[go: up one dir, main page]

JP2002324544A - Positive electrode for lithium secondary battery and lithium secondary battery - Google Patents

Positive electrode for lithium secondary battery and lithium secondary battery

Info

Publication number
JP2002324544A
JP2002324544A JP2001300554A JP2001300554A JP2002324544A JP 2002324544 A JP2002324544 A JP 2002324544A JP 2001300554 A JP2001300554 A JP 2001300554A JP 2001300554 A JP2001300554 A JP 2001300554A JP 2002324544 A JP2002324544 A JP 2002324544A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
secondary battery
active material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001300554A
Other languages
Japanese (ja)
Inventor
Takeshi Moriuchi
健 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2001300554A priority Critical patent/JP2002324544A/en
Publication of JP2002324544A publication Critical patent/JP2002324544A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a lithium secondary battery, which can attain the lithium secondary battery showing an excellent discharging characteristic at a high rate discharging. SOLUTION: The positive electrode for the lithium secondary battery is made by forming a plied layer including an active material, a conductive material and an adhesive on a collector. The lithium secondary battery whose filling density in the layer of the piled layer is more than 3 g/cm<3> and whose impregnation ratio of an electrolyte as 6 to 20% is constituted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
正極およびリチウム二次電池に関する。
The present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池の正極は、一般に、A
l箔等からなる集電体上に活物質、導電材および結着剤
を含む合材の層を形成した構成からなり、かかる合材の
層は、通常、集電体上に活物質、導電材および結着剤を
含むスラリーを塗工、乾燥し、得られた塗膜に圧延処理
を施すことで形成されている。ここで、活物質として
は、例えば、LiCoO2等のLiCo系複合酸化物が
使用され、導電材としては、例えば、粒状の炭素材料が
使用されている。
2. Description of the Related Art In general, a positive electrode of a lithium secondary battery generally has
(1) A layer of a mixture containing an active material, a conductive material and a binder is formed on a current collector made of a foil or the like. It is formed by applying and drying a slurry containing a material and a binder, and subjecting the obtained coating film to a rolling treatment. Here, as the active material, for example, a LiCo-based composite oxide such as LiCoO 2 is used, and as the conductive material, for example, a granular carbon material is used.

【0003】電池を高容量化する際、通常、正極におけ
る集電体上の合材の量(活物質、導電材および結着剤を
含むスラリーの塗工量)を多くし、圧延することで、合
材の層における合材の充填密度を高める。しかし、合材
の充填密度を高めると当該層の多孔性が損なわれて、電
解液が十分に含浸されず、活物質の周囲が十分に電解液
で満たされなくなる。このような活物質の周囲が十分に
電解液で満たされない場合、ハイレート放電時に(特に
低温において)、活物質におけるリチウムイオンの挿入
・脱離が妨げられ、放電容量が低下する(特に低温では
放電容量および放電電圧が低下する)問題に繋がる。
[0003] When increasing the capacity of a battery, usually, the amount of the mixture on the current collector in the positive electrode (the coating amount of the slurry containing the active material, the conductive material, and the binder) is increased, and rolling is performed by rolling. And increase the packing density of the mixture in the layer of the mixture. However, if the packing density of the mixture is increased, the porosity of the layer is impaired, the electrolyte is not sufficiently impregnated, and the periphery of the active material is not sufficiently filled with the electrolyte. If the surroundings of such an active material are not sufficiently filled with the electrolytic solution, insertion and removal of lithium ions in the active material are prevented during high-rate discharge (particularly at low temperatures), and the discharge capacity is reduced (particularly at low temperatures. Capacity and discharge voltage).

【0004】[0004]

【発明が解決しようとする課題】上記事情に鑑み、本発
明は、ハイレート放電時に優れた放電特性を示すリチウ
ム二次電池を達成し得るリチウム二次電池用の正極を提
供することを目的とする。また、ハイレート放電時に優
れた放電特性を示すリチウム二次電池を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a positive electrode for a lithium secondary battery capable of achieving a lithium secondary battery exhibiting excellent discharge characteristics during high-rate discharge. . Another object of the present invention is to provide a lithium secondary battery exhibiting excellent discharge characteristics during high-rate discharge.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の構成を特徴とする。 (1)集電体上に、活物質、導電材および結着剤を含む
合材の層を形成してなるリチウム二次電池用正極であっ
て、前記合材の層における合材の充填密度が3g/cm
3以上であり、かつ、電解液の含浸率が6〜20%であ
るリチウム二次電池用正極。 (2)上記(1)記載の正極を有するリチウム二次電
池。
In order to achieve the above object, the present invention has the following features. (1) A positive electrode for a lithium secondary battery in which a layer of a mixture containing an active material, a conductive material, and a binder is formed on a current collector, and the packing density of the mixture in the layer of the mixture is Is 3g / cm
A positive electrode for a lithium secondary battery, wherein the positive electrode has an impregnation ratio of 6 to 20% with an electrolyte solution of 3 or more. (2) A lithium secondary battery having the positive electrode according to (1).

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のリチウム二次電池用正極(以下、単に正極とも
称する)は、集電体上の、活物質、導電材および結着剤
を含む合材の層の充填密度が3g/cm3以上であり、
かつ、電解液の含浸率が6〜20%であることが特徴で
ある。すなわち、本発明のリチウム二次電池用正極は、
従来困難であった、活物質を含む合材の層(以下、「合
材層」または「活物質層」ともいう)における合材の高
充填密度化と電解液の高含浸率化を両立したもので、上
記特定の充填密度および電解液の含浸率を有する合材の
層を集電体上に有することにより、リチウム二次電池の
ハイレート放電時における放電容量の低下(特に低温で
の放電容量および放電電圧の低下)を抑制することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The positive electrode for a lithium secondary battery of the present invention (hereinafter, also simply referred to as a positive electrode) has a packing density of 3 g / cm 3 or more of a layer of a mixture containing an active material, a conductive material, and a binder on a current collector. Yes,
Further, it is characterized in that the impregnation rate of the electrolyte is 6 to 20%. That is, the positive electrode for a lithium secondary battery of the present invention,
Conventionally, it was possible to achieve both a high packing density of the mixture and a high impregnation rate of the electrolyte in the layer of the mixture containing the active material (hereinafter also referred to as “mixture layer” or “active material layer”), which was difficult in the past. By having a layer of the mixture having the specific packing density and the impregnation rate of the electrolyte on the current collector, the discharge capacity at the time of high-rate discharge of the lithium secondary battery is reduced (particularly, the discharge capacity at a low temperature). And a decrease in discharge voltage).

【0007】上記合材の層の充填密度(g/cm3
は、集電体上の単位面積当りの合材の存在量(g/cm
2)/を求め、これを合材の層の平均厚み(cm)で割
ることによって求められる。また、電解液の含浸率
(%)とは、集電体上の単位面積当たり合材の存在量
(g/cm2)をWaとし、正極に飽和状態となるまで
電解液を含浸させたときの含浸前からの正味の重量増加
分をWbとしたきに、下記式で計算して得られる値であ
る。 含浸率(%)=100×(Wb/Wa)
The packing density (g / cm 3 ) of the mixture layer
Is the amount of the mixture per unit area on the current collector (g / cm
2 ) / is determined, and this is divided by the average thickness (cm) of the mixture layer. The impregnation rate (%) of the electrolytic solution is defined as the amount of the mixture per unit area on the current collector (g / cm 2 ) being Wa and impregnating the positive electrode with the electrolytic solution until the cathode is saturated. Is a value obtained by calculating with the following formula, where Wb is the net weight increase before impregnation. Impregnation rate (%) = 100 × (Wb / Wa)

【0008】本発明の正極に用いる活物質としては、L
iCoO2 やLiA Co1-X MeX2 で示されるLi
−Co系複合酸化物が挙げられる。後者のLiA Co
1-X MeX 2において、式中Aは0.05〜1.5
(好ましくは0.1〜1.1)、Xは0.01〜0.5
(好ましく0.02〜0.2)、MeはZr、V、C
r、Mo、Mn、Fe、Ni、B、Al、Ge、Pb、
SnおよびSbから選ばれる1種または2種以上の元素
である。なお、Meが2種以上の元素である場合、Xは
2種以上の元素の合計量である。
The active material used for the positive electrode of the present invention is L
Li represented by iCoO 2 or Li A Co 1-x Me X O 2
—Co-based composite oxide. The latter Li A Co
In 1-X Me X O 2, the formula A 0.05 to 1.5
(Preferably 0.1 to 1.1), X is 0.01 to 0.5
(Preferably 0.02 to 0.2), and Me is Zr, V, C
r, Mo, Mn, Fe, Ni, B, Al, Ge, Pb,
One or more elements selected from Sn and Sb. When Me is two or more elements, X is the total amount of the two or more elements.

【0009】これら中でも、LiCoO2(コバルト酸
リチウム)が好ましく、また、LiCoO2(コバルト
酸リチウム)の中でも、その結晶の(003)面方向に
おける結晶サイズが800オングストローム以上で、且
つ1つのコバルト原子に対する他のコバルト原子の配位
数が5.7以上であるものがより好ましい。かかる結晶
の(003)面方向における結晶子サイズが800オン
グストローム以上で、且つ1つのコバルト原子に対する
他のコバルト原子の配位数が5.7以上のLiCoO2
(コバルト酸リチウム)は、ハイレート放電時における
リチウムイオンの挿入・脱離が比較的スムーズであり、
合材層内に高含浸率に電解液を含浸させたこと(活物質
の周囲に十分に電解液を存在させたこと)による効果が
十分に引き出され、より好ましい結果が得られる。
Among them, LiCoO 2 (lithium cobaltate) is preferable, and among LiCoO 2 (lithium cobaltate), the crystal size in the (003) plane direction is 800 Å or more and one cobalt atom More preferably, the coordination number of another cobalt atom with respect to is 5.7 or more. LiCoO 2 having a crystallite size of 800 Å or more in the (003) plane direction of such a crystal and a coordination number of another cobalt atom to one cobalt atom of 5.7 or more.
(Lithium cobalt oxide) is relatively smooth to insert and remove lithium ions during high-rate discharge,
The effect of impregnating the electrolyte layer with a high impregnation rate in the mixture layer (by allowing the electrolyte solution to sufficiently exist around the active material) is sufficiently obtained, and more preferable results are obtained.

【0010】コバルト酸リチウムの理想的な構造は、酸
素原子(O)が六方最密構造を形成し、C軸に垂直な酸
素原子の層間にコバルト原子(Co)の層およびリチウ
ム原子(Li)の層が交互に挿入された構造である(図
1参照)。このような結晶の発達(結晶性)を表わす指
標として、結晶子サイズがよく用いられる。本発明で使
用する上記LiCoO2(コバルト酸リチウム)におけ
る結晶子サイズとは、かかる結晶の発達(結晶性)を表
わす指標としての結晶子サイズであり、図2に示すよう
に、活物質粒子内における単結晶の大きさのことであ
る。
The ideal structure of lithium cobalt oxide is such that oxygen atoms (O) form a hexagonal close-packed structure, a layer of cobalt atoms (Co) and a layer of lithium atoms (Li) between oxygen atoms perpendicular to the C axis. Are alternately inserted (see FIG. 1). As an index indicating such crystal development (crystallinity), crystallite size is often used. The crystallite size in the above-mentioned LiCoO 2 (lithium cobaltate) used in the present invention is a crystallite size as an index indicating the development (crystallinity) of such a crystal, and as shown in FIG. Means the size of the single crystal.

【0011】本発明において、(003)面方向におけ
る結晶子サイズが800オングストローム以上で、且つ
1つのコバルト原子に対する他のコバルト原子の配位数
が5.7以上のLiCoO2(コバルト酸リチウム)
は、結晶の(003)面方向における結晶子サイズが8
50オングストローム以上であるのがより好ましく、ま
た、その上限は特に制限されないが、好ましくは100
00オングストローム以下、さらに好ましくは1000
オングストローム以下である。(003)面方向におけ
る結晶子サイズが10000オングストロームを超える
場合、活物質中でのイオンの移動距離が長くなるので、
リチウムイオンの動きが制限されやすくなり、好ましく
ない。また、1つのコバルト原子に対する他のコバルト
原子の配位数は5.8以上が好ましく、より好ましくは
5.9以上であり、また、その上限は6である。1つの
コバルト原子に対する他のコバルト原子の配位数が6を
超える場合、理論上、結晶構造が崩れることを意味し、
容量の低下となり、好ましくない。
In the present invention, LiCoO 2 (lithium cobaltate) having a crystallite size in the (003) plane direction of 800 Å or more and a coordination number of one cobalt atom to another cobalt atom of 5.7 or more is used.
Means that the crystallite size in the (003) plane direction of the crystal is 8
It is more preferably 50 Å or more, and the upper limit is not particularly limited.
00 angstrom or less, more preferably 1000
Angstrom or less. When the crystallite size in the (003) plane direction exceeds 10,000 angstroms, the movement distance of ions in the active material becomes long.
The movement of lithium ions is likely to be restricted, which is not preferable. The coordination number of one cobalt atom to another cobalt atom is preferably 5.8 or more, more preferably 5.9 or more, and the upper limit thereof is 6. When the coordination number of one cobalt atom to another cobalt atom exceeds 6, it means that the crystal structure is theoretically broken,
The capacity is reduced, which is not preferable.

【0012】LiCoO2(コバルト酸リチウム)の結
晶の(003)面方向における結晶子サイズは、例えば
以下の方法によって測定することができる。
The crystallite size in the (003) plane direction of LiCoO 2 (lithium cobaltate) crystal can be measured, for example, by the following method.

【0013】先ず、X線標準用高純度シリコンをメノウ
乳鉢で350メッシュふるい以下に粉砕し、試料板に均
一に充填し、X線回折装置(理学電機社製、RINT2
000、X線源:CuKα)によってシリコンの(11
1)、(220)、(311)および(400)ピーク
を測定する。このとき、X線源の管電圧および管電流は
一定とし、各ピークの強度が同じになるよう計数時間を
調整する。得られた各ピークの回折析線の広がりを積分
幅で表すものとし、それをコバルト酸リチウムの(00
3)ピークの得られる回折角に外挿することにより、装
置に起因する回折線の広がりを決定する。
First, high-purity X-ray standard silicon is pulverized in an agate mortar into a sieve of 350 mesh or less, uniformly filled in a sample plate, and subjected to an X-ray diffractometer (RINT2, manufactured by Rigaku Corporation).
000, X-ray source: CuKα)
1) Measure (220), (311) and (400) peaks. At this time, the tube voltage and the tube current of the X-ray source are fixed, and the counting time is adjusted so that the intensity of each peak becomes the same. The spread of the diffraction line of each obtained peak is represented by an integral width, which is expressed as (00
3) The extrapolation of the diffraction line due to the device is determined by extrapolating to the diffraction angle at which the peak is obtained.

【0014】次に、コバルト酸リチウムの結晶の(00
3)ピークを上記の標準物質と同じ装置かつ同じ条件で
測定し、結晶子サイズと装置の両方に起因する回折線の
広がりを上記と同様にして求める。さらに、測定された
ピークの広がりがコーシー(Cauchy)関数で近似できる
と仮定して、結晶子サイズのみに起因する回折線の広が
りを求め、下記のシェラー(Scherrer)の式に基づいて
結晶子サイズを算出する。
Next, the (00)
3) The peak is measured under the same apparatus and under the same conditions as the above-mentioned standard substance, and the spread of the diffraction line caused by both the crystallite size and the apparatus is determined in the same manner as above. Further, assuming that the measured peak spread can be approximated by the Cauchy function, the spread of the diffraction line caused only by the crystallite size is obtained, and the crystallite size is calculated based on the Scherrer equation below. Is calculated.

【0015】[0015]

【数1】 (Equation 1)

【0016】(D:結晶子サイズ、K:シェラー定数
(=1.05)、λ:X線の波長、β:ピークの積分幅
より算出した回折線の拡がり、θ:回折角度)
(D: crystallite size, K: Scherrer constant (= 1.05), λ: wavelength of X-ray, β: spread of diffraction line calculated from integrated width of peak, θ: diffraction angle)

【0017】また、コバルト酸リチウム結晶における1
つのコバルト原子に対する他のコバルト原子の配位数
は、広域X線吸収微細構造解析法(EXAFS)による
ものであり、CoK吸収端の解析にて行なう。具体的に
は、文部省高エネルギー加速器研究機構放射光研究施設
の2.5GeV−PFリングBL12ビームラインなど
によって得た放射光をモノクロメーターによって分光
し、得られた硬X線を試料に照射し、透過したエネルギ
ー7200〜8700eVのX線吸収スペクトルをイオ
ンチェンバーにより検出し、フーリエ変換によって得ら
れる動経構造関数のCo−Co(原子間距離=2.81
オングストローム)に起因するピークから配位数を算出
する。
In addition, 1 in lithium cobaltate crystals
The coordination number of one cobalt atom to another cobalt atom is based on the wide area X-ray absorption fine structure analysis method (EXAFS), and is performed by analyzing the CoK absorption edge. Specifically, the emitted light obtained by the 2.5 GeV-PF ring BL12 beam line of the Ministry of Education High Energy Accelerator Research Organization Synchrotron Radiation Research Facility is separated by a monochromator, and the obtained hard X-rays are irradiated on the sample, The transmitted X-ray absorption spectrum having an energy of 7200 to 8700 eV is detected by an ion chamber, and the Co-Co (interatomic distance = 2.81) of the kinematic structure function obtained by Fourier transform is obtained.
Angstroms) to calculate the coordination number.

【0018】当該(003)面方向における結晶子サイ
ズが800オングストローム以上で、且つ1つのコバル
ト原子に対する他のコバルト原子の配位数が5.7以上
のLiCoO2(コバルト酸リチウム)は、以下の工程
を経ることによって製造することができる。例えば炭酸
リチウムと酸化コバルトとをリチウム/コバルトの原子
比で0.99〜1.10の配合割合になるように混合
し、600〜1100℃、好ましくは700〜1000
℃にて、少なくとも2時間、好ましくは5〜15時間焼
成する。塊状の焼成物を粉砕した粒状物を400〜75
0℃、好ましくは450〜700℃程度の高温度下で
0.5〜50時間、特に1〜20時間程度熱処理するこ
とによって製造することができる。この熱処理は、大気
中、大気と炭酸ガスとの混合ガス中、あるいは窒素、ア
ルゴンなどの不活性ガス中で行なうことができる。この
加熱処理に先立って、粉砕した粒状物をふるいにかけ
て、分級を行なうことが好ましい。
LiCoO 2 (lithium cobaltate) having a crystallite size of 800 Å or more in the (003) plane direction and a coordination number of one cobalt atom to another cobalt atom of 5.7 or more is as follows. It can be manufactured through a process. For example, lithium carbonate and cobalt oxide are mixed at an atomic ratio of lithium / cobalt of 0.99 to 1.10, and are mixed at 600 to 1100C, preferably 700 to 1000C.
Firing at a temperature of at least 2 hours, preferably 5 to 15 hours. 400-75 granules obtained by pulverizing the massive fired product
It can be produced by heat treatment at a high temperature of 0 ° C, preferably about 450 to 700 ° C for 0.5 to 50 hours, particularly about 1 to 20 hours. This heat treatment can be performed in the atmosphere, in a mixed gas of the atmosphere and carbon dioxide, or in an inert gas such as nitrogen or argon. Prior to this heat treatment, it is preferable to classify the crushed granules by sieving them.

【0019】本発明で使用するLi−Co系複合酸化物
の粒径は、特に限定はされないが、異常な電池反応の防
止の観点から、平均粒径が1μmより大きいものが好ま
しく、5μm以上がより好ましい。また、活物質層の低
抵抗化の観点から、平均粒径が25μm以下が好まし
く、23μm以下がより好ましい。
The particle size of the Li—Co-based composite oxide used in the present invention is not particularly limited, but from the viewpoint of preventing abnormal battery reaction, the average particle size is preferably larger than 1 μm, more preferably 5 μm or more. More preferred. Further, from the viewpoint of reducing the resistance of the active material layer, the average particle size is preferably 25 μm or less, more preferably 23 μm or less.

【0020】また、比表面積は0.1〜0.3m2/g
であるのが好ましく、0.15〜0.25m2/gであ
るのがより好ましい。比表面積がかかる好ましい範囲に
あれば、電池の放電特性(特にハイレート放電特性)が
より向上し、また、電池の安全性が向上する(活物質か
らの酸素脱離が起こりにくい)。
The specific surface area is 0.1 to 0.3 m 2 / g.
And more preferably 0.15 to 0.25 m 2 / g. When the specific surface area is in such a preferable range, the discharge characteristics (particularly, high-rate discharge characteristics) of the battery are further improved, and the safety of the battery is improved (oxygen is not easily desorbed from the active material).

【0021】上記Li−Co系複合酸化物の平均粒径は
以下の方法で測定される。最初に、測定対象となる粒状
物を、水やエタノールなどの有機液体に投入し、35k
Hz〜40kHz程度の超音波を付与して約2分間分散
処理を行う。なお、測定対象となる粒状物の量は、分散
処理後の分散液のレーザ透過率(入射光量に対する出力
光量の比)が70%〜95%となる量とする。次に、こ
の分散液をマイクロトラック粒度分析計にかけ、レーザ
ー光の散乱により個々の粒子の粒径(D1 、D2 、D3
・・)、および各粒径毎の存在個数(N1 、N2 、N3
・・・)を計測する。なお、マイクロトラック粒度分析
計では、観測された散乱強度分布に最も近い理論強度に
なる球形粒子群の粒径分布を算出している。即ち、粒子
は、レーザー光の照射によって得られる投影像と同面積
の断面円を持つ球体と想定され、この断面円の直径(球
相当径)が粒径として計測される。平均粒径(μm)
は、上記で得られた個々の粒子の粒径(D)と各粒径毎
の存在個数(N)とから、下記の式(1)にて算出され
る。 平均粒径(μm)=(ΣND3 /ΣN) 1/ 3 (式1)
The average particle size of the Li-Co-based composite oxide is measured by the following method. First, the particulate matter to be measured is charged into an organic liquid such as water or ethanol, and the liquid is charged for 35 k.
A dispersion process is performed for about 2 minutes by applying an ultrasonic wave of about Hz to 40 kHz. Note that the amount of the particulate matter to be measured is such that the laser transmittance (the ratio of the output light amount to the incident light amount) of the dispersion liquid after the dispersion treatment is 70% to 95%. Next, this dispersion is applied to a Microtrac particle size analyzer, and the particle size (D 1 , D 2 , D 3) of each particle is measured by scattering of laser light.
..) and the number of particles present for each particle size (N 1 , N 2 , N 3
…)). Note that the microtrack particle size analyzer calculates the particle size distribution of the spherical particles that has the theoretical intensity closest to the observed scattering intensity distribution. That is, the particle is assumed to be a sphere having a cross-sectional circle having the same area as the projected image obtained by the irradiation of the laser light, and the diameter (equivalent sphere diameter) of this cross-sectional circle is measured as the particle diameter. Average particle size (μm)
Is calculated by the following equation (1) from the particle diameter (D) of each particle obtained above and the existing number (N) of each particle diameter. Average particle size (μm) = (ΣND 3 / ΣN) 1/3 (Equation 1)

【0022】上記Li−Co系複合酸化物の比表面積の
測定は、「粉体の材料化学」〔荒井康夫著、初版第9
刷、培風館(東京)発行、1995年〕の第178頁〜
第184頁に記載された吸着法のうち、窒素を吸着体と
する気相吸着法(一点法)により行うことができる。こ
のような窒素を吸着体とする気相吸着法を応用した該比
表面積の測定は、たとえば比表面積計モノソーブ(クア
ンタクロム社製)などを用いて行うことができる。
The measurement of the specific surface area of the Li—Co-based composite oxide is described in “Material Chemistry of Powder” [Yasuo Arai, First Edition, 9th Edition].
Publishing, Baifukan (Tokyo), 1995]
Among the adsorption methods described on page 184, a gas-phase adsorption method using nitrogen as an adsorbent (one-point method) can be used. The measurement of the specific surface area using such a gas-phase adsorption method using nitrogen as an adsorbent can be performed by using, for example, a specific surface area meter Monosorb (manufactured by Quantachrome).

【0023】導電材としては、人造あるいは天然の黒鉛
類;アセチレンブラック、オイルファーネスブラック、
イクストラコンダクティブファーネスブラック等のカー
ボンブラック;等の粒状の炭素材(「粒状」とは、鱗片
状、球状、擬似球状、塊状、ウィスカー状などが含ま
れ、特に限定されない。)が使用される。該粒状の炭素
材は、粒径(一次粒子径)が1μm以下の粒子を全体の
少なくとも1重量%以上、好ましくは1〜40重量%含
むものである。
As the conductive material, artificial or natural graphites; acetylene black, oil furnace black,
Granular carbon materials such as carbon black such as extra conductive furnace black; and the like ("granular" includes scaly, spherical, pseudo spherical, massive, whisker-like, etc., and is not particularly limited). The granular carbon material contains at least 1% by weight or more, preferably 1 to 40% by weight of particles having a particle diameter (primary particle diameter) of 1 μm or less.

【0024】上記粒状の炭素材の粒径は、粒子を球体と
想定したときの断面円の直径(球相当径)であり、粒径
(1次粒子径)が1μmより大きいものは、上述のLi
−Co系複合酸化物の場合と同様にマイクロトラック粒
度分析計を用いて測定できる。また、粒径(1次粒子
径)が1μm以下のものは、電子顕微鏡を用いて測定で
きる。具体的には、最初に視野に粒子が20個以上入る
ように倍率を設定して電子顕微鏡写真を撮影し、写真に
写った各粒子の像の面積を算出し、さらにこの算出され
た面積から同面積を持つ円の直径を算出する。なお、平
均粒径は測定個数の個数平均である。
The particle diameter of the granular carbon material is the diameter of the cross-sectional circle (sphere equivalent diameter) when the particles are assumed to be spherical, and those having a particle diameter (primary particle diameter) larger than 1 μm are as described above. Li
It can be measured using a Microtrac particle size analyzer as in the case of the -Co-based composite oxide. In addition, those having a particle size (primary particle size) of 1 μm or less can be measured using an electron microscope. Specifically, first, an electron micrograph is taken with the magnification set so that 20 or more particles enter the visual field, the area of the image of each particle shown in the photograph is calculated, and further, from the calculated area, Calculate the diameter of a circle with the same area. The average particle size is the number average of the measured number.

【0025】結着剤としては、従来からリチウム二次電
池の正極の活物質層に使用されている結着剤、例えば、
ポリテトラフルオロエチレン(PTFE)、ポリフッ化
ビニリデン(PVdF)、ポリエチレン、エチレン−プ
ロピレン−ジエン共重合体(EPDM)等が使用され
る。
Examples of the binder include those conventionally used in the active material layer of the positive electrode of the lithium secondary battery, for example,
Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyethylene, ethylene-propylene-diene copolymer (EPDM) and the like are used.

【0026】本発明の正極における集電体上の合材の付
着量(存在量)は活物質の量(集電体の片面当りの活物
質の存在量)で示すとして、通常、1〜100mg/c
2程度である。また、合材中の導電材の量は、活物質
との重量比(活物質:導電材)で示すとして、一般に1
00:0.1〜100:20である。また、結着剤の量
は、活物質と導電材の合計量に対して一般に0.1〜2
0重量%である。
In the positive electrode of the present invention, the amount of the mixture (existing amount) on the current collector in the positive electrode of the present invention is usually from 1 to 100 mg as indicated by the amount of the active material (the amount of the active material present on one side of the current collector). / C
m 2 . Further, the amount of the conductive material in the mixture is generally expressed as 1 by the weight ratio to the active material (active material: conductive material).
00: 0.1 to 100: 20. The amount of the binder is generally 0.1 to 2 with respect to the total amount of the active material and the conductive material.
0% by weight.

【0027】集電体としては、アルミニウム、アルミニ
ウム合金、チタンといった導電性金属で形成された箔や
穴あき箔、エキスパンドメタルなどが挙げられる。な
お、集電体が箔や穴あき箔の場合は、その厚みは通常1
0〜100μm程度であり、好ましくは15〜50μm
程度である。集電体がエキスパンドメタルの場合は、そ
の厚みは通常25〜300μm程度、好ましくは30〜
150μm程度である。
Examples of the current collector include a foil formed of a conductive metal such as aluminum, an aluminum alloy, and titanium, a perforated foil, and an expanded metal. When the current collector is a foil or a perforated foil, the thickness is usually 1 unit.
About 0 to 100 μm, preferably 15 to 50 μm
It is about. When the current collector is an expanded metal, its thickness is usually about 25 to 300 μm, preferably 30 to 300 μm.
It is about 150 μm.

【0028】本発明の正極は、集電体上の合材の層(活
物質層)における合材の充填密度が3g/cm3以上
で、かつ、電解液の含浸率が6〜20%であるが、合材
の充填密度は3〜4g/cm3の範囲が好ましく、電解
液の含浸率は10〜15%の範囲が好ましい。電解液の
含浸率が6%未満では、そのような正極を使用した電池
はハイレート放電時の放電容量および放電容量維持率が
低下し、特に低温動作時には放電不能となる場合もあ
る。一方、電解液の含浸率の上限が20%であるのは、
合材の充填密度を3g/cm3以上にした場合に、電解
液の含浸率が20%を超えるような正極は、合材の層
(活物質層)と集電体との密着性不良(界面剥離)が起
こり、その部分に電解液が吸収された結果として得られ
ることもあるが、このような合材層と集電体との密着性
不良(界面剥離)が生じた正極では、電池の放電特性は
著しく低下してしまう。すなわち、電池の放電特性の向
上に寄与する有効な電解液のみで、電解液の含浸率が2
0%より大きい正極を達成することは実質的に困難であ
る。また、合材の層(活物質層)の充填密度が4g/c
3を超える場合、合材の層(活物質層)への電解液の
含浸性が著しく低下し、電解液が十分に含浸した正極
(含浸率が6%以上の正極)を得ることはできない。
The positive electrode of the present invention comprises a mixture layer (active) on a current collector.
The packing density of the mixture in the material layer) is 3 g / cm.Threethat's all
And the impregnation rate of the electrolytic solution is 6 to 20%.
Packing density is 3-4g / cmThreeThe range is preferably
The impregnation rate of the liquid is preferably in the range of 10 to 15%. Electrolyte
If the impregnation rate is less than 6%, a battery using such a positive electrode
Is the discharge capacity and discharge capacity retention rate during high-rate discharge.
Discharge may not be possible, especially during low-temperature operation.
You. On the other hand, the upper limit of the impregnation rate of the electrolytic solution is 20%,
3g / cm packing density of mixtureThreeIf the above is done,
Positive electrodes with a liquid impregnation rate of more than 20% are
Poor adhesion between the (active material layer) and the current collector (interfacial peeling) occurs
This is the result of the electrolyte being absorbed in that part
In some cases, the adhesion between such a mixture layer and the current collector
In the positive electrode where the failure (interface separation) has occurred, the discharge characteristics of the battery
It will drop significantly. In other words, the battery discharge characteristics
Only the effective electrolytic solution contributing to the above, the impregnation rate of the electrolytic solution is 2
Achieving cathodes greater than 0% is substantially difficult
You. Further, the packing density of the mixture material layer (active material layer) is 4 g / c.
m ThreeThe electrolyte solution to the mixture layer (active material layer)
Positive electrode whose impregnating property is significantly reduced and electrolyte solution is sufficiently impregnated
(A positive electrode having an impregnation ratio of 6% or more) cannot be obtained.

【0029】本発明の正極は以下のようにして製造され
る。工程的には常法通りであり、活物質、導電材および
結着剤を含むスラリーの調製工程、スラリーの集電体上
への塗工工程、スラリー(塗膜)の乾燥工程、および、
圧延工程を含むが、スラリーの調製において、粒径(1
次粒子径)が1μm以下の導電材を均一(1次粒子状)
に分散させず、当該粒径(1次粒子径)が1μm以下の
導電材が適度に凝集した状態のスラリーを得るようにす
る。例えば、上記活物質、導電材および結着剤は適当な
溶媒(例えば、N−メチルピロリドン等)とともに混練
してスラリーに調製するが、この際に、混練時間を比較
的短くする、および/または、混練機の回転数を比較的
少なくして、粒径が1μm以下の導電材の凝集体(2次
粒子)を適度に残したままスラリーの調製を完了させ
る。具体的には、例えば、プラネタリディスパ混練装置
(浅田鉄工所製)で混練する場合、プラネタリの回転数
は10〜70rpm程度、ディスパの回転数を100〜
5000rpm程度とし、希釈攪拌時間を10分間〜1
時間程度、混練時間(本分散時間)を10分〜1時間程
度とする。すなわち、粒径(1次粒子径)が1μm以下
の導電材は、混練の初期段階(溶媒に投入した直後)は
凝集体を形成するが、混練時間の経過とともに1次粒子
状に解砕されていくため、凝集体の殆どが解砕されてし
まうような過度の混練を行わずに、凝集体が適度に残る
状態で混練を終了させる。なお、混練後のスラリーは放
置しておくと、次第に分散した導電材が再凝集するた
め、凝集体の存在量が過度にならないうちに、集電体に
塗工して、塗膜の乾燥および圧延を行う必要がある。な
お、本発明者等の研究の結果、本発明で使用する粒径
(1次粒子径)が1μm以下の導電材が適度に凝集した
状態のスラリーはその粘度が概ね1000〜80000
mPa・sを示すことを突き止めている。かかるスラリ
ーの粘度はB型粘度計で6rpmの回転速度で25℃で
測定した値である。
The positive electrode of the present invention is manufactured as follows. The process is as usual, including a step of preparing a slurry containing an active material, a conductive material and a binder, a step of coating the slurry on a current collector, a step of drying the slurry (coating), and
Although a rolling step is included, in preparing the slurry, the particle size (1
Uniform conductive material with a primary particle diameter of 1 μm or less (primary particle form)
And a slurry in which the conductive material having the particle size (primary particle size) of 1 μm or less is appropriately aggregated is obtained. For example, the active material, the conductive material and the binder are kneaded with a suitable solvent (for example, N-methylpyrrolidone or the like) to prepare a slurry. In this case, the kneading time is relatively short, and / or The preparation of the slurry is completed while the number of revolutions of the kneader is relatively low and the aggregate (secondary particles) of the conductive material having a particle size of 1 μm or less is appropriately left. Specifically, for example, when kneading with a planetary disperser kneading apparatus (manufactured by Asada Iron Works), the rotation speed of the planetary is about 10 to 70 rpm, and the rotation number of the disperser is 100 to 70 rpm.
5,000 rpm, and the dilution and stirring time is 10 minutes to 1
The kneading time (main dispersion time) is about 10 minutes to 1 hour. That is, a conductive material having a particle diameter (primary particle diameter) of 1 μm or less forms an aggregate at an initial stage of kneading (immediately after being charged into a solvent), but is crushed into primary particles as the kneading time elapses. Therefore, the kneading is terminated in a state where the aggregates remain moderately, without performing excessive kneading such that most of the aggregates are crushed. In addition, if the slurry after kneading is left undisturbed, the conductive material gradually dispersed re-aggregates, so that the amount of aggregates does not become excessive, it is applied to the current collector, and the coating film is dried and dried. It is necessary to perform rolling. As a result of the study by the present inventors, the slurry used in the present invention in which a conductive material having a particle diameter (primary particle diameter) of 1 μm or less is appropriately aggregated has a viscosity of approximately 1000 to 80,000.
mPa · s. The viscosity of the slurry is a value measured at 25 ° C. by a B-type viscometer at a rotation speed of 6 rpm.

【0030】上記のように、粒径(1次粒子径)が1μ
m以下の導電材が適度に凝集したスラリーを調製するこ
とで、充填密度を高くしても、電解液の浸透性のよい合
材の層(活物質層)が得られる理由は明らかではない
が、スラリー中の粒径(1次粒子径)が1μm以下の導
電材の凝集体は、スラリーの塗工、乾燥工程で、結着剤
と結合して比表面積が比較的大きい複合粒子を形成し、
この複合粒子の存在によって、塗工、乾燥後の塗膜を圧
延して充填密度を高めても、塗膜(合材の層)は電解液
が浸透し得る空隙が充分に存在し、電解液を多く含浸で
きるものと考えられる。なお、スラリー中の粒径(1次
粒子径)が1μm以下の導電材の殆どを1次粒子状に均
一に分散させた場合には、合材の層の充填密度を3g/
cm3以上にすると、電解液の含浸率は6%未満になっ
てしまう。これは、1次粒子状に分散した粒径が1μm
以下の導電材はスラリーの塗工、乾燥工程で、結着剤と
ともに活物質の表面を覆う膜状物となるため、乾燥後の
塗膜を圧延して合材の層の充填密度を高めると、合材の
層中の電解液が浸透し得る空隙が極めて少なくなるため
と考えられる。
As described above, the particle diameter (primary particle diameter) is 1 μm.
It is not clear why even if the packing density is increased by preparing a slurry in which the conductive material having a particle size of m or less is appropriately aggregated, a layer of the mixture (active material layer) having good permeability of the electrolyte can be obtained. The aggregate of the conductive material having a particle diameter (primary particle diameter) of 1 μm or less in the slurry is combined with a binder in the slurry coating and drying steps to form composite particles having a relatively large specific surface area. ,
Due to the presence of these composite particles, even if the coating film after coating and drying is rolled to increase the packing density, the coating film (mixture layer) has sufficient pores through which the electrolyte can penetrate. Is considered to be able to be impregnated. When most of the conductive material having a particle diameter (primary particle diameter) of 1 μm or less in the slurry is uniformly dispersed in the form of primary particles, the packing density of the mixture layer is 3 g / g.
If it is more than cm 3 , the impregnation rate of the electrolytic solution will be less than 6%. This means that the particle size dispersed in the form of primary particles is 1 μm
The following conductive materials are coated with a slurry, and in a drying step, they become a film covering the surface of the active material together with a binder. It is considered that the number of voids through which the electrolyte in the layer of the mixture can penetrate becomes extremely small.

【0031】本発明の正極を使用してリチウム二次電池
を構成する場合、負極、電解液、セパレータ等の負極以
外の電池の構成要素は特に限定されず、公知のものを常
法に従って使用することができる。
When a lithium secondary battery is constructed using the positive electrode of the present invention, the components of the battery other than the negative electrode, such as the negative electrode, the electrolytic solution, and the separator, are not particularly limited, and known components are used according to a conventional method. be able to.

【0032】負極は集電体上に、活物質および結着剤を
含む合材の層(以下、負極活物質層ともいう)が形成さ
れて構成されるが、活物質としては、各種黒鉛材、カー
ボンブラック、非晶質炭素材(ハードカーボン、ソフト
カーボン)、活性炭等の公知のリチウム二次電池の負極
用の活物質として使用されている粒状の炭素材を使用で
きる。これらのうちでも、電池の放電特性をより向上さ
せる観点からは、黒鉛化炭素が好ましい。該粒状の炭素
材の粒形状は特に限定されず、鱗片状、球状、擬似球
状、塊状、ウィスカー状等のいずれでもよい。
The negative electrode is formed by forming a layer of a composite material containing an active material and a binder (hereinafter, also referred to as a negative electrode active material layer) on a current collector. Granular carbon materials used as active materials for known negative electrodes of lithium secondary batteries, such as carbon black, amorphous carbon materials (hard carbon and soft carbon), and activated carbon can be used. Among these, graphitized carbon is preferable from the viewpoint of further improving the discharge characteristics of the battery. The particle shape of the granular carbon material is not particularly limited, and may be any of a flake, a sphere, a pseudo sphere, a lump, and a whisker.

【0033】また、黒鉛化炭素においては、粒状物以外
に繊維状のものを用いることができ、この場合、直線状
のものでも、カールしたものでもよい。かかる繊維状の
黒鉛化炭素の大きさは、特に限定されないが、平均繊維
長が1〜100μmが好ましく、3〜50μmが特に好
ましい。また、平均繊維径が0.5〜15μmが好まし
く、1〜15μmが特に好ましく、5〜10μmがとり
わけ好ましい。また、この時のアスペクト比(平均繊維
長/平均繊維径)は1〜5であるのが好ましく、3〜5
が特に好ましい。
As the graphitized carbon, a fibrous material other than a granular material can be used. In this case, the material may be linear or curled. The size of the fibrous graphitized carbon is not particularly limited, but the average fiber length is preferably 1 to 100 μm, and particularly preferably 3 to 50 μm. Further, the average fiber diameter is preferably from 0.5 to 15 μm, particularly preferably from 1 to 15 μm, particularly preferably from 5 to 10 μm. The aspect ratio (average fiber length / average fiber diameter) at this time is preferably 1 to 5, and 3 to 5 is preferable.
Is particularly preferred.

【0034】かかる繊維状の黒鉛化炭素の大きさ(繊維
径、繊維長)は、電子顕微鏡を用いて測定できる。すな
わち、視野に繊維が20本以上入るよう倍率を設定して
電子顕微鏡写真を撮影し、写真に写った各繊維の繊維径
および繊維長をノギス等で測定することで行うことがで
きる。なお、繊維長の測定は、繊維が直線状の場合であ
れば、一端と他端との最短距離を測定することにより行
えば良い。但し、繊維がカール等している場合であれ
ば、繊維上の最も互いに離れる任意の二点を取り、この
二点間の距離を測定し、これを繊維長とすれば良い。な
お、平均繊維径、平均繊維長さは測定個数の個数平均値
である。
The size (fiber diameter, fiber length) of the fibrous graphitized carbon can be measured using an electron microscope. That is, it can be performed by setting a magnification so that 20 or more fibers are included in the visual field, taking an electron micrograph, and measuring the fiber diameter and the fiber length of each fiber in the photograph with a caliper or the like. The fiber length may be measured by measuring the shortest distance between one end and the other end if the fiber is linear. However, if the fiber is curled or the like, any two points on the fiber that are farthest apart from each other are taken, the distance between the two points is measured, and this is set as the fiber length. Note that the average fiber diameter and the average fiber length are the number average values of the measured number.

【0035】なお、黒鉛化炭素を用いる場合は、結晶格
子の面間距離(d002)が0.3380nm以下(特
に好ましくは0.3350nm〜0.3370nm)の
ものが好適である。かかる黒鉛化炭素の結晶格子の面間
距離(d002)は以下に記載の日本学術振興会法によ
り測定することができる。
When graphitized carbon is used, it is preferable that the interplanar distance (d002) of the crystal lattice is 0.3380 nm or less (particularly preferably 0.3350 nm to 0.3370 nm). The interplanar distance (d002) of the crystal lattice of the graphitized carbon can be measured by the Japan Society for the Promotion of Science described below.

【0036】最初に、X線標準用高純度シリコンをメノ
ウ乳鉢で325メッシュ標準篩以下に粉砕して標準物質
を作製し、この標準物質と被測定試料の黒鉛化炭素とを
メノウ乳鉢で混合(混合比率:黒鉛化炭素100重量部
あたり標準物質10重量部)してX線用試料を作製す
る。このX線用試料は、X線回折装置(理学電機社製R
INT2000、X線源:CuKα線)の試料板に均一
に充填する。次に、X線管球への印加電圧を40kV、
印加電流を50mAに設定し、更に走査範囲を2θ=2
3.5度〜29.5度、スキャンスピードを0.25度
/minとして、炭素の002ピークおよび標準物質の
111ピークを測定する。続いて、得られたピーク位置
およびその半値幅から、上記のX線回折装置に付属の黒
鉛化度計算用ソフトを用いて、結晶格子の面間距離(d
002)を算出する。
First, high-purity X-ray standard silicon is ground in an agate mortar to a size of 325 mesh standard sieve or less to prepare a standard substance, and this standard substance and the graphitized carbon of the sample to be measured are mixed in an agate mortar ( Mixing ratio: 10 parts by weight of standard substance per 100 parts by weight of graphitized carbon) to prepare an X-ray sample. This X-ray sample was prepared using an X-ray diffractometer (Rigaku Denki R
The sample plate of INT2000, X-ray source: CuKα ray) is uniformly filled. Next, the applied voltage to the X-ray tube was 40 kV,
The applied current was set to 50 mA, and the scanning range was 2θ = 2.
The 002 peak of carbon and the 111 peak of the standard substance are measured at 3.5 to 29.5 degrees and a scan speed of 0.25 degrees / min. Subsequently, from the obtained peak position and its half-value width, using the graphitization degree calculation software attached to the X-ray diffractometer, the interplanar distance (d
002) is calculated.

【0037】結着剤には、従来からリチウム二次電池の
負極の活物質層に使用されている結着剤、例えば、ポリ
テトラフルオロエチレン(PTFE)、ポリフッ化ビニ
リデン(PVdF)等のフッ素樹脂、エチレン−プロピ
レン−ジエン共重合体(EPDM)、スチレン−ブタジ
エンゴム(SBR)、カルボキシメチルセルロース(C
MC)等の高分子材料が使用される。
Examples of the binder include those conventionally used for the active material layer of the negative electrode of a lithium secondary battery, for example, fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF). , Ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethyl cellulose (C
A polymer material such as MC) is used.

【0038】負極における合材の量は合材中の活物質の
量(集電体の片面当りの活物質の存在量)で示すとし
て、通常、1〜50mg/cm2程度、好ましくは5〜
20mg/cm2程度であり、合材中の活物質と結着剤
の割合は重量比(活物質:結着剤)で一般に80:20
〜98:2である。
The amount of the mixture in the negative electrode is usually about 1 to 50 mg / cm 2 , preferably 5 to 50 mg / cm 2 , as indicated by the amount of the active material in the mixture (the amount of the active material present on one side of the current collector).
20 mg / cm is 2 mm, the proportion of the active material and the binder in the cause material weight ratio: generally 80:20 (active material binder)
98: 2.

【0039】電解液に用いるLi塩類としては、例え
ば、LiClO4 、LiBF4 、LiPF6 、LiAs
6 、LiAlCl4 およびLi(CF3 SO2 2
等が挙げられ、これらは、いずれか一種または二種以上
を併用してもよい。また、有機溶媒としては、例えば、
エチレンカーボネート、プロピレンカーボネート、ジメ
チルカーボネート、ジエチルカーボネート、エチルメチ
ルカーボネート、ジメチルスルホキシド、スルホラン、
γ−ブチロラクトン、1,2−ジメトキシエタン、N,
N−ジメチルホルムアミド、テトラヒドロフラン、1,
3−ジオキソラン、2−メチルテトラヒドロフラン、ジ
エチルエーテルなどが挙げられ、これらはいずれか一種
または二種以上を混合して使用される。そのうちでも、
本発明が目的とする充放電サイクル特性およびハイレー
ト放電特性の向上の点から、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)との混合溶媒
(EC:DEC(体積比)が40:60〜60:40)
を用いるのが好ましい。また、電解液中におけるLi塩
の濃度は、一般的に0.1モル/リットル〜2モル/リ
ットル程度であり、充放電サイクル特性の点からは0.
5モル/リットル〜1.8モル/リットル程度が好まし
く、特に好ましくは0.8モル/リットル〜1.5モル
/リットル程度である。
Examples of the Li salts used in the electrolyte include LiClO 4 , LiBF 4 , LiPF 6 , LiAs
F 6 , LiAlCl 4 and Li (CF 3 SO 2 ) 2 N
And these may be used alone or in combination of two or more. Further, as the organic solvent, for example,
Ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl sulfoxide, sulfolane,
γ-butyrolactone, 1,2-dimethoxyethane, N,
N-dimethylformamide, tetrahydrofuran, 1,
Examples thereof include 3-dioxolan, 2-methyltetrahydrofuran, diethyl ether, and the like, and these are used alone or in combination of two or more. Among them,
From the viewpoint of improving the charge / discharge cycle characteristics and high-rate discharge characteristics intended by the present invention, ethylene carbonate (E
Mixed solvent of C) and diethyl carbonate (DEC) (EC: DEC (volume ratio) is 40:60 to 60:40)
It is preferable to use In addition, the concentration of the Li salt in the electrolytic solution is generally about 0.1 mol / L to 2 mol / L, and from the viewpoint of charge / discharge cycle characteristics, the concentration is 0.1 mol / L.
It is preferably about 5 mol / l to 1.8 mol / l, and particularly preferably about 0.8 mol / l to 1.5 mol / l.

【0040】セパレータには、ポリオレフィンセパレー
タ等の従来からリチウム二次電池で使用されている公知
のセパレータが使用される。ここで、セパレータは多孔
質状のものでも、実質的に孔形成を行っていない、中実
のセパレータでもよい。また、ポリオレフィンセパレー
タはポリエチレン層単体やポリプロピレン層単体のもの
でもよいが、ポリエチレン層とポリプロピレン層とを積
層したタイプが好ましく、特に安全性の点からPP/P
E/PPの3層タイプが好ましい。
As the separator, a known separator, such as a polyolefin separator, conventionally used in lithium secondary batteries is used. Here, the separator may be a porous separator or a solid separator in which pores are not substantially formed. Further, the polyolefin separator may be a single polyethylene layer or a single polypropylene layer, but a type in which a polyethylene layer and a polypropylene layer are laminated is preferable, and PP / P is particularly preferable in terms of safety.
A three-layer type of E / PP is preferred.

【0041】電池の形態は特に限定されない。従来から
リチウム二次電池で使用されている公知のものを使用で
き、例えば、Fe、Fe(Niメッキ)、SUS、アル
ミ、アルミ合金等の金属からなる円筒缶、角筒缶、ボタ
ン状缶等や、ラミネートフィルム等のシート状の外装材
が使用される。ラミネートフィルムとしては、銅、アル
ミニウム等の金属箔の少なくとも片面にポリエステル、
ポリプロピレン等の熱可塑性樹脂ラミネート層が形成さ
れたものが好ましい。
The form of the battery is not particularly limited. Known ones conventionally used in lithium secondary batteries can be used, for example, cylindrical cans, square cans, button cans made of metal such as Fe, Fe (Ni plating), SUS, aluminum, and aluminum alloy. Alternatively, a sheet-like exterior material such as a laminate film is used. As a laminate film, copper, polyester on at least one side of a metal foil such as aluminum,
It is preferable that a thermoplastic resin laminate layer such as polypropylene is formed.

【0042】[0042]

【実施例】以下、実施例および比較例を挙げて本発明を
より具体的に説明する。なお、以下の実施例および比較
例におけるスラリーの粘度はB型粘度計(東京計器社
製、DVM−B)で、6rpmの回転速度で、25℃で
測定した。
The present invention will now be described more specifically with reference to examples and comparative examples. In addition, the viscosity of the slurry in the following Examples and Comparative Examples was measured at 25 ° C. with a B-type viscometer (DVM-B, manufactured by Tokyo Keiki Co., Ltd.) at a rotation speed of 6 rpm.

【0043】実施例1 〔正極〕活物質:LiCoO2(結晶子サイズ:864
(オングストローム)、Co−Coの配位数:5.9、
平均粒径20μm、比表面積0.12m2/g)91重
量部と、導電材:球状黒鉛(平均粒径6μm)5重量部
とオイルファーネスブラック(平均粒径40nm)1重
量部との混合物(粒径が1μm以下の粒子の含有量は2
0重量%)と、結着剤:ポリフッ化ビニリデン3重量部
と、N−メチル−2−ピロリドン50重量部とを、プラ
ネタリディスパ混練装置(浅田鉄工所製)により、プラ
ネタリ30rpm、ディスパ500rpmの回転数で、
混練時間を本分散時間20分+希釈攪拌時間30分にし
て混練して、スラリーとした。次に、上記スラリーを1
5時間放置後、集電体となるアルミニウム箔(厚さ20
μm)の両面上に塗布し、150℃で乾燥させ、プレス
圧1ton/cm2で圧延処理して活物質層を形成して
正極を完成させた。上記スラリーの塗工直前の粘度は7
000mPa・sであった。このようにして作製した正
極における活物質層の充填密度(合材の充填密度)は
3.3g/cm2であった。そして、この正極に電解液
(エチレンカーボネート50体積%+ジエチレンカーボ
ネート50体積%の混合溶媒にLiPF6 を1mol/
リットル溶解させたもの)を飽和状態となるまで含浸さ
せ、電解液の含浸率を測定したところ14%であった。
Example 1 [Positive electrode] Active material: LiCoO 2 (crystallite size: 864)
(Angstrom), Co-Co coordination number: 5.9,
A mixture of 91 parts by weight of an average particle diameter of 20 μm and specific surface area of 0.12 m 2 / g, 5 parts by weight of conductive material: spherical graphite (average particle diameter of 6 μm) and 1 part by weight of oil furnace black (average particle diameter of 40 nm) ( The content of particles having a particle size of 1 μm or less is 2
0% by weight), a binder: 3 parts by weight of polyvinylidene fluoride, and 50 parts by weight of N-methyl-2-pyrrolidone by a planetary disperser kneader (manufactured by Asada Iron Works) at a rotation of planetary 30 rpm and disperser 500 rpm. By number
The kneading time was 20 minutes for the main dispersion time + 30 minutes for the dilution and stirring time, and the mixture was kneaded to obtain a slurry. Next, the slurry was
After standing for 5 hours, the aluminum foil (thickness 20
μm), dried at 150 ° C., and rolled at a press pressure of 1 ton / cm 2 to form an active material layer, thereby completing a positive electrode. The viscosity of the slurry immediately before coating is 7
000 mPa · s. The packing density of the active material layer (filling density of the mixture) in the positive electrode thus manufactured was 3.3 g / cm 2 . Then, 1 mol / mol of LiPF 6 was added to this positive electrode in an electrolytic solution (50 vol% of ethylene carbonate + 50 vol% of diethylene carbonate in a mixed solvent).
Liter dissolved) until a saturated state was reached, and the impregnation rate of the electrolytic solution was 14%.

【0044】〔負極〕活物質として黒鉛化炭素繊維(平
均繊維径8μm、アスペクト比3、d002=0.33
60nm、)92重量部と、結着剤としてポリフッ化ビ
ニリデン8重量部と、N−メチル−2−ピロリドン80
重量部とを混合してスラリー化し、このスラリーを集電
体となる銅箔(厚み14μm)の両面に塗工、乾燥し、
さらに圧延処理を行い、負極を完成させた。
[Negative electrode] Graphitized carbon fiber (average fiber diameter 8 μm, aspect ratio 3, d002 = 0.33) as active material
92 parts by weight), 8 parts by weight of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone 80
Parts by weight and mixed to form a slurry. This slurry is applied to both sides of a copper foil (thickness: 14 μm) serving as a current collector and dried.
Further, a rolling treatment was performed to complete a negative electrode.

【0045】〔リチウム二次電池の組立〕上記で作製し
た正極と負極とを、多孔質のポリエチレン−ポリプロピ
レン複合セパレータを介して捲回し、これを円筒型の電
池缶(外径18mm、内径17.5mm、高さ65m
m)に収容した。さらに、前述の電解液を正極と負極と
の間に含浸させて、リチウム二次電池(設計容量:18
00mAh)を得た。
[Assembly of Lithium Secondary Battery] The positive electrode and the negative electrode prepared above were wound through a porous polyethylene-polypropylene composite separator, and this was wound into a cylindrical battery can (18 mm in outer diameter, 17 mm in inner diameter). 5mm, height 65m
m). Further, the above-mentioned electrolytic solution was impregnated between the positive electrode and the negative electrode to form a lithium secondary battery (design capacity: 18
00 mAh).

【0046】〔評価〕上記で得られたリチウム二次電池
について室温で充電を行なった。1.8A定電流で4.
2Vまで充電を行なった後、続いて4.2V定電圧で充
電を行い、全充電時間が3時間になったところで充電終
了とした。その後、リチウム二次電池を室温(20℃)
環境下で、0.2C(360mAh)/2.5Vカット
オフで放電を行なった。また、同様の充電を行った後、
2C(3.6Ah)/2.5Vカットオフで放電を行な
った。また、同様の充電を行った後、−20℃環境下で
1C(1.8Ah)/2.5Vカットオフで放電を行っ
た。
[Evaluation] The lithium secondary battery obtained above was charged at room temperature. 3. At 1.8 A constant current.
After charging to 2V, charging was performed at a constant voltage of 4.2V, and charging was terminated when the total charging time reached 3 hours. Then, the lithium secondary battery is brought to room temperature (20 ° C).
Under the environment, discharge was performed at a cutoff of 0.2 C (360 mAh) /2.5 V. Also, after performing the same charge,
Discharge was performed at a cut-off of 2C (3.6 Ah) /2.5 V. After the same charge was performed, the battery was discharged at a cutoff of 1 C (1.8 Ah) /2.5 V in a -20 ° C environment.

【0047】それぞれの放電試験において放電電流値と
放電時間とを測定し、放電容量(mAh)を算出した。
また、その放電容量の、0.2C放電容量(20℃)を
100%としたときのこれに対する割合(容量維持率)
を算出した。また、−20℃環境下での試験において
は、放電電力容量(Wh)/放電電流容量(Ah)で得
られる値によって放電電圧(V)を求めた。
In each discharge test, a discharge current value and a discharge time were measured, and a discharge capacity (mAh) was calculated.
The ratio of the discharge capacity to the 0.2% discharge capacity (20 ° C.) assuming 100% (capacity maintenance rate)
Was calculated. In a test in an environment of −20 ° C., a discharge voltage (V) was obtained from a value obtained by a discharge power capacity (Wh) / discharge current capacity (Ah).

【0048】実施例2 実施例1で調製したスラリーを調製後直ちに集電体(ア
ルミニウム箔)の両面上に塗工した以外は、実施例1に
準拠して、活物質層の充填密度(合材の充填密度)が
3.3g/cm2の正極を作製した。上記スラリーの調
製直後(塗工直前)の粘度は14000mPa・sであ
った。このようにして作製した正極に実施例1と同様に
電解液(エチレンカーボネート50体積%+ジエチレン
カーボネート50体積%の混合溶媒にLiPF6 を1m
ol/リットル溶解させたもの)を飽和状態となるまで
含浸させ、電解液の含浸率を測定したところ13%であ
った。次に、上記作製した正極を使用し、負極、セパレ
ータ、電池缶、電解液は実施例1と同じものを使用し
て、リチウム二次電池(設計容量:1800mAh)を
作製し、実施例1と同じ評価試験に供した。
Example 2 In accordance with Example 1, the slurry prepared in Example 1 was coated on both sides of a current collector (aluminum foil) immediately after the preparation, and the packing density of the active material layer (the total A positive electrode having a packing density of 3.3 g / cm 2 was prepared. The viscosity immediately after preparation of the slurry (immediately before coating) was 14000 mPa · s. In the same manner as in Example 1, 1 m of LiPF 6 was added to the thus prepared positive electrode in a mixed solvent of 50 vol% of ethylene carbonate + 50 vol% of diethylene carbonate.
ol / liter) was impregnated until a saturated state was reached, and the impregnation rate of the electrolytic solution was 13%. Next, a lithium secondary battery (design capacity: 1800 mAh) was prepared using the above-prepared positive electrode, and using the same negative electrode, separator, battery can, and electrolyte solution as in Example 1. The same evaluation test was performed.

【0049】実施例3 混練時間を本分散時間1時間+希釈攪拌時間30分に変
更した以外は実施例1と同様にしてスラリーを調製し、
このスラリーを15時間放置した後、集電体(アルミニ
ウム箔)の両面上に塗工し、実施例1に準拠して活物質
層の充填密度(合材の充填密度)が3.3g/cm2
正極を作製した。上記スラリーの塗工直前の粘度は25
000mPa・sであった。このようにして作製した正
極に実施例1と同様に電解液(エチレンカーボネート5
0体積%+ジエチレンカーボネート50体積%の混合溶
媒にLiPF6 を1mol/リットル溶解させたもの)
を飽和状態となるまで含浸させ、電解液の含浸率を測定
したところ12%であった。次に、上記作製した正極を
使用し、負極、セパレータ、電池缶、電解液は実施例1
と同じものを使用して、リチウム二次電池(設計容量:
1800mAh)を作製し、実施例1と同じ評価試験に
供した。
Example 3 A slurry was prepared in the same manner as in Example 1 except that the kneading time was changed to 1 hour of main dispersion time + 30 minutes of dilution and stirring.
After the slurry was left for 15 hours, it was coated on both sides of a current collector (aluminum foil), and the packing density of the active material layer (packing density of the mixture) was 3.3 g / cm according to Example 1. 2 positive electrodes were produced. The viscosity of the slurry immediately before coating is 25.
000 mPa · s. An electrolyte (ethylene carbonate 5) was applied to the positive electrode thus produced in the same manner as in Example 1.
1 mol / liter of LiPF 6 dissolved in a mixed solvent of 0% by volume + 50% by volume of diethylene carbonate)
To a saturated state, and the impregnation ratio of the electrolytic solution was 12%. Next, using the positive electrode prepared above, a negative electrode, a separator, a battery can, and an electrolyte were prepared in Example 1.
Use the same lithium secondary battery (design capacity:
1800 mAh) and subjected to the same evaluation test as in Example 1.

【0050】実施例4 実施例3におけるLiCoO2の代わりに、LiCoO2
(結晶子サイズ:>1000(オングストローム)、C
o−Coの配位数:5.8、平均粒径20μm、比表面
積0.12m2/g)を使用し、他は実施例1と同様に
して調製したスラリーを調製後直ちに集電体(アルミニ
ウム箔)の両面上に塗工し、他は実施例1に準拠して、
活物質層の充填密度(合材の充填密度)が3.3g/c
2の正極を作製した。上記スラリーの調製直後(塗工
直前)の粘度は60000mPa・sであった。このよ
うにして作製した正極に実施例1と同様に電解液(エチ
レンカーボネート50体積%+ジエチレンカーボネート
50体積%の混合溶媒にLiPF6 を1mol/リット
ル溶解させたもの)を飽和状態となるまで含浸させ、電
解液の含浸率を測定したところ11%であった。次に、
上記作製した正極を使用し、負極、セパレータ、電池
缶、電解液は実施例1と同じものを使用して、リチウム
二次電池(設計容量:1800mAh)を作製し、実施
例1と同じ評価試験に供した。
Example 4 In place of LiCoO 2 in Example 3, LiCoO 2
(Crystallite size:> 1000 (angstrom), C
Immediately after the preparation of a slurry prepared in the same manner as in Example 1 except that the coordination number of o-Co: 5.8, the average particle diameter was 20 μm, and the specific surface area was 0.12 m 2 / g, (Aluminum foil) on both sides, and others according to Example 1.
The packing density of the active material layer (packing density of the mixture) is 3.3 g / c.
to produce a positive electrode of the m 2. The viscosity immediately after preparation of the slurry (immediately before coating) was 60000 mPa · s. The positive electrode thus prepared was impregnated with an electrolyte solution (a solution in which LiPF 6 was dissolved at 1 mol / L in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of diethylene carbonate) until the cathode was saturated as in Example 1. Then, the impregnation rate of the electrolytic solution was measured to be 11%. next,
A lithium secondary battery (design capacity: 1800 mAh) was produced using the above-prepared positive electrode and the same negative electrode, separator, battery can, and electrolyte as in Example 1, and the same evaluation test as in Example 1. Was served.

【0051】実施例5 混練時、本分散を行わず、希釈攪拌のみ30分行った以
外は実施例4と同様にしてスラリーを調製した。このス
ラリーを調製後直ちに集電体(アルミニウム箔)の両面
上に塗工し、実施例1に準拠して、活物質層の充填密度
(合材の充填密度)が3.3g/cm2の正極を作製し
た。上記スラリーの調製直後(塗工直前)の粘度は30
00mPa・sであった。このようにして作製した正極
に実施例1と同様に電解液(エチレンカーボネート50
体積%+ジエチレンカーボネート50体積%の混合溶媒
にLiPF6 を1mol/リットル溶解させたもの)を
飽和状態となるまで含浸させ、電解液の含浸率を測定し
たところ15%であった。次に、上記作製した正極を使
用し、負極、セパレータ、電池缶、電解液は実施例1と
同じものを使用して、リチウム二次電池(設計容量:1
800mAh)を作製し、実施例1と同じ評価試験に供
した。
Example 5 A slurry was prepared in the same manner as in Example 4 except that the main dispersion was not performed during the kneading, and only the dilution and stirring were performed for 30 minutes. Immediately after this slurry was prepared, it was coated on both sides of a current collector (aluminum foil), and the packing density of the active material layer (the packing density of the mixture) was 3.3 g / cm 2 according to Example 1. A positive electrode was produced. The viscosity immediately after preparation of the slurry (immediately before coating) is 30.
It was 00 mPa · s. An electrolyte (ethylene carbonate 50) was applied to the positive electrode thus prepared in the same manner as in Example 1.
(1 mol / liter of LiPF 6 dissolved in a mixed solvent of 50% by volume + diethylene carbonate) was impregnated until a saturated state was reached, and the impregnation rate of the electrolytic solution was measured to be 15%. Next, using the prepared positive electrode, the same negative electrode, separator, battery can, and electrolyte as in Example 1 were used, and a lithium secondary battery (design capacity: 1) was used.
800 mAh) and subjected to the same evaluation test as in Example 1.

【0052】実施例6 活物質:LiCoO2(結晶子サイズ:955(オング
ストローム)、Co−Coの配位数:5.8、平均粒径
20μm、比表面積0.12m2/g)91重量部と、
導電材:鱗片状黒鉛(平均粒径4μm)6重量部(粒径
が1μm以下の粒子の含有量は3重量%)と、結着剤:
ポリフッ化ビニリデン3重量部と、N−メチル−2−ピ
ロリドン50重量部とを、プラネタリディスパ混練装置
(浅田鉄工所製)により、プラネタリ30rpm、ディ
スパ500rpmの回転数で、混練時間を本分散時間2
0分+希釈攪拌時間50分にして混練して、スラリーと
した。次に、上記スラリーを15時間放置後、集電体と
なるアルミニウム箔(厚さ20μm)の両面上に塗布
し、150℃で乾燥させ、プレス圧1ton/cm2
圧延処理して活物質層を形成して正極を完成させた。上
記スラリーの塗工直前の粘度は9000mPa・sであ
った。このようにして作製した正極における活物質層の
充填密度(合材の充填密度)は3.6g/cm2であっ
た。そして、この正極に電解液(エチレンカーボネート
50体積%+ジエチレンカーボネート50体積%の混合
溶媒にLiPF6 を1mol/リットル溶解させたも
の)を飽和状態となるまで含浸させ、電解液の含浸率を
測定したところ7.2%であった。次に、上記作製した
正極を使用し、負極、セパレータ、電池缶、電解液は実
施例1と同じものを使用して、リチウム二次電池(設計
容量:1800mAh)を作製し、実施例1と同じ評価
試験に供した。
Example 6 Active material: 91 parts by weight of LiCoO 2 (crystallite size: 955 (angstrom), coordination number of Co—Co: 5.8, average particle diameter: 20 μm, specific surface area: 0.12 m 2 / g) When,
Conductive material: 6 parts by weight of flaky graphite (average particle size: 4 μm) (content of particles having a particle size of 1 μm or less is 3% by weight) and binder:
A kneading time of 3 parts by weight of polyvinylidene fluoride and 50 parts by weight of N-methyl-2-pyrrolidone were mixed with a planetary dispersing and kneading apparatus (manufactured by Asada Iron Works) at a rotational speed of planetary 30 rpm and a disperser 500 rpm, and the kneading time was 2 hours.
The mixture was kneaded with 0 minute + dilution stirring time of 50 minutes to obtain a slurry. Next, after leaving the above-mentioned slurry for 15 hours, the slurry was applied on both sides of an aluminum foil (thickness: 20 μm) serving as a current collector, dried at 150 ° C., and rolled at a press pressure of 1 ton / cm 2 to obtain an active material layer. Was formed to complete the positive electrode. The viscosity of the slurry immediately before coating was 9000 mPa · s. The packing density of the active material layer (mixing material packing density) in the positive electrode thus manufactured was 3.6 g / cm 2 . Then, the positive electrode is impregnated with an electrolyte solution (a solution in which LiPF 6 is dissolved at 1 mol / liter in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of diethylene carbonate) until a saturated state is reached, and the impregnation rate of the electrolyte solution is measured. As a result, it was 7.2%. Next, a lithium secondary battery (design capacity: 1800 mAh) was prepared using the above-prepared positive electrode, and using the same negative electrode, separator, battery can, and electrolyte solution as in Example 1. The same evaluation test was performed.

【0053】実施例7 実施例6に準拠し、若干の条件の変更により、活物質層
の充填密度(合材の充填密度)が3.7g/cm2の正
極を作製した。上記スラリーの塗工直前の粘度は900
0mPa・sであった。このようにして作製した正極に
実施例1と同様に電解液(エチレンカーボネート50体
積%+ジエチレンカーボネート50体積%の混合溶媒に
LiPF6 を1mol/リットル溶解させたもの)を飽
和状態となるまで含浸させ、電解液の含浸率を測定した
ところ6.3%であった。次に、上記作製した正極を使
用し、負極、セパレータ、電池缶、電解液は実施例1と
同じものを使用して、リチウム二次電池(設計容量:1
800mAh)を作製し、実施例1と同じ評価試験に供
した。
Example 7 A positive electrode having a filling density of the active material layer (packing density of the mixture) of 3.7 g / cm 2 was produced in accordance with Example 6, with a slight change in conditions. The viscosity of the slurry immediately before coating is 900
It was 0 mPa · s. The positive electrode thus prepared was impregnated with an electrolyte solution (a solution in which LiPF 6 was dissolved at 1 mol / L in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of diethylene carbonate) until the cathode was saturated as in Example 1. Then, the impregnation rate of the electrolytic solution was measured, and it was 6.3%. Next, using the prepared positive electrode, the same negative electrode, separator, battery can, and electrolyte as in Example 1 were used, and a lithium secondary battery (design capacity: 1) was used.
800 mAh) and subjected to the same evaluation test as in Example 1.

【0054】比較例1 混練時間を本分散時間1時間+希釈攪拌時間40分に変
更した以外は実施例6と同様にしてスラリーを調製し
た。このスラリーを調製後直ちに集電体(アルミニウム
箔)の両面上に塗工し、実施例6に準拠して活物質層の
充填密度(合材の充填密度)が3.7g/cm2の正極
を作製した。上記スラリーの塗工直前の粘度は1200
00mPa・sであった。このようにして作製した正極
に実施例1と同様に電解液(エチレンカーボネート50
体積%+ジエチレンカーボネート50体積%の混合溶媒
にLiPF6 を1mol/リットル溶解させたもの)を
飽和状態となるまで含浸させ、電解液の含浸率を測定し
たところ5.5%であった。次に、上記作製した正極を
使用し、負極、セパレータ、電池缶、電解液は実施例1
と同じものを使用して、リチウム二次電池(設計容量:
1800mAh)を作製し、実施例1と同じ評価試験に
供した。
Comparative Example 1 A slurry was prepared in the same manner as in Example 6, except that the kneading time was changed to 1 hour of main dispersion time + 40 minutes of dilution and stirring. Immediately after this slurry was prepared, it was coated on both surfaces of a current collector (aluminum foil), and a positive electrode having a filling density of the active material layer (filling density of the mixture) of 3.7 g / cm 2 according to Example 6. Was prepared. The viscosity of the slurry immediately before coating was 1200.
It was 00 mPa · s. An electrolyte (ethylene carbonate 50) was applied to the positive electrode thus prepared in the same manner as in Example 1.
(1 mol / liter of LiPF 6 dissolved in a mixed solvent of 50% by volume + diethylene carbonate) was impregnated until a saturated state was reached, and the impregnation rate of the electrolytic solution was 5.5%. Next, using the positive electrode prepared above, a negative electrode, a separator, a battery can, and an electrolyte were prepared in Example 1.
Use the same as the lithium secondary battery (design capacity:
1800 mAh) and subjected to the same evaluation test as in Example 1.

【0055】上記実施例1〜7、比較例1の評価結果が
下記表1である。
The evaluation results of Examples 1 to 7 and Comparative Example 1 are shown in Table 1 below.

【0056】[0056]

【表1】 [Table 1]

【0057】表より、本発明の正極を使用したリチウム
二次電池(実施例)では、ハイレート放電時の放電容量
の低下が抑制され、容量維持率も高維持率を示すことが
分かる。また、特に低温でのハイレート放電において
は、放電電圧の低下も抑制されることが分かる。
From the table, it can be seen that in the lithium secondary battery (Example) using the positive electrode of the present invention, a decrease in discharge capacity during high-rate discharge is suppressed, and the capacity retention rate also shows a high retention rate. Also, it can be seen that particularly in high-rate discharge at a low temperature, a decrease in discharge voltage is also suppressed.

【0058】[0058]

【発明の効果】以上の説明により明らかなように、本発
明によれば、従来達成できなかった、高充填密度であり
ながら、電解液の含浸率の高い合材層(活物質を含む合
材の層:活物質層)を有する正極を得ることができる。
従って、かかる正極を使用することで、合材層内の活物
質の周囲に電解液が十分に存在し、ハイレート放電時
(特に低温でのハイレート放電)にも活物質におけるリ
チウムイオンの挿入・脱離がスムーズに行われ、電池の
高容量化と同時に、ハイレート放電(特に、低温でのハ
イレート放電)時の放電容量の増大化および容量維持率
の高維持率化を達成できる。よって、大型化することな
く、高容量、かつ、ハイレート放電特性の良好な電池を
得ることができる。
As is apparent from the above description, according to the present invention, a mixture layer (a mixture containing an active material) having a high packing density and a high electrolyte impregnation rate, which could not be achieved conventionally, has been achieved. (Active material layer).
Therefore, by using such a positive electrode, the electrolyte is sufficiently present around the active material in the mixture layer, and insertion and removal of lithium ions in the active material during high-rate discharge (particularly, high-rate discharge at a low temperature). Separation is performed smoothly, and at the same time as increasing the capacity of the battery, it is possible to achieve an increase in the discharge capacity during a high rate discharge (particularly, a high rate discharge at a low temperature) and an increase in the capacity retention rate. Therefore, a battery with high capacity and good high-rate discharge characteristics can be obtained without increasing the size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】LiCoO2(コバルト酸リチウム)の理想的
な結晶構造を示す図であり、結晶格子をC軸方向に半分
にした図である。
FIG. 1 is a diagram showing an ideal crystal structure of LiCoO 2 (lithium cobaltate), in which the crystal lattice is halved in the C-axis direction.

【図2】結晶子サイズを説明する図である。FIG. 2 is a diagram illustrating a crystallite size.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 集電体上に、活物質、導電材および結着
剤を含む合材の層を形成してなるリチウム二次電池用正
極であって、前記合材の層における合材の充填密度が3
g/cm3以上であり、かつ、電解液の含浸率が6〜2
0%であるリチウム二次電池用正極。
1. A positive electrode for a lithium secondary battery, comprising a current collector, and a layer of a mixture containing an active material, a conductive material, and a binder, wherein the positive electrode of the mixture in the layer of the mixture is formed. 3 packing density
g / cm 3 or more, and the impregnation rate of the electrolytic solution is 6 to 2
0% positive electrode for lithium secondary batteries.
【請求項2】 請求項1記載の正極を有するリチウム二
次電池。
2. A lithium secondary battery having the positive electrode according to claim 1.
JP2001300554A 2001-02-26 2001-09-28 Positive electrode for lithium secondary battery and lithium secondary battery Pending JP2002324544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001300554A JP2002324544A (en) 2001-02-26 2001-09-28 Positive electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-50341 2001-02-26
JP2001050341 2001-02-26
JP2001300554A JP2002324544A (en) 2001-02-26 2001-09-28 Positive electrode for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2002324544A true JP2002324544A (en) 2002-11-08

Family

ID=26610095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001300554A Pending JP2002324544A (en) 2001-02-26 2001-09-28 Positive electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2002324544A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303622A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005123185A (en) * 2003-10-10 2005-05-12 Lg Cable Ltd Lithium ion secondary battery containing PTC powder and manufacturing method thereof
WO2010074314A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
WO2010074313A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
JP2013120621A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Nonaqueous secondary battery
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
CN104904038A (en) * 2012-12-14 2015-09-09 尤米科尔公司 Low porosity electrodes for rechargeable batteries

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303622A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005123185A (en) * 2003-10-10 2005-05-12 Lg Cable Ltd Lithium ion secondary battery containing PTC powder and manufacturing method thereof
US8916293B2 (en) 2008-12-24 2014-12-23 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery
WO2010074314A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
WO2010074298A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material, as well as lithium secondary batteries
WO2010074313A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
JP2013120621A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Nonaqueous secondary battery
CN104904038A (en) * 2012-12-14 2015-09-09 尤米科尔公司 Low porosity electrodes for rechargeable batteries
JP2016504727A (en) * 2012-12-14 2016-02-12 ユミコア Low porosity electrode for rechargeable batteries
KR101772301B1 (en) * 2012-12-14 2017-08-28 우미코르 Low porosity electrodes for rechargeable batteries
US10193151B2 (en) 2012-12-14 2019-01-29 Umicore Low porosity electrodes for rechargeable batteries
US10862121B2 (en) 2012-12-14 2020-12-08 Umicore Low porosity electrodes for rechargeable batteries

Similar Documents

Publication Publication Date Title
CN110024188B (en) Negative electrode material and non-aqueous electrolyte secondary battery
JP5344452B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte battery having a positive electrode containing the positive electrode active material
JP4237074B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9306209B2 (en) Method of preparing negative active material containing a carbon-coated silicon core for a rechargeable lithium battery and a rechargeable lithium battery
US20070212602A1 (en) Positive electrode material, its manufacturing method and lithium secondary battery
US20030165739A1 (en) Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them
JP5704986B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2021059706A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2002059040A1 (en) Artificial graphite particles, method for producing the same, negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and lithium secondary battery
JP6897707B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2014002474A1 (en) Silicon-containing material, and secondary battery active material comprising silicon-containing material
JP2003109599A (en) Positive electrode active material, and nonaqueous electrolyte secondary battery using the same
JP6578189B2 (en) Positive electrode material for non-aqueous secondary battery, method for producing the same, positive electrode for non-aqueous secondary battery using the positive electrode material for non-aqueous secondary battery, and non-aqueous secondary battery using the same
JP2003132889A (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP2012181975A (en) Nonaqueous secondary battery
JP2002246013A (en) Negative electrode for lithium secondary battery and its producing method, as well as lithium secondary battery using the same
WO2018179934A1 (en) Negative electrode material and nonaqueous electrolyte secondary battery
JP4379971B2 (en) Electrical energy storage element
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
WO2022250109A1 (en) Composite particles, negative electrode mixture layer and lithium ion seconary battery
JP2017050204A (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
Dong et al. Enhanced rate performance and cycle stability of LiNi0. 8Co0. 15Al0. 05O2 via Rb doping
WO2020195335A1 (en) Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery
JP2002093417A (en) Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same
JP3273438B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913