[go: up one dir, main page]

JP2002321178A - Determination method of acceleration and deceleration time for robot - Google Patents

Determination method of acceleration and deceleration time for robot

Info

Publication number
JP2002321178A
JP2002321178A JP2001123358A JP2001123358A JP2002321178A JP 2002321178 A JP2002321178 A JP 2002321178A JP 2001123358 A JP2001123358 A JP 2001123358A JP 2001123358 A JP2001123358 A JP 2001123358A JP 2002321178 A JP2002321178 A JP 2002321178A
Authority
JP
Japan
Prior art keywords
acceleration
time
deceleration
axis
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001123358A
Other languages
Japanese (ja)
Inventor
Hirokazu Kariyazaki
洋和 仮屋崎
Tatsuzo Nakazato
辰三 中里
Shinichi Kaito
真一 階戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001123358A priority Critical patent/JP2002321178A/en
Publication of JP2002321178A publication Critical patent/JP2002321178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a determination method of acceleration and deceleration time that can shorten the motion time in low torque and improve the life in high torque for robot drive axes. SOLUTION: The mass and gravity center position of each axis of a robot are stored beforehand as parameters. The method includes the following steps: a step for calculating the first acceleration time and the first deceleration time corresponding to the load of each axis at the initial point and at the terminal point by providing the location, movement direction, movement speed of each drive axis at each point; a step for calculating an acceleration end position and a deceleration start position from the first acceleration time and the first deceleration time; a step for calculating each axis load at the acceleration end position and at the deceleration start position, and then calculating the second acceleration time and the second deceleration time corresponding to the load of each axis; a step for comparing the first acceleration time and the second acceleration time then choosing the bigger one as the decided acceleration time, and comparing the first deceleration time and the second deceleration time then choosing the bigger one as the decided deceleration time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロボットの教示点
の位置、姿勢や各軸の動作方向、動作速度によって、慣
性モーメントや重カモーメント、他軸の動作による干渉
トルク等の影響を受ける駆動軸を有するロボットの加減
速時間決定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive which is affected by the moment of inertia, the moment of inertia, the interference torque due to the operation of another axis, etc., depending on the position and posture of the teaching point of the robot, the operating direction and operating speed of each axis. The present invention relates to a method for determining an acceleration / deceleration time of a robot having an axis.

【0002】[0002]

【従来の技術】一般に経路作業を行なうロボットにおい
ては、高速で動作する場合、加減速制御を行い、滑らか
な動きを得ている。
2. Description of the Related Art Generally, in a robot performing a path work, when operating at a high speed, acceleration / deceleration control is performed to obtain a smooth movement.

【0003】このような加減速制御を行なうときの加減
速時間決定方法としては、ロボットの姿勢から負荷慣性
(イナーシャ)を演算するとともに、この負荷慣性に基
づいた加減速時定数を決定する方法(特開平5−462
34号公報参照)や干渉トルクや遠心力をも考慮して、
各軸に発生するトルクが許容最大トルクを越えないよう
に加減速時間を求める方法(特開平7−261822号
公報参照)などが知られている。
As a method of determining the acceleration / deceleration time when performing such acceleration / deceleration control, a method of calculating a load inertia (inertia) from the posture of the robot and determining an acceleration / deceleration time constant based on the load inertia ( JP-A-5-462
No. 34) and interference torque and centrifugal force.
There is known a method of determining the acceleration / deceleration time so that the torque generated on each axis does not exceed the allowable maximum torque (see Japanese Patent Application Laid-Open No. Hei 7-261822).

【0004】これらの加減速時間決定方法においては、
始点及び終点におけるロボットの姿勢を基に各軸の負荷
を推定して処理している。
In these acceleration / deceleration time determination methods,
The load on each axis is estimated and processed based on the posture of the robot at the start point and the end point.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、実際に
は、動作によってロボットの姿勢は変化するため、それ
により慣性モーメントや干渉トルク、遠心力の影響も変
化する。このため、負荷が最大となるのは始点及び終点
位置とは限らない。
However, in practice, since the posture of the robot is changed by the movement, the influence of the moment of inertia, the interference torque, and the centrifugal force is also changed. Therefore, the maximum load is not limited to the start point and the end point.

【0006】たとえば、図3に示すような教示がなされ
た場合、始点及び終点の姿勢における第1軸の慣性モー
メントや重カモーメントは比較的小さい。このため、始
点及び終点における負荷を考慮した加減速時間は、短く
なる。
For example, when the teaching as shown in FIG. 3 is made, the inertia moment and the weight moment of the first axis in the postures of the start point and the end point are relatively small. Therefore, the acceleration / deceleration time in consideration of the load at the start point and the end point is shortened.

【0007】しかしながら、動作途中でロボットの姿勢
が変化し、指令速度に到達する頃には、ロボットが伸び
た姿勢となり、第1軸における慣性モーメントや重カモ
ーメントが大きくなってしまい、始点及び終点の姿勢を
考慮して求めた加減速時間では、負荷が大きすぎてトル
クが飽和してしまう場合があるという問題があった。
However, when the posture of the robot changes during operation and reaches the commanded speed, the posture of the robot is extended, and the moment of inertia and weight moment on the first axis increases, and the start point and the end point are increased. In the acceleration / deceleration time obtained in consideration of the posture, there is a problem that the load may be too large and the torque may be saturated.

【0008】そこで、本発明は、ロボットの駆動軸の低
トルクでの動作時間の短縮及び高トルクでの寿命を向上
させることができるロボットの加減速時間決定方法を提
供するものである。
Accordingly, the present invention provides a method for determining the acceleration / deceleration time of a robot which can shorten the operation time of the drive shaft of the robot at low torque and improve the life at high torque.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するた
め、本発明のロボットの加減速時間決定方法において
は、ロボットの教示点の位置、姿勢、各軸の動作方向及
び動作速度により、重カモーメント、加速度による慣
性、他軸の動作による干渉トルク等の影響を受ける駆動
軸を有するロボットの加減速時間決定方法において、ロ
ボットの各軸の質量、重心位置をパラメータとして予め
格納しておき、始点及び終点における各駆動軸の位置、
動作方向及び動作速度を与えることにより、始点及び終
点における各軸の負荷を求め、前記各軸負荷に応じた第
1加速時間及び第1減速時間を求めるステップ、前記第
1加速時間及び第1減速時間から、加速が完了する加速
到達位置及び減速を開始する減速開始位置を求めるステ
ップ、前記加速到達位置及び減速開始位置における各軸
の負荷を求め、前記各軸負荷に応じた第2加速時間及び
第2減速時間を求めるステップ及び前記第1加速時間と
第2加速時間を比較し、大きい方を決定加速時間とする
とともに、前記第1減速時間と前記第2減速時間を比較
し、大きい方を決定減速時間として求めるステップを有
することを特徴とする。
In order to solve the above-mentioned problems, in the method for determining the acceleration / deceleration time of a robot according to the present invention, a heavy force is determined by the position and orientation of the teaching point of the robot, the operating direction and operating speed of each axis. In a method for determining the acceleration / deceleration time of a robot having a drive axis that is affected by moment, acceleration inertia, interference torque due to movement of another axis, etc., the mass and the center of gravity of each axis of the robot are stored in advance as parameters, and the starting point And the position of each drive shaft at the end point,
Determining a load on each axis at a start point and an end point by giving an operation direction and an operation speed, and obtaining a first acceleration time and a first deceleration time according to each axis load; the first acceleration time and the first deceleration; From the time, a step of obtaining an acceleration reaching position at which acceleration is completed and a deceleration start position at which deceleration is started, obtaining a load on each axis at the acceleration reaching position and deceleration start position, and a second acceleration time and A step of obtaining a second deceleration time and comparing the first acceleration time with the second acceleration time, and determining a larger one as a determined acceleration time; comparing the first deceleration time with the second deceleration time; A step of obtaining the determined deceleration time.

【0010】上記手段を用いることにより、ロボットの
動作途中の加速到達位置付近、減速開始位置付近におい
て発生する負荷トルクをも考慮して、駆動軸の許容最大
トルクとなるような加減速時間を求めることができるの
で、得られる加減速時間は、動作区間内において負荷ト
ルクが許容最大トルクを越えない範囲で最短の加減速時
間となる。
[0010] By using the above means, the acceleration / deceleration time which becomes the maximum allowable torque of the drive shaft is obtained in consideration of the load torque generated near the acceleration reaching position and the deceleration start position during the operation of the robot. Therefore, the obtained acceleration / deceleration time is the shortest acceleration / deceleration time within a range where the load torque does not exceed the allowable maximum torque in the operation section.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は、本方法を実施するためのシステム
の一実施例を示すブロツク図である。 図1において、
11は教示部、12は教示テータ格納エリア、13はパ
ラメータ格納エリア、14は加減速時間演算部、15は
補間演算部、16は駆動部である。
FIG. 1 is a block diagram showing one embodiment of a system for implementing the method. In FIG.
11 is a teaching section, 12 is a teaching data storage area, 13 is a parameter storage area, 14 is an acceleration / deceleration time calculation section, 15 is an interpolation calculation section, and 16 is a drive section.

【0013】図2は、図1に示す加減速時間演算部14
における本発明の加減速時間決定方法の処理に関するフ
ローチャートの一例を示すもので、Sに続く数値はステ
ップ番号を示す。
FIG. 2 shows an acceleration / deceleration time calculation unit 14 shown in FIG.
1 shows an example of a flowchart relating to the processing of the acceleration / deceleration time determination method of the present invention in FIG.

【0014】ステップSl ロボットの始点における姿勢より、始点のダイナミクス
を求め、同じく終点における姿勢より、終点のダイナミ
クスを求める。
Step Sl The dynamics of the starting point are obtained from the posture of the robot at the starting point, and the dynamics of the ending point are obtained from the posture at the ending point.

【0015】ダイナミクスを求めるのに必要なロボット
の質量やモーメント等は,予めパラメータ格納エリア1
3に格納されている。
The robot mass and moment required for obtaining the dynamics are stored in a parameter storage area 1 in advance.
3 is stored.

【0016】ここで,ダイナミクスについて説明する。Here, the dynamics will be described.

【0017】ダイナミクスとは、ロボットの姿勢、速度
から、各軸にかかるトルクを推定するために必要な要素
のことである。
The dynamics are elements necessary for estimating the torque applied to each axis from the posture and speed of the robot.

【0018】n軸の多関節ロボットの場合、各軸に働く
トルクは、次のような式で表される。
In the case of an n-axis articulated robot, the torque acting on each axis is represented by the following equation.

【0019】[0019]

【数1】 この、ロボットの姿勢および速度から規定される、慣性
行列J(θ)、遠心・コリオリ力C(θ,θ')、重力モーメ
ントg(θ)のことを、ダイナミクスと呼ぶことにする。
(Equation 1) The inertia matrix J (θ), the centrifugal / Coriolis force C (θ, θ ′), and the gravitational moment g (θ) defined from the posture and speed of the robot will be referred to as dynamics.

【0020】なお、遠心・コリオリ力についてである
が、コリオリ力は演算量の割にはトルクに与える影響が
小さいので、演算時間短縮のためにコリオリ力の演算を
省略しても良い。
As for the centrifugal / Coriolis force, since the Coriolis force has little effect on the torque for the amount of calculation, the calculation of the Coriolis force may be omitted to shorten the calculation time.

【0021】ステップS2 ステップS1で求めた始点ダイナミクスより、各軸が許
容最大トルクを越えないように考慮した始点における第
1加速時間talを求める。同様に、終点ダイナミクスよ
り、終点における第1減速時間tdlを求める。ダイナミク
スより第1許容加速時間及び第1許容減速時間を求める
方法としては、特開平7−261822号公報に開示さ
れているように、加減速度の影響を受ける負荷トルク成
分の値が、駆動軸の許容最大トルク値から加減速度の影
響を受けない負荷トルク成分の値を差し引いた値になる
ような加減速時間を求める方法がある。具体的には、次
のような方法により加減速時間を求める。
Step S2 Based on the starting point dynamics obtained in step S1, the starting point at the starting point is considered so that each axis does not exceed the allowable maximum torque.
1 Find the acceleration time tal. Similarly, the first deceleration time tdl at the end point is obtained from the end point dynamics. As a method for obtaining the first allowable acceleration time and the first allowable deceleration time from the dynamics, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-261822, the value of the load torque component affected by the acceleration / deceleration is determined by the value of the drive shaft. There is a method of obtaining an acceleration / deceleration time which is a value obtained by subtracting a value of a load torque component which is not affected by acceleration / deceleration from an allowable maximum torque value. Specifically, the acceleration / deceleration time is obtained by the following method.

【0022】各軸に働くトルクは、「数1」に示した式
で表される。
The torque acting on each axis is represented by the equation shown in Equation 1.

【0023】加速度は、速度/加速時間であり、ロボッ
トの場合、通常は全軸の加速時間を同一にして制御す
る。よって、 θ" = θ'/t 但し、 t:加速時間 したがって、第i軸にかかるトルクは次のように求めら
れる。
The acceleration is a speed / acceleration time. In the case of a robot, the acceleration is usually controlled by making the acceleration time of all axes the same. Therefore, θ ″ = θ ′ / t, where t: acceleration time. Accordingly, the torque applied to the i-th axis is obtained as follows.

【0024】 τi= Ji(θ)θ'/t + Ci(θ,θ')+ gi 但し、 Ji(θ) = [ Ji1, Ji2, ・・・ Jin ] Ci(θ,θ') = [ Ci1, Ci2, ・・・ Cin ] これをtについて解くと, t = Ji(θ)θ'/{τi−(Ci(θ,θ') + g
i)} トルクτiに、第i軸の許容最大トルクを代入し、速度
θ'に教示データの指令速度を代入して解くことによ
り、第i軸における発生トルクが許容最大トルクとなる
ような限界加速時間を求めることが出来る。
Τi = Ji (θ) θ ′ / t + Ci (θ, θ ′) + gi where Ji (θ) = [Ji1, Ji2,... Jin] Ci (θ, θ ′) = [Ci1 , Ci2,... Cin] When this is solved for t, t = Ji (θ) θ ′ / {τi− (Ci (θ, θ ′) + g
i) Substituting the maximum allowable torque of the i-th axis into the torque τi and substituting the instruction speed of the teaching data into the speed θ ′ to solve the limit so that the torque generated on the i-th axis becomes the maximum allowable torque. Acceleration time can be determined.

【0025】このようにして求められた各軸の加速時間
の中から最大のものを選べば、それが全軸の発生トルク
が許容最大トルクを超えない許容加速時間となる。
If the maximum acceleration time is selected from the acceleration times of the respective shafts thus obtained, it becomes the allowable acceleration time in which the generated torque of all the axes does not exceed the allowable maximum torque.

【0026】許容減速時間も、同様にして求めることが
出来る。
The allowable deceleration time can be obtained in the same manner.

【0027】ステップS3 指令速度に対し、ステップS2で求められたta1及びtd1
で加減速した場合の加速到達位置:Pa、減速開始位
置:Pdをそれぞれ求める。もし、求められた加減速時
間に対し、移動量が充分でなく、速度定常部が存在しな
い場合には、区間内における最大速度到達点を別途求
め、その位置を加速到達位置及び減速開始位置とする。
In step S3, ta1 and td1 obtained in step S2 are compared with the command speed.
To obtain the acceleration reaching position: Pa and the deceleration starting position: Pd when accelerating and decelerating. If the moving amount is not sufficient for the obtained acceleration / deceleration time and the speed steady part does not exist, the maximum speed reaching point in the section is separately obtained, and the positions are set as the acceleration reaching position and the deceleration starting position. I do.

【0028】ステップS4 ステップSlと同様に、今度は加速到達位置での姿勢に
おけるダイナミクスと、減速開始位置での姿勢における
ダイナミクスを求める。
Step S4 As in step Sl, the dynamics in the posture at the acceleration reaching position and the dynamics in the posture at the deceleration start position are obtained.

【0029】ステップS5 ステップS2と同様に、ステップS4で求めた加速到達
位置ダイナミクス及び減速開始位置ダイナミクスより、
各軸が許容最大トルクを越えないように考慮した、加速
到達位置における第2加速時間ta2及び減速開始位置に
おける第2減速時間td2を求める。
Step S5 In the same way as in step S2, the acceleration reaching position dynamics and the deceleration start position dynamics obtained in step S4 are used.
The second acceleration time ta2 at the acceleration reaching position and the second deceleration time td2 at the deceleration start position are determined so that each axis does not exceed the allowable maximum torque.

【0030】ステップS6 以上のようにして求められた加速時間ta1及びta2を比較
し、大きい方を決定加速時間taccとし、求められた減速
時間td1及びtd2を比較し、大きい方を、決定減速時間td
ecとする。
Step S6 The acceleration times ta1 and ta2 obtained as described above are compared, and the larger one is determined as the determined acceleration time tacc. The calculated deceleration times td1 and td2 are compared, and the larger one is determined as the determined deceleration time. td
ec.

【0031】以上の実施例においては、本発明を最も好
ましい実施態様について説明したが、構成の詳細な部分
についての変形、特許請求の範囲に記載された本発明の
精神に反しない限りでの様々な変更、あるいはそれらを
組み合わせたものに変更することができることは明らか
である。
In the above embodiments, the present invention has been described with reference to the most preferred embodiments. However, variations in the details of the configuration and various modifications may be made without departing from the spirit of the present invention described in the claims. Obviously, it can be changed to any combination or a combination thereof.

【0032】[0032]

【発明の効果】以上に述べたように、本発明において
は、ロボットの各軸において発生する負荷トルクが各軸
の許容最大トルクを越えない範囲での最短の加減速時間
を求めることが可能となるため、低トルクでの動作時間
の短縮及び高トルクでの寿命向上を得られるという効果
がある。
As described above, according to the present invention, it is possible to obtain the shortest acceleration / deceleration time within a range in which the load torque generated on each axis of the robot does not exceed the allowable maximum torque of each axis. Therefore, there is an effect that the operation time can be shortened at a low torque and the life can be improved at a high torque.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すブロック図を示したも
のである。
FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】本発明の一実施例を示すフローチャートを示し
たものである。
FIG. 2 is a flowchart showing one embodiment of the present invention.

【図3】従来例におけるロボットの教示位置と負荷状態
の関係を示したものである。
FIG. 3 shows a relationship between a teaching position of a robot and a load state in a conventional example.

【符号の説明】[Explanation of symbols]

11 教示部 12 教示データ格納エリア 13 パラメータ格納エリア 14 加減速時間演算部 15 補間演算部 16 駆動部 11 teaching unit 12 teaching data storage area 13 parameter storage area 14 acceleration / deceleration time calculation unit 15 interpolation calculation unit 16 drive unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 階戸 真一 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 3C007 AS00 AS14 CY40 KS22 KS23 KS28 KS35 KS38 LU03 LU06 LV12 LV18 MT02 5H269 AB33 CC09 EE01 EE11  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shinichi Hito 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu-shi, Fukuoka F-term (reference) 3C007 AS00 AS14 CY40 KS22 KS23 KS28 KS35 KS38 LU03 LU06 LV12 LV18 MT02 5H269 AB33 CC09 EE01 EE11

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロボットの教示点の位置、姿勢、各軸の
動作方向及び動作速度により、重カモーメント、加速度
による慣性、他軸の動作による干渉トルク等の影響を受
ける駆動軸を有するロボットの加減速時間決定方法にお
いて、 ロボットの各軸の質量、重心位置をパラメータとして予
め格納しておき、始点及び終点における各駆動軸の位
置、動作方向及び動作速度を与えることにより、始点及
び終点における各軸の負荷を求め、前記各軸負荷に応じ
た第1加速時間及び第1減速時間を求めるステップ、 前記第1加速時間及び第1減速時間から、加速が完了す
る加速到達位置及び減速を開始する減速開始位置を求め
るステップ、 前記加速到達位置及び減速開始位置における各軸の負荷
を求め、前記各軸の負荷に応じた第2加速時間及び第2
減速時間を求めるステップ及び前記第1加速時間と第2
加速時間を比較し、大きい方を決定加速時間とするとと
もに、前記第1減速時間と前記第2減速時間を比較し、
大きい方を決定減速時間として求めるステップを有する
ことを特徴とするロボットの加減速時間決定方法。
The present invention relates to a robot having a drive shaft which is affected by a gravity moment, inertia due to acceleration, interference torque due to the movement of another axis, etc., depending on the position and posture of a teaching point of the robot, the movement direction and movement speed of each axis. In the acceleration / deceleration time determination method, the mass and the center of gravity of each axis of the robot are stored in advance as parameters, and the position, operation direction, and operation speed of each drive axis at the start point and end point are given, so that Obtaining a load on the shaft and obtaining a first acceleration time and a first deceleration time corresponding to each of the shaft loads; starting from the first acceleration time and the first deceleration time, an acceleration reaching position and deceleration at which acceleration is completed; Obtaining a deceleration start position, obtaining a load on each axis at the acceleration reaching position and the deceleration start position, and calculating a second acceleration time and a second
Determining the deceleration time, the first acceleration time and the second
The acceleration time is compared, and the larger one is set as the determined acceleration time, and the first deceleration time and the second deceleration time are compared,
A method for determining an acceleration / deceleration time of a robot, comprising a step of determining a larger one as a determined deceleration time.
JP2001123358A 2001-04-20 2001-04-20 Determination method of acceleration and deceleration time for robot Pending JP2002321178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123358A JP2002321178A (en) 2001-04-20 2001-04-20 Determination method of acceleration and deceleration time for robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001123358A JP2002321178A (en) 2001-04-20 2001-04-20 Determination method of acceleration and deceleration time for robot

Publications (1)

Publication Number Publication Date
JP2002321178A true JP2002321178A (en) 2002-11-05

Family

ID=18972926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123358A Pending JP2002321178A (en) 2001-04-20 2001-04-20 Determination method of acceleration and deceleration time for robot

Country Status (1)

Country Link
JP (1) JP2002321178A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104220A1 (en) 2013-03-28 2014-10-02 Denso Wave Incorporated Method for generating a path of a multi-axis robot and control device for the multi-axis robot
DE102014104226A1 (en) 2013-03-28 2014-10-02 Denso Wave Incorporated Method for generating a path of a multi-axis robot and control device for the multi-axis robot
WO2019163997A1 (en) * 2018-02-26 2019-08-29 Ntn株式会社 Working device using parallel link mechanism and control method thereof
EP3859353A4 (en) * 2018-09-26 2022-06-29 IHI Corporation Acceleration-deriving device and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104226B4 (en) * 2013-03-28 2016-05-12 Denso Wave Incorporated Method for generating a path of a multi-axis robot and control device for the multi-axis robot
DE102014104226A1 (en) 2013-03-28 2014-10-02 Denso Wave Incorporated Method for generating a path of a multi-axis robot and control device for the multi-axis robot
DE102014104220B4 (en) * 2013-03-28 2015-12-10 Denso Wave Incorporated Method for controlling the drive of a multi-axis robot and control device for the multi-axis robot
US9221175B2 (en) 2013-03-28 2015-12-29 Denso Wave Incorporated Method of generating path of multiaxial robot and control apparatus for the multiaxial robot
US9242376B2 (en) 2013-03-28 2016-01-26 Denso Wave Incorporated Method of generating path of multiaxial robot and control apparatus for the multiaxial robot
DE102014104220B9 (en) * 2013-03-28 2016-01-28 Denso Wave Incorporated Method for controlling the drive of a multi-axis robot and control device for the multi-axis robot
DE102014104220A1 (en) 2013-03-28 2014-10-02 Denso Wave Incorporated Method for generating a path of a multi-axis robot and control device for the multi-axis robot
DE102014104226B8 (en) * 2013-03-28 2016-08-04 Denso Wave Incorporated Method for generating a path of a multi-axis robot and control device for the multi-axis robot
WO2019163997A1 (en) * 2018-02-26 2019-08-29 Ntn株式会社 Working device using parallel link mechanism and control method thereof
JP2019147197A (en) * 2018-02-26 2019-09-05 Ntn株式会社 Work device using parallel link mechanism, and control method of the same
JP7140508B2 (en) 2018-02-26 2022-09-21 Ntn株式会社 WORKING DEVICE USING PARALLEL LINK MECHANISM AND CONTROL METHOD THEREOF
US11865718B2 (en) 2018-02-26 2024-01-09 Ntn Corporation Working device using parallel link mechanism and control method thereof
EP3859353A4 (en) * 2018-09-26 2022-06-29 IHI Corporation Acceleration-deriving device and method

Similar Documents

Publication Publication Date Title
JPH08249067A (en) Position controller for motor
JPH0991025A (en) Method for controlling robot in shortest time considering operation duty
JP2020110884A (en) Robot control device, robot control method, and robot control program
JP2002321178A (en) Determination method of acceleration and deceleration time for robot
TW200533485A (en) Robot controller
CN111051010B (en) Robot control device
JP2002091570A (en) Servo control method
JPH0991004A (en) Method for estimating load weight
JP2002331478A (en) Operating speed determining method for robot
JP3339642B2 (en) How to determine the acceleration / deceleration time constant of the robot
JP3599849B2 (en) Distribution method of movement command in servo control
CN115664295B (en) Constant speed control method and system for high-power asynchronous traction motor
JP5436930B2 (en) S-curve acceleration / deceleration trajectory generation method and articulated robot system
CN116909263A (en) Path generation method and robot control system
JP4449693B2 (en) Robot control apparatus and control method thereof
JPH07244520A (en) Method for controlling acceleration and deceleration of automatic machine by considering interference torque
JPH07121239A (en) Robot device control method
JP2003047269A (en) Servo control device
KR100540588B1 (en) Trajectory generation method and system for real-time response at motion control
JPH08286759A (en) Robot drive control method for compensating for static friction
JP2783321B2 (en) Control device for articulated robot
JP3596682B2 (en) Robot acceleration / deceleration time determination method
JPH06187045A (en) Positioning device
JP4496895B2 (en) Electric motor control device
JPH11184512A (en) Control gain determining method for robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070706