[go: up one dir, main page]

JP2002303406A - High speed jet type diffusion combustion type burner - Google Patents

High speed jet type diffusion combustion type burner

Info

Publication number
JP2002303406A
JP2002303406A JP2001100648A JP2001100648A JP2002303406A JP 2002303406 A JP2002303406 A JP 2002303406A JP 2001100648 A JP2001100648 A JP 2001100648A JP 2001100648 A JP2001100648 A JP 2001100648A JP 2002303406 A JP2002303406 A JP 2002303406A
Authority
JP
Japan
Prior art keywords
air flow
combustion
flow path
fuel
secondary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001100648A
Other languages
Japanese (ja)
Inventor
Isamu Ikeda
勇 池田
Hirotoshi Uejima
啓利 上島
Susumu Takasaki
進 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2001100648A priority Critical patent/JP2002303406A/en
Publication of JP2002303406A publication Critical patent/JP2002303406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high speed jet type diffusion combustion type burner to uniform a furnace temperature and reduce a NOx generation amount through stable combustion. SOLUTION: The high speed jet type diffusion combustion type burner comprises burner tile 12 where a primary air flow passage 14 and a secondary air flow passage 16 are formed with a given distance therebetween; wind box 18 mounted on the rear end part of the burner tile 12 and provided at an internal part with a secondary air feed pipe 26; a fuel feed pipe 28 situated in the wind box 18 and having a tip part protruding in the primary air flow passage 14; and a flame holding member 30 situated at the tip part of the fuel feed pipe 28. A direction of fuel injected through the fuel feed pipe 28 is or in parallel with inclined inwardly to a central axis 16a of a secondary air flow passage 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料と燃焼用空気
との緩慢混合によりNOxの抑制と炉内温度の均一化を
図るバーナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a burner which suppresses NOx and makes the furnace temperature uniform by slow mixing of fuel and combustion air.

【0002】[0002]

【従来の技術】従来、NOxの抑制と炉内温度分布の均
一化を図る技術として、例えば、図4に示すように、燃
料供給管42と燃焼用空気流路43とを備えたバーナ部
51と、蓄熱体52aを収納した蓄熱室52とからなる
蓄熱式直火バーナ41を炉壁40に設け、前記燃料供給
管42と燃焼用空気供給口44とから燃料46および燃
焼用空気48を別々に炉内50に噴出することにより緩
慢燃焼させる低NOx燃焼方法が特許第3052262
号公報に開示されている。
2. Description of the Related Art Conventionally, as a technique for suppressing NOx and making the temperature distribution in a furnace uniform, for example, as shown in FIG. 4, a burner section 51 having a fuel supply pipe 42 and a combustion air flow path 43 is provided. A regenerative direct fire burner 41 comprising a heat storage chamber 52 containing a heat storage body 52 a is provided on the furnace wall 40, and the fuel 46 and the combustion air 48 are separated from the fuel supply pipe 42 and the combustion air supply port 44. No. 30522262 discloses a low NOx combustion method for slowly burning by jetting into a furnace 50.
No. 6,086,045.

【0003】この低NOx燃焼方法は、燃料46の噴出
軸47を燃焼用空気噴出軸49に対して所定角度α(5
〜45°)だけ外方に傾け、燃料46の噴出速度を60
m/sec以上とし、700℃以上の高温の燃焼用空気
48と燃料46との各主流部が互いに重ならないように
炉内50に噴出し、燃料46と燃焼用空気48との混合
を抑制しながら燃料46と燃焼用空気48のそれぞれの
噴出流に炉内排ガスを自己再循環させることにより緩慢
な燃焼状態を維持してNOxを抑制する燃焼方法であ
る。
In this low NOx combustion method, the injection shaft 47 of the fuel 46 is set at a predetermined angle α (5
4545 °), and the ejection speed of the fuel 46 is set to 60
m / sec or more, and the main streams of the combustion air 48 and the fuel 46 at a high temperature of 700 ° C. or more are jetted into the furnace 50 so that they do not overlap each other, and the mixing of the fuel 46 and the combustion air 48 is suppressed. This is a combustion method in which NOx is suppressed by maintaining a slow combustion state by self-recirculating the exhaust gas in the furnace into the respective jet flows of the fuel 46 and the combustion air 48.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記燃
焼方法では、燃料46と燃焼用空気48とが直接混合す
る前に、それぞれの流体の噴出運動量によって炉内排ガ
スを自己再循環させて炉内空間で緩慢燃焼をする。つま
り、炉内空間に介在する燃焼ガスは、未反応の燃料、燃
焼に寄与する以前の燃焼用空気、燃焼反応途中の中間生
成物および燃焼排ガスとからなる混合ガスであるので、
燃焼が未反応の未燃ガスが図示しない吸引排気動作中の
蓄熱式直火バーナ内部の蓄熱体をオーバーヒートさせる
ばかりか、熱効率が低下する。さらに、800℃以下
(燃料の自己着火温度以下)の低炉温時には、補助バー
ナを設けない限り燃焼を継続することが不可能であると
いう課題を有する。
However, in the above-mentioned combustion method, before the fuel 46 and the combustion air 48 are directly mixed, the exhaust gas in the furnace is self-recirculated by the momentum of each of the fluids, so that the furnace internal space is recirculated. Burns slowly. In other words, the combustion gas intervening in the furnace space is a mixed gas composed of unreacted fuel, combustion air before contributing to combustion, intermediate products during combustion reaction, and combustion exhaust gas.
The unreacted unburned gas not only overheats the heat storage body inside the regenerative direct fire burner during the suction / exhaust operation (not shown), but also lowers the thermal efficiency. Furthermore, at a low furnace temperature of 800 ° C. or less (below the self-ignition temperature of the fuel), there is a problem that it is impossible to continue the combustion unless an auxiliary burner is provided.

【0005】[0005]

【課題を解決するための手段】そこで、前記課題を解決
すべく本発明の高速噴流型拡散燃焼式バーナは、一次空
気流路と二次空気流路とが所定距離をもって形成された
バーナタイルと、前記バーナタイルの後端部に取り付け
られ、内部に二次空気供給管を備えた風箱と、前記風箱
内に設けられ、先端部が前記一次空気流路内に突設した
燃料供給管と、前記燃料供給管の先端部に設けられた保
炎部材とを備え、前記燃料供給管からの燃料噴出方向が
前記二次空気流路の中心軸に対して平行または内方に傾
斜していることを特徴とするものである。
In order to solve the above-mentioned problems, a high-speed jet diffusion combustion burner according to the present invention comprises a burner tile in which a primary air passage and a secondary air passage are formed at a predetermined distance. A wind box attached to a rear end of the burner tile and having a secondary air supply pipe therein; and a fuel supply pipe provided in the wind box and having a front end protruding into the primary air flow path. And a flame holding member provided at the tip of the fuel supply pipe, and the direction of fuel ejection from the fuel supply pipe is inclined parallel or inward with respect to the center axis of the secondary air flow path. It is characterized by having.

【0006】本発明の高速噴流型拡散燃焼式バーナは、
前記一次空気流路と前記二次空気流路の各中心軸間の距
離を前記二次空気流路の直径の2.0〜3.0倍にする
とともに、前記燃料噴出方向が前記二次空気流路の中心
軸に対してなす角度を0〜10度にしてもよい。
The high-speed jet diffusion combustion burner according to the present invention comprises:
The distance between the central axes of the primary air flow path and the secondary air flow path is set to 2.0 to 3.0 times the diameter of the secondary air flow path, and the fuel ejection direction is the secondary air flow. The angle formed with respect to the center axis of the flow path may be 0 to 10 degrees.

【0007】また、本発明の高速噴流型拡散燃焼式バー
ナは、前記一次空気流路における一次空気流量を所要燃
焼用空気流量の1/5〜1/2に調節する調整手段を備
えてもよい。
Further, the high-speed jet diffusion combustion burner of the present invention may include an adjusting means for adjusting the primary air flow rate in the primary air flow path to 1/5 to 1/2 of a required combustion air flow rate. .

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面を参照して説明する。図1は、本実施形態の
高速噴流型拡散燃焼式バーナ10の概略構成図である。
このバーナ10は、炉壁2に設置され、大略、一次空気
流路(兼燃焼室)14と二次空気流路16とが所定距離
をもって形成されたバーナタイル12と、前記バーナタ
イル12の後端部に取り付けられ、内部に二次空気供給
管26を備えた風箱18と、前記風箱18内に設けら
れ、先端部が一次空気流路(兼燃焼室)14内に突設し
た燃料供給管28と、前記燃料供給管28の先端部に設
けられた複数の保炎部材30とから構成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a high-speed jet diffusion combustion burner 10 of the present embodiment.
The burner 10 is installed on the furnace wall 2, and generally includes a burner tile 12 in which a primary air flow path (also serving as a combustion chamber) 14 and a secondary air flow path 16 are formed at a predetermined distance, and a burner tile 12 behind the burner tile 12. A wind box 18 attached to an end and having a secondary air supply pipe 26 therein; and a fuel provided in the wind box 18 and having a tip protruding into a primary air flow path (also serving as a combustion chamber) 14. It comprises a supply pipe 28 and a plurality of flame holding members 30 provided at the tip of the fuel supply pipe 28.

【0009】前記風箱18の上部は、一次空気と二次空
気との割合を調節する調整弁20(以下、調整弁20と
いう)を介して燃焼用空気供給口22に連通している。
調整弁20は、コントロールモータ24によって開度を
調節され、これにより燃焼用空気を一次空気と二次空気
に分配する分配比を制御する。例えば、燃料の自己着火
温度(例えば800℃)以下の低炉温時には、前記分配
比を50:50に調節し、燃料の自己着火温度以上の炉
温時には前記分配比を20:80に調節する。なお、図
示しない炉内温度調節計から前記コントロールモータ2
4に開度信号を送信して前記分配比を自動調節してもよ
い。
The upper portion of the wind box 18 communicates with a combustion air supply port 22 through a regulating valve 20 (hereinafter, referred to as a regulating valve 20) for regulating a ratio between primary air and secondary air.
The opening of the regulating valve 20 is adjusted by the control motor 24, thereby controlling the distribution ratio of the combustion air to the primary air and the secondary air. For example, when the furnace temperature is lower than the self-ignition temperature of the fuel (for example, 800 ° C.), the distribution ratio is adjusted to 50:50, and when the furnace temperature is higher than the self-ignition temperature of the fuel, the distribution ratio is adjusted to 20:80. . In addition, the control motor 2 is supplied from a furnace temperature controller (not shown).
4, the distribution ratio may be automatically adjusted by transmitting an opening signal.

【0010】燃焼用空気供給口22と調整弁20との間
から分岐した二次空気供給管26の先端部は、バーナタ
イル12の二次空気流路16に連結されている。
A distal end of a secondary air supply pipe 26 branched from between the combustion air supply port 22 and the regulating valve 20 is connected to the secondary air flow path 16 of the burner tile 12.

【0011】燃料供給管28は、先端部がバーナタイル
12の一次空気流路(兼燃焼室)14内に突設されてい
る。なお、燃料の噴出速度は燃料の種類毎に適宜設定さ
れており、例えば、燃料の一例であるLPG系の燃料ガ
スでは50m/sec、LNG系の燃料ガスでは80m
/sec、COG等の副生ガスでは120m/secに
設定される。
The fuel supply pipe 28 has a leading end protruding into the primary air flow path (also serving as a combustion chamber) 14 of the burner tile 12. The ejection speed of the fuel is appropriately set for each type of fuel. For example, 50 m / sec for LPG-based fuel gas, which is an example of fuel, and 80 m / sec for LNG-based fuel gas.
/ Sec, 120 g / sec for by-product gases such as COG.

【0012】燃料供給管28の一次空気流路14内に位
置する先端部外周には、保炎部材30が固定されてい
る。保炎部材30は、旋回羽根やスタビライザー等から
なり、一次空気流路14から噴出する一次空気を渦流に
する機能を有する。
A flame-holding member 30 is fixed to the outer periphery of the front end of the fuel supply pipe 28 located in the primary air flow path 14. The flame holding member 30 includes a swirling blade, a stabilizer, and the like, and has a function of vortexing the primary air ejected from the primary air flow path 14.

【0013】燃料供給管28の先端には、図2に示すよ
うに、燃料噴出孔29が形成されている。燃料噴出孔2
9の中心軸29a、すなわち、燃料の噴出方向は、燃料
供給管28の中心軸28aに対して所定角度αだけ傾斜
している。燃料供給管28の中心軸28aと一次空気流
路14の中心軸14aとは同一軸心上にある。そのた
め、図1に示すように、燃料供給管28からの燃料の噴
出方向は、二次空気流路16の中心軸16aに対して内
方に所定角度αだけ傾斜していることになる。
As shown in FIG. 2, a fuel outlet hole 29 is formed at the tip of the fuel supply pipe 28. Fuel outlet 2
The central axis 29 a of the fuel supply pipe 9, that is, the direction in which the fuel is ejected is inclined by a predetermined angle α with respect to the central axis 28 a of the fuel supply pipe 28. The central axis 28a of the fuel supply pipe 28 and the central axis 14a of the primary air flow path 14 are on the same axis. Therefore, as shown in FIG. 1, the direction in which fuel is ejected from the fuel supply pipe 28 is inclined at a predetermined angle α inward with respect to the central axis 16 a of the secondary air flow path 16.

【0014】以上の構成からなる高速噴流型拡散燃焼式
バーナ10の数値限定理由を下記に述べる。一次空気流
路14と二次空気流路16との各中心軸14a,16a
間の距離Lを、二次空気流路16の直径dの2.0〜
3.0倍にする理由は、2.0倍未満になると燃料と燃
焼用空気(一次空気および二次空気)とがバーナ近傍の
炉内排ガスを巻き込む前に急速混合してしまうためNO
x発生量が著しく増大することになり、逆に、3.0倍
を超えると、前述した従来技術の低NOx燃焼方法にお
ける問題と同様に、炉内で燃料と燃焼用空気とが混合し
にくくなるために燃焼が不安定になるとともに、CO等
の未燃焼成分が増大することになるからである。
The reason for limiting the numerical values of the high-speed jet diffusion combustion burner 10 having the above-described configuration will be described below. Central axes 14a, 16a of the primary air passage 14 and the secondary air passage 16
The distance L between 2.0 and 2.0 of the diameter d of the secondary air flow path 16.
The reason for increasing the ratio to 3.0 times is that if the ratio is less than 2.0 times, the fuel and the combustion air (primary air and secondary air) rapidly mix before entraining the exhaust gas in the furnace near the burner.
If the amount of x generation increases remarkably, and if it exceeds 3.0 times, the fuel and the combustion air are hardly mixed in the furnace similarly to the problem in the low NOx combustion method of the prior art described above. Therefore, the combustion becomes unstable, and unburned components such as CO increase.

【0015】燃料噴出方向の傾斜角度αを、内方に10
〜0度とする理由は、10度より内方に形成すると、燃
料と燃焼用空気とがバーナ近傍の炉内排ガスを巻き込む
以前に急速混合してしまうためNOx発生量が著しく増
大することになり、逆に、0度を超えると、前述した従
来技術の低NOx燃焼方法における問題と同様に、炉内
で燃料と燃焼用空気とが混合しにくくなるために燃焼が
不安定になるとともに、CO等の未燃焼成分が増大する
ことになるからである。なお、前記燃料噴出方向の傾斜
角度0度とは、燃料の噴出方向が二次空気流路16の中
心軸16aと平行な場合であり、前記傾斜角度が0度を
超えるとは、燃料の噴出方向が二次空気流路16の中心
軸16aに対して外方に傾斜している場合をいう。
When the inclination angle α of the fuel ejection direction is
The reason for setting it to 0 degrees is that if it is formed inward of 10 degrees, the fuel and the combustion air mix rapidly before entraining the exhaust gas in the furnace near the burner, so that the amount of generated NOx increases remarkably. On the other hand, when the temperature exceeds 0 degree, as in the above-described problem of the low NOx combustion method of the prior art, the fuel and the combustion air become difficult to mix in the furnace, so that combustion becomes unstable and CO This is because the unburned components such as are increased. Note that the inclination angle of the fuel ejection direction of 0 degree means that the ejection direction of the fuel is parallel to the central axis 16a of the secondary air flow path 16, and that the inclination angle exceeding 0 degree means that the fuel ejection direction is This means that the direction is inclined outward with respect to the center axis 16a of the secondary air flow path 16.

【0016】一次空気流量を、所要燃焼用空気流量の1
/5〜1/2に調節可能する理由は、NOxの抑制と炉
内温度分布の均一化の観点から、炉の立ち上げ時と炉内
温度が所定温度に達したときとで一次空気と二次空気の
分配比が異なるからである。例えば、800℃以下(燃
料ガスの自己着火温度以下)の低炉温時には一次空気流
量を所要燃焼用空気流量の1/2に調節し、前記自己着
火温度より高くなると一次空気流量を所要燃焼用空気流
量の1/5に調節する。なお、炉内温度分布を調節する
際、バーナ近傍の温度を高くしたい場合は、例えば、前
記分配比を40:60にして一次空気流量を増やしてバ
ーナ近傍の燃焼を促進させればよいし、バーナから遠方
の温度を高くしたい場合は、例えば、前記分配比を2
0:80にして一次空気流量を減らして二次空気の噴出
運動量を高くして、すなわち、二次空気の流速を速くし
て、燃焼ガスを遠方に到達させればよい。
The primary air flow rate is set to one of the required combustion air flow rates.
The reason why the temperature can be adjusted to 5〜 to 1 / is that, from the viewpoint of suppressing NOx and making the temperature distribution in the furnace uniform, the primary air and the secondary air are not separated when the furnace is started and when the temperature in the furnace reaches a predetermined temperature. This is because the distribution ratio of the secondary air is different. For example, at a low furnace temperature of 800 ° C. or lower (below the self-ignition temperature of the fuel gas), the primary air flow rate is adjusted to の of the required combustion air flow rate. Adjust to 1/5 of the air flow. When adjusting the temperature distribution in the furnace, if it is desired to increase the temperature near the burner, for example, the distribution ratio may be set to 40:60 and the primary air flow rate may be increased to promote combustion near the burner. To increase the temperature far from the burner, for example, the distribution ratio is set to 2
At 0:80, the primary air flow rate may be reduced to increase the secondary air ejection momentum, that is, the secondary air flow rate may be increased to allow the combustion gas to reach a distant place.

【0017】次に、高速噴流型拡散燃焼式バーナ10の
燃焼動作、すなわち、低炉温時から所定炉温に昇温する
までの運転方法について説明する。例えば、燃料の一例
である13A都市ガス(以下、燃料ガスという)は、燃
料供給管28に供給され、その先端部の燃料噴出孔29
から、二次空気流路16の中心軸16aに対して例え
ば、内方に3度だけ傾斜した方向に噴出される。
Next, a description will be given of a combustion operation of the high-speed jet diffusion combustion burner 10, that is, an operation method from a low furnace temperature to a predetermined furnace temperature. For example, 13A city gas (hereinafter, referred to as fuel gas), which is an example of fuel, is supplied to a fuel supply pipe 28, and a fuel ejection hole 29 at the tip thereof.
Thus, the air is ejected in a direction inclined, for example, three degrees inward with respect to the center axis 16a of the secondary air flow path 16.

【0018】燃焼用空気は、燃焼用空気供給口22から
供給され、調整弁20により一次空気と二次空気との分
配比を50:50に調節する。すなわち、所要燃焼用空
気流量の1/2に調節された一次空気は、風箱18から
一次空気流路14に流れ、保炎部材30により渦流とな
って、燃料供給管28から噴出された燃料ガスの周囲を
覆うようにして流出し、図示しないパイロットバーナ等
の点火手段にて着火したのち安定燃焼を継続する。この
とき、一次空気は例えば、80m/secで噴出された
燃料ガスに徐々に誘引されながら一次空気流路14から
炉内に噴出することになるため、一次空気と燃料ガスの
接触面における相互の拡散が極めて少ない。これによ
り、一次燃焼が局部的なものになる結果、一次空気流路
14から炉内に噴出した一次燃焼火炎内には未燃焼部分
が多く残留し、その中で熱分解された炭素成分が火炎の
輝度を向上させることになる。
The combustion air is supplied from the combustion air supply port 22, and the distribution ratio between the primary air and the secondary air is adjusted by the regulating valve 20 to 50:50. That is, the primary air adjusted to 所 要 of the required combustion air flow rate flows from the wind box 18 to the primary air flow path 14, is swirled by the flame stabilizing member 30, and is ejected from the fuel supply pipe 28. The gas flows out so as to cover the periphery of the gas, and is ignited by ignition means such as a pilot burner (not shown), and then stable combustion is continued. At this time, for example, the primary air is ejected into the furnace from the primary air passage 14 while being gradually attracted to the fuel gas ejected at 80 m / sec. Very low diffusion. As a result, the primary combustion becomes local, and as a result, many unburned portions remain in the primary combustion flame ejected from the primary air flow path 14 into the furnace, and the carbon component thermally decomposed therein contains the flame. Will be improved.

【0019】一次空気流路14から噴出した一次燃焼火
炎は、二次空気流路16から噴出した二次空気と反応し
て二次燃焼する。炉温が所定温度、例えば、800℃に
到達すると、前記調整弁20にて一次空気と二次空気と
の分配比を20:80に調節する。すなわち、一次空気
は所要燃焼用空気流量の1/5に減少し、二次空気の割
合が増加するから、二次空気の噴出速度は100m/s
ec以上となる。そして、二次空気は炉内雰囲気を攪拌
しながら一次燃焼火炎と二次空気がそれぞれ炉内の排ガ
スを充分に巻き込んだのちに互いに接触して反応する。
その結果、二次燃焼が緩慢になって火炎自体の体積が増
大するとともに火炎からの輻射強度が増大し、これによ
り温度勾配および濃度勾配の小さい均一化された燃焼を
形成でき、炉内温度分布の均一化とNOx発生量の顕著
なる低減を図ることができる。なお、前記「濃度勾配の
小さい」とは、酸素、排ガスおよび未反応燃料が火炎中
に一定の分圧比で介在している状態をいう。
The primary combustion flame ejected from the primary air passage 14 reacts with the secondary air ejected from the secondary air passage 16 to perform secondary combustion. When the furnace temperature reaches a predetermined temperature, for example, 800 ° C., the adjusting valve 20 adjusts the distribution ratio between the primary air and the secondary air to 20:80. That is, since the primary air is reduced to 1/5 of the required combustion air flow rate and the ratio of the secondary air is increased, the ejection speed of the secondary air is 100 m / s.
ec or more. The secondary air reacts while contacting each other after the primary combustion flame and the secondary air sufficiently entrain the exhaust gas in the furnace while stirring the atmosphere in the furnace.
As a result, the secondary combustion becomes slow, the volume of the flame itself increases, and the radiant intensity from the flame increases. As a result, uniform combustion with a small temperature gradient and a small concentration gradient can be formed, and the temperature distribution in the furnace can be improved. And the amount of NOx generated can be significantly reduced. The term "small concentration gradient" refers to a state in which oxygen, exhaust gas, and unreacted fuel are present in the flame at a constant partial pressure ratio.

【0020】また、本実施形態の高速噴流型拡散燃焼式
バーナ10では、燃料供給管28の先端部からの燃料ガ
ス噴出方向が二次空気流路16の中心軸16aに対して
内方に傾斜しているため、燃料ガスと一次空気とが反応
して形成される一次燃焼火炎と二次空気流路16から噴
出される二次空気とが確実に反応して二次燃焼し、これ
によりすすが発生することなく安定した燃焼を行うこと
ができる。
In the high-speed jet diffusion combustion burner 10 of the present embodiment, the direction in which the fuel gas is ejected from the tip of the fuel supply pipe 28 is inclined inward with respect to the central axis 16 a of the secondary air flow path 16. Therefore, the primary combustion flame formed by the reaction between the fuel gas and the primary air reliably reacts with the secondary air ejected from the secondary air passage 16 to perform secondary combustion, thereby sooting. Stable combustion can be performed without generation of gas.

【0021】図3は、本実施形態の高速噴流型拡散燃焼
式バーナ10を下記の条件で燃焼させたときの燃焼反応
を下記のソフトおよび計算手法を用いて解析した結果を
示す。この図からも明らかなように、バーナから1〜3
m離れた位置で火炎の最高温度が現れている。これは、
二次空気の噴出速度が100m/sec以上の高速であ
るために、炉内雰囲気を攪拌しながら一次燃焼火炎と二
次空気がそれぞれ炉内の排ガスを充分に巻き込んだのち
に互いに接触して反応し、その結果、二次燃焼が緩慢と
なって火炎自体の体積が増大するとともに、火炎からの
輻射強度の増大と相俟って全輻射量が増加し、これによ
り温度勾配および濃度勾配の小さい均一化された燃焼で
あることを示唆している。
FIG. 3 shows a result of analyzing the combustion reaction when the high-speed jet diffusion combustion type burner 10 of this embodiment is burned under the following conditions by using the following software and calculation method. As is apparent from FIG.
The maximum temperature of the flame appears at a distance of m. this is,
Because the injection speed of the secondary air is as high as 100 m / sec or more, the primary combustion flame and the secondary air each sufficiently entrain the exhaust gas in the furnace while agitating the furnace atmosphere, and then contact each other to react. As a result, the secondary combustion becomes slow, the volume of the flame itself increases, and the total radiation increases in conjunction with the increase in the radiation intensity from the flame, thereby reducing the temperature gradient and the concentration gradient. It suggests that the combustion is uniform.

【0022】 ・ソフト名:Fluent 4.32 ・計算手法:Finite Volume Method 流れ(乱流)k−ε model High Reynolds 標準 燃焼 Probability Density Function ・燃料:13A都市ガス(ガス温度30℃) ・燃焼用空気温度:400℃ ・空気比:m=1.1 ・一次/二次空気の流量分配比: 20:80 ・燃焼容量:1163kw(100×10kcal/h)-Software name: Fluent 4.32-Calculation method: Finite Volume Method Flow (turbulent) k-ε model High Reynolds Standard Combustion Probability Density Function-Fuel: 13A city gas (gas temperature 30 ° C)-Combustion air temperature: 400 ° C. ・ Air ratio: m = 1.1 ・ Primary / secondary air flow distribution ratio: 20:80 ・ Combustion capacity: 1163 kw (100 × 10 4 kcal / h)

【0023】なお、本実施形態の高速噴流型拡散燃焼式
バーナ10では、燃料噴出方向を二次空気流路16の中
心軸16aに対して内方に傾斜させたが、燃料噴出方向
を二次空気流路16の中心軸16aと平行(角度αが0
度)にした場合でも同様の作用効果を奏することができ
る。
In the high-speed jet diffusion burner 10 of the present embodiment, the fuel ejection direction is inclined inward with respect to the center axis 16a of the secondary air flow passage 16, but the fuel ejection direction is changed to the secondary direction. Parallel to the central axis 16a of the air flow path 16 (when the angle α is 0)
The same operation and effect can be obtained even when the degree is set to (degree).

【0024】また、調整弁20を用いて燃焼用空気を一
次空気と二次空気とに分配供給するようにしたが、一次
空気流路14および二次空気流路16にそれぞれ流量制
御弁を介して接続された一次空気供給管と二次空気供給
管を設けて、前記各流量制御弁をそれぞれ調節すること
により一次空気および二次空気の各流量を設定するよう
にしてもよい。
Although the combustion air is distributed and supplied to the primary air and the secondary air by using the regulating valve 20, the primary air flow path 14 and the secondary air flow path 16 are respectively provided through flow control valves. A primary air supply pipe and a secondary air supply pipe connected to each other may be provided, and the respective flow rates of the primary air and the secondary air may be set by adjusting the respective flow control valves.

【0025】[0025]

【発明の効果】本発明の高速噴流型拡散燃焼式バーナで
は、一次空気流路内に位置する燃料供給管の先端部から
の燃料の噴出方向が前記二次空気流路の中心軸に対して
平行または内方に傾斜しているため、燃料と一次空気と
が反応して形成される一次燃焼火炎と二次空気流路から
噴出される二次空気とが確実に反応して二次燃焼し、こ
れによりすすが発生することなく安定した燃焼を行うこ
とができる。
In the high-speed jet diffusion combustion burner of the present invention, the direction in which fuel is ejected from the tip of the fuel supply pipe located in the primary air flow path is relative to the center axis of the secondary air flow path. Because it is inclined in parallel or inward, the primary combustion flame formed by the reaction between the fuel and the primary air and the secondary air ejected from the secondary air flow path surely react to perform secondary combustion. Thus, stable combustion can be performed without generating soot.

【0026】また、一次空気流路と二次空気流路とは所
定距離をもって形成されていることで、一次火炎と二次
空気とが急速に反応することはなく、一次燃焼火炎と二
次空気はそれぞれ炉内排ガスを充分に巻き込んだのちに
互いに接触して反応するので、二次燃焼が緩慢になって
火炎自体の体積が増大するとともに輻射強度が増大し、
これにより温度勾配および濃度勾配の小さい均一化され
た燃焼を形成でき、炉内温度分布の均一化とNOx発生
量の顕著な低減を図れる。
Further, since the primary air flow path and the secondary air flow path are formed at a predetermined distance, the primary flame and the secondary air do not react rapidly, and the primary combustion flame and the secondary air flow do not. Since each of them reacts by contacting each other after the exhaust gas in the furnace is sufficiently involved, the secondary combustion becomes slow, the volume of the flame itself increases, and the radiation intensity increases.
As a result, uniform combustion with a small temperature gradient and a small concentration gradient can be formed, and the temperature distribution in the furnace can be made uniform and the amount of NOx generated can be significantly reduced.

【0027】また、燃料の噴出流の外周面を覆うように
して流れる一次空気は、燃料に徐々に誘引されながら一
次空気流路から噴出するため、一次空気と燃料の接触面
における相互の拡散が極めて少ない。これにより、一次
燃焼が局部的なものになる結果、一次空気流路(兼燃焼
室)から炉内に噴出した一次燃焼火炎内には未燃焼部分
が多く残留し、その中で熱分解された炭素成分が火炎の
輝度を向上させ、火炎からの輻射強度を増大させる。
Further, the primary air flowing so as to cover the outer peripheral surface of the jet flow of the fuel is ejected from the primary air passage while being gradually attracted by the fuel, so that the mutual diffusion at the contact surface between the primary air and the fuel is reduced. Very few. As a result, the primary combustion becomes local, and as a result, many unburned portions remain in the primary combustion flame ejected into the furnace from the primary air flow path (also serving as the combustion chamber), and the primary combustion flame is decomposed therein. The carbon component improves the brightness of the flame and increases the radiation intensity from the flame.

【0028】また、炉温が燃料の自己着火温度以下の場
合には前記一次空気流量を所要燃焼用空気流量の1/2
に調節すれば、補助バーナを設けずとも、保炎部材によ
って形成される一次空気の渦流によって安定燃焼を継続
することができる。
When the furnace temperature is equal to or lower than the self-ignition temperature of the fuel, the primary air flow rate is set to 1 / of the required combustion air flow rate.
If it is adjusted to, the stable combustion can be continued by the vortex of the primary air formed by the flame holding member without providing the auxiliary burner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 高速噴流型拡散燃焼式バーナの概略構成図。FIG. 1 is a schematic configuration diagram of a high-speed jet diffusion combustion burner.

【図2】 燃料供給管の先端部の拡大断面図。FIG. 2 is an enlarged cross-sectional view of a tip portion of a fuel supply pipe.

【図3】 燃焼状態の解析図。FIG. 3 is an analysis diagram of a combustion state.

【図4】 従来の低NOx燃焼方法の例を説明するため
の図。
FIG. 4 is a view for explaining an example of a conventional low NOx combustion method.

【符号の説明】[Explanation of symbols]

10…高速噴流型拡散燃焼式バーナ、12…バーナタイ
ル、14…一次空気流路、16…二次空気流路、18…
風箱、20…一次空気および二次空気の割合を調節する
調整弁、22…燃焼用空気供給口、24…コントロール
モータ、26…二次空気供給管、28…燃料供給管、2
9…燃料噴出孔、30…保炎部材。
10 high-speed jet diffusion combustion burner, 12 burner tile, 14 primary air flow path, 16 secondary air flow path, 18
Wind box, 20: regulating valve for adjusting the ratio of primary air and secondary air, 22: combustion air supply port, 24: control motor, 26: secondary air supply pipe, 28: fuel supply pipe, 2
9: fuel ejection hole, 30: flame holding member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高崎 進 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 Fターム(参考) 3K017 CA06 CB02 3K019 AA06 BA02 BA04 BB01 3K065 TA01 TB01 TB09 TE01 TE09 TH06  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Susumu Takasaki 2-4-7 Kyomachibori, Nishi-ku, Osaka-shi, Osaka F-term in Chugai Furnace Industry Co., Ltd. (Reference) 3K017 CA06 CB02 3K019 AA06 BA02 BA04 BB01 3K065 TA01 TB01 TB09 TE01 TE09 TH06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一次空気流路と二次空気流路とが所定距
離をもって形成されたバーナタイルと、前記バーナタイ
ルの後端部に取り付けられ、内部に二次空気供給管を備
えた風箱と、前記風箱内に設けられ、先端部が前記一次
空気流路内に突設した燃料供給管と、前記燃料供給管の
先端部に設けられた保炎部材とを備え、前記燃料供給管
からの燃料噴出方向が前記二次空気流路の中心軸に対し
て平行または内方に傾斜していることを特徴とする高速
噴流型拡散燃焼式バーナ。
A burner tile having a primary air flow path and a secondary air flow path formed at a predetermined distance, and a wind box attached to a rear end of the burner tile and having a secondary air supply pipe therein. A fuel supply pipe provided in the wind box and having a leading end projecting into the primary air flow path; and a flame holding member provided at a leading end of the fuel supply pipe. A high-speed jet diffusion combustion burner, characterized in that the direction in which fuel is injected from the fuel cell is inclined parallel or inward with respect to the center axis of the secondary air flow path.
【請求項2】 前記一次空気流路と前記二次空気流路の
各中心軸間の距離を前記二次空気流路の直径の2.0〜
3.0倍にするとともに、前記燃料噴出方向が前記二次
空気流路の中心軸に対してなす角度を0〜10度にした
ことを特徴とする請求項1に記載の高速噴流型拡散燃焼
式バーナ。
2. A distance between central axes of the primary air flow path and the secondary air flow path is set to a value of 2.0 to a diameter of the secondary air flow path.
2. The high-speed jet diffusion combustion according to claim 1, wherein the fuel injection direction is 3.0 times, and an angle between the fuel injection direction and a central axis of the secondary air flow path is 0 to 10 degrees. Expression burner.
【請求項3】 前記一次空気流路における一次空気流量
を所要燃焼用空気流量の1/5〜1/2に調節する調整
手段を備えたことを特徴とする請求項1または2に記載
の高速噴流型拡散燃焼式バーナ。
3. The high-speed device according to claim 1, further comprising an adjusting unit that adjusts a primary air flow rate in the primary air flow path to 5〜 to の of a required combustion air flow rate. Jet diffusion burner.
JP2001100648A 2001-03-30 2001-03-30 High speed jet type diffusion combustion type burner Pending JP2002303406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100648A JP2002303406A (en) 2001-03-30 2001-03-30 High speed jet type diffusion combustion type burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100648A JP2002303406A (en) 2001-03-30 2001-03-30 High speed jet type diffusion combustion type burner

Publications (1)

Publication Number Publication Date
JP2002303406A true JP2002303406A (en) 2002-10-18

Family

ID=18954072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100648A Pending JP2002303406A (en) 2001-03-30 2001-03-30 High speed jet type diffusion combustion type burner

Country Status (1)

Country Link
JP (1) JP2002303406A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511140A (en) * 2006-11-29 2010-04-08 エフエルシュミッド エー/エス Combustor with means for changing the direction of fuel flow
KR100976028B1 (en) * 2008-06-11 2010-08-17 쥬가이로 고교 가부시키가이샤 Burner Combustion Method & High Speed Jet Diffusion Combustion Burner
JP2012184897A (en) * 2011-03-07 2012-09-27 Osaka Gas Co Ltd Alternating combustion device, and alternating combustion method using the same
CN103528064A (en) * 2013-09-17 2014-01-22 鞍山市东盛能源设备有限公司 Energy-saving combustor device of sintering machine
JP2015078816A (en) * 2013-10-18 2015-04-23 大阪瓦斯株式会社 Heating furnace
JP2017122565A (en) * 2016-01-05 2017-07-13 日本ファーネス株式会社 Burner device for rotary kiln and in-furnace combustion method for rotary kiln
JP2023504084A (en) * 2019-12-31 2023-02-01 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Combustor for fuel combustion and its combustion method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511140A (en) * 2006-11-29 2010-04-08 エフエルシュミッド エー/エス Combustor with means for changing the direction of fuel flow
KR100976028B1 (en) * 2008-06-11 2010-08-17 쥬가이로 고교 가부시키가이샤 Burner Combustion Method & High Speed Jet Diffusion Combustion Burner
JP2012184897A (en) * 2011-03-07 2012-09-27 Osaka Gas Co Ltd Alternating combustion device, and alternating combustion method using the same
CN103528064A (en) * 2013-09-17 2014-01-22 鞍山市东盛能源设备有限公司 Energy-saving combustor device of sintering machine
CN103528064B (en) * 2013-09-17 2017-09-22 鞍山市东盛能源设备有限公司 The energy-saving burner device of sintering machine
JP2015078816A (en) * 2013-10-18 2015-04-23 大阪瓦斯株式会社 Heating furnace
JP2017122565A (en) * 2016-01-05 2017-07-13 日本ファーネス株式会社 Burner device for rotary kiln and in-furnace combustion method for rotary kiln
JP2023504084A (en) * 2019-12-31 2023-02-01 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Combustor for fuel combustion and its combustion method

Similar Documents

Publication Publication Date Title
JP2528894B2 (en) Gas turbine combustor
EP2294336B1 (en) Low nox burner
JP5723826B2 (en) Gas burner device, burner tile, gas tip tube, and combustion method
KR100976028B1 (en) Burner Combustion Method & High Speed Jet Diffusion Combustion Burner
CN101253366B (en) Devices for adjusting the composition of gaseous fuels
EP0479414A1 (en) Low NOx burner
JPS6325242B2 (en)
US3976420A (en) Method and apparatus for burning fuels
JP2002513906A (en) Integrated low NOx injection burner
JP2002303406A (en) High speed jet type diffusion combustion type burner
US20210080101A1 (en) LOW NOx BURNER APPARATUS AND METHOD
CN211146484U (en) Ultralow nitrogen combustion device
JPH05256421A (en) Nozzle mechanism in gas burner
JP2004093115A (en) Multistage tubular flame burner and combustion control method thereof
JP3873119B2 (en) In-cylinder swirl combustor
JPH11201416A (en) Exhaust gas circulation type low nox radiant tube burner
US5975883A (en) Method and apparatus for reducing emissions in combustion products
JP4139793B2 (en) Bright flame burner
KR20050117417A (en) Recirculation 3-step burner for fluid and gas
JPH0223764B2 (en)
CN211176787U (en) Burner with a burner head
JPH0861614A (en) High turn down burner
JPH0133729B2 (en)
CN117267730A (en) Integrated coal gasification fuel cell power generation system and tail gas pure oxygen combustor thereof
CN115388406A (en) Low-emission high-speed combustor, flameless combustion device and ignition method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090324

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090522