[go: up one dir, main page]

JP2002310544A - Ice maker - Google Patents

Ice maker

Info

Publication number
JP2002310544A
JP2002310544A JP2001111152A JP2001111152A JP2002310544A JP 2002310544 A JP2002310544 A JP 2002310544A JP 2001111152 A JP2001111152 A JP 2001111152A JP 2001111152 A JP2001111152 A JP 2001111152A JP 2002310544 A JP2002310544 A JP 2002310544A
Authority
JP
Japan
Prior art keywords
ice
ice making
cooling performance
water
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001111152A
Other languages
Japanese (ja)
Inventor
Akihiko Hirano
明彦 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2001111152A priority Critical patent/JP2002310544A/en
Publication of JP2002310544A publication Critical patent/JP2002310544A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for preventing production of incomplete ice in an ice maker in which production of cotton ice is prevented by increasing the r.p.m. of a compressor in a refrigeration circuit and lowering the evaporation temperature thereby accelerating creation of nuclei of ice. SOLUTION: In an ice maker for making ice by passing refrigerant from a refrigerant compressor in a refrigeration circuit through an evaporator 15, the refrigerant compressor is formed of an inverter compressor 21 having a variable r.p.m.. The ice maker comprises a water temperature detector 8 for detecting the temperature of ice making water provided in the passage of ice making water, and a cooling performance control means 22 for controlling the r.p.m. of the inverter compressor 21 by an output signal from the water temperature detector 8 wherein the cooling performance control means 22 increases the r.p.m. of the inverter compressor 21 when the water temperature detector 8 detects water temperature higher than and close to 0 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、氷質の劣化を伴わ
なずに製氷機における不完全氷(以下「綿氷」という)
の発生を未然に防止する製氷機に関するものである。
The present invention relates to incomplete ice (hereinafter referred to as "cotton ice") in an ice making machine without deterioration of ice quality.
The present invention relates to an ice maker that prevents the occurrence of ice.

【0002】[0002]

【従来の技術】従来、例えば水循環式製氷機では製氷板
の表面に水を流し、それを繰り返すことで板面に含有不
純物の排除された純粋の氷を生成させていたが、流水を
氷結させるためにはその氷点が必ず0℃より低くなって
おり、またこれから氷結が始まるという寸前に綿氷が発
生するものであった。このような綿氷が発生すると、製
氷水のポンプを詰まらせ、管路における通水を抑止して
しまったり、循環水が不足して氷そのものが白濁化して
しまったり、さらには綿氷はそのうち時間の経過と共に
融けるので、ポンプによる水循環は復帰するものの、そ
れまでに要した時間が長いとエバポレータの温度が下が
りすぎて誤検知により製氷が完了してしまうといった種
々の不具合を起こす。そこで、従来かかる不具合は、次
のような方法で解決してきた。すなわち、(1)ポンプ
を含め通水路が綿氷で詰まらないように設計したり、
(2)綿氷が発生したら強制的に融かす手段を設けた
り、あるいは(3)エバポレータが0℃近傍にまで温度
低下したら、それから一定時間の間は過渡的に急激に温
度が下がっても製氷完了を検知するのをキャンセルする
ような手段を制御に仕組んだり、さらには(4)氷が過
冷却してしまうということは、氷の結晶核が作れないと
いうことであるから、氷とエバポレータとの間に大きな
温度差を作り出すことで達成できるので、製氷水温が0
℃到達直前になったとき、強制的にポンプを短時間停止
してエバポレータの温度を下げ、この状態からポンプの
運転を復帰させて氷の結晶核を作ったりしていた。
2. Description of the Related Art Conventionally, for example, in a water circulation type ice maker, water is flowed on the surface of an ice making plate, and by repeating the process, pure ice without impurities contained on the plate is generated, but the running water is frozen. For this reason, the freezing point was always lower than 0 ° C., and cotton ice was generated just before freezing started. When this type of cotton ice occurs, the ice making water pump is clogged and water flow in the pipeline is deterred, the circulating water is insufficient, and the ice itself becomes cloudy. Since the water is melted with the passage of time, the water circulation by the pump is restored, but if the time required up to that time is long, the temperature of the evaporator becomes too low, and various problems such as completion of ice making due to erroneous detection occur. Therefore, the conventional problem has been solved by the following method. That is, (1) the water passage including the pump is designed so as not to be clogged with cotton ice,
(2) A means for forcibly melting the cotton ice when it is generated, or (3) If the temperature of the evaporator drops to around 0 ° C., then for a certain period of time, even if the temperature drops suddenly and suddenly, ice is made. In order to control the means for canceling the detection of the completion, and (4) to supercool the ice means that ice nuclei cannot be formed. Can be achieved by creating a large temperature difference between
Immediately before reaching ℃, the pump was forcibly stopped for a short time to lower the temperature of the evaporator, and the operation of the pump was returned from this state to form ice crystal nuclei.

【0003】しかしながら、上記(1)乃至(4)で示
される解決手段は、いずれも綿氷が発生した後に製氷機
として不都合が起こらないように回避するか、あるいは
積極的に氷の結晶核を作り出すようにするという二つの
パターンに分けられるが、これらの対処方法では、次に
ような問題点があった。すなわち、上記(1)では、想
定以上の綿氷の量が発生した場合に問題を引き起こす。
上記(2)では強制的に綿氷を融かすのであるから、冷
却とは相反する方向に作用するので好ましくない。また
上記(3)および(4)では、短い時間ではあるが、製
氷機(エバポレータ)に水が供給されない状態で温度が
下がるので、製氷機の熱交換面には、霜のような白膜層
が生じて結果的に氷の中に白い縞模様を作ってしまい氷
質の劣化を伴う。このように、どの方法も満足のいく方
法ではなく、最適な綿氷発生防止装置を実現するのが困
難であった。
[0003] However, the solutions described in the above (1) to (4) are either to avoid inconvenience as an ice maker after the generation of cotton ice, or to actively remove ice crystal nuclei. It can be divided into two patterns, that is, to create them. However, these countermeasures have the following problems. That is, in the above (1), a problem is caused when an amount of cotton ice is generated more than expected.
In the above (2), since the cotton ice is forcibly melted, it acts in a direction opposite to cooling, which is not preferable. In the above (3) and (4), although the time is short, the temperature drops in a state where water is not supplied to the ice making machine (evaporator), so that the heat exchange surface of the ice making machine has a white film layer like frost. As a result, white stripes are formed in the ice, resulting in deterioration of ice quality. As described above, none of the methods is a satisfactory method, and it has been difficult to realize an optimum apparatus for preventing the generation of cotton ice.

【0004】そこで本出願人は、先に図3および図4に
示すような特公平6−21753号公報掲載の発明を提
案した。この既提案発明を説明すると、図3は水循環式
の製氷機を示し、製氷水タンク1,除氷水タンク2、ポ
ンプ3,4、散水管5,6、および蒸発器15(エバポ
レータ)を含む冷凍回路を有し、この冷凍回路は既知の
ように圧縮機11,凝縮器12,冷媒用電磁弁18,熱
交換器13,膨張弁14,および蒸発器15,アキュム
レータ16、ホットガス用電磁弁17からなる除氷用回
路で形成される。19は冷凍回路の低圧部に設けた圧力
スイッチ、20は蒸発器15の入り口に取り付けた冷媒
の飽和温度を検出できる温度検出器、8は製氷水の温度
を検出する製氷水温度検出器である。
Accordingly, the present applicant has previously proposed the invention disclosed in Japanese Patent Publication No. 6-21753 as shown in FIGS. To explain the proposed invention, FIG. 3 shows a water circulation type ice making machine, which includes an ice making water tank 1, a deicing water tank 2, pumps 3 and 4, sprinkling pipes 5, 6, and a refrigeration system including an evaporator 15 (evaporator). The refrigeration circuit includes a compressor 11, a condenser 12, a solenoid valve for refrigerant 18, a heat exchanger 13, an expansion valve 14, and an evaporator 15, an accumulator 16, and a solenoid valve 17 for hot gas, as is known. It is formed by a deicing circuit consisting of: Reference numeral 19 denotes a pressure switch provided in a low-pressure section of the refrigeration circuit, reference numeral 20 denotes a temperature detector attached to the inlet of the evaporator 15 for detecting the saturation temperature of the refrigerant, and reference numeral 8 denotes an ice making water temperature detector for detecting the temperature of ice making water. .

【0005】この既提案発明の作動は図4のようにな
る。すなわち、除氷サイクルはまず、製氷水タンク1の
水位が一定レベルまで低下したところで開始される。ポ
ンプ4が起動されて、除氷水は除氷水タンク2から管路
を経て散水管6に入り、その散水孔から蒸発器15から
なる製氷板の裏面に散布されて流下し、集水樋などの経
路を経て製氷水タンク1に入る。同時に、除氷水用回路
のホットガス用電磁弁17が開かれ、蒸発器15にホッ
トガスを供給して、製氷水板表面に付着している氷を離
脱させる。そして製氷水タンク1は除氷水により満たさ
れる。
The operation of the proposed invention is as shown in FIG. That is, the deicing cycle is first started when the water level in the ice making water tank 1 has dropped to a certain level. When the pump 4 is started, the deicing water enters the water sprinkling pipe 6 from the deicing water tank 2 via a pipe, and is sprayed from the water sprinkling hole to the back of the ice making plate composed of the evaporator 15 to flow down. Enter the ice making water tank 1 via the route. At the same time, the hot gas solenoid valve 17 of the deicing water circuit is opened to supply hot gas to the evaporator 15 to release the ice adhering to the surface of the ice making water plate. Then, the ice making water tank 1 is filled with deicing water.

【0006】次に、製氷サイクルは、除氷サイクルの開
始から一定時間経過後または吸入ガス温度を検知して設
定条件を満たしている場合に開始される。ポンプ3が起
動されて、製氷水は製氷水タンク1から管路を経て散水
管5に入り、その散水孔から蒸発器15からなる製氷板
の表面に散布されて流下し、製氷板で氷とならなかった
分については集水樋などの経路を経て製氷水タンク1に
入り循環する。同時に冷凍回路においては、除氷用回路
のホットガス用電磁弁17が閉じられ、冷媒用電磁弁1
8が開かれて、冷媒が圧縮機11から凝縮器12,熱交
換器13,膨張弁14を経て蒸発器15に入り、製氷板
を冷却して、熱交換器、アキュムレータ16,圧縮機1
1と循環する。このように、除氷サイクルと製氷サイク
ルとを繰り返しながら氷を作って貯えるものである。
Next, the ice making cycle is started after a lapse of a predetermined time from the start of the deicing cycle or when the set conditions are satisfied by detecting the intake gas temperature. When the pump 3 is started, the ice making water enters the water sprinkling pipe 5 from the ice making water tank 1 via the pipe, and is sprinkled from the water sprinkling hole onto the surface of the ice making plate composed of the evaporator 15 to flow down. The portion that has not been recovered enters the ice making water tank 1 via a path such as a water collecting gutter and circulates. At the same time, in the refrigeration circuit, the hot gas solenoid valve 17 of the deicing circuit is closed, and the refrigerant solenoid valve 1 is closed.
8 is opened, and the refrigerant enters the evaporator 15 from the compressor 11 via the condenser 12, the heat exchanger 13, and the expansion valve 14, cools the ice making plate, and cools the heat exchanger, the accumulator 16, and the compressor 1.
Cycle with 1. Thus, ice is made and stored while repeating the deicing cycle and the ice making cycle.

【0007】一方、製氷サイクル中に、集水樋付近で製
氷水の温度を検出する温度検出器が綿氷の発生を予報す
る変化、例えば温度が徐々に低下して0〜1℃間の温度
を検知した場合、その検知信号に基づいて冷媒用電磁弁
18を、蒸発器15の入り口の温度検出器20がマイナ
ス数℃に急激に低下するまで閉じる。かくして、冷媒の
供給が一時的に停止され、冷媒のガス圧力が急激に低下
することで蒸発器15により冷却される製氷板の温度は
急激に低下させられ、製氷水と製氷板との温度差が大き
くなり、製氷板の表面には通常の氷の成長に必要な氷の
核が発生する。したがって、少なくとも最も綿氷の発生
し易い製氷板付近には、綿氷が発生しないものであっ
た。
On the other hand, during the ice making cycle, a temperature detector for detecting the temperature of the ice making water near the water collecting gutter predicts the occurrence of cotton ice, for example, a change in the temperature between 0 and 1 ° C. when the temperature gradually decreases. Is detected, the solenoid valve 18 for refrigerant is closed based on the detection signal until the temperature detector 20 at the inlet of the evaporator 15 rapidly drops to minus several degrees Celsius. Thus, the supply of the refrigerant is temporarily stopped, and the temperature of the ice making plate cooled by the evaporator 15 is rapidly lowered due to the sudden decrease in the gas pressure of the refrigerant, and the temperature difference between the ice making water and the ice making plate is reduced. And ice nuclei necessary for normal ice growth are generated on the surface of the ice making plate. Therefore, no cotton ice was generated at least in the vicinity of the ice making plate where the cotton ice was most likely to be generated.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記既提案
発明に係る装置にあっては、運転中に膨張弁14あるい
は冷媒用電磁弁18を閉じて綿氷の発生を防止するもの
であるが、この場合、ポンプダウンのように蒸発器15
内の圧力は下がっていき、それにつれて蒸発温度が刻々
と下がり、氷の結晶核が発生し易くなるというものであ
る。このように、既提案装置によれば、綿氷発生防止対
策にのみ上記のように付加的な制御を行うものであり、
したがって電磁弁18や膨張弁14を閉じてそれらを解
除するまでの間は、蒸発器15内部に残留する冷媒のみ
で冷却するため、実質的な冷却能力はわずかであり、同
時に蒸発器15の温度が急降下することにより、製氷面
に白濁した氷が作られる可能性が高い。すなわち、製氷
機にとっての冷却能率が悪く、また氷の品質に悪影響を
与えるといった問題点があった。
However, in the apparatus according to the above-mentioned proposed invention, the expansion valve 14 or the solenoid valve 18 for the refrigerant is closed during operation to prevent the generation of cotton ice. In this case, the evaporator 15
The internal pressure decreases, and as the evaporation temperature decreases, the ice nuclei are more likely to be generated. As described above, according to the already-proposed device, the additional control is performed as described above only for the countermeasure for preventing generation of cotton ice,
Therefore, until the solenoid valve 18 and the expansion valve 14 are closed and released, only the refrigerant remaining inside the evaporator 15 is used for cooling, so that the actual cooling capacity is small, and at the same time, the temperature of the evaporator 15 is reduced. It is highly likely that cloudy ice will be formed on the ice making surface due to the rapid fall of the ice. That is, there is a problem that the cooling efficiency for the ice making machine is poor and the quality of the ice is adversely affected.

【0009】一方、本出願人は、氷の結晶核が生成しに
くい状態(条件)が、概ね次の条件のいくつかが重なる
ときであるとの知見を得た。すなわち、(1)製氷水の
水としての純度が良い(結晶核を構成する不純物が少な
い)、(2)製氷機の周囲温度が高く、冷凍機の性能が
落ち、製氷水がゆっくり冷却され0℃に至る、さらに
(3)元々製氷機の能力に余裕が無く、製氷水がゆっく
り冷却される場合が氷の結晶核が生成しにくい条件であ
る。
On the other hand, the present applicant has found that the state (condition) where it is difficult to form ice crystal nuclei is generally when some of the following conditions overlap. That is, (1) the purity of the ice-making water as water is good (the amount of impurities constituting the crystal nuclei is small), (2) the ambient temperature of the ice-making machine is high, the performance of the refrigerator is reduced, and the ice-making water is slowly cooled to 0. ° C, and (3) ice-making water is cooled slowly because the ice-making machine originally has no capacity, which is a condition under which ice crystal nuclei are hardly generated.

【0010】本発明は上記のような知見に基づいて、上
記問題点を解決するためになされたもので、製氷温度が
0℃の近傍に至ったときに、過渡的に冷却性能を高め
る、すなわち冷凍回路の圧縮機回転数を高めて、蒸発温
度を下げることで氷の結晶核生成を促進し、製氷を進行
させながら綿氷の発生を防ぐ製氷機の不完全氷発生防止
装置を提供することを目的とする。
The present invention has been made to solve the above problems based on the above findings. When the ice making temperature approaches 0 ° C., the cooling performance is transiently enhanced, that is, To provide an incomplete ice generation prevention device for an ice maker that increases the number of rotations of a compressor of a refrigeration circuit and lowers an evaporation temperature to promote crystallization of ice crystals and prevent generation of cotton ice while progressing ice making. With the goal.

【0011】[0011]

【課題を解決するための手段】この発明は、上記目的を
達成するために、次の構成を有する。すなわち、請求項
1記載の発明に係る製氷機は、冷凍回路に設けた冷媒圧
縮機からの冷媒を蒸発器に通過させることにより製氷す
る製氷機において、前記冷媒圧縮機を回転数可変なイン
バータ圧縮機で形成し、製氷水の経路に製氷水の温度を
検出する水温検出器を設け、さらに前記水温検出器から
の出力信号により前記インバータ圧縮機の回転数を制御
する冷却性能制御手段を設け、前記水温検出器が0℃以
上の0℃近傍に達したことを検知したとき、前記冷却性
能制御手段により前記インバータ圧縮機の回転数を増大
するように制御されることを特徴とする。請求項2記載
の発明は、請求項1記載の製氷機に係り、前記冷却性能
制御手段は、タイマ機能部を有し、前記タイマ機能部
は、前記水温検出器が0℃の状態を保持する時間が一定
時間経過したことをカウントしたときに、前記冷却性能
を増大制御する時間を解除することを特徴とする。請求
項3記載の発明は、請求項1又は2記載の製氷機に係
り、前記冷却性能制御手段は、タイマ機能部を有し、前
記タイマ機能部は、前記蒸発器の温度を検出する蒸発器
温度検出器の温度が一定値以下になったとき、前記冷却
性能を増大制御する時間を解除することを特徴とする。
請求項4記載の発明は、請求項1乃至3のいずれか一に
記載の製氷機に係り、前記冷却性能増大手段は、前記水
温検出器が0℃以下の状態を検知したとき、前記冷却性
能の増大率を増すように設定変更される学習制御機能を
有することを特徴とする。
The present invention has the following configuration to achieve the above object. That is, an ice making machine according to the first aspect of the present invention is an ice making machine for making ice by passing a refrigerant from a refrigerant compressor provided in a refrigeration circuit to an evaporator. A water temperature detector for detecting the temperature of the ice making water in the path of the ice making water, and cooling performance control means for controlling the rotation speed of the inverter compressor by an output signal from the water temperature detector, When the water temperature detector detects that the temperature reaches 0 ° C. or more and near 0 ° C., the cooling performance control means is controlled to increase the rotation speed of the inverter compressor. The invention according to claim 2 relates to the ice making machine according to claim 1, wherein the cooling performance control means has a timer function unit, and the timer function unit holds the water temperature detector at 0 ° C. When counting that a predetermined time has elapsed, the time for controlling to increase the cooling performance is released. The invention according to claim 3 relates to the ice making machine according to claim 1 or 2, wherein the cooling performance control means has a timer function unit, and the timer function unit detects a temperature of the evaporator. When the temperature of the temperature detector becomes equal to or lower than a predetermined value, the time for controlling to increase the cooling performance is released.
The invention according to a fourth aspect relates to the ice making machine according to any one of the first to third aspects, wherein the cooling performance increasing means is configured to perform the cooling performance when the water temperature detector detects a state of 0 ° C. or less. It is characterized by having a learning control function in which the setting is changed so as to increase the rate of increase.

【0012】[0012]

【発明の実施の形態】本発明を図1、図2に示す一実施
の形態に基づいて詳述する。図1は一実施の形態に係る
水循環式製氷機のシステム構成図、図2は製氷サイクル
における時間と温度との関係を示す特性図で、(a)は
通常の製氷サイクル線図、(b)は綿氷発生時における
製氷サイクル線図、(c)は本実施の形態における製氷
サイクル線図である。本実施の形態における製氷機につ
いては、圧縮機がインバータ式の圧縮機21であり、こ
れにより圧縮機21の回転数を増減制御できるものとし
た点、製氷水の温度を検出する製氷水温度検出器8およ
び蒸発器の温度を検出する蒸発器温度検出器20からの
出力信号を、インバータ圧縮機21の回転数を制御する
冷却性能制御手段22に入力させた点が異なり、その他
の構成は同じである。したがって、以下の説明では、従
来装置で説明したと同一部材または均等部材には、同一
符号を使用することとし、その説明は割愛することと
し、異なる構成について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to an embodiment shown in FIGS. FIG. 1 is a system configuration diagram of a water circulation type ice making machine according to an embodiment, FIG. 2 is a characteristic diagram showing a relationship between time and temperature in an ice making cycle, (a) is a normal ice making cycle diagram, (b) FIG. 2 is an ice making cycle diagram when cotton ice is generated, and FIG. 2C is an ice making cycle diagram in the present embodiment. The ice making machine according to the present embodiment is configured such that the compressor is an inverter-type compressor 21 which can control the rotation speed of the compressor 21 to increase or decrease. The difference is that the output signal from the evaporator temperature detector 20 for detecting the temperature of the evaporator 8 and the evaporator is input to the cooling performance control means 22 for controlling the rotation speed of the inverter compressor 21. It is. Therefore, in the following description, the same reference numerals are used for the same members or equivalent members as those described in the conventional device, the description thereof will be omitted, and different configurations will be described.

【0013】冷却性能制御手段22は、製氷水温度検出
部8からの出力信号が入力される水温判別部23,回転
数増大出力部24,タイマ機能部25,時間解除出力部
26,蒸発器温度判別器27,学習制御機能部28,お
よび増大率出力部29を有する。製氷水温度検出器8に
おる検出信号を受けて、水温判別部23が0℃以上で、
0℃に近い状態を判別したとき(経験値では約2℃程度
である)、回転数増大出力部24からの出力信号により
インバータ圧縮機21の回転数が通常より上げられて冷
却性能が増大する。すると、蒸発器15の温度が下がる
ため、水と蒸発器15の熱交換面の温度差が広がり、伝
熱量が増えることにつながる。これにより、結晶核の生
成が行われ易くなる。また、水温判別部23で冷却性能
増大が必要であると判断されたとき、タイマ機能部2
5、時間解除出力部26および回転数増大出力部24に
より冷却性能増大時間は必要な範囲内でできるだけ短く
なるように制御される。
The cooling performance control means 22 includes a water temperature discrimination section 23 to which an output signal from the ice making water temperature detection section 8 is input, a rotation speed increase output section 24, a timer function section 25, a time release output section 26, an evaporator temperature. It has a classifier 27, a learning control function unit 28, and an increase rate output unit 29. Upon receiving the detection signal from the ice making water temperature detector 8, the water temperature discriminating unit 23 determines whether the temperature is 0 ° C. or more,
When a state close to 0 ° C. is determined (experience value is about 2 ° C.), the rotation speed of the inverter compressor 21 is increased by the output signal from the rotation speed increase output unit 24 to increase the cooling performance. . Then, since the temperature of the evaporator 15 decreases, the temperature difference between the water and the heat exchange surface of the evaporator 15 increases, which leads to an increase in the amount of heat transfer. This facilitates generation of crystal nuclei. Further, when the water temperature determination unit 23 determines that the cooling performance needs to be increased, the timer function unit 2
5. The cooling performance increase time is controlled by the time release output unit 26 and the rotational speed increase output unit 24 to be as short as possible within a required range.

【0014】綿氷の発生がなく、製氷機に氷結すること
を検知したとき、インバータ圧縮機21の回転数を通常
回転に戻すが、その検知は次のようにして行われる。す
なわち、水温判別部23で製氷水の温度が0℃であるこ
とを判断され、その0℃を保持した状態を一定時間継続
したことをタイマ機能部25でカウントされて検出され
る。その検出信号は時間解除出力部26に出力されて、
回転数増大出力部24が時間解除の信号を受けて、イン
バータ圧縮機21の回転数が通常回転に復帰するように
指令信号を出力する。
When it is detected that there is no generation of cotton ice and the ice maker freezes, the rotation speed of the inverter compressor 21 is returned to the normal rotation. The detection is performed as follows. That is, the water temperature determination unit 23 determines that the temperature of the ice making water is 0 ° C., and the timer function unit 25 counts and detects that the state of maintaining the 0 ° C. for a certain period of time is continued. The detection signal is output to the time release output unit 26,
In response to the time release signal, the rotation speed increase output unit 24 outputs a command signal so that the rotation speed of the inverter compressor 21 returns to the normal rotation.

【0015】別態様として、温度検出器20で検出され
た温度に基づき蒸発器温度判別部27で蒸発器の温度が
ある一定値以下の温度にあると判断したとき、時間解除
出力部26を経由して回転数増大出力部24にインバー
タ圧縮機21の回転数を通常の回転数に戻す解除信号が
出力される。
As another mode, when the evaporator temperature discriminating section 27 judges that the temperature of the evaporator is below a certain value based on the temperature detected by the temperature detector 20, it passes through the time release output section 26. Then, a release signal for returning the rotation speed of the inverter compressor 21 to the normal rotation speed is output to the rotation speed increase output unit 24.

【0016】なお、冷却性能を増大させる時間の解除
を、製氷水の温度0℃保持が一定時間保ったことをカウ
ントしたときの条件と、蒸発器15の温度がある一定以
下の温度に達したときの条件がともに成立するAND条
件で解除させるか、あるいは、いずれか一方の条件が成
立するOR条件で解除させるようにしてもよい。
The time required to increase the cooling performance is released by counting the condition that the temperature of the ice making water is maintained at 0 ° C. for a certain period of time and the temperature of the evaporator 15 to reach a certain temperature or lower. The condition may be canceled by an AND condition that satisfies both conditions, or may be canceled by an OR condition that satisfies one of the conditions.

【0017】さらに、製氷水温度が0℃を下回ることを
水温判別部23が判別したとき、過冷却(綿氷)の発生
があったことを示すので、学習制御機能部28から増大
率出力部29に次回の製氷サイクル時にインバータ圧縮
機21の回転数上昇率を増加させるような信号が出力さ
れ、かかる信号が回転数増大出力部24に入力されて圧
縮機15の回転数上昇率が上げられるようにフィードバ
ックされる。
Further, when the water temperature determining section 23 determines that the ice making water temperature is lower than 0 ° C., it indicates that supercooling (cotton ice) has occurred. At the next ice making cycle, a signal for increasing the rotational speed increase rate of the inverter compressor 21 is output to 29, and such a signal is input to the rotational speed increase output section 24 to increase the rotational speed increase rate of the compressor 15. Feedback.

【0018】以上のように、本実施の形態によれば、製
氷サイクルが通常の状態であるときは、図2(a)のグ
ラフのように行われ、図2(b)に示すように綿氷が発
生するときは、冷却性能制御手段22に設けた学習制御
機能部28により冷却性能増大率が増すように設定変更
され、製氷水検出器8が0℃以上の0℃近傍に達したこ
とを検知したとき、冷却性能制御手段22によりインバ
ータ圧縮機21の回転数が上げられ、図2(c)のよう
に製氷を進行させながら綿氷の発生を防止する効果があ
る。
As described above, according to the present embodiment, when the ice making cycle is in a normal state, the ice making cycle is performed as shown in the graph of FIG. 2 (a), and as shown in FIG. When ice is generated, the learning control function unit 28 provided in the cooling performance control unit 22 changes the setting so that the cooling performance increase rate increases, and the ice making water detector 8 reaches 0 ° C. or more and near 0 ° C. Is detected, the rotation speed of the inverter compressor 21 is increased by the cooling performance control means 22, and as shown in FIG. 2C, there is an effect of preventing the generation of cotton ice while making the ice making progress.

【0019】以上、本発明の実施の形態を具体的に詳述
してきたが、具体的な構成はこの形態に限られるもので
はなく、本発明の要旨を逸脱しない範囲の設計変更等が
あっても本発明に含まれる。例えば、上記実施の形態で
は、水循環式の製氷機について説明したが、貯水式の製
氷機等、どのような態様の製氷機にも適応できるもので
ある。
Although the embodiment of the present invention has been described in detail above, the specific configuration is not limited to this embodiment, and there are design changes and the like within a range not departing from the gist of the present invention. Are also included in the present invention. For example, in the above-described embodiment, a water circulation type ice maker has been described. However, the present invention is applicable to any type of ice maker such as a water storage type ice maker.

【0020】[0020]

【発明の効果】本発明は、冷凍回路に設けた冷媒圧縮機
からの冷媒を蒸発器に通過させることにより製氷する製
氷機において、前記冷媒圧縮機を回転数可変な圧縮機で
形成し、製氷水の経路に製氷水の温度を検出する水温検
出器を設け、さらに前記水温検出器からの出力信号によ
り前記圧縮機の回転数を制御する冷却性能制御手段を設
け、前記水温検出器が0℃以上の0℃近傍に達したこと
を検知したとき、前記冷却性能制御手段により前記圧縮
機の回転数が増大するように制御される構成を有する。
このため、製氷水温度が0℃の近傍に至ったときに過渡
的に冷却性能を冷却性能制御手段により増大させ、氷の
結晶核生成を促進し、氷質の劣化を伴わないで綿氷の発
生を未然に防ぐことができる。さらに、上記既提案発明
のように綿氷対策のためにだけ性能や機能を犠牲にして
付加的に行うのと異なり、製氷を行いながら綿氷の発生
を防ぐことができ、冷却性能を過渡的に大きくするだけ
で、蒸発温度を下げるが、下げ過ぎをコントロールする
ことが容易であるため、白濁氷は発生しないし、その時
間当たりの製氷能力は向上する。このように、製氷温度
0℃近傍での能力増加をするだけで、すなわち冷凍回路
に比較的短い時間の負荷をかけるだけで品質のよい氷を
効率よく作ることができる効果を奏する。また、冷却性
能制御手段が学習制御機能部を有するので、一度綿氷を
経験すると、次回の冷却性能増大率を上げるような学習
機能を発揮することができ、製氷能力を向上できる効果
を奏する。
The present invention relates to an ice making machine for making ice by passing a refrigerant from a refrigerant compressor provided in a refrigeration circuit through an evaporator, wherein the refrigerant compressor is formed by a compressor having a variable rotation speed. A water temperature detector for detecting the temperature of the ice making water is provided in the water path, and cooling performance control means for controlling the rotation speed of the compressor based on an output signal from the water temperature detector is provided. When detecting that the temperature has reached about 0 ° C., the cooling performance control means controls the rotation speed of the compressor to increase.
For this reason, when the ice making water temperature approaches 0 ° C., the cooling performance is transiently increased by the cooling performance control means, the nucleation of ice is promoted, and the cotton ice is produced without deterioration of the ice quality. Generation can be prevented before it occurs. Further, unlike the above-mentioned proposed invention, the additional performance is performed only at the expense of cotton ice while sacrificing performance and function, and the generation of cotton ice can be prevented while ice making is being performed. However, since it is easy to control the temperature too low, cloudy ice is not generated and the ice making capacity per hour is improved. As described above, the effect that the high-quality ice can be efficiently produced only by increasing the capacity near the ice making temperature of 0 ° C., that is, by applying the load for a relatively short time to the refrigeration circuit is obtained. Further, since the cooling performance control means has the learning control function part, once the user experiences cotton ice, a learning function for increasing the cooling performance increase rate in the next time can be exhibited, and the effect of improving the ice making ability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態に係る水循環式製氷機
のシステム構成図である。
FIG. 1 is a system configuration diagram of a water circulation type ice making machine according to an embodiment of the present invention.

【図2】 製氷サイクルにおける時間と温度との関係を
示す特性図で、(a)は通常の製氷サイクル線図、
(b)は綿氷発生時における製氷サイクル線図、(c)
は本実施の形態に従って冷却性能を増大させたときの製
氷サイクル線図である。
FIG. 2 is a characteristic diagram showing a relationship between time and temperature in an ice making cycle, where (a) is a normal ice making cycle diagram,
(B) is an ice making cycle diagram when cotton ice is generated, (c)
FIG. 4 is an ice making cycle diagram when cooling performance is increased according to the present embodiment.

【図3】 既提案発明に係る水循環式製氷機のシステム
構成図である。
FIG. 3 is a system configuration diagram of a water circulation type ice making machine according to the proposed invention.

【図4】 図3の製氷機におけるタイムテーブルであ
る。
FIG. 4 is a time table in the ice making machine of FIG. 3;

【符号の説明】 8…製氷水温度検出器、15…蒸発器(エバポレー
タ)、20…温度検出器、21…インバータ圧縮機、2
2…冷却性能制御手段、23…水温判別部、24…回転
数増大出力部、25…タイマ機能部、27…蒸発器温度
判別部、28…学習機能部。
[Explanation of Signs] 8: Ice making water temperature detector, 15: Evaporator (evaporator), 20: Temperature detector, 21: Inverter compressor, 2
2 ... Cooling performance control means, 23 ... Water temperature discriminating unit, 24 ... Rotation speed increase output unit, 25 ... Timer function unit, 27 ... Evaporator temperature discriminating unit, 28 ... Learning function unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷凍回路に設けた冷媒圧縮機からの冷媒
を蒸発器に通過させることにより製氷する製氷機におい
て、前記冷媒圧縮機を回転数可変な圧縮機で形成し、製
氷水の経路に製氷水の温度を検出する水温検出器を設
け、さらに前記水温検出器からの出力信号により前記圧
縮機の回転数を制御する冷却性能制御手段を設け、前記
水温検出器が0℃以上の0℃近傍に達したことを検知し
たとき、前記冷却性能制御手段により前記圧縮機の回転
数を増大するように制御されことを特徴とする製氷機。
1. An ice making machine for making ice by passing a refrigerant from a refrigerant compressor provided in a refrigeration circuit through an evaporator, wherein the refrigerant compressor is formed by a compressor having a variable rotation speed, and is provided in a path of ice making water. A water temperature detector for detecting the temperature of the ice making water is provided, and cooling performance control means for controlling a rotation speed of the compressor based on an output signal from the water temperature detector is provided. An ice making machine characterized in that when it is detected that it has reached the vicinity, the cooling performance control means is controlled to increase the rotation speed of the compressor.
【請求項2】 前記冷却性能制御手段はタイマ機能部を
有し、前記タイマ機能部は、前記水温検出器が0℃の状
態を保持する時間が一定時間経過したことをカウントし
たときに、前記冷却性能を増大制御する時間を解除する
ことを特徴とする請求項1記載の製氷機。
2. The cooling performance control means has a timer function unit, and the timer function unit, when counting that a predetermined time has elapsed after the water temperature detector maintains a state of 0 ° C., 2. The ice making machine according to claim 1, wherein the time for increasing and controlling the cooling performance is canceled.
【請求項3】 前記冷却性能制御手段はタイマ機能部を
有し、前記タイマ機能部は、前記蒸発器の温度を検出す
る蒸発器温度検出器の温度が一定値以下になったとき、
前記冷却性能を増大制御する時間を解除することを特徴
とする請求項1又は2記載の製氷機。
3. The cooling performance control means has a timer function unit, and the timer function unit is provided when the temperature of an evaporator temperature detector for detecting the temperature of the evaporator becomes lower than a predetermined value.
3. The ice making machine according to claim 1, wherein the time for increasing and controlling the cooling performance is canceled.
【請求項4】 前記冷却性能制御手段は、前記水温検出
器が0℃以下の状態を検知したとき、前記冷却性能の増
大率を増すように設定変更される学習制御機能を有する
ことを特徴とする請求項1乃至3のいずれか一に記載の
製氷機。
4. The cooling performance control means has a learning control function of changing a setting so as to increase an increase rate of the cooling performance when the water temperature detector detects a state of 0 ° C. or less. The ice making machine according to any one of claims 1 to 3.
JP2001111152A 2001-04-10 2001-04-10 Ice maker Pending JP2002310544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111152A JP2002310544A (en) 2001-04-10 2001-04-10 Ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111152A JP2002310544A (en) 2001-04-10 2001-04-10 Ice maker

Publications (1)

Publication Number Publication Date
JP2002310544A true JP2002310544A (en) 2002-10-23

Family

ID=18962804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111152A Pending JP2002310544A (en) 2001-04-10 2001-04-10 Ice maker

Country Status (1)

Country Link
JP (1) JP2002310544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115454A1 (en) 2008-03-19 2009-09-24 BSH Bosch und Siemens Hausgeräte GmbH Method for manufacturing ice pieces
WO2015105867A1 (en) 2014-01-08 2015-07-16 True Manufacturing Company, Inc. Variable-operating point components for cube ice machines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150046A (en) * 1974-10-28 1976-05-01 Hoshizaki Electric Co Ltd
JPS5437948A (en) * 1977-08-29 1979-03-20 Sanyo Electric Co Ltd Ice making time automatic controller of ice making machine
JPH02213668A (en) * 1989-02-10 1990-08-24 Takenaka Komuten Co Ltd Refrigerator for making ice
JPH06207768A (en) * 1993-01-08 1994-07-26 Sanyo Electric Co Ltd Controller for auger type ice making machine
JPH09303916A (en) * 1996-05-14 1997-11-28 Hoshizaki Electric Co Ltd Water circulation type ice maker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150046A (en) * 1974-10-28 1976-05-01 Hoshizaki Electric Co Ltd
JPS5437948A (en) * 1977-08-29 1979-03-20 Sanyo Electric Co Ltd Ice making time automatic controller of ice making machine
JPH02213668A (en) * 1989-02-10 1990-08-24 Takenaka Komuten Co Ltd Refrigerator for making ice
JPH06207768A (en) * 1993-01-08 1994-07-26 Sanyo Electric Co Ltd Controller for auger type ice making machine
JPH09303916A (en) * 1996-05-14 1997-11-28 Hoshizaki Electric Co Ltd Water circulation type ice maker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115454A1 (en) 2008-03-19 2009-09-24 BSH Bosch und Siemens Hausgeräte GmbH Method for manufacturing ice pieces
WO2015105867A1 (en) 2014-01-08 2015-07-16 True Manufacturing Company, Inc. Variable-operating point components for cube ice machines
CN105899895A (en) * 2014-01-08 2016-08-24 真实制造有限公司 Variable-operating point components for cube ice machines
EP3092450A4 (en) * 2014-01-08 2017-08-23 True Manufacturing Co., Inc. Variable-operating point components for cube ice machines

Similar Documents

Publication Publication Date Title
EP1912029B1 (en) Refrigeration unit
US6125639A (en) Method and system for electronically controlling the location of the formation of ice within a closed loop water circulating unit
JP2011252702A5 (en)
CN102401427A (en) Air conditioner
CN105135772A (en) Water cooling device and control method for preventing cold water from freezing
JP2008138914A (en) Refrigeration apparatus and refrigerating machine oil return method
JP5105276B2 (en) refrigerator
JP2002022336A (en) Refrigerator
KR20110136102A (en) How to control the refrigerator
US5894734A (en) Water-circulating type ice maker
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP2000199676A (en) Method for controlling optimum defrosting period of inverter refrigerator
JP2002310544A (en) Ice maker
JP5552324B2 (en) Drum ice machine
JP2011017467A (en) Ice making machine
JP2005043014A (en) Operation method of automatic ice making machine
JPH08338675A (en) Method and device for preventing imperfect ice generation in water circulation type ice making machine
JPH043868A (en) Operation control device for ice maker
CN115406146B (en) Ice making control method and device and ice making machine
JP2000329433A (en) Ice machine
JPH08327194A (en) Air conditioner
JP2911710B2 (en) Prevention method of ice freezing heat exchanger for ice storage in supercooled ice making method
JPH06207768A (en) Controller for auger type ice making machine
JP3053975B2 (en) Ice storage device
JPH10339533A (en) Ice-making device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110620

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118