aqueous electrolyte, electrolyte for non-aqueous-electrolyte cell, and non-aqueous-electrolyte cell |
US11545697B2 (en) | 2017-09-12 | 2023-01-03 | Central Glass Co., Ltd. | Additive for non-aqueous electrolyte solution, electrolyte solution for non-aqueous electrolyte solution battery, and non-aqueous electrolyte solution battery |
WO2019054417A1 (en) | 2017-09-12 | 2019-03-21 | セントラル硝子株式会社 | Additive for non-aqueous electrolyte, electrolyte for non-aqueous-electrolyte cell, and non-aqueous-electrolyte cell |
KR20200051786A (en) | 2017-09-12 | 2020-05-13 | 샌트랄 글래스 컴퍼니 리미티드 | Additives for non-aqueous electrolytes, electrolytes for non-aqueous electrolyte batteries, and non-aqueous electrolyte batteries |
US11502335B2 (en) | 2017-12-06 | 2022-11-15 | Central Glass Co., Ltd. | Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same |
WO2019111958A1 (en) | 2017-12-06 | 2019-06-13 | セントラル硝子株式会社 | Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used |
US12199241B2 (en) | 2017-12-06 | 2025-01-14 | Central Glass Company, Limited | Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same |
KR20200094784A (en) | 2017-12-06 | 2020-08-07 | 샌트랄 글래스 컴퍼니 리미티드 | Electrolyte for nonaqueous electrolyte batteries and nonaqueous electrolyte batteries using the same |
WO2019111983A1 (en) | 2017-12-06 | 2019-06-13 | セントラル硝子株式会社 | Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same |
KR20200094782A (en) | 2017-12-06 | 2020-08-07 | 샌트랄 글래스 컴퍼니 리미티드 | Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same |
JP2019175577A (en) * | 2018-03-27 | 2019-10-10 | 三井化学株式会社 | Nonaqueous electrolyte solution for battery and lithium secondary battery |
JP7115724B2 (en) | 2018-03-27 | 2022-08-09 | 三井化学株式会社 | Non-aqueous electrolyte for batteries and lithium secondary batteries |
JP2019179614A (en) * | 2018-03-30 | 2019-10-17 | 三井化学株式会社 | Electrolyte solution for batteries and lithium secondary battery |
CN113678283A (en) * | 2019-04-10 | 2021-11-19 | 武藏能源解决方案有限公司 | Method for manufacturing electrode and method for manufacturing power storage device |
CN113678283B (en) * | 2019-04-10 | 2024-03-01 | 武藏能源解决方案有限公司 | Electrode manufacturing method and power storage device manufacturing method |
KR20220027953A (en) | 2019-07-08 | 2022-03-08 | 샌트랄 글래스 컴퍼니 리미티드 | Non-aqueous electrolyte and non-aqueous electrolyte battery using same |
WO2021006302A1 (en) | 2019-07-08 | 2021-01-14 | セントラル硝子株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same |
JP7428346B2 (en) | 2020-02-27 | 2024-02-06 | 三井化学株式会社 | Lithium secondary battery and method for manufacturing lithium secondary battery |
JP2021136172A (en) * | 2020-02-27 | 2021-09-13 | 三井化学株式会社 | Lithium secondary battery and manufacturing method of lithium secondary battery |
WO2022080770A1 (en) | 2020-10-12 | 2022-04-21 | 주식회사 엘지에너지솔루션 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
KR20220048354A (en) | 2020-10-12 | 2022-04-19 | 주식회사 엘지에너지솔루션 | Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same |
KR20220055725A (en) | 2020-10-27 | 2022-05-04 | 주식회사 엘지에너지솔루션 | Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same |
US12068455B2 (en) | 2020-10-27 | 2024-08-20 | Lg Energy Solution, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
CN112421109B (en) * | 2020-11-19 | 2022-04-26 | 中节能万润股份有限公司 | Cyclic sulfonate lithium ion battery electrolyte additive, preparation method and application thereof |
CN112421109A (en) * | 2020-11-19 | 2021-02-26 | 中节能万润股份有限公司 | Cyclic sulfonate lithium ion battery electrolyte additive, preparation method and application thereof |
WO2024082979A1 (en) * | 2022-10-18 | 2024-04-25 | 珠海冠宇电池股份有限公司 | Electrolyte and battery comprising electrolyte |
Also Published As
Publication number | Publication date |
---|---|
JP4190162B2 (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4190162B2 (en) | Nonaqueous electrolyte, secondary battery using the same, and additive for electrolyte | |
JP4187959B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP5192237B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
JP4450550B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP4780833B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP5030074B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP5390736B2 (en) | Non-aqueous electrolyte for electrochemical devices | |
JP5274562B2 (en) | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery | |
JP4067824B2 (en) | Non-aqueous electrolyte and lithium secondary battery including the same | |
JP4557381B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP4711639B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
JP4863572B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP4565707B2 (en) | Nonaqueous electrolyte and secondary battery using the same | |
JP2003317800A (en) | Manufacturing method of nonaqueous electrolyte battery and nonaqueous electrolyte battery provided by method | |
JP2019175577A (en) | Nonaqueous electrolyte solution for battery and lithium secondary battery | |
JP4662600B2 (en) | Electrolytic solution for lithium battery and secondary battery using the same | |
JP2010061851A (en) | Nonaqueous electrolyte solution containing diisothiocyanate derivative, and secondary battery containing the same | |
JP4424895B2 (en) | Lithium secondary battery | |
JP4608197B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP2005285492A (en) | Nonaqueous electrolyte solution and lithium secondary battery using it | |
JP2002008717A (en) | Nonaqueous electrolyte and secondary battery using the same | |
JP3949337B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
KR100597143B1 (en) | Additives for electrolytes, nonaqueous electrolytes, and secondary batteries using the same | |
KR100594474B1 (en) | Non-aqueous electrolytic solutions and secondary battery containing the same | |
JP2004087282A (en) | Nonaqueous electrolytic solution and secondary battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060130 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20080618 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20080708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080916 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4190162 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |