JP2002314013A - Heat radiating material and method of manufacturing the same - Google Patents
Heat radiating material and method of manufacturing the sameInfo
- Publication number
- JP2002314013A JP2002314013A JP2001115824A JP2001115824A JP2002314013A JP 2002314013 A JP2002314013 A JP 2002314013A JP 2001115824 A JP2001115824 A JP 2001115824A JP 2001115824 A JP2001115824 A JP 2001115824A JP 2002314013 A JP2002314013 A JP 2002314013A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- fin
- powder
- layer
- heat radiating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 113
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 239000010949 copper Substances 0.000 claims abstract description 30
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 29
- 239000011147 inorganic material Substances 0.000 claims abstract description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000011230 binding agent Substances 0.000 claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 239000002131 composite material Substances 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 230000005855 radiation Effects 0.000 claims description 32
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 19
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims description 19
- 229940112669 cuprous oxide Drugs 0.000 claims description 19
- 238000000465 moulding Methods 0.000 claims description 15
- 238000005245 sintering Methods 0.000 claims description 13
- 230000017525 heat dissipation Effects 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 229910000431 copper oxide Inorganic materials 0.000 claims description 6
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000000110 cooling liquid Substances 0.000 abstract description 22
- 238000009835 boiling Methods 0.000 abstract description 20
- 239000011810 insulating material Substances 0.000 abstract description 9
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 24
- 239000002826 coolant Substances 0.000 description 19
- 229960004643 cupric oxide Drugs 0.000 description 14
- 238000011049 filling Methods 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 8
- 239000012212 insulator Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000005751 Copper oxide Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000012809 cooling fluid Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- -1 pismuth Chemical compound 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0028—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
- F28D2021/0029—Heat sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/18—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Powder Metallurgy (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
(57)【要約】
【課題】放熱材の放熱層側の冷却液に対し沸騰効率の良
いフィンを設け、放熱材の受熱層側はより低熱膨張率と
して、半導体用絶縁板と放熱材との接合後の反りが小さ
く、よりコンパクトな放熱材及びそれを廉価に製造する
方法を提供する。
【解決手段】良伝熱性の金属粉末と前記金属より低熱膨
張率である無機材料粉末の混合物にバインダーを添加す
ることにより得られた多孔質の焼結体により放熱材1を
構成する。発熱体からの熱を吸収する受熱層2と、前記
受熱層2と一体化されて前記受熱層2からの熱を外部に
放出する放熱層3を備え、放熱層3に間隔をあけて高気
孔率のフィン4を設けた。フィン間部溝11は凹円弧状
に形成し低気孔率に構成する。受熱層2は低熱膨張率の
銅複合材で構成し、絶縁材接着用金属47を介して発熱
体を接着する。
(57) [Summary] [Problem] To provide a fin having good boiling efficiency for a cooling liquid on a heat radiating layer side of a heat radiating material and to have a lower thermal expansion coefficient on a heat receiving layer side of the heat radiating material so that the semiconductor insulating plate and the heat radiating material Provided is a more compact heat radiating material having a small warp after joining and a method of manufacturing the heat radiating material at a low cost. A heat dissipating material is constituted by a porous sintered body obtained by adding a binder to a mixture of a metal powder having good heat conductivity and an inorganic material powder having a lower coefficient of thermal expansion than the metal. A heat-receiving layer that absorbs heat from the heating element; and a heat-dissipating layer that is integrated with the heat-receiving layer and emits heat from the heat-receiving layer to the outside. The fins 4 of the ratio were provided. The inter-fin groove 11 is formed in a concave arc shape and has a low porosity. The heat receiving layer 2 is made of a copper composite material having a low coefficient of thermal expansion, and a heating element is bonded through a metal 47 for bonding an insulating material.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液体による冷却方
式に利用する放熱材及びその製造方法に関し、特に沸騰
熱伝導性が良く、熱歪の少ない放熱材と、これを効率的
に製造するための製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipating material used for a cooling method using a liquid and a method for manufacturing the same, and more particularly, to a heat dissipating material having good boiling heat conductivity and small heat distortion, and an efficient method for manufacturing the same. And a method for producing the same.
【0002】[0002]
【従来の技術】半導体の高容量化、高速化に伴い半導体
チップの発熱量が増大する傾向にある。このため、発熱
に起因する半導体素子の特性劣化、短寿命化を防止する
ためには、放熱部材を設け、半導体素子およびその近傍
での温度上昇を抑制する必要がある。銅は、熱伝導率が
393W/(m・K)と大きく、かつ低価格であるた
め、LSIの放熱部材として一般に用いられている。一
方、各種オン・オフ機能をもつ電力やエネルギーの変
換、制御用半導体素子は、発熱量が特に大きいことか
ら、放熱材として熱膨張率が半導体チップであるケイ素
の熱膨張率に近い材料(モリブデン、タングステン)が
使われている。2. Description of the Related Art As the capacity and speed of semiconductors increase, the amount of heat generated by semiconductor chips tends to increase. For this reason, in order to prevent the deterioration of the characteristics of the semiconductor element and the shortening of the life of the semiconductor element due to heat generation, it is necessary to provide a heat radiating member to suppress the temperature rise in the semiconductor element and its vicinity. Copper is generally used as a heat dissipating member for LSIs because copper has a large thermal conductivity of 393 W / (m · K) and is inexpensive. On the other hand, semiconductor elements for power and energy conversion and control having various on / off functions generate a particularly large amount of heat, so that a material having a thermal expansion coefficient close to that of silicon as a semiconductor chip (molybdenum) is used as a heat dissipation material. , Tungsten) is used.
【0003】また、熱膨張率及び熱伝導率が銅、モリブ
デン・タングステンのほぼ中間的な単一酸化銅濃度複合
材(例えば、酸化銅濃度が約50%)の使用が図られ、
放熱効果の向上および熱膨張による反りの発生を防止し
ようとする。Further, the use of a composite material having a single copper oxide concentration (for example, a copper oxide concentration of about 50%) having a thermal expansion coefficient and a thermal conductivity substantially intermediate between copper and molybdenum / tungsten has been attempted.
An attempt is made to improve the heat radiation effect and prevent warpage due to thermal expansion.
【0004】放熱材として焼結体を使用した場合の使用
状態を図5に示す。気孔穴径が等しい従来の放熱材36
(放熱材の強度を均一にするため焼結材の密度がほぼ均
一)を水冷冷却器等に取り付けた場合(放熱材放熱層が
上側、受熱層が下側である。)、気孔穴径が等しい為、
放熱側にある冷却液40は主に受熱層2に近いフィン間
部52(冷却液と表面の温度差がより大きい)から沸騰
し、気泡23となり放出される。その結果、フィン51
周囲は気泡23に覆われ、かつ、フィン51端面からの
冷却液40の侵入よりも気泡面に近いフィン間部52で
冷却液吸入が行われるため、フィン51が沸騰作用にあ
まり利用されなくなる。したがって、沸騰性能は低下す
ると考えられる。FIG. 5 shows a state of use when a sintered body is used as a heat dissipating material. Conventional heat dissipating material 36 having the same pore diameter
When the heat-dissipating material (the density of the sintered material is almost uniform in order to make the strength of the heat-dissipating material uniform) is attached to a water-cooled cooler or the like (the heat-dissipating material heat dissipating layer is on the upper side and the heat receiving layer is lower), the pore diameter is smaller. Because they are equal
The cooling fluid 40 on the heat radiation side boils mainly from the fin portion 52 (where the temperature difference between the cooling fluid and the surface is larger) close to the heat receiving layer 2 and is released as bubbles 23. As a result, the fins 51
The surroundings are covered with the bubbles 23 and the coolant is sucked in the inter-fin portion 52 closer to the bubble surface than the intrusion of the coolant 40 from the end surfaces of the fins 51, so that the fins 51 are not much used for the boiling action. Therefore, the boiling performance is considered to decrease.
【0005】図6に示したように、従来の放熱材36を
水冷冷却器等に取り付けた場合(放熱材放熱層が下側、
受熱層が上側である。)、沸騰により焼結体の外に放出
された気泡23は放熱層直下(フィン間部11直下)に
停留し、熱抵抗の大きい断熱体を形成するため伝熱性能
は低下する。その際、放熱材36を水平から、わずかに
傾け、停留した気泡23aを流失あるいは脱気すると沸
騰性能は回復する。しかし、その場合も、従来の放熱材
36のフィン間部52は気泡23に覆われるので、フィ
ン間部52での冷却液40の吸入が困難となる。フィン
51から吸入される冷却液40は主にフィン内を毛細管
作用により加熱されながら上昇し、発生した気泡は浮力
によりフィン間部52で気泡23として放出される。し
かし、このような場合、従来の放熱材36は、焼結材の
密度がほぼ均一であるため、フィン51から冷却液の吸
入が容易に行われないので、従来の放熱材36は、沸騰
性能は問題がある。放熱材放熱層が上側、受熱層が下側
である場合、As shown in FIG. 6, when a conventional heat radiating material 36 is attached to a water-cooled cooler or the like (the heat radiating material radiating layer is on the lower side,
The heat receiving layer is on the upper side. ), The bubbles 23 released out of the sintered body by boiling stay immediately below the heat radiation layer (immediately below the fin portions 11), and form a heat insulator having a large thermal resistance, so that the heat transfer performance is reduced. At this time, the boiling performance is recovered by slightly tilting the heat radiating member 36 from the horizontal level and flowing out or evacuating the stagnant bubbles 23a. However, in this case as well, the inter-fin portion 52 of the conventional heat dissipating material 36 is covered with the air bubbles 23, so that it is difficult to suck the coolant 40 through the inter-fin portion 52. The cooling liquid 40 sucked from the fins 51 rises mainly while being heated by the capillary action inside the fins, and the generated bubbles are released as bubbles 23 in the inter-fin portion 52 by buoyancy. However, in such a case, since the density of the sintered material of the conventional heat dissipating material 36 is substantially uniform, the suction of the cooling liquid from the fins 51 is not easily performed. Has a problem. When the heat radiating layer is on the upper side and the heat receiving layer is on the lower side,
【0006】また、放熱部材は、図8に示した溝付き下
パンチ19は金属粉末(粉充填部44に入れられる。)
をプレス成形して形成されている。As for the heat radiation member, the grooved lower punch 19 shown in FIG. 8 is made of metal powder (put into the powder filling portion 44).
Is formed by press molding.
【0007】さらに、放熱材の放熱性能を上げるため、
放熱側に効率の良いフィンを設ける場合、フライスや旋
盤による加工を必要とする。Further, in order to improve the heat dissipation performance of the heat dissipation material,
When an efficient fin is provided on the heat radiation side, processing with a milling machine or a lathe is required.
【0008】[0008]
【発明が解決しようとする課題】しかし、従来の放熱材
に用いられていた銅によると、熱膨張係数が17×10
-6/Kと大きいため、発熱量の多い半導体素子用放熱材
としては使えないという問題があった。また、モリブデ
ン、タングステンは、熱膨張率が小さく、熱伝導性にも
優れるものの、高価であるという問題がある。However, conventional heat dissipating materials
According to copper used for the thermal expansion coefficient is 17 × 10
-6/ K, heat dissipation material for semiconductor devices that generates a large amount of heat
There was a problem that it could not be used. Also, molybdenum
And tungsten have a low coefficient of thermal expansion and a good thermal conductivity.
Although excellent, there is a problem that it is expensive.
【0009】さらに、単一酸化銅濃度複合材を使用した
場合、半導体用絶縁板(熱膨張率が小さい)との高温接
合後、半導体用絶縁板と低熱膨張性放熱材との熱膨張率
の差により反りが発生し、使用しにくい場合が生じると
いう問題があった。また、放熱材の放熱層側の性能はあ
まり高くなく、放熱材は大型化になりやすかった。Furthermore, when a single copper oxide composite material is used, after a high-temperature bonding with a semiconductor insulating plate (having a low thermal expansion coefficient), the thermal expansion coefficient between the semiconductor insulating plate and the low thermal expansion radiating material is reduced. There has been a problem that warpage occurs due to the difference, which makes it difficult to use. Further, the performance of the heat radiating material on the heat radiating layer side was not so high, and the heat radiating material was likely to be large in size.
【0010】焼結材を使用した場合で、放熱材放熱層が
上側、受熱層が下側である場合、フィンからの冷却液の
進入よりも気泡面に近いフィン間部で冷却液吸入が行わ
れ、そのためフィンが沸騰作用にあまり利用されなくな
り、沸騰性能は低下するという問題があった。また、放
熱材放熱層が下側、受熱層が上側である場合、フィン間
部での冷却液の吸入が容易に行われないので、従来の放
熱材は、沸騰性能は問題があった。In the case where a sintered material is used and the heat radiating layer is on the upper side and the heat receiving layer is on the lower side, the cooling liquid is sucked in between the fins closer to the bubble surface than the cooling liquid enters from the fins. Therefore, there has been a problem that the fins are not used much for the boiling action and the boiling performance is reduced. In addition, when the heat radiating layer is on the lower side and the heat receiving layer is on the upper side, the cooling liquid is not easily sucked between the fins, so that the conventional heat radiating material has a problem in boiling performance.
【0011】また、従来のプレス成形品を溝付き下パン
チから取り出す時、フィンが溝付き下パンチに圧接され
ているため、溝付き下パンチからプレス成形品がうまく
取り外せず、ほとんどのフィンはフィン根元で分離する
という問題があった。When the conventional press-formed product is taken out from the grooved lower punch, the fin is pressed against the grooved lower punch. There was a problem of separation at the root.
【0012】さらに、プレス成形は、材料に高圧をかけ
る必要があり、かつ、時間を要する。また、フライスや
旋盤による加工は、製造コストが高くなるという問題が
あった。Further, press molding requires a high pressure to be applied to the material and requires time. In addition, machining with a milling machine or a lathe has a problem that the manufacturing cost is increased.
【0013】本発明は、放熱材放熱層側の冷却液に対し
沸騰効率の良いフィンを設け、一方、放熱材の受熱層側
はより低熱膨張率として、半導体用絶縁板と放熱材との
接合後の反りが小さく、かつよりコンパクトな放熱材及
びそれを廉価に製造する製法を提供することを目的とす
る。According to the present invention, a fin having good boiling efficiency is provided for the cooling liquid on the heat radiating layer side, while the heat receiving layer side of the heat radiating layer has a lower coefficient of thermal expansion so that the semiconductor insulating plate and the heat radiating layer can be joined together. An object of the present invention is to provide a more compact heat radiating material having a small warpage and a method of manufacturing the heat radiating material at a low cost.
【0014】[0014]
【課題を解決するための手段】本発明は、上記の問題点
を解消するためになされたものであり、半導体素子等の
発熱体の発熱を放熱する放熱材において、良伝熱性の金
属粉末と前記金属粉末より低熱膨張率の無機材料の粉末
との混合物の第1の焼結体より構成され、前記発熱体の
発熱を吸収する受熱層と、良伝熱性の金属粉末と前記金
属粉末より低熱膨張率の無機材料の粉末との混合物の第
2の焼結体より構成され、前記受熱層と一体化されたフ
ィン付き放熱層を有することを特徴とし、放熱層は、フ
ィンが高気孔率の焼結体で、前記フィン間が低気孔率の
焼結体で構成し、放熱層形成のために粉末のバインダー
濃度を0.5〜10%とすることとした。さらに放熱層
のフィン間を凹円弧状に形成したを特徴とする。そのた
め放熱層側で冷却液が沸騰しやすく、フィン間で冷却液
の吸入が行われ伝導効率が向上する。また、冷却液およ
び蒸発気体の流れが円滑となるとともに、冷却液および
蒸発気体の澱みなどによる熱抵抗増加や腐食を回避でき
る。SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and a heat radiating material for radiating heat generated by a heating element such as a semiconductor element is provided with a metal powder having good heat conductivity. A first sintered body of a mixture of a powder of an inorganic material having a lower coefficient of thermal expansion than the metal powder, a heat receiving layer for absorbing heat generated by the heating element, a metal powder having good heat transfer and a lower heat than the metal powder; It is composed of a second sintered body of a mixture with a powder of an inorganic material having an expansion coefficient, and has a finned heat radiation layer integrated with the heat receiving layer. The heat radiation layer has a fin having a high porosity. The sintered body was made of a sintered body having a low porosity between the fins, and the binder concentration of the powder was set to 0.5 to 10% to form a heat radiation layer. Further, the fins of the heat radiation layer are formed in a concave arc shape. Therefore, the coolant tends to boil on the heat radiation layer side, and the coolant is sucked between the fins, thereby improving the conduction efficiency. In addition, the flow of the cooling liquid and the evaporating gas is smooth, and the increase in thermal resistance and corrosion due to the stagnation of the cooling liquid and the evaporating gas can be avoided.
【0015】前記放熱層は、フィン頂角が0〜90度
で、フィン高さと底肉厚の比が0.5〜3であることを
特徴とする。放熱性能とフィン強度を考慮したものであ
る。The heat radiation layer has a fin apex angle of 0 to 90 degrees and a ratio of fin height to bottom wall thickness of 0.5 to 3. The heat dissipation performance and fin strength are taken into account.
【0016】良伝熱性金属は、銅であり、無機材料は、
酸化第一銅(Cu2 O)であることを特徴とする。また
前記受熱層の酸化第一銅(Cu2 O)濃度が70%以下
の銅合金、前記放熱層が銅または酸化第一銅(Cu
2 O)濃度が0%以上の銅合金からなる銅複合材から構
成されたことを特徴とする。放熱材の受熱層側は低熱膨
張材となるため、半導体用絶縁板との接合後の反りを小
さくすることができる。The good heat conductive metal is copper, and the inorganic material is
It is characterized by being cuprous oxide (Cu 2 O). A copper alloy having a cuprous oxide (Cu 2 O) concentration of 70% or less in the heat receiving layer, and a copper or cuprous oxide (Cu
2 O) It is characterized by comprising a copper composite material comprising a copper alloy having a concentration of 0% or more. Since the heat receiving layer side of the heat dissipating material is a low thermal expansion material, warpage after bonding with the semiconductor insulating plate can be reduced.
【0017】受熱層の受熱側表面に錫、鉛、ビスマス、
亜鉛、アルミ、銅あるいはニッケルが被覆またはめっき
されていることを特徴とする。受熱層の受熱側表面の金
属を被覆またはめっきしたため、絶縁材との接合がしや
すくなる。On the heat receiving side surface of the heat receiving layer, tin, lead, bismuth,
It is characterized by being coated or plated with zinc, aluminum, copper or nickel. Since the metal on the surface on the heat receiving side of the heat receiving layer is covered or plated, it is easy to bond with the insulating material.
【0018】良伝熱性の金属粉末と前記金属粉末より低
熱膨張率の無機材料の粉末との混合物に粉末のバインダ
ーを添加して金型によりプレスし、加熱して焼結体を構
成し、その焼結体により放熱材を構成する放熱材の製造
方法において、放熱層を形成する際の粉末のバインダー
濃度を0.5〜10%として焼結したことを特徴とす
る。また、放熱層は、フィン成形金型に予め離型剤が塗
布され、プレス成形されたことを特徴とする。このた
め、焼結後にフィン成形のための機械加工を省略でき、
大幅な製造コストの低減ができる。A binder of a powder is added to a mixture of a metal powder having good heat conductivity and a powder of an inorganic material having a lower coefficient of thermal expansion than the metal powder, and the mixture is pressed by a mold and heated to form a sintered body. A method for manufacturing a heat radiating material comprising a heat radiating material by a sintered body is characterized in that sintering is performed with the binder concentration of the powder at the time of forming the heat radiating layer being 0.5 to 10%. In addition, the heat radiation layer is characterized in that a release agent is applied to a fin molding die in advance and press-molded. Therefore, machining for fin molding after sintering can be omitted,
Significant reduction in manufacturing cost can be achieved.
【0019】金属粉末の混合物は、フィンを転写する溝
形状を有し、かつ、金型先端部を凸円弧状に形成したフ
ィン成形用金型によりプレス成形されたことを特徴とす
る。フィンがフィン毎に分割した金型により、プレス成
形する。金属粉末をプレス成形する際のフィン成形金型
をホルダーやフィン形成用金型支持金型にピンやネジ等
で連結したことを特徴とする。このため、金型セットの
時間短縮、確実性の向上が図れる。The mixture of the metal powders is characterized in that it has a groove shape for transferring fins and is press-formed by a fin-forming mold having a convex end formed at the tip of the mold. The fin is press-formed by a mold divided for each fin. It is characterized in that a fin forming die for press-forming the metal powder is connected to a holder or a fin forming die supporting die by a pin, a screw or the like. Therefore, it is possible to shorten the time for setting the mold and to improve the reliability.
【0020】[0020]
【発明の実施の形態】本発明による放熱材およびその製
造方法の実施の形態について図を参照しながら説明す
る。図1は、本発明に係る放熱材の断面図である。放熱
材1は、高気孔率に構成されたフィン4が受熱層2上に
形成されており、フィン間部11は低気孔率に構成され
ている。なお受熱層2は平滑面であり、受熱層2の受熱
側表面には絶縁材接着用の金属47が薄くめっきあるい
は金属箔で被覆されている。ただし、金属47の膜厚は
誇張して大きく示している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a heat radiating material and a method of manufacturing the same according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a heat dissipation material according to the present invention. In the heat radiating material 1, the fins 4 having a high porosity are formed on the heat receiving layer 2, and the fin portions 11 have a low porosity. The heat receiving layer 2 has a smooth surface, and the heat receiving side surface of the heat receiving layer 2 is coated with a thin metal 47 for bonding an insulating material with plating or metal foil. However, the thickness of the metal 47 is exaggerated and greatly illustrated.
【0021】フィン間部11は凹円弧状に形成されてい
るので、冷却液および気泡の流れがより円滑に流れ、冷
却液および気泡の澱みなどによる冷却液側の熱抵抗の増
加あるいは腐食などが回避できる。Since the space 11 between the fins is formed in a concave arc shape, the flow of the coolant and the bubbles flows more smoothly, and the increase in the thermal resistance or corrosion of the coolant due to the stagnation of the coolant and the bubbles is prevented. Can be avoided.
【0022】また、受熱層2の受熱側表面に絶縁材接着
用金属47が焼結後に被覆あるいはめっきされているの
で絶縁体との接着性の改善とともに放熱材の受熱層2の
緻密度(ボイドレス)が向上し、放熱材の受熱層側での
冷却液の漏れおよび熱伝導性の低下が防止できる。Further, since the insulating material bonding metal 47 is coated or plated on the heat receiving side surface of the heat receiving layer 2 after sintering, the adhesiveness with the insulator is improved, and the density of the heat radiating material 2 (voidless) is improved. ) Can be improved, and the leakage of the coolant on the heat receiving layer side of the heat dissipating material and the decrease in thermal conductivity can be prevented.
【0023】外形は図2に示したように、矩形板状であ
って、上面にフィンが整列して並んでいる。図3は図2
のA−A線に沿う断面図である。ただし、簡略化して描
いてある。符号6はフィンの高さ、7は底肉厚であっ
て、放熱層3からフィン4の高さ6を除いた放熱層3の
高さと受熱層2の高さを示している。8はフィン間のピ
ッチである。9はワーク幅、10はワーク長さである。As shown in FIG. 2, the external shape is a rectangular plate shape, and the fins are arranged on the upper surface. FIG. 3 is FIG.
FIG. 3 is a cross-sectional view taken along line AA of FIG. However, it is drawn in a simplified manner. Reference numeral 6 denotes the height of the fin, and 7 denotes the bottom wall thickness, and indicates the height of the heat radiation layer 3 and the height of the heat receiving layer 2 excluding the height 6 of the fin 4 from the heat radiation layer 3. 8 is the pitch between the fins. 9 is a work width and 10 is a work length.
【0024】フィン4を含む放熱層3および受熱層2か
らなる放熱体1は、良伝熱性の金属粉末および前記金属
よりも低熱膨張率の無機材料の粉末にバインダーを添加
して混合後プレス成形し、予備加熱してバインダーを消
失させた後に焼結することで得られる。したがって、良
伝熱性金属の中に無機材料粒子が分散するとともにバイ
ンダー消失により空洞が生成することを特徴とする。ま
た金属中に分散する無機材料粒子は直径が200μm以
下で、好ましくは60μm以下である。これは、金属中
に無機材料粒子が分散することによってはじめて低熱膨
張性放熱材が得られるためである。The heat dissipating body 1 comprising the heat dissipating layer 3 and the heat receiving layer 2 including the fins 4 is press-formed after adding a binder to a good heat conductive metal powder and a powder of an inorganic material having a lower coefficient of thermal expansion than the above-mentioned metal. It is obtained by preheating and sintering after eliminating the binder by preheating. Therefore, it is characterized in that the inorganic material particles are dispersed in the good heat conductive metal and cavities are generated by the disappearance of the binder. The diameter of the inorganic material particles dispersed in the metal is 200 μm or less, preferably 60 μm or less. This is because a low-thermal-expansion radiator can be obtained only when the inorganic material particles are dispersed in the metal.
【0025】本発明に係る放熱材に使用される良伝熱性
の金属として銅以外に熱伝導性の高い金、銀、アルミニ
ウムも使用可能である。また、無機材料として室温から
300℃の温度範囲における熱膨張係数が5×10-6/
K以下の酸化錫、酸化亜鉛、酸化鉛、酸化ニッケル、酸
化アルミニウム(Al2O3)等も使用可能である。粉バ
インダーとして焼結温度より溶融温度の低いステアリン
酸アルミニウム、ステアリン酸亜鉛等が使用可能であ
る。In addition to copper, gold, silver, and aluminum having high thermal conductivity can be used as the good heat conductive metal used for the heat radiating material according to the present invention. Further, as an inorganic material, the thermal expansion coefficient in a temperature range from room temperature to 300 ° C. is 5 × 10 −6 /
K or less of tin oxide, zinc oxide, lead oxide, nickel oxide, aluminum oxide (Al 2 O 3 ) and the like can also be used. As the powder binder, aluminum stearate, zinc stearate or the like having a melting temperature lower than the sintering temperature can be used.
【0026】本発明の放熱材は、酸化第一銅(Cu
2 O)を0〜70体積%含む銅(Cu)合金により構成
される。この銅合金は、室温から300℃における熱膨
張係数が7〜18×10-6/Kおよび熱伝導率が80〜
390W/m・Kであることを特徴とする。 酸化第一
銅量が0体積%(銅単体)では、熱膨張率が18×10-6
/K以上となり、また、酸化第一銅量が70体積%以上
では、熱伝導率が80W/m・K以下となるが、平均す
ると熱伝導率が230W/m・Kの低熱膨張放熱材が可
能となる(The heat dissipating material of the present invention comprises cuprous oxide (Cu
It is made of a copper (Cu) alloy containing 0 to 70% by volume of 2O). This copper alloy has a thermal expansion coefficient from room temperature to 300 ° C. of 7 to 18 × 10 −6 / K and a thermal conductivity of 80 to
390 W / m · K. When the amount of cuprous oxide is 0% by volume (copper alone), the coefficient of thermal expansion is 18 × 10 −6.
/ K or more, and when the amount of cuprous oxide is 70% by volume or more, the thermal conductivity is 80 W / m · K or less, but on average, a low thermal expansion heat radiating material having a thermal conductivity of 230 W / m · K is used. Becomes possible (
【表1】参照)。See Table 1).
【表1】 [Table 1]
【0027】本発明の放熱材は図1に示すように、プレ
ス方向(金属、無機材料、バインダーの混合物をプレス
成形するときの加圧方向)の高さが異なるため、プレス
方向の加圧面圧が一定の場合、高さの高いフィンは高さ
の低いフィン間部よりプレス成形時の粉末の圧縮率が小
さいため、気孔率は大きくなる。また、バインダーを無
機材料(酸化第二銅)低濃度混合粉(図10参照)に混
合・成形し、焼結するとバインダーが焼結過程において
消失し、焼結時、発生した無機材料(酸化第一銅)低濃
度複合材のボイドと結びつき連続した空洞を形成する。As shown in FIG. 1, the heat radiating material of the present invention has different heights in the pressing direction (the pressing direction when pressing a mixture of a metal, an inorganic material, and a binder). Is constant, the porosity of the fins becomes large because the compression ratio of the powder at the time of press molding is smaller in the high fins than in the portion between the low fins. Further, the binder is mixed and formed into a low-concentration mixed powder of inorganic material (cupric oxide) (see FIG. 10), and when sintered, the binder disappears in the sintering process, and the inorganic material (oxidized oxide (Copper) The voids of the low concentration composite are combined to form continuous cavities.
【0028】このようにして製造した放熱材の使用状態
について説明する。図4は本発明の放熱材の使用状態
(放熱材1を水冷冷却器等に取り付けた場合)を説明す
る図で、発熱体が図の下方にある場合の説明図である。
図5は従来の放熱材の使用状態を説明する図で、発熱体
が図の下方にある場合の説明図である。The state of use of the heat radiating material thus manufactured will be described. FIG. 4 is a view for explaining a use state of the heat radiator of the present invention (when the heat radiator 1 is attached to a water-cooled cooler or the like), and is an explanatory view in a case where a heating element is located below the figure.
FIG. 5 is a diagram for explaining a usage state of a conventional heat radiating material, and is an explanatory diagram in a case where a heating element is located below the drawing.
【0029】図4に示したように、本発明の放熱材を使
用する場合、冷却液40(下向きの実線の矢印)は先ず
気孔率が大きい、すなわち気孔穴径が大きいフィン4か
ら沸騰し、気泡23(上向きの破線の矢印)となりフィ
ンの外に放出される。As shown in FIG. 4, when the heat radiating material of the present invention is used, the cooling liquid 40 (downward solid line arrow) first boils from the fin 4 having a large porosity, that is, a large pore diameter. Air bubbles 23 (upward broken arrows) are emitted outside the fins.
【0030】フィン4で冷却液が沸騰し、フィンの外に
冷却液が放出されるため、フィン4内部及びフィン間部
11内部の連続した気孔内は負圧となり、主として水
(液)圧の大きいフィン間部11の気孔から、冷却液が
吸入される。吸入された冷却液40はフィン4部内の連
続した気孔を通過しながら加熱され、発生した気泡23
は浮力によりフィン4の表面に到達し、気泡23として
フィンの外に放出される。以上の冷却サイクルは繰り返
し行われる。図4で、22は冷却液の流れ方向、47は
絶縁体接着用の金属、20は絶縁板、21は半導体など
の発熱体、39は伝熱方向をそれぞれ示す。Since the cooling liquid is boiled by the fins 4 and the cooling liquid is released outside the fins, the continuous pores inside the fins 4 and between the fins 11 have a negative pressure, and mainly have a water (liquid) pressure. The cooling liquid is sucked through the pores of the large fin space 11. The sucked coolant 40 is heated while passing through the continuous pores in the fins 4 and the generated bubbles 23
Reaches the surface of the fin 4 by buoyancy and is released as bubbles 23 out of the fin. The above cooling cycle is repeatedly performed. In FIG. 4, 22 indicates the flow direction of the coolant, 47 indicates a metal for bonding an insulator, 20 indicates an insulating plate, 21 indicates a heating element such as a semiconductor, and 39 indicates a heat transfer direction.
【0031】図5に示す従来例にあっては、上述のよう
に、冷却液40は、主として冷却液と表面の温度差が大
きなフィン間部11から沸騰し、フィン51の周囲は気
泡23に覆われ、フィン51が沸騰作用にあまり利用さ
れなくなる。なお、図4と同一符号は同一の意味に用い
られている。In the conventional example shown in FIG. 5, as described above, the cooling liquid 40 boils mainly from the inter-fin portion 11 where the temperature difference between the cooling liquid and the surface is large. The fins 51 are covered and become less utilized for the boiling action. Note that the same reference numerals as those in FIG. 4 have the same meanings.
【0032】以上のように気孔穴径が等しい従来の放熱
材を利用した場合、フィン51が沸騰作用にあまり利用
されなくなり、沸騰性能は低下し、熱輸送能力が低下す
るのに対し、本発明に係る放熱材によれば、フィン及び
フィン間部に形成された連続する穴が、冷却液の沸騰、
放出、吸い上げに大きく関与するため、熱輸送能力が大
幅に向上する。As described above, when the conventional heat radiating material having the same pore diameter is used, the fins 51 are hardly used for the boiling action, the boiling performance is reduced, and the heat transport ability is reduced. According to the heat dissipating material according to the present invention, the continuous holes formed in the fins and between the fins, the boiling of the cooling liquid,
The heat transfer capacity is greatly improved because it is greatly involved in release and suction.
【0033】また、本発明の放熱材1は、平滑面に比べ
気孔率が大きいため、大幅に放熱伝熱面積が増大し、伝
熱性能は向上する。さらに冷却液40の流れ22がフィ
ン4により攪拌されるため、放熱材1の伝熱性能(放
熱)が更に増大する。Further, since the heat radiating material 1 of the present invention has a higher porosity than a smooth surface, the heat radiating heat transfer area is greatly increased, and the heat transfer performance is improved. Further, since the flow 22 of the cooling liquid 40 is stirred by the fins 4, the heat transfer performance (radiation) of the heat radiating material 1 further increases.
【0034】図7は本発明の放熱材の使用状態を説明す
る図で、発熱体が図の上方にある場合の説明図である。
図6は従来の放熱材の使用状態を説明する図で、発熱体
が図の上方にある場合の説明図である。FIG. 7 is a view for explaining a use state of the heat radiating material of the present invention, and is an explanatory view in a case where a heating element is located above the figure.
FIG. 6 is a diagram for explaining a use state of a conventional heat radiating material, and is an explanatory diagram in a case where a heating element is located above the drawing.
【0035】図6および図7に示したように、本発明の
放熱材1を水冷冷却器等に取り付けた場合(放熱材放熱
層が下側、受熱層が上側である。)、沸騰により焼結体
の外に放出された気泡23は放熱層直下(フィン間部1
1直下)に停留し、熱抵抗の大きい断熱体を形成するた
め伝熱性能は低下する。その際、放熱材1を水平から、
わずかに傾け、停留した気泡23aを流失あるいは脱気
すると沸騰性能は回復する。しかし、その場合も、本発
明の放熱材1のフィン間部11は気泡23に覆われるの
で、フィン間部11での冷却液40の吸入が困難とな
る。フィン4から吸入される冷却液40は主にフィン内
を毛細管作用により加熱されながら上昇し、発生した気
泡は浮力によりフィン間部11で気泡23として放出さ
れる。しかし、このような場合であっても本発明の放熱
材1は従来の放熱材36に比べ、フィン4の気孔率が大
きく、また、気孔穴が連続しているため、フィン4への
冷却液の吸入がより容易に行われるので、本発明の放熱
材1は従来の放熱材36に比べ沸騰性能は向上する。As shown in FIGS. 6 and 7, when the heat dissipating material 1 of the present invention is mounted on a water-cooled cooler or the like (the heat dissipating layer is on the lower side and the heat receiving layer is on the upper side), it is baked by boiling. Bubbles 23 released outside the unit are located immediately below the heat radiation layer (between the fins 1).
1 immediately below) to form a heat insulator having a large thermal resistance, so that the heat transfer performance is reduced. At that time, heat sink 1
Boiling performance is restored when the air bubbles 23a that are slightly tilted and stagnated are washed away or degassed. However, also in that case, since the inter-fin portion 11 of the heat radiating material 1 of the present invention is covered with the air bubbles 23, it becomes difficult to inhale the cooling liquid 40 in the inter-fin portion 11. The cooling liquid 40 sucked from the fins 4 rises mainly while being heated by the capillary action inside the fins, and the generated bubbles are released as bubbles 23 in the inter-fin portion 11 by buoyancy. However, even in such a case, the radiator 1 of the present invention has a higher porosity of the fins 4 than the conventional radiator 36, and the pores are continuous. The heat radiation material 1 of the present invention has improved boiling performance as compared with the conventional heat radiation material 36 because the inhalation of the heat is easily performed.
【0036】ところで、フィンは、フライスや旋盤など
の機械加工による形成できるが製造コストは大幅に増大
する。製造コストを下げるためにはプレス成形によりフ
ィン製作するのが望ましい。By the way, the fins can be formed by machining such as a milling machine or a lathe, but the production cost is greatly increased. In order to reduce the manufacturing cost, it is desirable to manufacture fins by press molding.
【0037】図9に示した本発明に使用される金型(溝
付き中子)14では、プレス成形品取り出し時の金型1
4による拘束力が比較的小さいので、フィン高さが低
く、フィン頂角が大きい連続フィンが得られる。なお、
フィン頂角5は図14に、フィン高さは図3に示す。な
お、符号17は、コネクタロッドであって、フィン成型
用金型(溝付き中子)14と下パンチ16を連結し、金型
セットの時間短縮あるいは確実性の向上を図るために使
用される。In the mold (grooved core) 14 used in the present invention shown in FIG.
4, the continuous fin having a low fin height and a large fin apex angle can be obtained. In addition,
The fin apex angle 5 is shown in FIG. 14, and the fin height is shown in FIG. Reference numeral 17 denotes a connector rod, which is used to connect the fin-forming mold (core with a groove) 14 and the lower punch 16 to shorten the time for setting the mold or to improve the reliability. .
【0038】しかし、フィン高さが高くフィン頂角が小
さい連続フィンになるとフィンと金型との接触面積が長
くなり、フィンと金型14との接着力は増大する。ま
た、フィン幅当たりの接触面積が大きくなるため、フィ
ンの強度は低下する。その結果、プレス成形品41を溝
付き中子金型14から取り出す時、フィンが溝付中子金
型14に拘束され、フィンがフィン根元で分離、あるい
はフィンが溝付き中子金型14の溝面により損傷し、ス
リムな連続フィンを取り出すのが困難になる。However, when a continuous fin having a high fin height and a small fin apex angle is used, the contact area between the fin and the mold is increased, and the adhesive force between the fin and the mold 14 is increased. Further, since the contact area per fin width is increased, the strength of the fin is reduced. As a result, when removing the press-formed product 41 from the grooved core mold 14, the fins are restrained by the grooved core mold 14, and the fins are separated at the fin roots, or the fins are separated from the grooved core mold 14. The groove surface damages and makes it difficult to remove the slim continuous fin.
【0039】そこで、粉充填前に離型材30を溝付き中
子金型14に塗布すると(図10参照)、溝付き中子金型
14と圧紛体41との接着力は軽減する。図20に示す
ように、圧紛体の金型への接着力は離型材30が塗布さ
れない場合に比べ、約30%に低減する。Therefore, if the mold release material 30 is applied to the grooved core mold 14 before powder filling (see FIG. 10), the adhesive force between the grooved core mold 14 and the compact 41 is reduced. As shown in FIG. 20, the adhesive force of the compact to the mold is reduced to about 30% as compared with the case where the release material 30 is not applied.
【0040】また、混合紛にバインダーを添加し、フィ
ンの強度を向上することにより、フィン頂角が0〜90
度及びフィン高さと底肉厚の比が0.5〜3であるスリ
ムな高伝熱性能の連続フィンを得ることができる。バイ
ンダーの濃度は0.5〜10%でフィン強度は増大し、
スリムでポーラスな放熱材放熱部を製作できる。しか
し、バインダー濃度が高いほど焼結体のボイド(空孔)
は多くなり、沸騰しやすくなるが、フィンの強度および
伝熱性能は低下するのでバインダーの濃度は0.5〜1
0%とした(図21参照)。底肉厚は図3に示されてい
る。Further, by adding a binder to the mixed powder and improving the strength of the fin, the fin apex angle is 0 to 90.
It is possible to obtain a slim continuous fin having a high heat transfer performance in which the ratio of the degree and the fin height to the bottom wall thickness is 0.5 to 3. The fin strength increases at a binder concentration of 0.5 to 10%,
A slim and porous radiator can be manufactured. However, the higher the binder concentration, the voids (voids) in the sintered body
However, the strength and heat transfer performance of the fins are reduced, so that the binder concentration is 0.5 to 1
0% (see FIG. 21). The bottom wall thickness is shown in FIG.
【0041】フィン高さが一定の場合、フィン高さと底
肉厚の比が大きくなると底肉厚が薄くなり、熱抵抗が小
さくなり放熱性能は向上するが、フィンに及ぼす冷却液
の抵抗から、フィン底肉部の強度を保持するため、ま
た、フィン高さが高くなるとフィンの伝熱効率は低下す
るのでできるだけ低い方が望ましいので、フィン高さと
底肉厚の比は0.5〜3とした。When the fin height is constant, when the ratio between the fin height and the bottom wall thickness is increased, the bottom wall thickness is reduced, the thermal resistance is reduced, and the heat radiation performance is improved. In order to maintain the strength of the fin bottom portion, and as the fin height increases, the heat transfer efficiency of the fin decreases, it is desirable that the fin height be as low as possible. Therefore, the ratio between the fin height and the bottom thickness is set to 0.5 to 3. .
【0042】フィン底側にアールが設けられているので
冷却液および気泡の流れがより円滑に流れ、冷却液およ
び気泡の澱みなどによる冷却液側の熱抵抗の増加あるい
は腐食などが回避できる。Since the radius is provided on the bottom side of the fin, the flow of the coolant and the bubbles flows more smoothly, and an increase in the thermal resistance or corrosion of the coolant due to the stagnation of the coolant and the bubbles can be avoided.
【0043】また、本発明の放熱材の受熱層表面に絶縁
体接着用金属が焼結後に被覆あるいはめっきされている
ので絶縁体との接着性の改善とともに放熱材の受熱層の
緻密度(ボイドレス)が向上し、放熱材の受熱層側の冷
却液の漏れおよび熱伝導性の低下が防止できる。Further, since the surface of the heat receiving layer of the heat radiating material of the present invention is coated or plated with a metal for bonding the insulator after sintering, the adhesion to the insulator is improved and the density of the heat receiving layer of the heat radiating material (voidless) is improved. ) Is improved, and the leakage of the cooling liquid on the heat receiving layer side of the heat radiating material and the decrease in thermal conductivity can be prevented.
【0044】[0044]
【実施例】本発明の放熱材の製造方法を図9、図10お
よび図11に示す。原料粉として、平均粒経10μmの
電解銅粉と粒径50μm以下の酸化第二銅(CuO)粉
末を用いた。前記電解銅粉と酸化第二銅粉を焼結後にお
いてFIG. 9, FIG. 10 and FIG. 11 show a method of manufacturing a heat radiating material according to the present invention. As the raw material powder, an electrolytic copper powder having an average particle diameter of 10 μm and a cupric oxide (CuO) powder having a particle diameter of 50 μm or less were used. After sintering the electrolytic copper powder and the cupric oxide powder
【表1】に示す比率となるように調合した後、さらに粉
バインダー31を0.5から10重量%調合混入し、ス
チールボールを入れた乾式ボールミルで7時間以上攪拌
混合する。After mixing so as to have the ratio shown in Table 1, powder binder 31 is further mixed and mixed at 0.5 to 10% by weight, and the mixture is stirred and mixed in a dry ball mill containing steel balls for 7 hours or more.
【0045】ダイ27と下パンチ16により構成された
粉充填部44に溝付き中子金型14を挿入し、離型材3
0を溝付き中子金型14に塗布し、電解銅粉および酸化
第二銅粉に粉バインダーを添加した上記の混合粉末29
を充填する。混合粉末を充填後、粉末充填上面をスキー
パですりきり、圧紛体41生成用の粉充填量を一定にす
る。The grooved core mold 14 is inserted into the powder filling portion 44 formed by the die 27 and the lower punch 16, and the release material 3
0 is applied to the grooved core mold 14, and the above mixed powder 29 obtained by adding a powder binder to electrolytic copper powder and cupric oxide powder.
Fill. After filling the mixed powder, the upper surface of the powder filling is scraped off with a skeper to make the powder filling amount for forming the compact 41 constant.
【0046】次いで上パンチ26をプレス押し捧25で
加圧し、所定の厚さまで圧紛する。次にプレス押し棒2
5を上昇し、ダイサポート28を取り外し、ダイ27面
にガイド35をセットする。プレス押し棒25を下降
し、ダイ27を溝付き中子金型14の低部が見える位置
まで押し下げる。Next, the upper punch 26 is pressurized by the press presser 25 and pressed to a predetermined thickness. Then press rod 2
5, the die support 28 is removed, and the guide 35 is set on the die 27 surface. The press push rod 25 is lowered, and the die 27 is pushed down to a position where the lower part of the grooved core mold 14 can be seen.
【0047】次にプレス押し棒25を上昇し、ガイド3
5を取り外し、上パンチ26を圧紛体41から取り上
げ、圧紛体41を溝付き中子金型14から取り外す。Next, the press push rod 25 is raised and the guide 3
5 is removed, the upper punch 26 is removed from the powder body 41, and the powder body 41 is removed from the grooved core mold 14.
【0048】なお、放熱材の酸化第一銅濃度を放熱層3
は低く、受熱層2の酸化第一銅濃度は高くする場合は先
ず、バインダー31含む粒径の小さい電解銅粉45(バ
インダー31の粒径は銅粉より大きく、酸化第二銅粉よ
り小さい)を放熱層側(本発明金型14側)に一定量充
填し、次いで酸化第二銅高濃度の混合粉46を粉充填部
44まで一杯に充填し、その後すりきりし、加振によ
り、受熱層側(上パンチ側)に混合粉29の酸化第二銅
濃度を高める。次いでプレスで加圧し、その後、プレス
成形品41を200〜300度で予備加熱し、バインダ
ーを除去する。The concentration of cuprous oxide in the heat dissipating material was adjusted to
When the cuprous oxide concentration of the heat receiving layer 2 is high, first, the electrolytic copper powder 45 having a small particle diameter including the binder 31 (the particle diameter of the binder 31 is larger than the copper powder and smaller than the cupric oxide powder) Is filled into the heat radiation layer side (the mold 14 side of the present invention), and then a mixed powder 46 having a high concentration of cupric oxide is filled up to the powder filling portion 44, and then the powder is filled with heat. On the side (upper punch side), the concentration of cupric oxide in the mixed powder 29 is increased. Next, pressurization is performed by a press, and thereafter, the press-formed product 41 is preheated at 200 to 300 degrees to remove the binder.
【0049】焼結の温度は酸化第二銅含有量に応じて8
50〜1000℃の間で変化させ、焼結温度を3時間保
持する。その後、焼結体42を充分に冷却する。フィン
が高気孔率、フィン間が低気孔率の焼結体が得られる。
なお、絶縁材接着用金属47をめっき(厚さ:200μ
m以下)する場合は焼結後、受熱層表面側に実施する。
一方、絶縁材接着用金属47を被覆(厚さ:200μm
以下)する場合は前述の加振により発生した空間(充填
粉面上のダイに囲まれた空間)に加振後、金属箔(厚
さ:200μm以下)を挿入した後、プレスで加圧し、
焼結すれば複合材と接合する。The sintering temperature depends on the cupric oxide content.
The temperature is varied between 50 and 1000 ° C. and the sintering temperature is maintained for 3 hours. Thereafter, the sintered body 42 is sufficiently cooled. A sintered body having high porosity in the fins and low porosity between the fins is obtained.
The metal 47 for bonding the insulating material was plated (thickness: 200 μm).
m) or less, the sintering is performed on the surface side of the heat receiving layer.
On the other hand, a metal 47 for bonding an insulating material is coated (thickness: 200 μm).
In the following case), after applying vibration to the space generated by the above-mentioned vibration (the space surrounded by the die on the filling powder surface), inserting a metal foil (thickness: 200 μm or less), and then pressing with a press,
When sintered, it joins with the composite.
【0050】[0050]
【表1】に単体複合材の室温〜300℃の温度範囲でT
MA(Therma1 Mechanica1 Analysis )装置を用いて測
定した銅複合材の熱膨張率及びレーザーフラツシュ法に
より求めた熱伝導率の参考データを示す。Table 1 shows the T of the simple composite at room temperature to 300 ° C.
The reference data of the coefficient of thermal expansion of the copper composite material measured using a MA (Therma1 Mechanica1 Analysis) device and the thermal conductivity obtained by a laser flash method are shown.
【0051】また、本発明の放熱材1は実際には連続的
に酸化第一銅(無機材料)濃度が変化するので酸化第一
銅(無機材料)低濃度複合層49と酸化第一銅(無機材
料)高濃度複合層50の境界は見られないが放熱材の酸
化第一銅(無機材料)量が少ない酸化第一銅(無機材
料)低濃度複合層49と酸化第一銅(無機材料)が多い
高濃度複合層50の境界を概略的に破線で示した。すな
わち、受熱層2と放熱層3との境界を破線で表した。In addition, since the heat dissipating material 1 of the present invention actually changes the concentration of cuprous oxide (inorganic material) continuously, the low concentration of cuprous oxide (inorganic material) composite layer 49 and the cuprous oxide (inorganic material) change. No boundary of the inorganic material) high concentration composite layer 50 is seen, but the cuprous oxide (inorganic material) low concentration composite layer 49 and the cuprous oxide (inorganic material) have a small amount of cuprous oxide (inorganic material) as a heat dissipating material. The boundary of the high-concentration composite layer 50 with a lot of) is schematically indicated by a broken line. That is, the boundary between the heat receiving layer 2 and the heat radiation layer 3 is represented by a broken line.
【0052】他の実施例を図12から図20に示す。図
12は放熱材の第2実施例であって、受熱層2と矩形状
のフィン4aの底部が接している例である。なお、絶縁
材接着用金属を省略してある。図13は放熱材の第3実
施例であって、受熱層2とフィン4bとが直接に接して
いない例を示す。Another embodiment is shown in FIGS. FIG. 12 shows a second embodiment of the heat dissipating material, in which the heat receiving layer 2 is in contact with the bottom of the rectangular fin 4a. The metal for bonding the insulating material is omitted. FIG. 13 shows a third embodiment of the heat dissipating material, in which the heat receiving layer 2 and the fin 4b are not in direct contact.
【0053】図14は放熱材の第4実施例であって、フ
ィン先端部13aを針状に形成し、フィン体積当たりの
表面積を大きくすることで、フィン4cからの気泡の放
出をより容易にし、沸騰性能のさらなる向上を図ること
ができる。図15は放熱材の第5実施例であって、形状
の異なるフィン4d、4eを交互に配したものである。
このように配することで、冷却流体の攪拌を増大し、伝
熱性能(放熱)のさらなる向上を図った放熱材1dを提
供するものである。これらは、用途に合わせて製作され
る。FIG. 14 shows a fourth embodiment of the heat dissipating material, in which the fin tip 13a is formed in a needle shape and the surface area per fin volume is increased, so that the release of air bubbles from the fin 4c is facilitated. Further, the boiling performance can be further improved. FIG. 15 shows a fifth embodiment of the heat dissipating material, in which fins 4d and 4e having different shapes are alternately arranged.
By arranging in this way, the heat radiation material 1d which increases the stirring of the cooling fluid and further improves the heat transfer performance (radiation) is provided. These are manufactured according to the application.
【0054】なお、フィン頂角5(図14参照)はフィ
ン両側面の傾向線の交点での角度とし、通常、台形フィ
ンと考えられる場合のフィン頂角5は、ほぼ0度近くに
なる。Note that the fin apex angle 5 (see FIG. 14) is the angle at the intersection of the trend lines on both sides of the fin. Usually, the fin apex angle 5 when considered as a trapezoidal fin is nearly 0 degrees.
【0055】図16及び図17は、フィン成形用金型の
第2、第3実施例である。フィン成型用中子18、18
aは、フィン毎に分割しているので、例えば図14に示
すように異なる形状のフィンを配する放熱材を容易に得
ることができる。図16に示す符号15はホルダーであ
り、図17に示す符号17はコネクタロッドであって、
フィン成型用中子18、18aと下パンチ16を連結
し、金型セットの時間短縮あるいは確実性の向上を図る
ために使用される。FIGS. 16 and 17 show the second and third embodiments of the fin forming mold. Cores for fin molding 18, 18
Since a is divided for each fin, it is possible to easily obtain a heat dissipating material provided with fins having different shapes, for example, as shown in FIG. Reference numeral 15 shown in FIG. 16 is a holder, and reference numeral 17 shown in FIG. 17 is a connector rod,
The fin-forming cores 18 and 18a are connected to the lower punch 16 and are used for shortening the time for setting a mold or improving reliability.
【0056】図18は放熱材の第6実施例であり、フィ
ン成形用金型の溝部に突起を設けた金型により、フィン
4f先端に一定間隔の窪み43を設けた放熱材1eであ
り、冷却液の流れを変え、放熱層3の放熱性能を変化さ
せる場合を示す。FIG. 18 shows a sixth embodiment of a heat dissipating material, which is a heat dissipating material 1e in which fins 4f are provided with recesses 43 at regular intervals at the tips of the fins by means of a mold having projections formed in the grooves of the fin forming mold. The case where the flow of the cooling liquid is changed to change the heat radiation performance of the heat radiation layer 3 is shown.
【0057】図19は放熱材の第7実施例を示す図であ
り、放熱フィン4gの周りに冷却器との取り付け面37
を設けた場合の放熱材1fの平面図を示す。取り付け面
37は平滑にし、取り付け穴38を設ける。符号9はワ
ーク幅を、10はワーク長さをそれぞれ示している。8
はフィンのピッチである。FIG. 19 is a view showing a seventh embodiment of the heat dissipating material.
FIG. 4 shows a plan view of the heat radiating member 1f in the case where the radiator is provided. The mounting surface 37 is made smooth and a mounting hole 38 is provided. Reference numeral 9 indicates a work width, and reference numeral 10 indicates a work length. 8
Is the pitch of the fins.
【0058】図20は放熱材の第8実施例を示す図であ
り、放熱フィンをフィン高さ6、6aの異なるフィン4
h及びフィン4iを交互に幅方向に並列に配列した放熱
材1gであり、流体の圧損を軽減しながら、冷却液の流
れを複雑に変化させ、流体の攪拌効果を高め、放熱性能
の向上を図ったものである。符号5a、5bはフィン頂
角を示す。FIG. 20 is a view showing an eighth embodiment of the heat dissipating material, wherein the heat dissipating fins are fins 4 having different fin heights 6 and 6a.
h and fins 4i are alternately arranged in parallel in the width direction. The heat radiating material 1g reduces the pressure loss of the fluid, changes the flow of the coolant in a complicated manner, enhances the stirring effect of the fluid, and improves the heat radiation performance. It is intended. Reference numerals 5a and 5b indicate fin apex angles.
【0059】[0059]
【発明の効果】以上説明したように本発明によれば、受
熱層に金属と無機材料からなる低熱膨張性金属複合材、
放熱層が高気孔率のフィン及びフィン間部が低気孔率部
となるように、溝付き中子金型あるいはフィン成型用中
子により形成し、受熱層表面に絶縁体接着用金属(錫あ
るいは鉛、ビスマス、アルミニウム、銅、ニッケル)を
被覆あるいはめっきすることにより、以下の効果が得ら
れる。As described above, according to the present invention, the heat-receiving layer has a low thermal expansion metal composite comprising a metal and an inorganic material.
The heat radiation layer is formed by a grooved core mold or a fin molding core so that the fin having a high porosity and the porosity between the fins becomes a low porosity portion. The following effects can be obtained by coating or plating with lead, bismuth, aluminum, copper, nickel).
【0060】(1)放熱層側が高気孔率のフィン及び低
気孔率のフィン間部からなるため、フィン側で冷却液の
沸騰、フィン間部で冷却液の吸入あるいは予熱のサイク
ルが形成されるため、伝熱効率が高まり、熱伝導性の良
い放熱材を得ることができる。(1) Since the radiating layer side is composed of high porosity fins and low porosity fins, a cycle of boiling of the coolant on the fin side and suction or preheating of the coolant on the fins is formed. Therefore, heat transfer efficiency is improved, and a heat dissipating material having good heat conductivity can be obtained.
【0061】(2)放熱層側の熱交換形態が主として従
来の対流伝熱から沸騰伝熱になることにより、大幅な放
熱性能の改善ができるため、放熱材のコンパクト化(フ
ィン高さを低くし、放熱材の厚さを薄くする)が可能と
なる。(2) Since the heat exchange form on the heat radiation layer side mainly changes from the conventional convection heat transfer to the boiling heat transfer, the heat radiation performance can be greatly improved. Therefore, the heat radiation material can be made compact (the fin height can be reduced). And reduce the thickness of the heat dissipating material).
【0062】(3)放熱材放熱層3のフィン間部を凹円
弧状に形成したことにより、冷却液および気泡の流れが
良くなり、放熱材の放熱性能及び耐腐良性が向上する。(3) Since the space between the fins of the heat radiating layer 3 is formed in a concave arc shape, the flow of the cooling liquid and the bubbles is improved, and the heat radiating performance and the corrosion resistance of the heat radiating material are improved.
【0063】(4)一方、受熱層表面に絶縁体接着用金
属(錫あるいは鉛、ピスマス、アルミニウム、銅、ニッ
ケル)が被覆あるいはめっきされていることにより、放
熱材の受熱層側の緻密度が向上し、熱伝導性及び耐腐食
性が向上する。(4) On the other hand, since the surface of the heat receiving layer is coated or plated with a metal for bonding an insulator (tin, lead, pismuth, aluminum, copper, nickel), the density of the heat radiating material on the heat receiving layer side is reduced. And heat conductivity and corrosion resistance are improved.
【0064】(5)フィンおよびフィン間部がプレス成
形時に生成されるため、焼結後のフィン成形機械加工の
省略が可能となり、大幅な製造コストの低減ができる。(5) Since the fins and the fins are formed during press molding, machining of the fins after sintering can be omitted, and the production cost can be greatly reduced.
【0065】(6)受熱層側を低熱膨張率、放熱側を高
熱伝導性のフィンにすることにより、はんだ等を利用し
た半導体用絶縁材との接合後の放熱材の反りの減少が図
れる。(6) By using a fin having a low coefficient of thermal expansion on the heat receiving layer side and a high thermal conductivity on the heat radiation side, it is possible to reduce the warpage of the heat radiator after bonding with a semiconductor insulating material using solder or the like.
【0066】(7)フィンおよびフィン間部成形時、離
型剤およびバインダーの使用により、フィン頂角が0〜
90度およびフィン高さと底肉厚の比が0.5〜3であ
る高性能の放熱材を生成できる。(7) When molding the fins and the fins, the fins have an apex angle of 0 to 0 by using a release agent and a binder.
A high-performance heat dissipating material having a fin height of 90 degrees and a ratio of fin height to bottom wall thickness of 0.5 to 3 can be generated.
【0067】(8)フィン成形金型の溝形状を種々変化
させることにより、種々のフィン形状の放熱材を生成で
きる。(8) By variously changing the groove shape of the fin forming die, heat radiating materials having various fin shapes can be generated.
【0068】(9)コネクタロッドを使用することによ
り、フィン成型用中子金型と下パンチが連結されるの
で、金型セットの時間短縮あるいは確実性の向上が図れ
る。(9) By using the connector rod, the core mold for fin molding and the lower punch are connected, so that the time for setting the mold or the reliability can be improved.
【図1】 本発明の第1実施例による放熱材の部分拡大
図である。FIG. 1 is a partially enlarged view of a heat dissipating material according to a first embodiment of the present invention.
【図2】 本発明の第1実施例による放熱材の平面図で
ある。FIG. 2 is a plan view of a heat dissipating material according to a first embodiment of the present invention.
【図3】 本発明の第1実施例による放熱材の断面図で
ある。FIG. 3 is a cross-sectional view of a heat dissipating material according to a first embodiment of the present invention.
【図4】 本発明の第1実施例による放熱材の使用状態
(加熱側下)を説明した断面図である。FIG. 4 is a cross-sectional view illustrating a use state (under a heating side) of the radiator according to the first embodiment of the present invention.
【図5】 従来の放熱材の使用状態(加熱側下)を説明
した断面図である。FIG. 5 is a cross-sectional view illustrating a usage state (below a heating side) of a conventional heat dissipation material.
【図6】 従来の放熱材の使用状態(加熱側上)を説明し
た断面図である。FIG. 6 is a cross-sectional view illustrating a usage state (on a heating side) of a conventional heat dissipation material.
【図7】 本発明の第1実施例による放熱材の使用状態
(加熱側上)を説明した断面図である。FIG. 7 is a view showing a usage state of a heat radiator according to the first embodiment of the present invention;
FIG. 4 is a cross-sectional view illustrating (on the heating side).
【図8】 従来のフィン成形金型の断面図である。FIG. 8 is a cross-sectional view of a conventional fin molding die.
【図9】 本発明の製造方法の第1実施例に用いられる
フィン成形金型の平面図である。FIG. 9 is a plan view of a fin forming die used in the first embodiment of the manufacturing method of the present invention.
【図10】 本発明による製造方法によるプレス成形を
説明した断面図である。FIG. 10 is a cross-sectional view illustrating press forming by a manufacturing method according to the present invention.
【図11】 本発明による製造方法によるプレス成形
後、成形品の取り出しを説明した断面図である。FIG. 11 is a cross-sectional view illustrating removal of a molded product after press molding by the manufacturing method according to the present invention.
【図12】 本発明の第2実施例による放熱材の断面図
である。FIG. 12 is a cross-sectional view of a heat dissipating material according to a second embodiment of the present invention.
【図13】 本発明の第3実施例による放熱材の断面図
である。FIG. 13 is a cross-sectional view of a heat radiator according to a third embodiment of the present invention.
【図14】 本発明の第4実施例による放熱材の断面図
である。FIG. 14 is a cross-sectional view of a heat radiator according to a fourth embodiment of the present invention.
【図15】 本発明の第5実施例による放熱材の断面図
である。FIG. 15 is a sectional view of a heat dissipating material according to a fifth embodiment of the present invention.
【図16】 本発明の製造方法の第2実施例に用いられ
るフィン成形金型の断面図である。FIG. 16 is a sectional view of a fin forming die used in a second embodiment of the manufacturing method of the present invention.
【図17】 本発明の製造方法の第3実施例に用いられ
るフィン成形金型の断面図である。FIG. 17 is a sectional view of a fin forming die used in a third embodiment of the manufacturing method of the present invention.
【図18】 本発明の第6実施例による放熱材の説明し
た外観図である。FIG. 18 is an external view illustrating a radiator according to a sixth embodiment of the present invention.
【図19】 本発明の第7実施例による放熱材の断面図
である。FIG. 19 is a cross-sectional view of a heat radiator according to a seventh embodiment of the present invention.
【図20】 本発明の第8実施例による放熱材の断面図
である。FIG. 20 is a sectional view of a heat dissipating material according to an eighth embodiment of the present invention.
【図21】 プレス成形品を製作する際のバインダーの
影響を説明した図である。FIG. 21 is a diagram illustrating the influence of a binder when manufacturing a press-formed product.
【図22】 プレス成形品を取り出す場合の各種条件で
の引き抜き力を示した図である。FIG. 22 is a diagram showing a drawing force under various conditions when a press-formed product is taken out.
1 放熱材 2 受熱層 3 放熱層 4 フィン 5 フィン頂角 6 フィン高さ 7 フィン底肉厚 8 フィンピツチ 9 ワーク幅 10 ワーク長さ 11 フィン間部 13 フィン先端部 14 本発明に使用される金型(溝付き中子) 15 ホルダー 16 下パンチ 17 コネクタピン(ネジ) 18 本発明に使用される金型(フィン成形用中子) 19 溝付き下パンチ 20 絶縁板 21 半導体(発熱体) 22 冷却液の流れ方向 23 気泡 24 プレス方向 25 プレス押し棒 26 上パンチ 27 ダイ 28 ダイサポ一ト 29 混合粉 30 離型材 31 粉バインダー 32 プレスベース 33 押し出し方向 34 ダイ進行方向 35 ガイド 36 従来の放熱材 37 冷却器取り付け面 38 取り付け穴 39 熱の伝熱方向 40 冷却液 41 プレス成形品 42 焼結体 43 フィンの窪み 44 粉充填部 45 無機材料(酸化第二銅)低濃度混合紛 46 無機材料(酸化第二銅)高濃度混合紛 47 絶縁材接着用金属(めっき層あるいは金属箔) 49 無機材料低濃度複合材(酸化第一銅低濃度銅複合
材) 50 無機材料高濃度複合材(酸化第一銅高濃度銅複合
材) 51 従来の放熱材のフィン部 52 従来の放熱材の溝部REFERENCE SIGNS LIST 1 heat radiating material 2 heat receiving layer 3 heat radiating layer 4 fin 5 fin apex angle 6 fin height 7 fin bottom thickness 8 fin pitch 9 work width 10 work length 11 fin portion 13 fin tip 14 mold used in the present invention (Groove core) 15 Holder 16 Lower punch 17 Connector pin (screw) 18 Die (fin molding core) used in the present invention 19 Groove lower punch 20 Insulating plate 21 Semiconductor (heating element) 22 Coolant Flow direction 23 Bubbles 24 Press direction 25 Press push rod 26 Upper punch 27 Die 28 Die support 29 Mixed powder 30 Release material 31 Powder binder 32 Press base 33 Extrusion direction 34 Die advancing direction 35 Guide 36 Conventional radiator 37 Cooler Mounting surface 38 Mounting hole 39 Heat transfer direction 40 Coolant 41 Press-formed product 42 Sintered body 4 3 Fin recess 44 Powder filling part 45 Low concentration mixed powder of inorganic material (copper oxide) 46 High concentration mixed powder of inorganic material (cupric oxide) 47 Metal for bonding insulating material (plating layer or metal foil) 49 Inorganic material Low-concentration composite material (cuprous oxide low-concentration copper composite material) 50 Inorganic material high-concentration composite material (cuprous oxide high-concentration copper composite material) 51 Conventional heat dissipating fins 52 Conventional heat dissipating material grooves
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 AA04 AB01 AC01 BA02 BA11 BD10 CA13 HA05 JA03 JA14 KA23 KA32 5F036 AA01 BA07 BA24 BB05 BD01 BD11 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K018 AA04 AB01 AC01 BA02 BA11 BD10 CA13 HA05 JA03 JA14 KA23 KA32 5F036 AA01 BA07 BA24 BB05 BD01 BD11
Claims (13)
放熱材において、 良伝熱性の金属粉末と前記金属粉末より低熱膨張率の無
機材料の粉末との混合物の第1の焼結体より構成され、
前記発熱体の発熱を吸収する受熱層と、 良伝熱性の金属粉末と前記金属粉末より低熱膨張率の無
機材料の粉末との混合物の第2の焼結体より構成され、
前記受熱層と一体化されたフィン付き放熱層を有するこ
とを特徴とする放熱材。1. A heat dissipating material for dissipating heat generated by a heating element such as a semiconductor element, comprising: a first sintered body of a mixture of a good heat conductive metal powder and a powder of an inorganic material having a lower coefficient of thermal expansion than the metal powder. Composed,
A heat receiving layer that absorbs heat generated by the heating element, and a second sintered body of a mixture of a metal powder having good heat transfer and an inorganic material powder having a lower coefficient of thermal expansion than the metal powder;
A heat dissipating material comprising a heat dissipating layer with fins integrated with the heat receiving layer.
体で構成し、フィン間部が低気孔率の焼結体で構成した
ことを特徴とする請求項1記載の放熱材。2. The heat dissipating material according to claim 1, wherein the heat dissipating layer has a fin formed of a sintered body having a high porosity and an inter-fin portion formed of a sintered body having a low porosity.
0.5〜10%のプレス成形品を焼結した焼結体により
成形されていることを特徴とする請求項1または2のい
ずれか1項に記載の放熱材。3. The heat radiation layer according to claim 1, wherein the heat radiation layer is formed of a sintered body obtained by sintering a press-formed product having a binder concentration of powder of 0.5 to 10%. A heat dissipating material according to claim 1.
で、フィン高さと底肉厚の比が0.5〜3であることを
特徴とする請求項1〜3のいずれか1項に記載の放熱
材。4. The fin according to claim 1, wherein the fin has a fin apex angle of 0 to 90 degrees and a ratio of the fin height to the bottom wall thickness of 0.5 to 3. The heat dissipating material described in.
機材料は、酸化第一銅(Cu2 O)であることを特徴と
する請求項1に記載の放熱材。5. The heat radiating material according to claim 1, wherein the good heat conductive metal is copper, and the inorganic material is cuprous oxide (Cu 2 O).
濃度が70%以下の銅合金で、前記放熱層は、銅または
酸化第一銅(Cu2 O)濃度が0%以上の銅合金からな
る銅複合材で構成されたことを特徴とする請求項1〜3
のいずれか1項に記載の放熱材。6. The heat receiving layer is made of cuprous oxide (Cu 2 O).
Concentration of 70% or less of the copper alloy, the heat dissipation layer, claims, characterized in that the copper or cuprous oxide (Cu 2 O) concentration was composed of copper composite material consisting of at least 0% of the copper alloy 1-3
The heat dissipating material according to any one of the above.
状に形成したを特徴とする請求項1〜4、6のいずれか
1項に記載の放熱材。7. The heat dissipating material according to claim 1, wherein the heat dissipating layer has a portion between the fins formed in a concave arc shape.
鉛、ビスマス、亜鉛、アルミ、銅あるいはニッケルが被
覆またはめっきされていることを特徴とする請求項1〜
4、6のいずれか1項に記載の放熱材。8. The heat receiving layer has tin on its heat receiving side surface.
The lead, bismuth, zinc, aluminum, copper or nickel is coated or plated.
The heat radiating material according to any one of items 4 and 6.
低熱膨張率の無機材料の粉末との混合物に粉末のバイン
ダーを添加して金型によりプレス成形し、加熱して焼結
体を形成し、その焼結体により放熱材を構成する放熱材
の製造方法において、放熱層は、プレス成形する際の粉
末のバインダー濃度を0.5〜10%として焼結したこ
とを特徴とする放熱材の製造方法。9. A mixture of a metal powder having good heat conductivity and a powder of an inorganic material having a lower coefficient of thermal expansion than the metal powder, a binder of the powder is added, and the mixture is press-molded by a mold and heated to form a sintered body. In the method for manufacturing a heat radiating material comprising the sintered body, the heat radiating layer is sintered by setting the binder concentration of the powder at the time of press molding to 0.5 to 10%. Manufacturing method.
離型剤が塗布され、プレス成形されたことを特徴とする
請求項9記載の放熱材の製造方法。10. The method for manufacturing a heat radiating material according to claim 9, wherein said heat radiating layer is formed by applying a release agent in advance to a fin forming die and press forming.
状を有し、かつ、金型先端部を凸円弧状に形成したフィ
ン成形用金型によりプレス成形されたことを特徴とする
請求項9〜10のいずれか1項記載の放熱材の製法。11. The fin-forming mixture having a groove shape for transferring fins and being press-formed by a fin-forming die having a die end formed in a convex arc shape. The method for producing a heat radiating material according to any one of claims 10 to 10.
型によりプレス成形されたことを特徴とする請求項9〜
11のいずれか1項記載の放熱材の製造方法。12. The fin according to claim 9, wherein the fin is press-formed by a mold divided for each fin.
12. The method for producing a heat dissipating material according to any one of items 11 to 12.
ィン形成用金型支持金型にピンやネジ等で連結したこと
を特徴とする請求項9〜12のいずれか1項記載の放熱
材の製造方法。13. The heat dissipating material according to claim 9, wherein the fin forming die is connected to a holder or a fin forming die supporting die by a pin, a screw, or the like. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001115824A JP2002314013A (en) | 2001-04-13 | 2001-04-13 | Heat radiating material and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001115824A JP2002314013A (en) | 2001-04-13 | 2001-04-13 | Heat radiating material and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002314013A true JP2002314013A (en) | 2002-10-25 |
Family
ID=18966661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001115824A Pending JP2002314013A (en) | 2001-04-13 | 2001-04-13 | Heat radiating material and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002314013A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008007339A (en) * | 2006-06-27 | 2008-01-17 | Sumitomo Heavy Ind Ltd | Ozone concentrating apparatus |
US20130219954A1 (en) * | 2010-11-02 | 2013-08-29 | Nec Corporation | Cooling device and method for producing the same |
WO2014045714A1 (en) * | 2012-09-19 | 2014-03-27 | 日本電気株式会社 | Cooling device, heat reception unit and boiling unit used therein, and method for manufacturing same |
JP2014241410A (en) * | 2013-05-17 | 2014-12-25 | 京セラ株式会社 | Heat dissipation member, electronic equipment using the same, and picture display unit |
WO2015111242A1 (en) * | 2014-01-21 | 2015-07-30 | 富士通株式会社 | Heat-dissipating member, method for manufacturing heat-dissipating member, electronic device, method for manufacturing electronic device, integrated module, and information processing system |
JP2015197245A (en) * | 2014-04-01 | 2015-11-09 | 昭和電工株式会社 | Evaporative cooling device |
WO2016006089A1 (en) * | 2014-07-10 | 2016-01-14 | 富士通株式会社 | Heat dissipation component, heat dissipation component manufacturing method, electronic device, electronic device manufacturing method, integrated module, and information processing system |
CN108546458A (en) * | 2018-05-17 | 2018-09-18 | 哈尔滨工业大学 | A kind of photothermal conversion ability can be with the composite coating and preparation method thereof of variation of ambient temperature |
JP2020107672A (en) * | 2018-12-26 | 2020-07-09 | 住友理工株式会社 | Heat dissipation member |
CN117062264A (en) * | 2023-08-16 | 2023-11-14 | 浙江向隆机械有限公司 | Film heating plate manufactured by adopting powder metallurgy process |
AT527256A1 (en) * | 2023-05-22 | 2024-12-15 | Miba Sinter Austria Gmbh | Method for producing a cooling device |
-
2001
- 2001-04-13 JP JP2001115824A patent/JP2002314013A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008007339A (en) * | 2006-06-27 | 2008-01-17 | Sumitomo Heavy Ind Ltd | Ozone concentrating apparatus |
US20130219954A1 (en) * | 2010-11-02 | 2013-08-29 | Nec Corporation | Cooling device and method for producing the same |
US9696068B2 (en) | 2012-09-19 | 2017-07-04 | Nec Corporation | Cooling apparatus, heat receiving section and boiling section used therein, and method of manufacturing the same |
WO2014045714A1 (en) * | 2012-09-19 | 2014-03-27 | 日本電気株式会社 | Cooling device, heat reception unit and boiling unit used therein, and method for manufacturing same |
JP2014241410A (en) * | 2013-05-17 | 2014-12-25 | 京セラ株式会社 | Heat dissipation member, electronic equipment using the same, and picture display unit |
WO2015111242A1 (en) * | 2014-01-21 | 2015-07-30 | 富士通株式会社 | Heat-dissipating member, method for manufacturing heat-dissipating member, electronic device, method for manufacturing electronic device, integrated module, and information processing system |
US10537044B2 (en) | 2014-01-21 | 2020-01-14 | Fujitsu Limited | Heat dissipating component, manufacturing method for heat dissipating component, electronic device, manufacturing method for electronic device, integrated module, and information processing system |
JPWO2015111242A1 (en) * | 2014-01-21 | 2017-03-23 | 富士通株式会社 | Heat dissipation component, method for manufacturing heat dissipation component, electronic device, method for manufacturing electronic device, integrated module, information processing system |
JP2015197245A (en) * | 2014-04-01 | 2015-11-09 | 昭和電工株式会社 | Evaporative cooling device |
JPWO2016006089A1 (en) * | 2014-07-10 | 2017-06-15 | 富士通株式会社 | Heat dissipation component, method for manufacturing heat dissipation component, electronic device, method for manufacturing electronic device, integrated module, information processing system |
WO2016006089A1 (en) * | 2014-07-10 | 2016-01-14 | 富士通株式会社 | Heat dissipation component, heat dissipation component manufacturing method, electronic device, electronic device manufacturing method, integrated module, and information processing system |
CN108546458A (en) * | 2018-05-17 | 2018-09-18 | 哈尔滨工业大学 | A kind of photothermal conversion ability can be with the composite coating and preparation method thereof of variation of ambient temperature |
CN108546458B (en) * | 2018-05-17 | 2020-06-12 | 哈尔滨工业大学 | A composite coating whose photothermal conversion ability can change with ambient temperature and its preparation method |
JP2020107672A (en) * | 2018-12-26 | 2020-07-09 | 住友理工株式会社 | Heat dissipation member |
AT527256A1 (en) * | 2023-05-22 | 2024-12-15 | Miba Sinter Austria Gmbh | Method for producing a cooling device |
AT527256B1 (en) * | 2023-05-22 | 2025-04-15 | Miba Sinter Austria Gmbh | Method for producing a cooling device |
CN117062264A (en) * | 2023-08-16 | 2023-11-14 | 浙江向隆机械有限公司 | Film heating plate manufactured by adopting powder metallurgy process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109786259B (en) | Microelectronic system with embedded heat dissipation structure and method for manufacturing same | |
CN100589243C (en) | Semiconductor device | |
US20120328789A1 (en) | Metal-graphite foam composite and a cooling apparatus for using the same | |
TWI305131B (en) | Heat dissipation device and composite material with high thermal conductivity | |
JP2002318085A (en) | Heat pipe and manufacturing method thereof | |
CN109585396A (en) | The laminate packaging semiconductor packages of thermal coupling | |
JP2002314013A (en) | Heat radiating material and method of manufacturing the same | |
CN205428902U (en) | Soaking board radiating basal plate power modular structure | |
CN107734839A (en) | a PCB | |
JP3856640B2 (en) | Semiconductor mounting heat dissipation substrate material, manufacturing method thereof, and ceramic package using the same | |
US20230230924A1 (en) | Method of fabricating substrates with thermal vias and sinter-bonded thermal dissipation structures | |
JP2008251671A (en) | Heat dissipation board, manufacturing method thereof, and electronic component module | |
JP2008226916A (en) | Heat dissipation component, method for manufacturing the same, and heat dissipation structure | |
EP0365275A2 (en) | A composite material heat-dissipating member for a semiconductor element and method of its fabrication | |
JP2005077052A (en) | Flat heat pipe | |
CN111524814A (en) | Preparation method of high-reliability and high-density integrated structure of power device | |
CN106851970A (en) | The preparation method that a kind of thermoelectricity separates metal substrate | |
JP2004063898A (en) | Heat radiating material and method of manufacturing the same | |
JP2012119519A (en) | Ceramic circuit board and module using same | |
JP2002110874A (en) | Heat sink and its manufacturing method | |
WO2001080313A1 (en) | Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same | |
JP2004160549A (en) | Ceramic-metal composite and substrate for high heat conduction and heat radiation using the same | |
TWI450425B (en) | Grain structure, manufacturing method thereof and substrate structure thereof | |
JP3913130B2 (en) | Aluminum-silicon carbide plate composite | |
CN114068333A (en) | Heat dissipation plate and preparation method thereof |