[go: up one dir, main page]

JP2002310573A - Exhaust gas treatment apparatus and method - Google Patents

Exhaust gas treatment apparatus and method

Info

Publication number
JP2002310573A
JP2002310573A JP2001112202A JP2001112202A JP2002310573A JP 2002310573 A JP2002310573 A JP 2002310573A JP 2001112202 A JP2001112202 A JP 2001112202A JP 2001112202 A JP2001112202 A JP 2001112202A JP 2002310573 A JP2002310573 A JP 2002310573A
Authority
JP
Japan
Prior art keywords
exhaust gas
vacuum
cooling device
stage
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001112202A
Other languages
Japanese (ja)
Other versions
JP4804640B2 (en
Inventor
Kosuke Yamashita
幸介 山下
Tomoaki Tanaka
智昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001112202A priority Critical patent/JP4804640B2/en
Publication of JP2002310573A publication Critical patent/JP2002310573A/en
Application granted granted Critical
Publication of JP4804640B2 publication Critical patent/JP4804640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute a reduction in an energy/utility unit requirement due to shortening of a refining time, a decrease in an oxidation loss of a valuable element such as iron, chromium or the like, an improvement in a refractory life and an increase in a production efficiency or the like by lowering a pressure loss in an exhaust gas treating unit and maintaining a vacuum degree in a refining furnace at a high level in a process for vacuum-refining a molten metal. SOLUTION: A method for treating the exhaust gas comprises the steps of cooling the exhaust gas generated from a vacuum degassing unit of the molten metal by two or more stages of coolers, branching a bypass duct 7 from a duct 2 between the first and second stage coolers, and connecting the duct 7 to the rear side of the final stage cooler or the duct after a dust collector. In this case, the first stage cooler is preferably of a water tube type, and the second stage cooler is preferably of a smoke tube type.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】高炉・電気炉・転炉等の精錬
炉により製造された炭素を含有した粗溶湯を真空下にお
いて精錬する工程において、精錬炉から発生する排ガス
を処理する装置及びその方法に関する。
BACKGROUND OF THE INVENTION An apparatus and a method for treating exhaust gas generated from a smelting furnace in a process of refining a molten carbon containing carbon produced by a smelting furnace such as a blast furnace, an electric furnace or a converter in a vacuum. About.

【0002】[0002]

【従来の技術】真空精錬炉においては、通常精錬炉で発
生する排ガスを1段の冷却装置にて冷却し、集塵・真空
排気装置に流す。また、排ガスの熱容量が大きい場合等
は、1段の冷却装置8を図2に示す如く大型化(即ち冷
却能力を大きく)し、冷却装置後の排ガス温度の低減を
図っているが、冷却装置の圧力損失も大きくなるため、
冷却装置前後のダクトにバイパスダクトを設置している
例が見られる(特開平6−17115号公報、特開20
00−227284号公報)。即ち、図3に示すよう
に、精錬工程の前半で必要真空度が低く排ガス処理流量
の大きい場合は、バイパスダクト7のダンパー9を閉じ
るか開度を小さくし、主に冷却装置8に排ガスを流す。
精錬工程の後半で必要真空度が高く排ガス流量が小さく
なると、バイパスダクト7のダンパー9の開度を大きく
し、バイパスダクトに多くの排ガスを流して、冷却装置
8の圧力損失を小さくする。
2. Description of the Related Art In a vacuum refining furnace, the exhaust gas usually generated in the refining furnace is cooled by a one-stage cooling device and then sent to a dust collecting / evacuating device. When the heat capacity of the exhaust gas is large, for example, the size of the one-stage cooling device 8 is increased (that is, the cooling capacity is increased) as shown in FIG. 2 to reduce the temperature of the exhaust gas after the cooling device. Pressure loss is also large,
There are examples in which bypass ducts are installed in ducts before and after a cooling device (Japanese Patent Application Laid-Open Nos. 6-17115 and 20/17).
00-227284). That is, as shown in FIG. 3, when the required vacuum degree is low and the exhaust gas treatment flow rate is large in the first half of the refining process, the damper 9 of the bypass duct 7 is closed or the opening degree is reduced, and the exhaust gas is mainly supplied to the cooling device 8. Shed.
When the required vacuum degree is high and the exhaust gas flow rate is low in the latter half of the refining process, the opening degree of the damper 9 of the bypass duct 7 is increased, so that a large amount of exhaust gas flows through the bypass duct and the pressure loss of the cooling device 8 is reduced.

【0003】[0003]

【発明が解決しようとする課題】排ガス中のダスト濃度
の増加、高温化・流量の増加といった、より排ガス処理
システムにとって負荷の高い条件となると、従来の様に
冷却装置の前より直接排ガスをバイパスさせる方法では
下記の問題が判明した。即ち、ダストがバイパスダクト
内に堆積し、流路を閉塞させる。ダストがバイパスダク
ト合流後に設置された集塵機5・真空排気装置6へ多量
に流入し、ダスト負荷の増加をもたらす。高温排ガスに
曝されるバイパスダクトは、温度負荷の耐熱対策として
耐火物被覆或いは水冷化が必要であり、また流量を制御
するダンパーは水冷化等の耐熱対策が同様に必要とな
り、初期設備投資の増加及びメンテナンスコストの増大
といった課題が発生する。こうした問題を回避しようと
すると、バイパスダクトに流入させる排ガスは、充分に
温度・流量が低下し、ダスト濃度も低いレベルになって
から増加せざるを得ない。しかしながら、これでは、排
ガスの高流量時の根本的な圧損低減対策となり得ない。
When the load on the exhaust gas treatment system becomes higher, such as an increase in the concentration of dust in the exhaust gas, an increase in the temperature and an increase in the flow rate, the exhaust gas is directly bypassed before the cooling device as in the past. The following problems were found in the method of causing the problem. That is, dust accumulates in the bypass duct and closes the flow path. A large amount of dust flows into the dust collector 5 and the vacuum exhaust device 6 installed after the merging of the bypass duct, thereby increasing the dust load. Bypass ducts exposed to high-temperature exhaust gas require refractory coating or water cooling as a measure against the heat load of the temperature load, and dampers that control the flow rate also require heat measures such as water cooling. Problems such as an increase and an increase in maintenance cost occur. In order to avoid such a problem, the exhaust gas flowing into the bypass duct has to be increased after the temperature and the flow rate have sufficiently decreased and the dust concentration has reached a low level. However, this cannot be a fundamental measure for reducing the pressure loss at a high flow rate of the exhaust gas.

【0004】本発明は、溶湯を真空精錬するプロセスに
おいて、排ガス処理装置内の圧力損失を低くし、精錬炉
内の真空度を高位に維持することによって、精錬時間が
短縮によるエネルギー・用役原単位の削減、及び鉄・ク
ロム等の有価元素の酸化ロスの減少、耐火物寿命の向
上、生産能率の上昇等を図ることを課題とする。
According to the present invention, in the process of vacuum refining a molten metal, the pressure loss in an exhaust gas treatment device is reduced and the degree of vacuum in a refining furnace is maintained at a high level. It is an object of the present invention to reduce units, reduce oxidation loss of valuable elements such as iron and chromium, improve refractory life, increase production efficiency, and the like.

【0005】[0005]

【課題を解決するめの手段】上記課題を達成するための
本発明の要旨は次の通りである。 (1) 溶湯の真空脱ガス装置から発生する排ガスを2
段以上の冷却装置にて冷却し、且つ1段目と2段目の冷
却装置間のダクトからバイパスダクト7を分岐し、最終
段の冷却装置の後方或いは集塵機後のダクトに接続する
ことを特徴とする排ガス処理装置。 (2) 1段目の冷却装置を低圧損の水管式とし、2段
目の冷却装置を高冷却能を有する煙管式とすることを特
徴とする(1)記載の排ガス処理装置。 (3) バイパスダクトの合流した以降に集塵装置を設
置し、排ガスを除塵後真空排気装置に接続することを特
徴とする(1)又は(2)記載の排ガス処理装置。 (4) 1段目の冷却装置に水管タイプの冷却装置とし
て、且つダストブロアーにより水管に付着したダクトを
除去することを特徴とする(1)〜(3)のいずれか1
項記載の排ガス処理装置。 (5) (1)〜(4)のいずれか1項記載の排ガス処
理装置を用いて排ガス処理を行うに際し、バイパスダク
トに可動ダンパーを設置し、1段目のガスクーラー後の
温度、真空度或いは温度と真空度の両方に基づきダンパ
ーの開度を制御することを特徴とする排ガス処理方法。
The gist of the present invention to achieve the above object is as follows. (1) Exhaust gas generated from the vacuum degassing device for molten metal
It is characterized by cooling by a cooling device of more than one stage, branching the bypass duct 7 from the duct between the first and second stage cooling devices, and connecting to the duct behind the last stage cooling device or after the dust collector. Waste gas treatment equipment. (2) The exhaust gas treatment apparatus according to (1), wherein the first-stage cooling device is a water tube type having a low pressure loss, and the second-stage cooling device is a smoke tube type having a high cooling capacity. (3) The exhaust gas treatment device according to (1) or (2), wherein a dust collection device is installed after the bypass duct joins, and the exhaust gas is removed and then connected to a vacuum exhaust device. (4) Any one of (1) to (3), wherein the first-stage cooling device is a water tube type cooling device, and a duct attached to the water tube is removed by a dust blower.
An exhaust gas treatment apparatus according to any one of the preceding claims. (5) When performing exhaust gas treatment using the exhaust gas treatment apparatus according to any one of (1) to (4), a movable damper is installed in a bypass duct, and the temperature and the degree of vacuum after the first-stage gas cooler are set. Alternatively, an exhaust gas treatment method characterized by controlling an opening degree of a damper based on both a temperature and a degree of vacuum.

【0006】[0006]

【発明の実施の形態】本発明は、精錬初期から中期にお
いて、高温・高濃度ダスト・高流量の排ガスを低真空で
処理しつつ、精錬中期から末期においては、低温・低濃
度ダスト・低流量の排ガスを高真空で処理するための装
置及び方法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention treats high-temperature, high-concentration dust and high-flow exhaust gas in a low vacuum in the early to middle stages of refining, and uses low-temperature, low-concentration dust and low flow in the middle to late stages of refining. An apparatus and method for treating exhaust gas in a high vacuum.

【0007】以下本発明の実施例を示す図1を用いて説
明する。真空精錬炉1から出た排ガス11は、ダクト2
を通って、1段目の排ガス冷却装置3に入り冷却及び粗
粒ダストが除塵される。更に、2段目の排ガス冷却装置
4に入り冷却及び除塵される。充分に冷却された排ガス
11は乾式集塵機5によって除塵されて真空排気装置6
で吸引されて系外に放出される。ここで、1段目と2段
目の排ガス冷却装置の間の排気ダクト2からバイパスダ
クト7を分岐して、集塵機前の排気ダクト2に合流させ
る。バイパスダクト7内に開閉弁或いは流量調節弁9を
設け、精錬炉1内の真空度計13及び集塵機前の排気ダ
クトに設けた温度計14の検出装置から得られたデータ
を基に、制御装置15で演算を行い、開閉弁或いは流量
調節弁(可動ダンパー)9を調節する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. Exhaust gas 11 from the vacuum refining furnace 1
Through the exhaust gas cooling device 3 of the first stage to cool and remove coarse dust. Further, it enters the second-stage exhaust gas cooling device 4 and is cooled and dust-removed. The exhaust gas 11 sufficiently cooled is removed by the dry dust collector 5 and the exhaust gas 6
Is sucked out and released out of the system. Here, the bypass duct 7 is branched from the exhaust duct 2 between the first-stage and second-stage exhaust gas cooling devices and joins the exhaust duct 2 in front of the dust collector. An on-off valve or a flow control valve 9 is provided in the bypass duct 7, and a control device is provided based on data obtained from a vacuum gauge 13 in the refining furnace 1 and a detection device of a thermometer 14 provided in an exhaust duct in front of the dust collector. The calculation is performed at 15 to adjust the on-off valve or the flow control valve (movable damper) 9.

【0008】なお、上記したバイパス経路は、集塵機前
に合流させても良いし、集塵機後のダクトに繋ぎ込んで
も良い。また、開閉弁或いは流量調節弁9は、図示の如
くバイパス経路中と2段目の冷却装置後或いは集塵機後
にも設置して両者を連動させて流量を制御しても良い。
[0008] The above-mentioned bypass path may be joined before the dust collector, or may be connected to a duct after the dust collector. Further, the opening / closing valve or the flow control valve 9 may be provided in the bypass path and after the second-stage cooling device or after the dust collector as shown in the drawing, and the two may be linked to control the flow rate.

【0009】真空精錬の初期から中期において、即ち溶
湯中初期C=0.4〜0.6重量%の溶鋼を真空下で吹
酸脱炭処理する場合、排ガス流量及びダスト発生量は大
きく且つ排ガス温度も高い。このため精錬炉内真空度は
200〜350Torr程度あるが、排ガス冷却装置及び集
塵装置の圧力損失は各々5〜15Torr程度あり、相対的
に小さい圧力なので真空精錬上特に問題とならない。し
かし、中期〜末期において、即ち溶湯C=0.01〜
0.05重量%の溶鋼を真空処理する場合、排ガス流量
・ダスト発生量及び排ガス温度は低下し、真空度は精錬
炉内に吹き込まれる攪拌用の不活性ガスの流量に依存し
た値となり、例えばAOD炉の場合30〜50Torrとな
る。また、取鍋精錬における真空処理の様に攪拌ガスが
少ない場合、真空度は更に高くなり溶湯中Cは0.01
%以下のレベルにまで処理され、排ガス流量・ダスト発
生量及び排ガス温度は更に大きく低下し、真空度も数To
rr以下の高真空となる。この様に中期から末期において
は高真空処理となるため、煙管式の排ガス冷却装置及び
乾式集塵機の圧力損失は精錬処理上大きな問題となる。
そこで、従来は中期から末期にかけてバイパスダクトを
設置し、煙管式の排ガス冷却装置及び乾式集塵機の圧力
損失を回避していた。
In the early to middle stages of vacuum refining, that is, when the molten steel having an initial C of 0.4 to 0.6% by weight in a molten metal is subjected to blowing acid decarburization treatment under vacuum, the exhaust gas flow rate and dust generation amount are large and the exhaust gas is large. The temperature is also high. Therefore, the degree of vacuum in the refining furnace is about 200 to 350 Torr, but the pressure loss of the exhaust gas cooling device and the dust collecting device is about 5 to 15 Torr, respectively. However, in the middle stage to the end stage, that is, molten metal C = 0.01 to
When performing vacuum treatment on molten steel of 0.05% by weight, the exhaust gas flow rate, dust generation amount and exhaust gas temperature decrease, and the degree of vacuum becomes a value dependent on the flow rate of the stirring inert gas blown into the refining furnace. In the case of an AOD furnace, it becomes 30 to 50 Torr. Further, when the stirring gas is small as in the vacuum treatment in the ladle refining, the degree of vacuum is further increased and the C in the molten metal becomes 0.01%.
%, The exhaust gas flow rate, dust generation amount and exhaust gas temperature are further reduced, and the degree of vacuum is several tons.
High vacuum of rr or less. As described above, since a high vacuum process is performed from the middle stage to the end stage, the pressure loss of the flue gas type exhaust gas cooling device and the dry dust collector is a serious problem in the refining process.
Therefore, in the past, a bypass duct was installed from the middle stage to the end stage to avoid pressure loss of a flue gas type exhaust gas cooling device and a dry dust collector.

【0010】しかし、ダスト発生及び排ガス流量の大き
な真空排気処理においては、前述の問題は発生して有効
にバイパスダクトを利用できなかった。そこで、本発明
による装置構成及び処理方法によりこの課題を解決する
ことができたのである。本発明では、大流量・高温排ガ
スを1段目の冷却装置で処理するため、排ガス温度は低
下してバイパスダクト内の熱負荷は大幅に緩和される。
また、1段目の冷却装置はダスト除去の効果も持つた
め、バイパスダクト内のダスト詰まり、開閉弁或いは流
量調整弁へのダスト付着が減少する。特に、除去される
ダストは主に粗粒のダストであるため、ダストの詰まり
・付着防止効果は更に大きくなる。
However, in the vacuum evacuation process in which dust is generated and the exhaust gas flow rate is large, the above-described problem has occurred and the bypass duct cannot be used effectively. Therefore, this problem can be solved by the apparatus configuration and the processing method according to the present invention. In the present invention, since the large-flow high-temperature exhaust gas is processed by the first-stage cooling device, the exhaust gas temperature is reduced, and the heat load in the bypass duct is greatly reduced.
Further, since the cooling device of the first stage also has an effect of removing dust, dust clogging in the bypass duct and dust adhesion to the on-off valve or the flow control valve are reduced. In particular, since the dust to be removed is mainly coarse-grained dust, the effect of preventing clogging and adhesion of dust is further increased.

【0011】バイパスダクトに流す排ガス流量及びタイ
ミングは、操業上必要とされる精錬炉内真空度及び設備
保護上必要とされる乾式集塵機の耐熱温度を考慮した排
ガス温度をパラメータとして決められる。よって、真空
精錬の中期〜末期において、炉内真空度計13及び排ガ
ス温度計14の検出値を制御装置15に取り入れ、あら
かじめセットされた必要真空度及び許容上限温度を計算
しながら、開閉弁或いは流量調整弁9を制御する。バイ
パスダクトの流量制御弁を開く場合、2段目の冷却装置
後の流量制御弁を全開のまま、全閉、或いは中間の開度
としても良い。これらの排ガス流量調節弁の開度は、必
要炉内真空度と実績炉内真空度、集塵機前許容上限温度
と実績温度の相対的なバランスから決定される。
The flow rate and timing of the exhaust gas flowing into the bypass duct are determined as parameters using the exhaust gas temperature in consideration of the degree of vacuum in the refining furnace required for operation and the heat-resistant temperature of the dry dust collector required for equipment protection. Therefore, in the middle stage to the end stage of the vacuum refining, the detection values of the in-furnace vacuum gauge 13 and the exhaust gas thermometer 14 are taken into the control device 15, and the required degree of vacuum and the allowable upper limit temperature which are set in advance are calculated. The flow control valve 9 is controlled. When opening the flow control valve of the bypass duct, the flow control valve after the second-stage cooling device may be fully closed, or may be fully closed or at an intermediate opening degree. The degree of opening of these exhaust gas flow control valves is determined from the relative balance between the required furnace vacuum degree and the actual furnace vacuum degree, the allowable upper limit temperature before dust collector, and the actual temperature.

【0012】排ガス冷却装置の型式により冷却能力と圧
力損失が異なる。その詳細な構造により多少の相違はあ
るが、一般的に煙管式の冷却装置は同一体積に対して冷
却能力が大きいが圧力損失も大きい。一方、水管式の冷
却装置は冷却能力はやや小さいが圧力損失も小さい。従
来は図2の様に、大流量の排ガスを冷却する場合、80
0〜1000℃から乾式集塵機5の一般的な許容温度で
ある120〜140℃へと1段の大型煙管式冷却装置8
で冷却する必要があった。しかし、この場合極めて大き
な圧力損失が生じ、操業上問題となっていた。本発明で
は、前述の目的で2段に冷却装置を設け、更に1段目
は、圧力損失の小さい水管式の冷却装置とした。これに
よって、1段目以降のバイパスダクトによる圧力損失低
減効果と1段目の冷却装置そのものの圧力損失の減少が
図れる。
The cooling capacity and pressure loss differ depending on the type of the exhaust gas cooling device. Although there are some differences depending on the detailed structure, generally, a flue-tube type cooling device has a large cooling capacity but a large pressure loss for the same volume. On the other hand, the water pipe type cooling device has a small cooling capacity but a small pressure loss. Conventionally, as shown in FIG.
A single-stage large-tube flue-tube cooling device 8 from 0 to 1000 ° C. to 120 to 140 ° C. which is a general allowable temperature of the dry dust collector 5
Required cooling. However, in this case, an extremely large pressure loss occurs, which is a problem in operation. In the present invention, a cooling device is provided in two stages for the above-mentioned purpose, and the first stage is a water tube type cooling device having a small pressure loss. Thus, the pressure loss reduction effect of the first and subsequent bypass ducts and the pressure loss of the first stage cooling device itself can be reduced.

【0013】また、1段目の冷却装置3において、水管
に蒸気・空気・窒素等の噴射媒体を吹き付け、水管上に
付着したダクトを払い落とすダストブロアー10を設置
した。これにより、水管表面を常にダストフリーな状態
とすることができ、冷却能力の維持、及び圧力損失の増
加防止を図ることが可能となる。ダストブロアー10は
水管の前面・後面・中間位置或いはこれらの組合せ等必
要に応じた組合せ配置とすることができる。
Further, in the first-stage cooling device 3, a dust blower 10 for spraying an injection medium such as steam, air, or nitrogen onto the water pipe to blow off a duct attached to the water pipe is provided. As a result, the surface of the water pipe can be always kept in a dust-free state, and it is possible to maintain the cooling capacity and prevent an increase in pressure loss. The dust blower 10 can be arranged as needed, such as the front, rear, and intermediate positions of the water pipe, or a combination thereof.

【0014】[0014]

【実施例】表1はAODにて真空精錬を行った場合の操
業条件を示す表で、本発明の実施例を従来方式の比較例
と共に示す。本発明のプロセス構成は、2段の排ガス冷
却装置とし、1段目を水管式、2段目を煙管式とした。
真空風ポンプとエジェクターを組み合わせた真空排気装
置の前段にバグフィルター方式の乾式集塵機を設置し、
真空排気装置の冷却水のダストによる汚濁を防止した。
1段目と2段目の間の排気ダクトからバイパスダクトを
集塵機の前に繋ぎ込み、そのダクト途中に開度制御可能
なダンパ−を設置した。1段目の排ガス冷却装置の前後
にダストブロアーを設置し、真空処理の合間に水管のダ
ストを除去することとした。一方、従来方式の比較例と
してのプロセス構成は、集塵機と真空排気装置は本発明
と同様であるが、冷却装置は1段の大型の煙管式とし、
その前後にバイパスダクトを配置した例(図3に示す
例)を示す。
EXAMPLES Table 1 is a table showing operating conditions when vacuum refining is performed by AOD, and shows examples of the present invention together with comparative examples of the conventional method. In the process configuration of the present invention, a two-stage exhaust gas cooling device was used, the first stage was a water tube type, and the second stage was a smoke tube type.
Install a bag filter type dry dust collector in front of the vacuum exhaust system that combines a vacuum air pump and ejector,
Prevention of contamination of cooling water of the vacuum pump by dust.
A bypass duct was connected from the exhaust duct between the first stage and the second stage to the front of the dust collector, and a damper capable of controlling the opening was installed in the middle of the duct. Dust blowers were installed before and after the first-stage exhaust gas cooling device, and dust in the water pipe was removed between vacuum treatments. On the other hand, the process configuration as a comparative example of the conventional method is the same as that of the present invention in the dust collector and the vacuum exhaust device, but the cooling device is a single-stage large-sized smoke tube type.
An example in which bypass ducts are arranged before and after that (an example shown in FIG. 3) is shown.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示すように、精錬前半〜中期におい
ては、両者はほぼ同様な操業条件である。但し、本発明
では、1段目の冷却装置によって排ガス温度が低減され
るため、バイパスダクトのダンパーを開け約30%程度
の排ガスをバイパスさせることができた。しかし比較例
では、バイパスを使用すると高温の排ガスが流れるため
集塵機前の温度が急激に上昇し、全くバイパスには流せ
なかった。この期間での真空度の冶金精錬効果への影響
は前述したように大差はなかったが、比較例では冷却装
置の煙管内へのダスト付着が増大したのに対し、本発明
の冷却装置へのダスト付着は、1段目と2段目に付着が
分散されていたと同時に、2段目の冷却装置の煙管内の
ダスト付着は排ガスが一部バイパスダクトに流れたため
比較的軽微なものとなった。
As shown in Table 1, in the first to middle stages of refining, both are under almost the same operating conditions. However, in the present invention, since the exhaust gas temperature is reduced by the first-stage cooling device, the damper of the bypass duct is opened to allow about 30% of the exhaust gas to be bypassed. However, in the comparative example, when the bypass was used, high-temperature exhaust gas flowed, so that the temperature in front of the dust collector rapidly increased, and the gas could not be flown into the bypass at all. Although the effect of the degree of vacuum on the metallurgical refining effect during this period did not differ greatly as described above, in the comparative example, dust attached to the flue of the cooling device increased, whereas the influence on the cooling device of the present invention increased. At the same time, the dust was dispersed in the first and second stages, and at the same time, the dust in the smoke pipe of the second-stage cooling device was relatively small because the exhaust gas partially flowed to the bypass duct. .

【0017】精錬後期においては、排ガス流量・温度が
大きく低減するため、両者ともバイパスダクトの使用が
可能となる。しかし、本発明では、1段目の冷却装置に
よって排ガス温度が更に低減するため、バイパスダクト
に流す排ガス流量を約70%まで大幅に増加することが
できたのに対し、比較例では、精錬炉からの排ガス温度
はまだ高いため、集塵機前での排ガス温度制約からバイ
パスダクトに大量に排ガスを流すことができず約30%
が限度であった。また、こうした操業を継続していると
冷却装置自体が、本発明では1段目の冷却装置が毎ヒー
トダストブロアーでダスト除去され、且つ2段目の冷却
装置も排ガスのバイパス比率が高いため、冷却装置本体
の圧力損失が小さく抑制される。また、バイパス比率が
高いためダクトを含めたシステム全体の圧力損失も小さ
くなる。これに対して比較例では、冷却装置本体及びシ
ステム全体の圧力損失が大きくなり、結局表1に現れる
ような精錬炉内の真空度の差となった。両者の真空度の
差は、排ガス冷却装置の使用回数が増えれば増えるほど
大きくなる。これは冷却装置の煙管内或いは水管表面に
付着するダストの堆積量に大きな差があり、ヒート数が
増えると更に差が増してゆくためである。
In the latter stage of the refining, the flow rate and temperature of the exhaust gas are greatly reduced, so that both can use a bypass duct. However, in the present invention, the exhaust gas temperature was further reduced by the first-stage cooling device, so that the flow rate of the exhaust gas flowing through the bypass duct could be greatly increased up to about 70%. The exhaust gas temperature is still high, so a large amount of exhaust gas could not flow through the bypass duct due to exhaust gas temperature restrictions in front of the dust collector, and about 30%
Was the limit. In addition, if such operation is continued, the cooling device itself, in the present invention, the first-stage cooling device is dust-removed by a heat dust blower every time, and the second-stage cooling device also has a high exhaust gas bypass ratio, The pressure loss of the cooling device main body is suppressed to be small. Further, since the bypass ratio is high, the pressure loss of the entire system including the duct is also reduced. On the other hand, in the comparative example, the pressure loss of the cooling device main body and the entire system was increased, and eventually the difference in the degree of vacuum in the refining furnace as shown in Table 1 was obtained. The difference between the two degrees of vacuum increases as the number of times the exhaust gas cooling device is used increases. This is because there is a large difference in the amount of dust adhering to the inside of the smoke pipe or the surface of the water pipe of the cooling device, and the difference further increases as the number of heats increases.

【0018】[0018]

【発明の効果】以上述べたように排ガス冷却装置を2段
とし、2段目の前後にバイパスダクトを設置することに
より、高い真空度を維持することができるようになっ
た。この真空度の差により、本発明は脱炭効率が高くな
り、精錬時間が短縮によるエネルギー・用役原単位の削
減、及び鉄・クロム等の有価元素の酸化ロスの減少、耐
火物寿命の向上、生産能率の上昇等多大なメリットがも
たらされた。
As described above, a high degree of vacuum can be maintained by providing two stages of exhaust gas cooling devices and installing bypass ducts before and after the second stage. Due to the difference in the degree of vacuum, the present invention increases the decarburization efficiency, shortens the refining time, reduces energy consumption and utility unit, reduces oxidation loss of valuable elements such as iron and chromium, and improves refractory life. In addition, significant advantages have been brought about, such as an increase in production efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す排ガス処理設備のフロー
シートである。
FIG. 1 is a flow sheet of an exhaust gas treatment facility showing an embodiment of the present invention.

【図2】従来装置1を示すフローシートである。FIG. 2 is a flow sheet showing the conventional apparatus 1.

【図3】従来装置2を示すフローシートである。FIG. 3 is a flow sheet showing a conventional apparatus 2;

【符号の説明】[Explanation of symbols]

1 真空精錬炉 2 排気ダクト 3 水管式ガス冷却装置 4 煙管式ガス
冷却装置 5 乾式集塵機 6 真空排気装
置 7 バイパス排気ダクト 8 大型煙管式
ガス冷却装置 9 開閉弁或いは流量調整弁 10 ダストブロ
アー 11 排気ガス 12 冷却水 13 真空度計 14 温度計 15 制御装置
DESCRIPTION OF SYMBOLS 1 Vacuum refining furnace 2 Exhaust duct 3 Water tube gas cooling device 4 Smoke tube gas cooling device 5 Dry dust collector 6 Vacuum exhaust device 7 Bypass exhaust duct 8 Large smoke tube gas cooling device 9 Opening / closing valve or flow control valve 10 Dust blower 11 Exhaust gas 12 Cooling water 13 Vacuum gauge 14 Thermometer 15 Controller

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K056 AA01 AA02 BA04 CA02 DB05 DB13 DC15 DC17 FA08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K056 AA01 AA02 BA04 CA02 DB05 DB13 DC15 DC17 FA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶湯の真空脱ガス装置から発生する排ガ
スを2段以上の冷却装置にて冷却し、且つ1段目と2段
目の冷却装置間のダクトからバイパスダクトを分岐し、
最終段の冷却装置の後方或いは集塵機後のダクトに接続
することを特徴とする排ガス処理装置。
An exhaust gas generated from a vacuum degassing device for molten metal is cooled by a cooling device of two or more stages, and a bypass duct is branched from a duct between the first and second cooling devices.
An exhaust gas treatment device connected to a duct behind a cooling device in the last stage or after a dust collector.
【請求項2】 1段目の冷却装置を低圧損の水管式と
し、2段目の冷却装置を高冷却能を有する煙管式とする
ことを特徴とする請求項1記載の排ガス処理装置。
2. The exhaust gas treatment apparatus according to claim 1, wherein the first-stage cooling device is a water tube type having a low pressure loss, and the second-stage cooling device is a smoke tube type having a high cooling capacity.
【請求項3】 バイパスダクトの合流した以降に集塵装
置を設置し、排ガスを除塵後真空排気装置に接続するこ
とを特徴とする請求項1又は2記載の排ガス処理装置。
3. The exhaust gas treatment apparatus according to claim 1, wherein a dust collection device is installed after the bypass duct joins, and the exhaust gas is removed and then connected to a vacuum exhaust device.
【請求項4】 1段目の冷却装置に水管タイプの冷却装
置として、且つダストブロアーにより水管に付着したダ
クトを除去することを特徴とする請求項1〜3のいずれ
か1項記載の排ガスの処理装置。
4. The exhaust gas purifying apparatus according to claim 1, wherein the first-stage cooling device is a water tube type cooling device, and a duct attached to the water tube is removed by a dust blower. Processing equipment.
【請求項5】 請求項1〜4のいずれか1項記載の排ガ
ス処理装置を用いて排ガス処理を行うに際し、バイパス
ダクトに可動ダンパーを設置し、1段目のガスクーラー
後の温度、真空度或いは温度と真空度の両方に基づきダ
ンパーの開度を制御することを特徴とする排ガス処理方
法。
5. When performing exhaust gas treatment using the exhaust gas treatment apparatus according to any one of claims 1 to 4, a movable damper is installed in a bypass duct, and a temperature and a degree of vacuum after a first-stage gas cooler are provided. Alternatively, an exhaust gas treatment method characterized by controlling an opening degree of a damper based on both a temperature and a degree of vacuum.
JP2001112202A 2001-04-11 2001-04-11 Exhaust gas treatment method Expired - Lifetime JP4804640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112202A JP4804640B2 (en) 2001-04-11 2001-04-11 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112202A JP4804640B2 (en) 2001-04-11 2001-04-11 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2002310573A true JP2002310573A (en) 2002-10-23
JP4804640B2 JP4804640B2 (en) 2011-11-02

Family

ID=18963657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112202A Expired - Lifetime JP4804640B2 (en) 2001-04-11 2001-04-11 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP4804640B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705185A (en) * 2020-06-12 2020-09-25 中国重型机械研究院股份公司 A cascade air-cooling unit of a mechanical vacuum pump system for steelmaking and a method for treating steelmaking waste gas
CN113187585A (en) * 2021-07-02 2021-07-30 山东赛马力发电设备有限公司 Tail gas treatment device for internal combustion engine
CN114028895A (en) * 2021-11-30 2022-02-11 中冶京诚工程技术有限公司 A vacuum refining waste gas treatment system and a vacuum refining waste gas treatment method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579844A (en) * 1980-06-18 1982-01-19 Daido Steel Co Ltd Waste gas cooling apparatus of degassing apparatus
JPS59189029U (en) * 1983-06-02 1984-12-14 ガデリウス株式会社 Exhaust gas heat recovery water heater
JPH03193115A (en) * 1989-12-22 1991-08-22 Hitachi Zosen Corp Highly efficient desulfurization and denitration in fluidized bed boiler
JPH0617115A (en) * 1992-06-30 1994-01-25 Kawasaki Steel Corp Decompression refining method and apparatus for molten steel
JPH09512858A (en) * 1994-08-23 1997-12-22 フォスター ホイーラー エナージア オサケ ユキチュア Method and apparatus for operating fluidized bed reactor apparatus
JPH10183232A (en) * 1996-12-25 1998-07-14 Nippon Steel Corp Apparatus and method for removing dust from gas cooler of vacuum degasser
JP2000227284A (en) * 1999-02-03 2000-08-15 Nippon Steel Corp Decompression refining equipment
JP2000239731A (en) * 1999-02-16 2000-09-05 Nisshin Steel Co Ltd Treatment of cooling in vacuum degassing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579844A (en) * 1980-06-18 1982-01-19 Daido Steel Co Ltd Waste gas cooling apparatus of degassing apparatus
JPS59189029U (en) * 1983-06-02 1984-12-14 ガデリウス株式会社 Exhaust gas heat recovery water heater
JPH03193115A (en) * 1989-12-22 1991-08-22 Hitachi Zosen Corp Highly efficient desulfurization and denitration in fluidized bed boiler
JPH0617115A (en) * 1992-06-30 1994-01-25 Kawasaki Steel Corp Decompression refining method and apparatus for molten steel
JPH09512858A (en) * 1994-08-23 1997-12-22 フォスター ホイーラー エナージア オサケ ユキチュア Method and apparatus for operating fluidized bed reactor apparatus
JPH10183232A (en) * 1996-12-25 1998-07-14 Nippon Steel Corp Apparatus and method for removing dust from gas cooler of vacuum degasser
JP2000227284A (en) * 1999-02-03 2000-08-15 Nippon Steel Corp Decompression refining equipment
JP2000239731A (en) * 1999-02-16 2000-09-05 Nisshin Steel Co Ltd Treatment of cooling in vacuum degassing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705185A (en) * 2020-06-12 2020-09-25 中国重型机械研究院股份公司 A cascade air-cooling unit of a mechanical vacuum pump system for steelmaking and a method for treating steelmaking waste gas
CN113187585A (en) * 2021-07-02 2021-07-30 山东赛马力发电设备有限公司 Tail gas treatment device for internal combustion engine
CN114028895A (en) * 2021-11-30 2022-02-11 中冶京诚工程技术有限公司 A vacuum refining waste gas treatment system and a vacuum refining waste gas treatment method

Also Published As

Publication number Publication date
JP4804640B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
CN101539371A (en) First flue gas dust removal and waste heat recovery system for electric stove
JP2002310573A (en) Exhaust gas treatment apparatus and method
CN111672249A (en) A large-scale closed submerged arc furnace gas purification device and method
JP5489734B2 (en) Continuous annealing furnace
JP2001311588A (en) Exhaust gas treatment method and apparatus
JPS6043886B2 (en) Waste gas recovery method in converter waste gas treatment equipment
JP3988332B2 (en) Oxygen enrichment method for blast furnace
JPS59133329A (en) Atmosphere gas replacement method in continuous annealing furnace
JPH0617115A (en) Decompression refining method and apparatus for molten steel
JPH08283827A (en) Vacuum exhaust equipment for low vacuum refining furnace
CN222119281U (en) A steel slag treatment and waste heat recovery system
MX2007010210A (en) Melting plant and method for the production of steel.
CN222912412U (en) A double flue structure for a double-chamber furnace for recycled aluminum
CN118882363B (en) Dust removal and smoke exhaust system of secondary aluminum double-chamber furnace and temperature control method thereof
JP2000227284A (en) Decompression refining equipment
CN219385215U (en) Anti-blocking drainage device of RH furnace water-cooling straight pipe
JP4099817B2 (en) Gas replacement method and apparatus for smelting reduction furnace-attached exhaust gas treatment apparatus
CN113124255B (en) Hot air piping system maintenance cooling method
JP3756432B2 (en) Gas recovery method during dephosphorization operation in converter exhaust gas treatment facility for decarburization blowing
JP2001164306A (en) Furnace top pressure control device for solid reducing agent-filled smelting reduction furnace
CN115652018A (en) Method for automatically adjusting temperature of evaporative cooler
CN118086604A (en) Steel slag treatment and waste heat recovery system and method
JP3167708B2 (en) Method and apparatus for recovering generated gas energy from high pressure metallurgical furnace
JPS61268791A (en) Method of treating gas evolved from coal gasify furnace, or the like
KR101042216B1 (en) Molten iron manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R151 Written notification of patent or utility model registration

Ref document number: 4804640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term