[go: up one dir, main page]

JP2002315432A - Culture medium for greening rooftop and ground - Google Patents

Culture medium for greening rooftop and ground

Info

Publication number
JP2002315432A
JP2002315432A JP2001119811A JP2001119811A JP2002315432A JP 2002315432 A JP2002315432 A JP 2002315432A JP 2001119811 A JP2001119811 A JP 2001119811A JP 2001119811 A JP2001119811 A JP 2001119811A JP 2002315432 A JP2002315432 A JP 2002315432A
Authority
JP
Japan
Prior art keywords
pumice
medium
rooftop
water
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001119811A
Other languages
Japanese (ja)
Other versions
JP3807947B2 (en
Inventor
Tetsuo Kuroda
哲生 黒田
Hidemitsu Otsuka
秀光 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001119811A priority Critical patent/JP3807947B2/en
Publication of JP2002315432A publication Critical patent/JP2002315432A/en
Application granted granted Critical
Publication of JP3807947B2 publication Critical patent/JP3807947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/32Roof garden systems

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the culture medium for the greening a rooftop and a ground part of a building requiring less time and labor for cultivation and facilitating the water control without elution of waste water, by finding out the optimum physical properties and grain size of a solid culture medium for greening. SOLUTION: This culture medium for greening the rooftop and ground is characterized in that the culture medium is composed of a granular pumice having a smaller bulk specific gravity than that of usual soil and 0.3-0.8 bulk specific gravity of pumice. The granular pumice preferably has 0.1-1.0 cm/s saturation water permeation coefficient and 5-60 cm/s air permeation coefficient in a dry sample and a wet sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、屋上及び地上緑化
用培地に関し、更に具体的には、建造物の屋上及び地上
部分において、例えば野菜、樹木、芝、草花などを施設
栽培法によって節水及び省資源下で栽培するのに好適な
植物栽培用の培地に関する。また、培地の水分調節がで
きるので、果菜類のうちトマトやメロン等で糖度を上げ
ることができるなど、付加価値のある農作物を栽培する
ことのできる屋上及び地上緑化用の栽培用培地に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a culture medium for rooftop and above-ground greening, and more specifically, to save water and water on a rooftop and above-ground part of a building by using a facility cultivation method. The present invention relates to a medium for plant cultivation suitable for cultivation under resource saving. Further, the present invention relates to a cultivation medium for rooftop and above-ground greening, which can cultivate a value-added agricultural crop, for example, because the moisture content of the medium can be adjusted, so that the sugar content can be increased in tomatoes and melons among fruits and vegetables.

【0002】[0002]

【従来の技術】この百年間で、東京の平均気温は2.9
℃も上昇した。こんな都心の「ヒートアイランド現象」
に歯止めをかけようと、東京都は自然保護条令を改正
し、国内で初めて、新改築のビルに「屋上緑化」を義務
づけることを決定した(平成11年12月20日)。こ
れは、利用可能な屋上スペースの20%に樹木や芝、草
花などを植えることを義務づけるものである。従来、建
築物であるビルの屋上に土を乗せ、樹木を植えたり、ま
た大きなビルでは屋上などに庭園を作る例があるが、土
を乗せて樹木を植えことは大きな重量が掛かることにな
り、屋根からの水漏れの原因となることから、建造物を
傷めることになるので、個人所有の小さいビルに限ら
れ、庭園を作る場合には営業関係のものに限られてい
た。そのため、「屋上緑化」のための特別な技術という
ものがそれほどあるわけではなかった。また、最近は建
築物に限らず、人工地盤など大がかりな建造物が作ら
れ、その上に建築物を建てることが行われており、この
場合屋上緑化だけではなく、建造物の地上部分の土壌が
ないコンクリート製部分に緑化域を形成する必要が出て
きているが、その部分に単に土を入れることが行われて
いるレベルである。最近、民間でもビルの屋上を野菜畑
に転換するエコガーデンシステムが開発され、ビルでは
不適とされた野菜の栽培ができ、芝や花の栽培にも成功
している。
2. Description of the Related Art In the past hundred years, the average temperature in Tokyo has been 2.9.
° C also rose. "Heat island phenomenon" in such a downtown area
The Tokyo Metropolitan Government revised the Nature Conservation Ordinance and decided to require the rooftop greening of newly renovated buildings for the first time in Japan (December 20, 1999). This mandates that 20% of the available rooftop space be planted with trees, turf, flowers and the like. Conventionally, there are examples of planting trees on the roof of a building, which is a building, and planting trees, and in large buildings, creating gardens on the roof, etc., planting trees on the soil adds a large weight. However, since it causes water leakage from the roof and damages the building, it was limited to small privately owned buildings, and when building a garden, it was limited to those related to business. For that reason, there were not so many special techniques for rooftop greening. Recently, not only buildings but also large-scale buildings such as artificial ground have been built, and buildings have been built on top of this.In this case, not only rooftop greening but also soil on the ground part of the building It is necessary to form a green area in a concrete part where there is no space, but it is at this level that soil is simply filled in that part. Recently, private gardens have developed an eco-garden system that converts the rooftop of a building into a vegetable field, and the building has grown unsuitable vegetables, and has succeeded in growing grass and flowers.

【0003】ところで、高級野菜や果樹植物の優れた施
設栽培法として、養液栽培法がある。養液栽培法は、固
形培地方式と非固形培地方式とに分類される。固形培地
方式には、例えば、砂耕、れき耕、くん炭耕などがあ
る。これは、砂、礫、くん炭などを敷き詰めて培地と
し、ここに栄養水液などを絶えずふりかける方法であ
る。
[0003] As an excellent institutional cultivation method for high-quality vegetables and fruit trees, there is a hydroponic cultivation method. Hydroponic cultivation methods are classified into a solid medium method and a non-solid medium method. The solid medium method includes, for example, sand culture, gravel culture, charcoal culture, and the like. This is a method in which sand, gravel, charcoal and the like are spread to form a culture medium, and nutrient water and the like are constantly sprinkled there.

【0004】[0004]

【発明が解決しようとする課題】ところで、都市のヒー
トアイランド現象を防ぐために、建築するすべてのビル
の屋上を緑化するために、屋上に樹木を植えるようにす
るとなると、従来のようにビルの屋上を防水して、そこ
に土を入れ、樹木を植えるというやり方では非常に困難
な問題を起こすことになる。特に高層ビルでは柱に掛か
る重量を少しでも減らすために多くの軽量化材料を使用
しているのに、屋上に重い土を乗せたのでは、建物の強
度上の問題を起こし、耐震性にも問題を起こすことにな
る。また、建造物の中の建築物に限らず、大型の建造物
では周囲の土を除いてしまう関係で、また地下に駐車場
を作る関係などで周囲がコンクリート製の地上部分とな
ることが多いが、その場合景観上などからその地上部分
を緑化する必要がある。この場合下がコンクリート製部
分である関係で、防水や重量の問題などがあり、緑化を
することが容易ではない。
By the way, in order to prevent the heat island phenomenon in the city and to plant trees on the roof in order to green the roof of all the buildings to be constructed, the roof of the building has to be planted as before. Waterproofing, putting soil there and planting trees can be a very difficult problem. Especially in high-rise buildings, although many lightweight materials are used to reduce the weight on the pillars, putting heavy soil on the roof causes problems in the strength of the building and also in earthquake resistance It will cause problems. Not only for buildings inside buildings, but for large structures, the surrounding soil is removed, and because of the construction of underground parking lots, the surrounding area is often made of concrete. However, in that case, it is necessary to green the ground part from the viewpoint of the landscape. In this case, since the lower part is a concrete part, there are problems such as waterproofing and weight, and it is not easy to green.

【0005】すなわち、建造物の屋上や地上部分を緑化
するために、建造物の屋上や地上部分に植物を植えるた
めの土壌を保持するときには、その土壌の重量で建造物
に負担が掛かる問題、及び保持している土壌に植えた植
物を栽培させるために水や培養液を供給する際に、水等
の供給量が多すぎたり、あるいは大雨が降ったりする
と、土壌の下の建造物の天井部分に漏水の問題を起こし
たり、また土壌の重量がさらに増して、前記の建造物に
負担が掛かることが一層深刻になる問題があり、それを
防ぐのには建造物の強度を一層増大させたり、また建造
物の屋上の屋根の防水構造を一層強化する必要がある。
さらに、ビルの屋上では地上よりも日当たりが強く、ビ
ル全体の熱容量も大きく、また風も強いために、土壌を
植物の生育に適した条件になるよう、また土壌が飛ばな
いようにに水の供給条件などを設定したりすることは難
しいことであった。従来の固形培地方式においては、栽
培に非常に手間がかかるという問題があった。砂や礫な
どの培地には、植物は根を張りにくく、そのため収穫率
が悪かった。また、植物が病気になりやすく、絶えず監
視の目を怠ることができなかった。更に、水管理が難し
く、しばしば大量の排水を排出したり、或いは逆に水不
足を起こすという問題もあった。
That is, when the soil for planting plants is held on the rooftop or the ground portion of the building in order to green the rooftop or the ground portion of the building, a problem is imposed on the building by the weight of the soil. And when supplying water or culture solution for cultivating plants planted on the soil held, if the supply of water etc. is too large or heavy rain falls, the ceiling of the building under the soil There is a problem that water leakage occurs in the part and the weight of the soil further increases, so that the burden on the building becomes more serious. To prevent this, the strength of the building must be further increased. It is also necessary to further strengthen the waterproof structure of the rooftop of the building.
In addition, the rooftop of the building is more sunny than the ground, the heat capacity of the whole building is large, and the wind is strong, so that the soil is adjusted to conditions suitable for plant growth, It was difficult to set supply conditions and the like. In the conventional solid medium method, there was a problem that cultivation was extremely troublesome. Plants were less likely to root on media such as sand and gravel, resulting in poor harvest rates. In addition, the plants were susceptible to disease, and they were unable to keep an eye on constant monitoring. Further, there is a problem that water management is difficult and a large amount of waste water is often discharged, or conversely, a shortage of water occurs.

【0006】現在、屋上及び地上緑化用の施設栽培用の
培地として、特に屋上緑化用として軽量で保水性に優れ
た培地の中から、様々な用途や目的に応じてさまざまな
培地が検討されているが、養液を多量に必要とせず、ま
た養液を滞留させることがなくて病気を発生させにくい
などの点から、軽石を培地として使用することが提案さ
れている。しかしながら、培地として軽石を使用すると
しても、どのような物性を有する軽石が施設栽培用培地
として適しているか、或いはどの程度の粒度のものが適
しているかという研究はこれまで行われていない。本発
明は、特に屋上緑化用の固形培地方式の栽培法において
軽石を培地として用いる場合の最適の物性及び粒度を見
出し、栽培にほとんど手間がかからず、水管理が容易
で、基本的には排液を発生することのない屋上及び地上
緑化用培地を提供することを目的とする。
[0006] At present, various types of culture media for light-weight and excellent water retention for rooftop greening are being studied as media for facility cultivation for rooftop and above-ground greening, according to various uses and purposes. However, it has been proposed to use pumice as a culture medium because it does not require a large amount of nutrient solution, does not cause the nutrient solution to stay, and does not easily cause disease. However, even if pumice is used as a culture medium, no research has been conducted on the properties of pumice that is suitable as a culture medium for facility cultivation, or what particle size is suitable. The present invention finds optimal physical properties and particle size when pumice is used as a culture medium, particularly in a cultivation method using a solid medium for rooftop greening, requires little labor for cultivation, easily manages water, basically It is an object of the present invention to provide a rooftop and aboveground greening medium that does not generate drainage.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明者等は、軽石の種々の物性の屋上及び地上
緑化用培地に及ぼす影響について鋭意検討を行った。種
々の培地の中で、粒状の火山性軽石を培地とすると、培
地の透水性が良好で、軽量であり、また粘着性がないこ
とから、栽培作業が簡便になる利点がある。また、この
粒状軽石の培地は、土と比べると根圏に対する養分の補
給機能が少なく、肥料成分の保持機能も低いが、養液を
滴下チューブによって適宜供給することにより、作物を
含めた隔離床からの水分の蒸発量とほぼ等しい液滴供給
量で適正な水分状態を維持できる利点がある。したがっ
て、極めて少量の水と極めて少ないエネルギーで栽培を
行うことができる。
Means for Solving the Problems In order to achieve the above object, the present inventors have made intensive studies on the effects of various physical properties of pumice on the rooftop and above-ground greening media. Among various media, the use of granular volcanic pumice as a medium has an advantage that the cultivation operation is simplified because the medium has good water permeability, is lightweight, and has no tackiness. In addition, this granular pumice culture medium has less nutrient replenishment function to the rhizosphere and lower retention function of fertilizer components than soil, but the nutrient solution is appropriately supplied by a dropping tube, so that the isolated bed including crops can be obtained. There is an advantage that an appropriate water state can be maintained with a droplet supply amount substantially equal to the evaporation amount of water from the water. Therefore, cultivation can be performed with a very small amount of water and a very small amount of energy.

【0008】軽石とは、火山噴火で、流紋岩、安山岩な
どのケイ長質マグマが空中に噴出されるときに、急激な
圧力の低下によってマグマ中の揮発分が放出され、多数
の気孔が生じたガラス質の岩石を言い、小孔のある泡の
ような外観を呈する無数の小さな穴を有することを特徴
とする。軽石は、通常その産地で区別される。その理由
は、軽石の原料となる岩石の種類の違いによって、その
物性が異なるからである。軽石が安山岩を主成分とする
場合には優黒質気味であるのに対して、流紋岩を主成分
とする場合には白ないし淡灰色を示し、後者の方がより
多孔質である。
[0008] Pumice is a volcanic eruption, when felsic magma such as rhyolite and andesite is erupted into the air, a sudden drop in pressure releases volatiles in the magma, causing many pores to form. The resulting vitreous rock is characterized by having a myriad of small holes that look like porosity bubbles. Pumice is usually distinguished by its locality. The reason for this is that the physical properties of the rocks, which are the raw materials of pumice, differ depending on the type of the rock. When the pumice is composed mainly of andesite, it is slightly black, whereas when it is composed mainly of rhyolite, it shows white or light gray, and the latter is more porous.

【0009】本発明者らは、屋上及び地上緑化用固形培
地方式において用いる培地としての軽石の種々の特性に
ついて研究を行った結果、飽和透水係数及び通気係数に
着目し、飽和透水係数が0.1〜1.0cm/sec、
通気係数が乾燥資料及び湿潤資料で5〜60cm/se
cで、また屋上緑化用の軽量性の観点から、軽石の嵩比
重が0.3〜0.8の粒状軽石を用いることにより、極
めて優れた栽培用培地を提供することができることを見
出し、本発明を完成するに至った。かかる範囲内の物性
を有する粒状の軽石から構成される栽培培地は、作物の
根の吸水作用、呼吸作用に理想的な環境条件を具現し、
更に培地中に好気性条件が維持されて嫌気性菌の繁殖を
抑制し、根の病気の発病を抑制するという効果を発揮す
る。
The present inventors have conducted research on various characteristics of pumice as a medium used in a solid medium system for rooftop and above-ground greening. As a result, the inventors focused on saturated hydraulic conductivity and air permeability, and found that saturated hydraulic conductivity was 0.1%. 1 to 1.0 cm / sec,
Air permeability coefficient is 5-60cm / sec for dry and wet materials
c, from the viewpoint of lightness for rooftop greening, it was found that by using granular pumice having a bulk specific gravity of 0.3 to 0.8, a very excellent culture medium for cultivation could be provided. The invention has been completed. The cultivation medium composed of granular pumice having physical properties within such a range, embodies ideal environmental conditions for water absorption and respiration of the roots of the crop,
Furthermore, aerobic conditions are maintained in the medium, which suppresses the growth of anaerobic bacteria and exerts the effect of suppressing the onset of root diseases.

【0010】すなわち、本発明は下記の構成からなるも
のである。 (1)屋上及び地上緑化用培地として、通常の土より嵩
比重が小さく、軽石の嵩比重が、0.3〜0.8である
粒状軽石から構成されることを特徴とする屋上及び地上
緑化用培地。 (2)前記粒状の軽石は、飽和透水係数が0.1〜1.
0cm/sec、通気係数が乾燥試料及び湿潤試料で5
〜60cm/secであることを特徴とする前記(1)
に記載の屋上及び地上緑化用培地。 (3)前記粒状の軽石が、1〜10meq/100gの
陽イオン交換容量を有することを特徴とする前記(1)
又は(2)に記載の屋上及び地上緑化用培地。 (4)前記粒状の軽石が、0.1〜10mmの粒径を有
することを特徴とする前記(1)〜(3)のいずれか1
項に記載の屋上及び地上緑化用培地。 (5)前記粒状の軽石が、採掘後に乾燥工程を施されて
5.0%以下の含水率を有するように調整されているこ
とを特徴とする前記(1)〜(4)のいずれか1項に記
載の屋上及び地上緑化用培地。 (6)更に炭を配合したことを特徴とする前記(1)〜
(5)のいずれか1項に記載の屋上及び地上緑化用培
地。
That is, the present invention has the following constitution. (1) As a medium for rooftop and above-ground greening, a rooftop and above-ground greening characterized by being composed of granular pumice having a bulk specific gravity smaller than that of ordinary soil and a bulk specific gravity of pumice being 0.3 to 0.8. Medium. (2) The granular pumice has a saturated hydraulic conductivity of 0.1 to 1.
0 cm / sec, air permeability coefficient is 5 for dry and wet samples
(1) characterized in that it is 60 cm / sec.
The medium for rooftop and above-ground greening described in 1. (3) The (1), wherein the granular pumice has a cation exchange capacity of 1 to 10 meq / 100 g.
Or the rooftop and above-ground greening medium according to (2). (4) The granular pumice stone has a particle diameter of 0.1 to 10 mm, any one of the above (1) to (3).
The medium for rooftop and above-ground greening described in the item. (5) The granular pumice stone is subjected to a drying step after mining so as to have a water content of 5.0% or less, and is thus adjusted to any one of the above (1) to (4). The medium for rooftop and above-ground greening described in the item. (6) The above (1) to characterized in that charcoal is further blended.
The medium for rooftop and above-ground greening according to any one of (5).

【0011】[0011]

【発明の実施の形態】上述したように、本発明に係る栽
培用培地は、軽量で、飽和透水係数及び通気係数が所定
の範囲内にある粒状の軽石から構成されることを特徴と
する。本発明に係る栽培用培地において用いられる軽石
は、0.1〜1.0cm/secの範囲内の飽和透水係
数を有することが好ましい。飽和透水係数が0.1cm
/sec未満の場合、水の拡散が遅すぎて、培地の水分
が不均一になり、古い培養液が滞留して植物の根を傷め
易くなり、好ましくない。また、1.0cm/secを
超えると、水の拡散が速すぎて、培地から水が抜けてし
まい、十分な給水或いは栄養補給が困難となり、好まし
くない。「飽和透水係数」は、例えば、「土壌環境分析
法」、日本土壌肥料学会監修、土壌環境分析法編集委員
会編、博友社刊、1997年第1刷発行、66〜69頁
に説明されている。本発明において規定する飽和透水係
数は、定水位法によって求める。定水位法による飽和透
水係数を測定するために用いられる土壌透水性測定器
(例えば、大起理化工業製、DIK−4000)の例を
図1に概念図として示す。
DETAILED DESCRIPTION OF THE INVENTION As described above, the cultivation medium according to the present invention is characterized by being composed of granular pumice having a light weight and a saturated water permeability and a permeability within a predetermined range. The pumice used in the culture medium according to the present invention preferably has a saturated hydraulic conductivity in the range of 0.1 to 1.0 cm / sec. The saturated hydraulic conductivity is 0.1cm
If it is less than / sec, the diffusion of water is too slow, the water content of the culture medium becomes uneven, and the old culture solution tends to stay and damage the roots of the plant, which is not preferable. On the other hand, if it exceeds 1.0 cm / sec, the diffusion of water is too fast, and the water escapes from the medium, making it difficult to supply sufficient water or supplement nutrients, which is not preferable. The “saturated hydraulic conductivity” is described, for example, in “Soil Environment Analysis Method”, supervised by the Japan Society of Soil Fertilizer, edited by the Soil Environment Analysis Method Editing Committee, published by Hirotomo Publishing Co., Ltd., 1997, first printing, pp. 66-69. ing. The saturated hydraulic conductivity defined in the present invention is determined by a constant water level method. FIG. 1 is a conceptual diagram showing an example of a soil permeability meter (for example, DIK-4000, manufactured by Daiki Rika Kogyo Co., Ltd.) used for measuring the saturated permeability coefficient by the constant water level method.

【0012】まず、分析する試料を充填した採土円筒1
の上部に、ゴムリング2によって定水位ホルダー3を接
続する。次に、採土円筒1を水槽4に据え、定水位ホル
ダー3の排水パイプ6の上方に位置させる。これは、余
剰水を排水させるためである。なお、採土円筒1の下部
は金網キャップ11によって止められている。水槽の排
水口7の下にメスシリンダー8を置き、自在ノズル9を
定水位ホルダー3の上に位置させて給水パイプ10から
給水を開始する。この時、給水によって試料の土壌面が
乱されないように、ろ紙片などで土壌面を保護する。給
水は常温のものを用いる。定水位ホルダー内の水位が一
定に保たれるように自在ノズル9のコックによって給水
量を適度に調節し、メスシリンダー内に一定時間t(s
ec)の間に流入した水の体積Q(ml)を測定する。
測定は2〜3回繰り返して行う。
First, a sampling cylinder 1 filled with a sample to be analyzed
Is connected to a constant water level holder 3 by a rubber ring 2. Next, the sampling cylinder 1 is placed in the water tank 4 and positioned above the drainage pipe 6 of the constant water level holder 3. This is for draining surplus water. The lower portion of the sampling cylinder 1 is stopped by a wire mesh cap 11. The graduated cylinder 8 is placed below the drain port 7 of the water tank, and the free nozzle 9 is positioned above the constant water level holder 3 to start water supply from the water supply pipe 10. At this time, the soil surface is protected with a piece of filter paper so that the water surface does not disturb the soil surface of the sample. Use normal temperature water. The water supply amount is appropriately adjusted by the cock of the universal nozzle 9 so that the water level in the constant water level holder is kept constant, and the water supply amount is set in the measuring cylinder for a predetermined time t (s).
The volume Q (ml) of the water flowing during ec) is measured.
The measurement is repeated two or three times.

【0013】試料の飽和透水係数(cm/sec)は、
次式によって係数Kとして算出される。 K=Q÷{(A・t・H)/L} (1) 上式中、Qは流量(ml);Aは試料の断面積(c
2 );tは時間(sec);Hは位差(cm);Lは
試料の厚さ(cm);である。
The saturated hydraulic conductivity (cm / sec) of the sample is
It is calculated as coefficient K by the following equation. K = Q {(AtH) / L} (1) In the above equation, Q is the flow rate (ml); A is the cross-sectional area of the sample (c
m 2 ); t is time (sec); H is position difference (cm); L is sample thickness (cm).

【0014】本発明に係る栽培用培地において用いられ
る軽石は、通気係数が乾燥試料、湿潤試料ともに5〜6
0cm/secであることが好ましく、20〜30cm
/secであることがより好ましい。通気係数が5cm
/sec未満となると、根に対する酸素供給の低下が起
こり、植物に攻撃的な嫌気性菌の増殖を助長するおそれ
があり、好ましくない。また、60cm/secを超え
ると、酸素供給の面からは問題がないが、空隙率が高い
為に根と培地とが密着しずらくなる傾向になり、好まし
くない。なお、湿潤試料とは、水の飽和状態下で24時
間放置した直後の試料をいう。
The pumice used in the culture medium according to the present invention has an aeration coefficient of 5 to 6 for both dry and wet samples.
0 cm / sec, preferably 20 to 30 cm
/ Sec is more preferable. The ventilation coefficient is 5cm
If it is less than / sec, the supply of oxygen to the root will decrease, which may promote the growth of anaerobic bacteria aggressive to plants, which is not preferable. If it exceeds 60 cm / sec, there is no problem in terms of oxygen supply, but since the porosity is high, the root and the medium tend to be hard to adhere to each other, which is not preferable. The wet sample refers to a sample immediately after being left under water saturation for 24 hours.

【0015】「通気係数」は、例えば、「土壌物理性測
定法」、農林省農林水産技術会議事務局監修、土壌物理
性測定法委員会編、養賢堂刊、1978年発行、下巻2
70〜273頁に説明されている。土壌の通気係数を測
定するための装置の概念図を図2に示す。実際の測定に
は、例えば大起理化工業製の土壌通気性測定器DIK−
5001などを用いる。図2において、12は試料の入
っている円筒で、厚いゴム板13の中に密着するように
挿入してある。ゴム板13は、ガラス容器14の上に気
密を十分保たせてのせる。水中マノメーター16で試料
の入口圧力と出口圧力の差(P2−P1)(水頭cm)
を測定しながら一定量(Qcm3 )の空気をガスメータ
ー15で計量しながら試料に通気して、通過時間t(s
ec)を測定する。流路面積をAcm2 、流路長をLc
mとすると、通気係数Ka(cm/sec)は次式で求
められる。 Ka=Q×L/{(P2−P1)×A・t} (2)
The “air permeability coefficient” is, for example, “Soil physical property measurement method”, supervised by the Secretariat of the Agriculture, Forestry and Fisheries Technology Council of the Ministry of Agriculture and Forestry, edited by the Soil Physical Property Measurement Method Committee, published by Yokendo, published in 1978, 2nd volume 2
It is described on pages 70-273. FIG. 2 is a conceptual diagram of an apparatus for measuring the permeability coefficient of soil. For the actual measurement, for example, a soil permeability meter DIK-
5001 or the like is used. In FIG. 2, reference numeral 12 denotes a cylinder containing a sample, which is inserted into a thick rubber plate 13 in close contact therewith. The rubber plate 13 is placed on the glass container 14 while keeping the air tightness. The difference between the inlet pressure and the outlet pressure of the sample with the underwater manometer 16 (P2-P1) (head cm)
While measuring a constant amount (Qcm 3 ) of air with the gas meter 15 while measuring the air flow, the passage time t (s)
ec) is measured. Channel area is Acm 2 , channel length is Lc
Assuming m, the air permeability coefficient Ka (cm / sec) is obtained by the following equation. Ka = Q × L / {(P2-P1) × A · t} (2)

【0016】更に、本発明に係る栽培用培地において用
いられる軽石は、1〜10meq/100gの陽イオン
交換容量を有することがより好ましい。なお、本明細書
においてmeq/100gは100gの乾土あたりのミ
リ当量をいう。陽イオン交換容量が1meq/100g
未満の場合には、保肥力が小さく収穫率が悪くなるので
好ましくなく、また、軽石の組成上、陽イオン交換容量
が10meq/100gを超えることはほぼ無い。陽イ
オン交換容量の測定は、例えば、上述の「土壌環境分析
法」208〜210頁に記載のセミミクロScholl
enberger法(pH7.0の1M酢酸アンモニウ
ムを用いたSchollenberger法を10分の
1に縮小した方法)を用いて行うことができる。Sch
ollenberger法では、浸透管に土壌カラムを
作成し、酢酸アンモニウム中のNH4 + で交換性陽イオ
ンを交換・浸出した後、エタノールで余剰の酢酸アンモ
ニウムを洗浄し、次いで塩化ナトリウム液でNH4 +
浸出し、水蒸気蒸留・滴定等によってNH4 + を定量
し、吸着NH4 + をもって陽イオン交換容量とする。
Further, the pumice used in the culture medium according to the present invention more preferably has a cation exchange capacity of 1 to 10 meq / 100 g. In the present specification, meq / 100 g means milliequivalent per 100 g of dry soil. Cation exchange capacity is 1meq / 100g
If it is less than 10 g, the fertilizing power is small and the yield is poor, which is not preferable. Also, due to the composition of the pumice, the cation exchange capacity hardly exceeds 10 meq / 100 g. The measurement of the cation exchange capacity can be performed, for example, using the semi-micro Scholl described in the above-mentioned “Soil Environment Analysis Method”, pp. 208-210.
The method can be performed using the Enberger method (a method in which the Schollenberger method using 1 M ammonium acetate having a pH of 7.0 is reduced to 1/10). Sch
In ollenberger method, to create a soil column infiltration tube, after exchange and leaching exchangeable cations in NH 4 + in ammonium acetate with ethanol to wash the excess ammonium acetate, followed by NH 4 with sodium chloride solution + Is leached, NH 4 + is quantified by steam distillation, titration, or the like, and the adsorbed NH 4 + is used as the cation exchange capacity.

【0017】本発明者らの研究により、軽石は、0.1
〜10mmの範囲の粒径を有する場合に、上記に規定す
る範囲の適度な飽和透水係数、通気係数及び陽イオン交
換容量を有する場合が多いことが分かった。とりわけ、
鹿児島県地方のシラス軽石で上記の範囲の粒径を有する
ものは、上記に規定する適度な飽和透水係数、通気係数
及び陽イオン交換容量を有することが分かった。例え
ば、粒径0.1mm以下の軽石粒子は、通気係数が乾燥
試料で10cm/sec近辺、湿潤試料で2〜5cm/
secである。したがって、0.1mm以下の粒径の軽
石粒子を用いると、特に湿潤状態で通気性が著しく悪く
なる。粒径が0.1〜10mmの範囲では、乾燥試料、
湿潤試料ともに、安定して優れた通気係数が得られる。
According to the study of the present inventors, pumice was 0.1%.
It has been found that, when the particle diameter is in the range of 10 to 10 mm, the saturated water permeability, the permeability coefficient, and the cation exchange capacity in the range defined above are often high. Above all,
It has been found that Shirasu pumice in the Kagoshima prefecture region having a particle size in the above-mentioned range has the appropriate saturated hydraulic conductivity, permeability coefficient and cation exchange capacity defined above. For example, pumice particles having a particle size of 0.1 mm or less have an air permeability coefficient of around 10 cm / sec for a dry sample and 2 to 5 cm / sec for a wet sample.
sec. Therefore, when pumice particles having a particle size of 0.1 mm or less are used, the air permeability becomes extremely poor particularly in a wet state. When the particle size is in the range of 0.1 to 10 mm, a dried sample,
An excellent permeability coefficient is obtained stably for both wet samples.

【0018】粒径は、例えばJIS Z8801記載の
試験用標準篩を用いて分ける。粒径0.1〜10mmの
軽石は、JIS Z8801の呼称寸法10mmの篩を
通過し、呼称寸法0.1mmの篩を通過しない大きさの
ものをいう。篩い分けは常法によって操作し、粒径値
は、事実上の主たる粒子の粒径値を指す。全重量中に1
0体積%以下の割合で微粉末を含んでいることは問題に
はならず、このような軽石も、本発明の範囲内に含まれ
る。したがって、本発明に係る屋上及び地上緑化用培地
において用いられる軽石は、0.1〜10mmの範囲の
粒径を有し、且つ、0.1〜1.0cm/secの範囲
内の飽和透水係数を有し、更に通気係数が乾燥試料、湿
潤試料ともに5〜60cm/secを有することが特に
好ましい。更には、本発明に係る屋上及び地上緑化用培
地において用いられる軽石は、上記の範囲の粒径を有
し、且つ、1〜10meq/100gの陽イオン交換容
量を有することが更に好ましい。粒径が0.1mm未満
の軽石は、しばしば陽イオン交換容量が1.0meq/
100g未満に下がる。
The particle size is divided using, for example, a standard test sieve described in JIS Z8801. Pumice having a particle size of 0.1 to 10 mm refers to a size that passes through a sieve having a nominal size of 10 mm according to JIS Z8801 and does not pass through a sieve having a nominal size of 0.1 mm. The sieving is operated in a conventional manner, and the particle size value refers to the particle size value of the main particles in effect. 1 in total weight
It does not matter that fine powder is contained in a proportion of 0% by volume or less, and such pumice is also included in the scope of the present invention. Therefore, the pumice used in the rooftop and ground revegetation medium according to the present invention has a particle size in the range of 0.1 to 10 mm, and a saturated hydraulic conductivity in the range of 0.1 to 1.0 cm / sec. It is particularly preferable that the air permeability coefficient is 5 to 60 cm / sec for both the dry sample and the wet sample. Furthermore, it is more preferable that the pumice used in the medium for rooftop and above-ground greening according to the present invention has a particle size in the above range and a cation exchange capacity of 1 to 10 meq / 100 g. Pumice with a particle size of less than 0.1 mm often has a cation exchange capacity of 1.0 meq /
Drops to less than 100 g.

【0019】シラス軽石については、例えば、「土の環
境圏」、岩田進午ら監修、(株)フジテクノシステム発
行、1997年、30〜32頁にその定義と共に説明が
なされている。これによれば、「シラス」とは、「後期
沙羅更新世の大規模なカクデラ火山から噴出した火砕軽
石流堆積物の非溶結部またはその2次堆積物」の総称で
あり、我が国においては、南九州のものがよく知られて
いる。また、これ以外にも、屈斜路湖、十勝岳、支笏
湖、洞爺湖、十和田湖、阿蘇山などのカルデラ火山周辺
に同様のシラスが分布するが、国土庁の土地分類基本調
査等の表層地質図では軽石流堆積物として図示されてい
る。図3にシラス軽石の500倍拡大顕微鏡写真を、図
4に砂粒の500倍拡大顕微鏡写真を示す。図3及び図
4を比較すると、シラス軽石の多孔質性が確認される。
The Shirasu pumice is described with its definition in, for example, “Environment of the Earth”, supervised by Shinno Iwata et al., Published by Fuji Techno System Co., Ltd., 1997, pp. 30-32. According to this, "Shirasu" is a general term for "non-welded parts of pyroclastic pumice flow deposits erupted from the large-scale Kakkadera volcano of the late Sara Pleistocene or its secondary deposits". The ones in South Kyushu are well known. In addition, similar shirasu are distributed around caldera volcanoes such as Lake Kussharo, Mt.Tokachi, Lake Shikotsu, Lake Toya, Lake Towada, Mt.Aso, etc. Here is illustrated as a pumice flow deposit. FIG. 3 shows a 500 × magnification micrograph of Shirasu pumice, and FIG. 4 shows a 500 × magnification micrograph of sand grains. 3 and 4, the porosity of Shirasu pumice is confirmed.

【0020】また、本発明に係る屋上及び地上緑化用培
地に用いられる軽石は、上記に説明したように、粒径
0.1〜10mmの範囲で採掘及び選別し、直ちに含水
率を5.0%以下になるように乾燥工程を施したものが
更に好ましい。したがって、本発明の他の態様は、飽和
透水係数が0.1〜1.0cm/sec、通気係数が乾
燥試料及び湿潤試料で5〜60cn/secの粒状の軽
石を、採掘後に乾燥工程を施して5.0%以下の含水率
を有するように調整された軽石から構成される屋上及び
地上緑化用培地に関する。
Further, as described above, the pumice used for the rooftop and ground revegetation medium according to the present invention is mined and sorted in the range of particle size of 0.1 to 10 mm, and immediately has a water content of 5.0. % Is more preferably subjected to a drying step. Therefore, another aspect of the present invention is to perform a drying process after mining granular pumice having a saturated hydraulic conductivity of 0.1 to 1.0 cm / sec and a permeability coefficient of 5 to 60 cn / sec for dry and wet samples. The present invention relates to a rooftop and above-ground greening medium composed of pumice stone adjusted to have a water content of 5.0% or less.

【0021】採掘された軽石は、空隙部分などに有機物
や微生物などが付着していたり、或いは取り扱い中に付
着したりするので、これが栽培の際に悪影響を与えた
り、これらの有機物や微生物などの存在によって軽石の
物理性及び化学性が不安定になる場合があるが、このよ
うに採掘直後の軽石に乾燥工程を施することにより、軽
石の物理性及び化学性を安定させると共に、微生物の繁
殖を防ぐことができ、安定した品質を保持できる栽培用
培地を提供することができる。乾燥は、加熱炉又は電子
レンジ等によって行うことができる。加熱炉を用いる場
合には、軽石の温度として最低でも105℃まで加熱す
べきで、望ましくは250℃前後で加熱することが好ま
しい。また、電子レンジを用いる場合には、工業用で出
力の大きな電子レンジを用いる必要がある。加熱時間
は、軽石の含水率が5.0%以下になる時間とする。軽
石中に初期に含まれている水の量が異なる場合が多いの
で、安全をみて加熱時間を少し長めにとることが望まし
い。乾燥工程が終了した軽石は、常温になった時点でビ
ニール等の湿気を遮断する袋に密封して保管することが
望ましい。
The mined pumice has organic substances and microorganisms attached to the voids and the like, or adheres during handling, and this has an adverse effect on cultivation, and the organic substances and microorganisms such as these are removed. The physical and chemical properties of pumice may be unstable due to the presence of pumice, but by performing a drying process on pumice immediately after mining, the physical and chemical properties of pumice are stabilized and the propagation of microorganisms Can be provided, and a cultivation medium capable of maintaining stable quality can be provided. Drying can be performed by a heating furnace, a microwave oven, or the like. When a heating furnace is used, it should be heated to at least 105 ° C. as the temperature of the pumice, and it is preferable to heat at about 250 ° C. In addition, when using a microwave oven, it is necessary to use an industrial-use microwave oven having a large output. The heating time is a time at which the moisture content of the pumice becomes 5.0% or less. Since the amount of water initially contained in pumice is often different, it is desirable to take a slightly longer heating time for safety. It is desirable that the pumice stone after the drying process is stored in a sealed bag such as vinyl when moisture reaches room temperature.

【0022】土壌の含水率は、以下の式で表される。 含水率(重量%)=(水分重量/湿土重)×100 (3) ここで、水分重量=湿土重−乾土重であり、乾土重は、
採取した土壌を105℃で24時間乾燥した後の重量で
ある。なお、乾土重の定義は、上述の「土壌環境分析
法」21〜23頁の記載に基づく。
The moisture content of the soil is represented by the following equation. Moisture content (wt%) = (moisture weight / wet soil weight) × 100 (3) where, moisture content = wet soil weight−dry soil weight, and dry soil weight is
This is the weight after drying the collected soil at 105 ° C. for 24 hours. The definition of the dry soil weight is based on the description of the above-mentioned “Soil Environment Analysis Method”, pp. 21-23.

【0023】更に、本発明者らは、上記に説明した所定
の物性を有する粒状の軽石から構成される栽培用培地に
更に粒状の炭を混合することによって、大規模栽培によ
り一層適した屋上及び地上緑化用培地を提供することが
できることを見出した。このような混合培地は、培地の
物理性及び化学性が軽石培地とほぼ同等の条件で、保水
力及び保肥力を大きくして、苗の定植後に生育速度の大
きな栽培をさせることができる。したがって、本発明の
更に他の態様は、上記に規定する粒状の軽石から構成さ
れる培地に、更に炭を配合したことを特徴とする屋上及
び地上緑化用培地に関する。
Further, the present inventors have further improved the rooftop and the more suitable for large-scale cultivation by further mixing granular charcoal with a cultivation medium composed of granular pumice having the above-mentioned predetermined physical properties. It has been found that a medium for above-ground greening can be provided. Such a mixed medium can increase the water holding power and fertilizing power under conditions in which the physical properties and chemical properties of the medium are almost the same as those of the pumice medium, and can grow the seedlings at a high growth rate after planting. Therefore, still another embodiment of the present invention relates to a medium for rooftop and above-ground greening, wherein charcoal is further added to the medium composed of the granular pumice as defined above.

【0024】ここで用いることのできる粒状の炭は、各
種の有機性材料を乾留して得られる炭であれば何でもよ
いが、保水性と保肥性との観点から、多孔質の程度の大
きなものが好ましい。本発明の好ましい態様において好
ましく用いることのできる炭の形態としては、木炭、竹
炭、もみがら炭などをあげることができる。本発明の好
ましい態様において炭を加える目的は、保肥性のあまり
よくない火山性軽石の欠点を補うものであるので、多孔
質の程度が高く、保水力及び保肥力の高いものであるこ
とが好ましい。また、例えば、農業副産物を炭化したも
の、具体的には例えばビール粕(かす)を炭化したもの
を用いると、廃棄物の有効利用にもつながり、極めて好
ましい。更に、本発明の好ましい態様に係る栽培用培地
において用いる炭は、その有効利用の観点から、循環し
て再利用することが好ましい。
The granular charcoal that can be used here may be any charcoal obtained by carbonizing various organic materials. However, from the viewpoint of water retention and fertilizer retention, the degree of porosity is large. Are preferred. Examples of the form of charcoal that can be preferably used in the preferred embodiment of the present invention include charcoal, bamboo charcoal, rice charcoal, and the like. In a preferred embodiment of the present invention, the purpose of adding charcoal is to compensate for the drawback of volcanic pumice, which has poor fertilizing ability, so that it has a high degree of porosity and high water retention and fertilizing power. preferable. Also, for example, the use of carbonized agricultural by-products, specifically, for example, the carbonized beer lees (waste) leads to effective use of waste, which is extremely preferable. Furthermore, it is preferable that the charcoal used in the culture medium according to a preferred embodiment of the present invention be circulated and reused from the viewpoint of its effective use.

【0025】炭の粒度は、軽石の粒度と同程度でよい
が、炭の多孔質の状態、軽石に対する配合割合などによ
って、適宜選択することができる。炭の好ましい粒度は
1〜5.6mmの範囲がよいが、平均粒径はその状況に
よって選択する。軽石と混合した際に均一に混ざり合う
ような平均粒径を有する炭が好ましい。軽石と炭との配
合割合は、栽培する作物との関係で種々選択することが
できるが、一般に、軽石の質量に対する炭の質量が0.
1〜0.5倍の範囲とすることができる。
The particle size of the charcoal may be substantially the same as the particle size of the pumice stone, but can be appropriately selected depending on the porous state of the charcoal, the mixing ratio with respect to the pumice stone, and the like. The preferred particle size of the charcoal is preferably in the range of 1 to 5.6 mm, and the average particle size is selected depending on the situation. Charcoal having an average particle size such that it mixes uniformly when mixed with pumice is preferred. The mixing ratio of pumice and charcoal can be variously selected depending on the crop to be cultivated.
The range can be 1 to 0.5 times.

【0026】[0026]

【実施例】以下の実施例によって、本発明の各種態様を
より具体的に説明する。これら実施例は、本発明の具体
例を示すものであり、本発明はこれらに限定されるもの
ではない。
The following examples further illustrate various aspects of the present invention. These examples show specific examples of the present invention, and the present invention is not limited to these examples.

【0027】実施例1 本実施例で用いた屋上及び地上緑化用栽培装置の概念を
図5に示す。450mm×1200mmの広さの栽培ボ
ックス20を設け、鹿児島県算出のシラス軽石21を深
さ80mmに充填し、7、8月時期にサラダナAを栽培
した。栽培試験は静岡県において行った。用いたシラス
軽石21は、5660μmの篩と1000μmの篩とを
用いて粒径1.0mm〜5.6mmに選別し、加熱炉内
で250℃で4時間乾燥したものを用いた。軽石の含水
率は0.2%であった。軽石の飽和透水係数は3.4×
10-1cm/sec、通気係数は乾燥試料で29cm/
sec、湿潤試料で27cm/sec、陽イオン交換容
量は3.4meq/100gであった。放水小孔22が
所定間隔で周壁に長さ方向に一列に点在する多孔放水管
23を、栽培ボックス20の上方に水平に掛け渡し、適
宜散水を行った。サラダナを播種して2日後に発芽を確
認し、10日後に温室内の栽培ボックス20に定植し
た。栽培面積は20m2 であった。太陽光を照射しなが
らかけ流しして栄養(液肥)と水を補給した。定植30
日後、1m2 あたり36株の収穫があった。収穫された
サラダナの株のうちの12株の重量を測定した。ここ
で、株の重量とは、根を除くサラダナの重量である。結
果を第1表に示す。
Example 1 FIG. 5 shows the concept of a cultivation apparatus for rooftop and ground greening used in this example. A cultivation box 20 having a size of 450 mm × 1200 mm was provided, filled with Shirasu pumice 21 calculated by Kagoshima to a depth of 80 mm, and Saladana A was cultivated in July and August. The cultivation test was performed in Shizuoka Prefecture. The used Shirasu pumice 21 was screened at a particle size of 1.0 mm to 5.6 mm using a 5660 μm sieve and a 1000 μm sieve, and dried at 250 ° C. for 4 hours in a heating furnace. The moisture content of the pumice was 0.2%. The saturated hydraulic conductivity of pumice is 3.4 ×
10 -1 cm / sec, air permeability coefficient is 29 cm /
sec, the wet sample was 27 cm / sec, and the cation exchange capacity was 3.4 meq / 100 g. A perforated water discharge pipe 23 in which water discharge holes 22 are scattered in a line in a length direction on a peripheral wall at predetermined intervals was horizontally laid over the cultivation box 20, and watering was appropriately performed. Germination was confirmed 2 days after sowing the saladana, and 10 days later, it was planted in the cultivation box 20 in the greenhouse. The cultivation area was 20 m 2 . Nutrients (liquid fertilizer) and water were replenished by pouring under sunlight. Planting 30
After the day, there was a harvest of 1m 2 per 36 shares. Twelve of the harvested salads were weighed. Here, the weight of the plant is the weight of the saladner excluding the root. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例1 シラス軽石に代えて以下の性状を有する砂を培地として
用いた他は、実施例1と同様にサラダナの栽培試験を行
った。用いた砂の粒径は0.2〜1.0mm、含水率は
0.5wt%、飽和透水係数は3.7cm/sec、通
気係数は乾燥試料で59cm/sec、湿潤試料で63
cm/sec、陽イオン交換容量は0.9meq/10
0gであった。栽培面積は10m2 であった。1m2
たり22株の収穫があり、そのうち12株について重量
を測定した。結果を第2表に示す。12株の平均株重量
は82.9gであった。実施例1と比較例1とを比較す
ることにより、本発明に係る軽石培地を用いると、砂耕
に比べて栽植密度を高くすることが可能で、且つ株当た
りの重量を高めることができることが分かる。
Comparative Example 1 A cultivation test of salad na was conducted in the same manner as in Example 1 except that sand having the following properties was used as a medium instead of shirasu pumice. The particle size of the sand used was 0.2 to 1.0 mm, the water content was 0.5 wt%, the saturated hydraulic conductivity was 3.7 cm / sec, the ventilation coefficient was 59 cm / sec for the dry sample, and 63 for the wet sample.
cm / sec, cation exchange capacity is 0.9 meq / 10
It was 0 g. The cultivation area was 10 m 2 . There is a harvest of 1m 2 per 22 shares, and weighed about 12 of which strain. The results are shown in Table 2. The average strain weight of the 12 strains was 82.9 g. By comparing Example 1 with Comparative Example 1, it is possible to increase the planting density and to increase the weight per plant by using the pumice medium according to the present invention as compared with sand culture. I understand.

【0030】[0030]

【表2】 [Table 2]

【0031】比較例2 鹿児島県産出のシラス軽石を、粒径0.1mm未満に篩
選別した試料の飽和透水係数、通気係数、陽イオン交換
容量を測定した。飽和透水係数は2.5×10 -2cm/
secと実施例1で用いたシラス軽石試料の約10分の
1以下であった。通気係数は乾燥試料で12cm/se
c、湿潤試料で4cm/secであり、特に湿潤試料の
通気係数が低かった。また、陽イオン交換容量は1.3
meq/100gであった。
Comparative Example 2 Shirasu pumice from Kagoshima Prefecture was sieved to a particle size of less than 0.1 mm.
Saturated hydraulic conductivity, permeability coefficient, cation exchange of selected samples
The capacity was measured. The saturated hydraulic conductivity is 2.5 × 10 -2cm /
sec and about 10 minutes of the Shirasu pumice sample used in Example 1.
1 or less. The air permeability coefficient is 12 cm / sec for dry samples
c, 4 cm / sec for the wet sample, especially for the wet sample
The ventilation coefficient was low. The cation exchange capacity is 1.3.
meq / 100 g.

【0032】実施例2 軽石に木炭を混合した培地を用いた栽培試験を行った。
軽石としては、実施例1で用いたものと同じシラス軽石
試料を用いた。木炭(ヤシガラ炭)を粉砕して粒径1〜
2mmに調整した木炭粒子を準備し、シラス軽石に対し
て、木炭を重量比で、それぞれ0%(A)、10%
(B)、20%(C)、30%(D)、40%(E)、
50%(F)となるように混合した培地を形成した。そ
れぞれの培地においてサラダナを栽培した。栽培は沖縄
県において行った。5月末に播種し、播種後17日目に
定植し、その32日後に収穫した。灌水方法は、点滴か
け流しとし、育苗中は50ミリリットル/株、定植中は
60ミリリットル/株の量の灌水を行った。肥料として
液肥を施した。それぞれの培地に関して21株を収穫
し、株当たりのサラダナの平均重量(根を除いた部分の
重量)を求めた。結果を第3表及び図6に示す。
Example 2 A cultivation test was performed using a medium in which pumice was mixed with charcoal.
As the pumice, the same Shirasu pumice sample used in Example 1 was used. Pulverize charcoal (coconut charcoal) to a particle size of 1
Charcoal particles adjusted to 2 mm are prepared, and charcoal is 0% (A) and 10% by weight with respect to Shirasu pumice stone, respectively.
(B), 20% (C), 30% (D), 40% (E),
A mixed medium was formed to be 50% (F). Saladana was grown in each medium. Cultivation was performed in Okinawa Prefecture. Sown at the end of May, planted 17 days after sowing, and harvested 32 days later. The irrigation method was a trickle-drip flow, and irrigation was performed at an amount of 50 ml / strain during seedling raising and at an amount of 60 ml / strain during planting. Liquid fertilizer was applied as fertilizer. Twenty-one strains were harvested for each medium, and the average weight of the salad per strain (weight excluding the root) was determined. The results are shown in Table 3 and FIG.

【0033】[0033]

【表3】 [Table 3]

【0034】第3表及び図6より、木炭を混合しない培
地で栽培したサラダナに対して、木炭を混合した培地で
栽培したサラダナの重量が株当たり平均20g増大した
ことが分かる。
From Table 3 and FIG. 6, it can be seen that the weight of the salad cultivated on the medium containing the charcoal increased by an average of 20 g per strain, compared to the salad cultivated on the medium containing no charcoal.

【0035】実施例3 軽石に木炭を混合した培地を用いた連作栽培試験を行っ
た。軽石としては、実施例1で用いたものと同じシラス
軽石試料を用いた。木炭(ヤシガラ炭)を粉砕してシラ
ス軽石試験と同じサイズの分級を行い(粒径1〜5.6
mm)、粒度を調整した木炭粒子を準備し、シラス軽石
に対して、木炭を重量比で、それぞれ0%(A)、10
%(B)、20%(C)、30%(D)、50%
(E)、80%(F)、100%(G)となるように混
合した培地を形成した。それぞれの混合培地を1鉢につ
いて800gとなるように採取し、1リットルのパイレ
ックス(登録商標)製ビーカーに収容して培地とし、そ
れぞれの培地においてコマツナを栽培した。
Example 3 A continuous cultivation test was conducted using a medium in which pumice was mixed with charcoal. As the pumice, the same Shirasu pumice sample used in Example 1 was used. The charcoal (yashigara charcoal) is pulverized and classified in the same size as in the Shirasu pumice test (particle size: 1 to 5.6).
mm), charcoal particles having adjusted particle size are prepared, and the charcoal is 0% (A) and 10% by weight, respectively, with respect to Shirasu pumice.
% (B), 20% (C), 30% (D), 50%
(E), 80% (F), and 100% (G) were mixed to form a culture medium. Each mixed medium was collected so as to have a weight of 800 g per pot, and housed in a 1-liter Pyrex (registered trademark) beaker as a medium, and Komatsuna was cultivated in each medium.

【0036】栽培は静岡県において行った。播種後約1
0日目に定植し、その約30日後に収穫した。これを1
0連作行った。養液として、河川水をベースに養分を添
加したものを用いた。添加下養分の割合は、園芸試験場
標準処方の培養液(成分濃度:N=16(meq/リッ
トル:以下単位同じ);P=4;K=8;Ca=8;M
g=4)とほぼ同じになるようにした。全ての培地に対
して、一つの養液タンクで調整した養液を同じタイミン
グで同じ量だけ供給するようにした。栽培試験期間中、
培地はビニールハウス内に収容した。収穫されたコマツ
ナの株の重量を測定した。結果を第4表に示す。なお、
株重量は、10株の重量を測定した値の平均値である。
第4表より、シラス軽石100%の培地よりも、10〜
50重量%の木炭を配合した混合培地の方が、収穫が増
えており、また、連作による作物の収量低下が起こらな
かったことが分かる。
Cultivation was performed in Shizuoka Prefecture. About 1 after sowing
The plants were planted on day 0 and harvested about 30 days later. This one
We performed 0 consecutive crops. As a nutrient solution, a solution obtained by adding nutrients based on river water was used. The ratio of added nutrients is as follows: culture solution of horticultural test center standard formulation (ingredient concentration: N = 16 (meq / liter: hereinafter the same unit); P = 4; K = 8; Ca = 8; M
g = 4). The same amount of nutrient solution prepared in one nutrient solution tank was supplied to all the culture media at the same timing. During the cultivation test period,
The medium was housed in a greenhouse. The weight of the harvested Komatsuna strain was measured. The results are shown in Table 4. In addition,
The strain weight is the average of the values obtained by measuring the weight of 10 strains.
From Table 4, it can be seen that 10% more than Shirasu pumice 100% medium.
It can be seen that the harvest of the mixed medium containing 50% by weight of charcoal was increased, and that the crop yield did not decrease due to continuous cropping.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【発明の効果】本発明に係る屋上及び地上緑化用培地
は、仮比重が一般の土壌(砂質土壌や粘度質土壌)が
1.0〜1.3であるのに比べて、例えば粒径範囲が1
〜10mmの粒状軽石で嵩比重が0.45〜0.6とい
う、一般土壌に対してその数値が半分以下の粒状軽石か
ら構成されることを特徴とする。従って一般土壌の荷重
負荷に対し、屋上及び地上での荷重負荷が半分になり、
建造物に対して強度上の問題を起こすことがなく、建築
基準法を満たすことが容易であるため、特に屋上緑化用
に好適な培地である。本発明に係る栽培用培地を用いて
栽培することのできる植物としては、具体的には、野
菜、果樹、花卉植物、樹木などを挙げることができる。
また、本発明の更に好ましい態様においては、更に培地
に炭を加えることにより、培地の保水力及び保肥力が高
まり、連作による作物の収量低下を防ぐことができ、長
期間に亘って栽培を繰り返すことができるので、農作業
が簡略化される。更に、培地の汚染による培地の交換頻
度が少なくなることによって、使用済みの培土の廃棄に
よる経済的な負担が軽減される。
The medium for rooftop and above-ground revegetation according to the present invention has a temporary specific gravity of, for example, 1.0 to 1.3 compared to that of general soil (sandy soil or viscous soil). Range 1
It is characterized by being composed of granular pumice having a bulk specific gravity of 0.45 to 0.6 and a numerical value of half or less of general soil, which is a granular pumice of 10 to 10 mm. Therefore, the load on the roof and on the ground is halved compared to the load on general soil,
It is a medium that is particularly suitable for rooftop greening because it does not cause a problem in strength for the building and easily meets the Building Standards Law. Plants that can be cultivated using the cultivation medium according to the present invention include, for example, vegetables, fruit trees, flowering plants, and trees.
Further, in a further preferred embodiment of the present invention, by adding charcoal to the medium, the water holding power and fertilizing power of the medium are increased, and it is possible to prevent a decrease in crop yield due to continuous cropping. Farming work is simplified. Further, the frequency of replacing the culture medium due to contamination of the culture medium is reduced, so that the economic burden due to the disposal of the used culture medium is reduced.

【0039】本発明の粒状軽石培地は、植物の栽培に必
要な水や培養液の供給が少なくて済むので、建造物の屋
上及び地上部分での栽培に必要な灌水装置が簡単とな
り、また水や培養液の供給による建造物の屋上及び地上
部分の損傷が少ないので、建造物の寿命を縮めることが
ない。本発明の粒状軽石培地は、もともと陽イオン交換
容量(CEC)が一般土壌に比べて小さい。屋上緑化や
地上緑化の場合は、培地が被覆されていないので、雨が
降った場合は、培地に直接大量の水が流れ込み、培地の
肥料成分を流出させてしまう。粒状軽石培地はCECが
3meq/100g程度なので、一般土壌のCEC15
〜30meq/100gの1/10程度であり、雨がい
くら降っても肥料成分の流出量が少ない。流出量がCE
Cに比例するのであれば、1/10程度となり極めて肥
料の流亡防止効果も大きい。
The granular pumice medium of the present invention requires a small supply of water and culture solution required for plant cultivation, so that the watering device required for cultivation on the rooftop and above the ground of a building is simplified, The rooftop and the ground portion of the building due to the supply of the medium and the culture solution are less damaged, and the life of the building is not shortened. The granular pumice medium of the present invention originally has a small cation exchange capacity (CEC) as compared with general soil. In the case of rooftop greening or greenery on the ground, since the medium is not covered, a large amount of water flows directly into the medium when it rains, causing the fertilizer components of the medium to flow out. Since the granular pumice medium has a CEC of about 3 meq / 100 g, CEC 15
It is about 1/10 of の 30 meq / 100 g, and no matter how much rain falls, the outflow of fertilizer components is small. Outflow is CE
If it is proportional to C, it is about 1/10, and the effect of preventing runoff of fertilizer is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において規定する定水位法による飽和透
水係数を測定するために用いられる土壌透水性測定器の
概念図である。
FIG. 1 is a conceptual diagram of a soil water permeability measuring device used for measuring a saturated water permeability by a constant water level method defined in the present invention.

【図2】本発明において規定する通気係数を測定するた
めに用いられる通気性測定装置の概念図である。
FIG. 2 is a conceptual diagram of a gas permeability measuring device used for measuring a gas permeability coefficient defined in the present invention.

【図3】シラス軽石の500倍拡大顕微鏡写真である。FIG. 3 is a 500 × magnification micrograph of Shirasu pumice.

【図4】砂粒の500倍拡大顕微鏡写真である。FIG. 4 is a 500 × magnification micrograph of a sand grain.

【図5】本発明の実施例1において用いた栽培試験装置
の概念を示す図である。
FIG. 5 is a diagram showing the concept of a cultivation test device used in Example 1 of the present invention.

【図6】本発明の実施例2の栽培試験結果を示すグラフ
である。
FIG. 6 is a graph showing cultivation test results of Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 採土円筒 2 ゴムリング 3 定水位ホルダー 4 水槽 5 排水口 6 排水パイプ 7 排水口 8 メスシリンダー 9 自在ノズル 10 給水パイプ 11 金網キャップ 12 円筒 13 厚いゴム板 14 ガラス容器 15 ガスメーター 16 水中マノメーター 20 栽培ボックス 21 シラス軽石 22 放水小孔 23 多孔放水管 A サラダ菜 DESCRIPTION OF SYMBOLS 1 Soil collecting cylinder 2 Rubber ring 3 Constant water level holder 4 Water tank 5 Drain port 6 Drain pipe 7 Drain port 8 Measuring cylinder 9 Free nozzle 10 Water supply pipe 11 Wire mesh cap 12 Cylinder 13 Thick rubber plate 14 Glass container 15 Gas meter 16 Underwater manometer 20 Cultivation Box 21 Shirasu pumice stone 22 Water discharge hole 23 Perforated water discharge pipe A Salad vegetable

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 屋上及び地上緑化用培地として、通常の
土より嵩比重が小さく、軽石の嵩比重が、0.3〜0.
8である粒状軽石から構成されることを特徴とする屋上
及び地上緑化用培地。
1. A medium for rooftop and above-ground revegetation having a bulk specific gravity smaller than that of ordinary soil, and a pumice having a bulk specific gravity of 0.3 to 0.1.
8. A medium for rooftop and above-ground greening, comprising a granular pumice of No. 8.
【請求項2】 前記粒状軽石は、飽和透水係数が0.1
〜1.0cm/sec、通気係数が乾燥試料及び湿潤試
料で5〜60cm/secであることを特徴とする請求
項1に記載の屋上及び地上緑化用培地。
2. The granular pumice has a saturated hydraulic conductivity of 0.1.
The rooftop and above-ground greening medium according to claim 1, wherein the culture medium has a permeability of 5 to 60 cm / sec for a dry sample and a wet sample.
【請求項3】 前記粒状軽石が、1〜10meq/10
0gの陽イオン交換容量を有することを特徴とする請求
項1又は請求項2に記載の屋上及び地上緑化用培地。
3. The method according to claim 1, wherein the granular pumice is 1 to 10 meq / 10.
The rooftop and above-ground greening medium according to claim 1 or 2, having a cation exchange capacity of 0 g.
【請求項4】 前記粒状軽石が、0.1〜10mmの粒
径範囲を有することを特徴とする請求項1〜3のいずれ
か1項に記載の屋上及び地上緑化用培地。
4. The medium according to claim 1, wherein the granular pumice has a particle size range of 0.1 to 10 mm.
【請求項5】 前記粒状の軽石が、採掘後に乾燥工程を
施されて5.0%以下の含水率を有するように調整され
ていることを特徴とする請求項1〜4のいずれか1項に
記載の屋上及び地上緑化用培地。
5. The granulated pumice stone is subjected to a drying step after mining so as to have a water content of 5.0% or less. The medium for rooftop and above-ground greening described in 1.
【請求項6】 更に炭を配合したことを特徴とする請求
項1〜5のいずれか1項に記載の屋上及び地上緑化用培
地。
6. The rooftop and above-ground greening medium according to claim 1, further comprising charcoal.
JP2001119811A 2001-04-18 2001-04-18 Rooftop and aboveground greening media Expired - Fee Related JP3807947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119811A JP3807947B2 (en) 2001-04-18 2001-04-18 Rooftop and aboveground greening media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119811A JP3807947B2 (en) 2001-04-18 2001-04-18 Rooftop and aboveground greening media

Publications (2)

Publication Number Publication Date
JP2002315432A true JP2002315432A (en) 2002-10-29
JP3807947B2 JP3807947B2 (en) 2006-08-09

Family

ID=18969965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119811A Expired - Fee Related JP3807947B2 (en) 2001-04-18 2001-04-18 Rooftop and aboveground greening media

Country Status (1)

Country Link
JP (1) JP3807947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211984A (en) * 2007-02-28 2008-09-18 Shimane Univ Soil management method
JP2012244934A (en) * 2011-05-27 2012-12-13 Kumagai Gumi Co Ltd Plant growing material for rooftop greening

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211984A (en) * 2007-02-28 2008-09-18 Shimane Univ Soil management method
JP2012244934A (en) * 2011-05-27 2012-12-13 Kumagai Gumi Co Ltd Plant growing material for rooftop greening

Also Published As

Publication number Publication date
JP3807947B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
Wan et al. Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum Mill) yield and water use in semi-humid area
Elowson Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land
CN108307968A (en) A kind of method of varieties in saline-alkali areas plantation Chinese herbaceous peony
CN101507391B (en) Rock slope-surface ecology treatment method
CN105028011B (en) Highlands planting tree hole and planting tree method
Tingwu et al. Effect of drip irrigation with saline water on water use efficiency and quality of watermelons
CN103153039B (en) The cultivation method of ginseng
Sivakumar Water Management Strategies to be adopted in Sri Lanka to Improve Food Productivity to Accommodate the Population Growth
El Sharkawi et al. Development of treated rice husk as an alternative substrate medium in cucumber soilless culture
CN104876718A (en) Fertilizer with high organic content for saline-alkali soil and application thereof in planting of winged euonymus
CN107155595A (en) A kind of implantation methods of shed for pepper
CN104381089A (en) Large-sized Chinese ash transplanting method
Chhabra Irrigation and salinity control
CN107258267A (en) A kind of implantation methods of plastic tent cucumber
Goswami et al. Soil-less culture (hydroponics)—A review
CN108040737A (en) A kind of root system limits grape field getting fat forcing culture method
CN107226736A (en) A kind of composite interstitial substance for vegetable soilless culture in family room
JP2008178387A (en) Hydroponic apparatus and hydroponic method for solid culture medium culture
JP3807947B2 (en) Rooftop and aboveground greening media
CN105409554B (en) The method of Mountainous Tea Garden grass planting bank protection
CN108476917A (en) A kind of blackthorn cuttage and seedling culture matrix
Trout et al. Soil management (chapter 23)
Legowo et al. Analysis of water-saving irrigation with organic materials at different percentages for rice cultivation
OKUR Soils And Climate Change
CN2738546Y (en) Nutrient pot suitable for plant cultivation in desert area

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees