JP2002298844A - Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same - Google Patents
Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the sameInfo
- Publication number
- JP2002298844A JP2002298844A JP2001096504A JP2001096504A JP2002298844A JP 2002298844 A JP2002298844 A JP 2002298844A JP 2001096504 A JP2001096504 A JP 2001096504A JP 2001096504 A JP2001096504 A JP 2001096504A JP 2002298844 A JP2002298844 A JP 2002298844A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- mol
- weight
- lithium
- ethylene oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 73
- 229920000642 polymer Polymers 0.000 title claims abstract description 65
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 47
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910052720 vanadium Inorganic materials 0.000 title claims abstract description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 40
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229920001577 copolymer Polymers 0.000 claims abstract description 32
- 239000007774 positive electrode material Substances 0.000 claims abstract description 30
- 239000007787 solid Substances 0.000 claims abstract description 20
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 18
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 18
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 18
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 15
- 239000003792 electrolyte Substances 0.000 claims abstract description 15
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 15
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012528 membrane Substances 0.000 claims abstract description 12
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 12
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 3
- 239000000956 alloy Substances 0.000 claims abstract description 3
- 239000007784 solid electrolyte Substances 0.000 claims description 33
- 238000007600 charging Methods 0.000 claims description 19
- 239000003273 ketjen black Substances 0.000 claims description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 12
- -1 ether compound Chemical class 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000006230 acetylene black Substances 0.000 claims description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims 1
- 229910001935 vanadium oxide Inorganic materials 0.000 claims 1
- 238000004132 cross linking Methods 0.000 abstract description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 21
- 239000011888 foil Substances 0.000 description 15
- 239000004570 mortar (masonry) Substances 0.000 description 14
- 230000007423 decrease Effects 0.000 description 12
- DQBPICZFQWJEKL-UHFFFAOYSA-N 2-[2-(2-methoxyethoxy)ethoxymethyl]oxirane Chemical compound COCCOCCOCC1CO1 DQBPICZFQWJEKL-UHFFFAOYSA-N 0.000 description 11
- 238000007599 discharging Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 238000010277 constant-current charging Methods 0.000 description 7
- 239000011267 electrode slurry Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000011812 mixed powder Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229920006037 cross link polymer Polymers 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- ADXGNEYLLLSOAR-UHFFFAOYSA-N tasosartan Chemical compound C12=NC(C)=NC(C)=C2CCC(=O)N1CC(C=C1)=CC=C1C1=CC=CC=C1C=1N=NNN=1 ADXGNEYLLLSOAR-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【課題】 小型軽量で充放電容量の大きいリチウムポリ
マー電池を提供しうるリチウムポリマー電池用複合正極
およびその正極を用いたリチウムポリマー電池を提供す
る。
【解決手段】 エチレンオキシド、重合度1〜12のエチ
レンオキシド単位の側鎖を有するグリシジルエーテルか
らなる重量平均分子量が100万以上の共重合体(アリル
グリシジルエーテルを含んでも良い)に電解質塩として
リチウム塩を溶解した高分子固体電解質、正極活物質と
してバナジウム系酸化物および導電性粒子からなる複合
正極あるいはその複合正極にさらに重量平均分子量500
以上2000以下のポリエチレングリコールを加えた複合正
極を用いる。リチウム金属あるいはリチウム金属合金か
らなる負極、ならびにエチレンオキシド、側鎖に重合度
1〜12のエチレンオキシド単位を有するグリシジルエー
テルとアリルグリシジルエーテルからなる重量平均分子
量が100万以上の共重合体にリチウム塩を溶解した高分
子固体電解質を架橋させた膜からなるリチウムポリマー
電池。(57) Abstract: A composite positive electrode for a lithium polymer battery capable of providing a small and lightweight lithium polymer battery having a large charge / discharge capacity and a lithium polymer battery using the positive electrode. SOLUTION: A lithium salt as an electrolyte salt is added to a copolymer having a weight average molecular weight of 1,000,000 or more (which may contain allyl glycidyl ether) composed of ethylene oxide and a glycidyl ether having a side chain of ethylene oxide units having a polymerization degree of 1 to 12 (which may contain allyl glycidyl ether). A dissolved solid polymer electrolyte, a composite positive electrode comprising a vanadium-based oxide and conductive particles as a positive electrode active material or a weight average molecular weight of 500
A composite positive electrode to which 2000 or less polyethylene glycol is added is used. Negative electrode made of lithium metal or lithium metal alloy, ethylene oxide, degree of polymerization in side chain
A lithium polymer battery comprising a membrane obtained by crosslinking a solid polymer electrolyte obtained by dissolving a lithium salt in a copolymer having a weight average molecular weight of 1,000,000 or more and consisting of glycidyl ether having 1 to 12 ethylene oxide units and allyl glycidyl ether.
Description
【0001】[0001]
【発明の属する技術分野】 本発明はリチウムポリマー
電池用複合正極、およびその正極を用いたリチウムポリ
マー電池およびその使用方法に関するものである。The present invention relates to a composite positive electrode for a lithium polymer battery, a lithium polymer battery using the positive electrode, and a method for using the same.
【0002】[0002]
【従来の技術】 リチウム二次電池に関して、最近活発
に研究がなされており、電池構成材料や組み立てについ
て多くの提案がなされている。例えば正極活物質として
LiCoO2、LiNiO2、LiMn2O4、V2O5、V6O13、TiS2等が用い
られ、負極活物質としてリチウム、リチウム-アルミニ
ウム合金、カーボン(ハードカーボン、天然黒鉛、メソ
フェーズカーボンマイクロビーズ、メソフェーズカーボ
ンファイバー)等を用いる二次電池が提案されている。
これらのリチウム二次電池においては、電解液として、
リチウムイオンの移動できるプロピレンカーボネート、
エチレンカーボネート、ジエチルカーボネート、1,2-ジ
メトキシエタン等の1種以上の非プロトン性有機溶媒にL
iClO4、LiBF4、LiAsF6、LiPF6、LiCF3SO3、LiN(CF3SO2)
2等のリチウム塩を溶解させた電解液が使用されてい
る。しかし、これらの電解液は可燃性であるためこれら
の電解液を使用したリチウム二次電池は発火や爆発の危
険性がある。またリチウム金属やリチウム合金を負極と
して使用すると、負極上で生成するリチウムデントライ
トが正極に達して短絡する危険性もある。これらの問題
点は電解液に有機溶媒を使用していることに起因する。2. Description of the Related Art Recently, active research has been made on lithium secondary batteries, and many proposals have been made on battery constituent materials and assembly. For example, as a positive electrode active material
LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , V 6 O 13 , TiS 2 etc. are used, and lithium, lithium-aluminum alloy, carbon (hard carbon, natural graphite, mesophase carbon micro Secondary batteries using beads, mesophase carbon fibers) and the like have been proposed.
In these lithium secondary batteries, as the electrolyte,
Propylene carbonate capable of moving lithium ions,
One or more aprotic organic solvents such as ethylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, etc.
iClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 )
An electrolyte in which a lithium salt such as 2 is dissolved is used. However, since these electrolytes are flammable, lithium secondary batteries using these electrolytes have a risk of ignition or explosion. Further, when lithium metal or lithium alloy is used as the negative electrode, there is a risk that the lithium dendrites generated on the negative electrode reach the positive electrode and short-circuit. These problems result from using an organic solvent for the electrolyte.
【0003】これらの問題点を解決するため電解液をポ
リマーでゲル化し固定したリチウムポリマー電池の開発
が進められているが、まだ電解液の漏液の問題や60℃以
上の高温環境下での使用に耐えるものではない。そこ
で、完全固体電解質ポリマーを用いた固体型リチウム電
池の研究が進められている。夏らによって、正極の結着
剤兼イオン導電体として分子量約2000のポリエチレング
リコールを使用した正極と高分子固体電解質、リチウム
金属を組み合わせたリチウムポリマー電池が60℃におい
て、優れた電池特性を示すことがJ. Electorchem. So
c., 147, 2050(2000) に報告されている。しかしなが
ら、この分子量約2000のポリエチレングリコールを正極
に使用したリチウムポリマー電池はより高温(80℃以上)
では、特に電池のサイクル特性が大きく劣化する欠点を
持っている。また、60℃以上の高温下において、このポ
リエチレングリコールは液体であるため、正極活物質お
よび導電剤との結着力が弱く、正極内に多量に添加する
必要があり、その量は正極活物質粒子100重量部に対し
て50重量部以上必要である。このため、複合正極中にお
ける活物質の割合が減少し、複合正極の持つエネルギー
密度が小さくなってしまう。このよう欠点のためいまだ
実用に耐えうるリチウムポリマー電池用正極は開発され
ていない。また、特願平10-85890において、正極活物質
としてV2O5を用いたリチウムポリマー電池用の正極に関
する特許が述べられている。この特許においてV2O5を活
物質とした正極を用いた電池は充電時の上限電圧が3.0V
と低く、このときの電池の放電容量はV2O5を用いた電池
としては小さい。[0003] In order to solve these problems, development of a lithium polymer battery in which an electrolytic solution is gelled with a polymer and fixed has been advanced, but there is still a problem of electrolyte leakage and a problem in a high temperature environment of 60 ° C or more. It is not something that can be used. Therefore, research on a solid-state lithium battery using a completely solid electrolyte polymer has been advanced. According to Natsu et al., A lithium polymer battery combining a positive electrode using polyethylene glycol with a molecular weight of about 2,000 as a binder and ionic conductor for the positive electrode, a polymer solid electrolyte, and lithium metal exhibits excellent battery characteristics at 60 ° C. Is J. Electorchem. So
c., 147, 2050 (2000). However, lithium polymer batteries using polyethylene glycol with a molecular weight of about 2,000 as the positive electrode have higher temperatures (80 ° C or higher).
In this case, the battery has a disadvantage that the cycle characteristics of the battery are greatly deteriorated. Further, at a high temperature of 60 ° C. or higher, since polyethylene glycol is a liquid, it has a weak binding force with the positive electrode active material and the conductive agent, and it is necessary to add a large amount to the positive electrode. 50 parts by weight or more is required for 100 parts by weight. For this reason, the ratio of the active material in the composite positive electrode decreases, and the energy density of the composite positive electrode decreases. Due to such drawbacks, a positive electrode for a lithium polymer battery that can withstand practical use has not yet been developed. Further, Japanese Patent Application No. 10-85890 discloses a patent on a positive electrode for a lithium polymer battery using V 2 O 5 as a positive electrode active material. In this patent, the battery using a positive electrode with V 2 O 5 as the active material has an upper limit voltage of 3.0 V during charging.
The discharge capacity of the battery at this time is small for a battery using V 2 O 5 .
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は小型軽
量で充放電容量の大きいリチウムポリマー電池を提供し
うるリチウムポリマー電池用複合正極およびその正極を
用いたリチウムポリマー電池を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a composite positive electrode for a lithium polymer battery capable of providing a lithium polymer battery which is small and lightweight and has a large charge / discharge capacity, and a lithium polymer battery using the positive electrode. .
【0005】[0005]
【課題を解決するための手段】小型軽量で充放電容量の
大きいリチウムポリマー電池を得るためには高電圧で充
電できる方が望ましいがバナジウム酸化物の場合従来3.
5 Vが上限であったが4.2 Vまで充電できる複合正極を見
いだした。[Means for Solving the Problems] In order to obtain a small and lightweight lithium polymer battery having a large charge / discharge capacity, it is desirable to be able to charge at a high voltage.
Although the upper limit was 5 V, we found a composite positive electrode that can be charged to 4.2 V.
【0006】即ち、本発明はエチレンオキシド30〜95モ
ル%、側鎖に重合度1〜12のエチレンオキシド単位を有
するグリシジルエーテル5〜70モル%からなる重量平均分
子量が100万以上の共重合体に電解質塩としてリチウム
塩を溶解した高分子固体電解質、正極活物質粒子として
バナジウム系酸化物VXO5(X=2〜2.5)、および導電性粒子
からなる複合体を集電体上に塗着したことを特徴とする
複合正極である。更に本発明は上記複合正極およびリチ
ウム金属あるいはリチウム金属合金からなる負極、なら
びにエチレンオキシド30〜94モル%、側鎖に重合度1〜1
2のエチレンオキシド単位を有するグリシジルエーテル5
〜69モル%とアリルグリシジルエーテル1〜5モル%から
なる重量平均分子量が100万以上の共重合体にリチウム
塩を溶解した高分子固体電解質を架橋させた膜からなる
リチウムポリマー電池を提供し、その充電方法を提供す
るものである。That is, the present invention relates to a copolymer comprising 30 to 95 mol% of ethylene oxide and 5 to 70 mol% of glycidyl ether having an ethylene oxide unit having a degree of polymerization of 1 to 12 in a side chain and having a weight average molecular weight of 1,000,000 or more. A composite consisting of a polymer solid electrolyte in which a lithium salt was dissolved as a salt, a vanadium-based oxide V X O 5 (X = 2 to 2.5) as positive electrode active material particles, and conductive particles was coated on a current collector. It is a composite positive electrode characterized by the above. Further, the present invention provides a composite positive electrode and a negative electrode composed of lithium metal or a lithium metal alloy, ethylene oxide of 30 to 94 mol%, and a side chain having a polymerization degree of 1 to 1
Glycidyl ether 5 having 2 ethylene oxide units
To provide a lithium polymer battery comprising a membrane obtained by cross-linking a polymer solid electrolyte obtained by dissolving a lithium salt in a copolymer having a weight average molecular weight of 1,000,000 or more consisting of 6969 mol% and allyl glycidyl ether 1-5 mol%, The charging method is provided.
【0007】本発明における複合正極において使用する
ことが望ましい高分子固体電解質はエチレンオキシドと
側鎖に重合度1〜12のエチレンオキシド単位を有するグ
リシジルエーテルからなる重量平均分子量が100万以上
の共重合体に電解質塩としてリチウム塩を添加した高分
子固体電解質である。この固体電解質は分子量約2000の
ポリエチレングリコールに比べ、分子量が高いため、機
械的強度に優れている。さらに融点が高いため、60℃以
上の高温下においても正極活物質粒子および導電性粒子
との結着性に優れている。結着性に優れたこの高分子固
体電解質を複合正極に用いることにより、複合正極中の
高分子固体電解質の量を少なくすることができる。これ
により、複合正極のエネルギー密度を向上させることが
できる。また80℃以上の高温下においても固体であるこ
とから、平均分子量約2000のポリエチレングリコールを
用いて作製した複合正極にくらべ、正極の劣化が起こり
にくい。このことから、この高分子を用いた正極のリチ
ウムポリマー電池は60℃だけでなく、さらに高温(80℃
以上)下でも高い電池性能を発揮することができる。本
発明において複合正極は高分子固体電解質、正極活物質
粒子、導電性粒子の複合体を集電体上に塗着することに
より作製される。集電体としてはアルミニウム、白金、
炭素からなる箔、メッシュ、発泡などの形状のものが使
用できる。The solid polymer electrolyte preferably used in the composite cathode of the present invention is a copolymer having a weight average molecular weight of 1,000,000 or more consisting of ethylene oxide and a glycidyl ether having an ethylene oxide unit having a degree of polymerization of 1 to 12 in a side chain. It is a polymer solid electrolyte to which a lithium salt is added as an electrolyte salt. Since this solid electrolyte has a higher molecular weight than polyethylene glycol having a molecular weight of about 2,000, it has excellent mechanical strength. Further, since the melting point is high, the adhesiveness to the positive electrode active material particles and the conductive particles is excellent even at a high temperature of 60 ° C. or higher. By using this polymer solid electrolyte having excellent binding properties for the composite positive electrode, the amount of the polymer solid electrolyte in the composite positive electrode can be reduced. Thereby, the energy density of the composite positive electrode can be improved. Further, since it is a solid even at a high temperature of 80 ° C. or higher, deterioration of the positive electrode is less likely to occur than a composite positive electrode prepared using polyethylene glycol having an average molecular weight of about 2,000. Therefore, the lithium polymer battery of the positive electrode using this polymer is not only at 60 ° C, but also at a higher temperature (80 ° C).
Above), high battery performance can be exhibited. In the present invention, the composite positive electrode is produced by applying a composite of a solid polymer electrolyte, positive electrode active material particles, and conductive particles onto a current collector. Aluminum, platinum,
Carbon foils, meshes, foams and other shapes can be used.
【0008】エチレンオキシドと側鎖に重合度1〜12の
エチレンオキシド単位を有するグリシジルエーテルにさ
らにアリルグリシジルエーテルを共重合させた共重合体
に電解質塩としてリチウム塩を溶解させた高分子固体電
解質は架橋させることにより、さらに高分子固体電解質
の強度を上げることができる。このため、この高分子固
体電解質、正極活物質粒子、導電性粒子の複合体を集電
体上に塗着したのち、架橋を行うと高分子固体電解質と
正極活物質粒子および導電性粒子との結着性をさらにあ
げることが可能である。このときの架橋方法としては、
有機過酸化物、アゾ化合物等から選ばれるラジカル開始
剤、紫外線、電子線等の活性エネルギー線を用いること
ができる。複合正極中に平均分子量が500以上2000以下
のポリエチレングリコールまたはそのエーテル化合物を
添加することができる。ポリエチレングリコールのエー
テル化合物としてはモノまたはジメチルエーテル、及び
モノまたはジエチルエーテルが良い。複合正極中の高分
子固体電解質を架橋することにより、正極活物質粒子お
よび導電性粒子との結着性が強くなる。このため複合正
極中に結着性に劣るポリエチレングリコールまたはその
エーテル化合物を添加しても、充放電サイクルを繰り返
すことによる正極の劣化を減少させることができる。ま
た、平均分子量が500以上2000以下のポリエチレングリ
コールまたはそのエーテル化合物は高温下(60℃以上)で
のイオン導電性に優れるため、正極中に添加すると、特
に大電流時における電池の充放電特性を改善することが
可能となる。A polymer solid electrolyte in which a lithium salt is dissolved as an electrolyte salt in a copolymer obtained by copolymerizing ethylene oxide and a glycidyl ether having an ethylene oxide unit having a polymerization degree of 1 to 12 in a side chain and further allyl glycidyl ether is crosslinked. This can further increase the strength of the solid polymer electrolyte. For this reason, after the composite of the solid polymer electrolyte, the positive electrode active material particles, and the conductive particles is coated on the current collector, when the crosslinking is performed, the solid polymer electrolyte, the positive electrode active material particles, and the conductive particles are mixed. It is possible to further improve the binding property. As a crosslinking method at this time,
A radical initiator selected from organic peroxides, azo compounds and the like, and active energy rays such as ultraviolet rays and electron beams can be used. Polyethylene glycol having an average molecular weight of 500 or more and 2000 or less or an ether compound thereof can be added to the composite positive electrode. As the ether compound of polyethylene glycol, mono or dimethyl ether and mono or diethyl ether are preferable. By cross-linking the solid polymer electrolyte in the composite positive electrode, the binding property between the positive electrode active material particles and the conductive particles is enhanced. For this reason, even if polyethylene glycol or its ether compound having poor binding properties is added to the composite positive electrode, deterioration of the positive electrode due to repeated charge / discharge cycles can be reduced. In addition, polyethylene glycol having an average molecular weight of 500 or more and 2000 or less or its ether compound has excellent ionic conductivity at high temperatures (60 ° C. or more). It can be improved.
【0009】リチウムポリマー二次電池の3V級正極材料
としてはバナジウム系酸化物が広く使われてきた。バナ
ジウム系酸化物は充電がすすむにつれ、電池電圧も単調
に増加する。リチウムポリマー電池は電解質として高分
子固体電解質を使用するが有機電解液に比べイオン導電
性に劣り、充放電時の電圧の分極が大きい。このため、
充電できる容量が充電時の分極で減少してしまうことに
なる。従来の高分子固体電解質としてポリエチレンオキ
シドを用いた電池では高分子固体電解質が分解すること
により充電電圧の限界は3.5Vであった。また、前述した
特許(特願平10-85890)においても、充電電圧の上限は3.
0Vであった。本発明におけるエチレンオキシド(30〜94
モル%)、側鎖に重合度1〜12のエチレンオキシド単位を
有するグリシジルエーテル(5〜69モル%)とアリルグリシ
ジルエーテル(1〜5モル%)からなる重量平均分子量が10
0万以上の共重合体に電解質塩としてリチウム塩を溶解
した高分子固体電解質を架橋させた膜を高分子固体電解
質膜として使用したリチウムポリマー電池はより高電圧
(4.2V)まで充電することが可能であり、これにより従来
のリチウムポリマー電池よりも高容量な電池とすること
ができる。また、満充電時においては電圧が急上昇する
ため充電終止電圧を設定することで容易に充電制御が行
える。A vanadium-based oxide has been widely used as a 3V-class positive electrode material for a lithium polymer secondary battery. As the vanadium-based oxide is charged, the battery voltage monotonically increases. A lithium polymer battery uses a solid polymer electrolyte as an electrolyte, but has poor ionic conductivity as compared with an organic electrolyte, and has a large voltage polarization during charge and discharge. For this reason,
The chargeable capacity will decrease due to polarization during charging. In a conventional battery using polyethylene oxide as a polymer solid electrolyte, the limit of the charging voltage was 3.5 V due to decomposition of the polymer solid electrolyte. Also, in the above-mentioned patent (Japanese Patent Application No. 10-85890), the upper limit of the charging voltage is 3.
It was 0V. In the present invention, ethylene oxide (30 to 94
Mol%), and a weight average molecular weight of 10% by weight of glycidyl ether (5 to 69 mol%) and allyl glycidyl ether (1 to 5 mol%) having an ethylene oxide unit having a degree of polymerization of 1 to 12 in the side chain.
A lithium polymer battery using a polymer solid electrolyte membrane in which a polymer solid electrolyte obtained by dissolving a lithium salt as an electrolyte salt in more than 100,000 copolymers as a polymer solid electrolyte membrane has a higher voltage
(4.2 V), which allows the battery to have a higher capacity than conventional lithium polymer batteries. Further, when the battery is fully charged, the voltage rises sharply, so that the charge control can be easily performed by setting the charge end voltage.
【0010】電解質塩としてはLiClO4、LiBF4、LiAs
F6、LiPF6、LiCF3SO3、LiN(CF3SO2)2等のリチウム塩を
使用することができる。これらのうちで、正極中の高分
子固体電解質に使用するリチウム塩としてはLiN(CF3S
O2)2がより簡便に使用することができる。これは以下の
ような理由による。リチウム二次電池に広く使用されて
いるLiPF6のようなリチウム塩は水分により容易に加水
分解し、HFが発生する。この発生したHFは高分子固体電
解質を分解してしまう。または、リチウム金属と反応し
てフッ化リチウムを生成する。一方、LiN(CF3SO2)2は水
分による加水分解はほとんどなく、HFも発生しないから
である。また、共重合体100重量部に対して加えるLiN(C
F3SO2)2の量が5重量部より少ないと高分子固体電解質中
のリチウムイオンの濃度が薄すぎ十分なリチウムイオン
導電性が得られない。また共重合体100重量部に対し50
重量部以上はリチウム塩が共重合体中に溶けきれず加え
ることができない。このことから高分子固体電解質中の
リチウム塩としてはLiN(CF3SO2)2が良く、その量は共重
合体100重量部に対して5〜50重量部が良い。As electrolyte salts, LiClO 4 , LiBF 4 , LiAs
Lithium salts such as F 6 , LiPF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 can be used. Among these, LiN (CF 3 S) is used as the lithium salt used for the polymer solid electrolyte in the positive electrode.
O 2 ) 2 can be used more easily. This is for the following reasons. Lithium salts such as LiPF 6 widely used in lithium secondary batteries are easily hydrolyzed by moisture to generate HF. The generated HF decomposes the solid polymer electrolyte. Alternatively, it reacts with lithium metal to generate lithium fluoride. On the other hand, LiN (CF 3 SO 2 ) 2 hardly hydrolyzes with water and does not generate HF. Also, LiN (C added to 100 parts by weight of the copolymer)
If the amount of F 3 SO 2 ) 2 is less than 5 parts by weight, the lithium ion concentration in the solid polymer electrolyte is too low to obtain sufficient lithium ion conductivity. Also, 50 to 100 parts by weight of the copolymer
If the amount is more than part by weight, the lithium salt cannot be completely dissolved in the copolymer and cannot be added. For this reason, as the lithium salt in the solid polymer electrolyte, LiN (CF 3 SO 2 ) 2 is preferable, and its amount is preferably 5 to 50 parts by weight based on 100 parts by weight of the copolymer.
【0011】複合正極中に含まれる正極活物質粒子、お
よび高分子固体電解質には電子伝導性はない。そこで複
合正極中の正極活物質粒子において酸化還元反応がおこ
るためには複合正極中に導電性粒子を加えることが不可
欠になる。導電性粒子としては少ない添加量で高い電子
伝導性を複合正極に与えるケッチェンブラックやアセチ
レンブラックが適している。複合正極中の導電性粒子は
正極活物質100重量部に対して5〜20重量部が良い。これ
は、正極活物質粒子100重量部に対して5重量部より導電
性粒子の添加量が少ないと複合正極に十分な電子導電性
を与えることができず、複合正極中の正極活物質粒子に
おける酸化還元反応が十分に起きない。これにより、正
極活物質粒子の利用率が低下し、充放電容量は理論値よ
り大きく減少する。一方、正極活物質粒子100重量部に
対して20重量部以上添加すると複合正極の電子導電性は
確保できるものの、複合正極中の正極活物質の割合が低
下する。これにより、複合正極の容量は低下してしま
う。The positive electrode active material particles and the solid polymer electrolyte contained in the composite positive electrode have no electronic conductivity. Therefore, in order for the oxidation-reduction reaction to occur in the positive electrode active material particles in the composite positive electrode, it is essential to add conductive particles to the composite positive electrode. Ketjen black or acetylene black, which gives high electron conductivity to the composite positive electrode with a small addition amount, is suitable as the conductive particles. The conductive particles in the composite positive electrode are preferably 5 to 20 parts by weight based on 100 parts by weight of the positive electrode active material. This is because if the amount of the conductive particles is less than 5 parts by weight based on 100 parts by weight of the positive electrode active material particles, the composite positive electrode cannot be given sufficient electronic conductivity, and the positive electrode active material particles in the composite positive electrode Redox reaction does not occur sufficiently. As a result, the utilization rate of the positive electrode active material particles decreases, and the charge / discharge capacity decreases significantly from the theoretical value. On the other hand, when 20 parts by weight or more are added to 100 parts by weight of the positive electrode active material particles, the electronic conductivity of the composite positive electrode can be secured, but the ratio of the positive electrode active material in the composite positive electrode decreases. As a result, the capacity of the composite positive electrode decreases.
【0012】複合正極中には正極活物質粒子100重量部
に対して高分子固体電解質が5〜35重量部含まれている
ことが良い。これは高分子固体電解質が5重量部以下で
あると正極活物質粒子に対する結着力が弱く複合正極が
作製できない。また35重量部以上であると結着力は十分
なものの、複合正極中の正極活物質粒子が減少し、複合
正極の容量が低下してしまう。本実施例で使用した共重
合体の重量平均分子量はゲルパーミュエーションクロマ
トグラフィ測定法により、標準ポリスチレン換算により
分子量を算出した。ゲルパーミュエーションクロマトグ
ラフィ測定は株式会社島津製作所の測定装置RID−6
A、昭和電工株式会社製カラムのショウデックスKD−
806、KD−806M、KD−803、及び溶媒DM
Fを用いて60℃で行った。The composite positive electrode preferably contains 5-35 parts by weight of a solid polymer electrolyte per 100 parts by weight of positive electrode active material particles. When the amount of the polymer solid electrolyte is 5 parts by weight or less, the binding force to the positive electrode active material particles is weak, and a composite positive electrode cannot be produced. If the amount is 35 parts by weight or more, the binding force is sufficient, but the number of the positive electrode active material particles in the composite positive electrode decreases, and the capacity of the composite positive electrode decreases. The weight average molecular weight of the copolymer used in this example was calculated by gel permeation chromatography in terms of standard polystyrene. Gel permeation chromatography is measured by Shimadzu Corporation RID-6
A, Showdex KD column manufactured by Showa Denko KK
806, KD-806M, KD-803, and solvent DM
Performed at 60 ° C. using F.
【0013】[0013]
【実施例】以下、実施例を示し、本発明を具体的に説明
する。 実施例1 V2O5粉末 1.0g、ケッチェンブラック 0.15gの比率で採
取し、乳鉢でよく混合した。一方、エチレンオキシド(8
8モル%)と2-(2-メトキシエトキシ)エチルグリシジルエ
ーテル(12モル%)の共重合体(重量平均分子量:150万)
0.15g、LiN(CF 3SO2)2 0.033gをアセトニトリルに溶解
させた。V2O5、ケッチェンブラック混合粉末に上記溶液
を加え、乳鉢でよく混合し、正極スラリーを得た。この
スラリーを厚み20μmのアルミ箔に塗布したのち、溶媒
を80℃の乾燥器中で除去した。これをロールプレスする
ことにより、正極全体の厚みが40μmの複合正極を作製
した。えられた複合正極、高分子固体電解質膜としてエ
チレンオキシド(80.6モル%)と2-(2-メトキシエトキシ)
エチルグリシジルエーテル(17.7モル%)とアリルグリシ
ジルエーテル(1.7モル%)の共重合体100重量部にLiN(CF3
SO2)2を30重量部溶解させ架橋処理を行った高分子固体
電解質を膜厚50μmに製膜したもの、負極として厚さ100
μmのLi金属箔をはりあわせてコイン型セルを作製し
た。60℃の恒温槽中で0.5C、上限電圧4.1Vで定電流充
電、0.2C、下限電圧2.0Vで定電流放電を行った。充放電
を繰り返したときの放電容量を図1に示す。この図か
ら、正極活物質1g当り約300mAhの高い初期放電容量を示
すことがわかる(以後、mAh/gは正極活物質1g当りの充
放電容量を表す)。80サイクル後も200mAh/gと高い放電
容量を維持しており、試作した電池は60℃において高い
サイクル特性を示すことがわかった。EXAMPLES The present invention will now be described specifically with reference to examples.
I do. Example 1 VTwoOFive1.0 g of powder and 0.15 g of Ketjen Black
Take and mix well in a mortar. On the other hand, ethylene oxide (8
8 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl
(12 mol%) copolymer (weight average molecular weight: 1.5 million)
0.15g, LiN (CF ThreeSOTwo)Two Dissolve 0.033g in acetonitrile
I let it. VTwoOFiveThe above solution in Ketjen black mixed powder
Was added and mixed well in a mortar to obtain a positive electrode slurry. this
After applying the slurry to a 20μm thick aluminum foil,
Was removed in an oven at 80 ° C. Roll press this
This produces a composite positive electrode with a total positive electrode thickness of 40 μm.
did. The obtained composite cathode and polymer solid electrolyte membrane
Tylene oxide (80.6 mol%) and 2- (2-methoxyethoxy)
Ethyl glycidyl ether (17.7 mol%) and allyl glycidyl
LiN (CF) was added to 100 parts by weight of a copolymer of zyl ether (1.7 mol%).Three
SOTwo)Two30 parts by weight dissolved and crosslinked polymer solid
Electrolyte formed into a film with a thickness of 50 μm.
A coin-shaped cell is fabricated by laminating μm Li metal foil.
Was. Constant current charging at 0.5C, upper limit voltage 4.1V in 60 ℃ constant temperature bath
A constant current discharge was performed at a voltage of 0.2 C and a lower limit voltage of 2.0 V. Charge and discharge
FIG. 1 shows the discharge capacity when this was repeated. This figure
Showed a high initial discharge capacity of about 300 mAh / g of positive electrode active material.
(Hereafter, mAh / g is the charge per 1 g of positive electrode active material.)
Discharge capacity). High discharge of 200mAh / g even after 80 cycles
Maintains capacity and prototype battery is high at 60 ° C
It was found that it exhibited cycle characteristics.
【0014】実施例2 V2O5粉末 1.0g、ケッチェンブラック 0.15gの比率で採
取し、乳鉢でよく混合した。一方、エチレンオキシド(8
8モル%)と2-(2-メトキシエトキシ)エチルグリシジルエ
ーテル(12モル%)の共重合体(重量平均分子量:150万)
0.20g、LiN(CF3SO2)2 0.067gをアセトニトリルに溶解さ
せた。V2O5、ケッチェンブラック混合粉末に上記溶液を
加え、乳鉢でよく混合し、正極スラリーを得た。このス
ラリーを厚み20μmのアルミ箔に塗布したのち、溶媒を
80℃の乾燥器中で除去した。これをロールプレスするこ
とにより、正極全体の厚み40μmの複合正極を作製し
た。えられた複合正極、高分子固体電解質膜としてエチ
レンオキシド(80.6モル%)と2-(2-メトキシエトキシ)エ
チルグリシジルエーテル(17.7モル%)とアリルグリシジ
ルエーテル(1.7モル%)の共重合体100重量部にLiN(CF3SO
2)2を30重量部溶解させ架橋処理を行った高分子固体電
解質を膜厚50μmに製膜したもの、負極として厚さ100μ
mのLi金属箔をはりあわせてコイン型セルを作製した。6
0℃および80℃の恒温槽中で0.2C、上限電圧4.1Vで定電
流充電、0.2C、下限電圧2.0Vで定電流放電を行った。電
池試験温度が80℃においても60℃のときと同様の高いサ
イクル特性を示した。Example 2 1.0 g of V 2 O 5 powder and 0.15 g of Ketjen Black were collected and mixed well in a mortar. On the other hand, ethylene oxide (8
(8 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (12 mol%) copolymer (weight average molecular weight: 1.5 million)
0.20 g and 0.067 g of LiN (CF 3 SO 2 ) 2 were dissolved in acetonitrile. The above solution was added to V 2 O 5 and Ketjen Black mixed powder and mixed well in a mortar to obtain a positive electrode slurry. After applying this slurry to a 20 μm thick aluminum foil, the solvent was removed.
Removed in an oven at 80 ° C. This was roll-pressed to produce a composite positive electrode having a total thickness of 40 μm for the positive electrode. The obtained composite positive electrode, 100 wt.% Of a copolymer of ethylene oxide (80.6 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (17.7 mol%) and allyl glycidyl ether (1.7 mol%) as a polymer solid electrolyte membrane LiN (CF 3 SO
2 ) 30 parts by weight of 2 were dissolved and crosslinked, and a polymer solid electrolyte was formed into a film having a thickness of 50 μm.
The m-type Li metal foils were bonded together to produce a coin cell. 6
In a constant temperature bath at 0 ° C. and 80 ° C., constant current charging was performed at 0.2 C and an upper limit voltage of 4.1 V, and constant current discharging was performed at 0.2 C and a lower limit voltage of 2.0 V. When the battery test temperature was 80 ° C, the same high cycle characteristics as when the battery test temperature was 60 ° C were exhibited.
【0015】比較例1 V2O5粉末 1.0g、ケッチェンブラック 0.13gの比率で採
取し、乳鉢でよく混合した。一方、平均分子量約2000の
ポリエチレングリコールモノメチルエーテル 0.53g、Li
N(CF3SO2)2 0.177gをアセトニトリルに溶解させた。V2O
5、ケッチェンブラック混合粉末に上記溶液を加え、乳
鉢でよく混合し、正極スラリーを得た。このスラリーを
厚み20μmのアルミ箔に塗布したのち、溶媒を80℃の乾
燥器中で除去した。これをロールプレスすることによ
り、正極全体の厚み40μmの複合正極を作製した。えら
れた複合正極、高分子固体電解質膜としてエチレンオキ
シド(80.6モル%)と2-(2-メトキシエトキシ)エチルグリ
シジルエーテル(17.7モル%)とアリルグリシジルエーテ
ル(1.7モル%)の共重合体100重量部にLiN(CF3SO2)2を30
重量部溶解させ架橋処理を行った高分子固体電解質を膜
厚50μmに製膜したもの、負極として厚さ100μmのLi金
属箔をはりあわせてコイン型セルを作製した。60℃およ
び80℃の恒温槽中で0.2C、上限電圧4.1Vで定電流充電、
0.2C、下限電圧2.0Vで定電流放電を行った。電池試験温
度が80℃においては60℃のときに比べ、サイクル特性の
劣化が大きくなった。Comparative Example 1 1.0 g of V 2 O 5 powder and 0.13 g of Ketjen black were collected and mixed well in a mortar. On the other hand, 0.53 g of polyethylene glycol monomethyl ether having an average molecular weight of about 2000, Li
0.177 g of N (CF 3 SO 2 ) 2 was dissolved in acetonitrile. V 2 O
5. The above solution was added to Ketjen Black mixed powder and mixed well in a mortar to obtain a positive electrode slurry. After this slurry was applied to an aluminum foil having a thickness of 20 μm, the solvent was removed in a dryer at 80 ° C. This was roll-pressed to produce a composite positive electrode having a total thickness of 40 μm for the positive electrode. The obtained composite positive electrode, 100 wt.% Of a copolymer of ethylene oxide (80.6 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (17.7 mol%) and allyl glycidyl ether (1.7 mol%) as a polymer solid electrolyte membrane 30 parts LiN (CF 3 SO 2 ) 2
A coin-shaped cell was prepared by dissolving parts by weight of a polymer solid electrolyte having been subjected to a cross-linking treatment to a film thickness of 50 μm, and then bonding a 100 μm-thick Li metal foil as a negative electrode. Constant current charging at 0.2C and upper limit voltage 4.1V in a thermostat at 60 ℃ and 80 ℃
Constant current discharge was performed at 0.2 C and a lower limit voltage of 2.0 V. When the battery test temperature was 80 ° C, the deterioration of the cycle characteristics was greater than when the battery test temperature was 60 ° C.
【0016】[0016]
【表1】 [Table 1]
【0017】実施例3 V2O5粉末 1.0g、ケッチェンブラック 0.15gの比率で採
取し、乳鉢でよく混合した。一方、エチレンオキシド(8
8モル%)と2-(2-メトキシエトキシ)エチルグリシジルエ
ーテル(12モル%)の共重合体(重量平均分子量:150万)
0.15g、LiN(CF3SO2)2 0.05gをアセトニトリルに溶解さ
せた。V2O5、ケッチェンブラック混合粉末に上記溶液を
加え、乳鉢でよく混合し、正極スラリーを得た。このス
ラリーを厚み20μmのアルミ箔に塗布したのち、溶媒を
80℃の乾燥器中で除去した。これをロールプレスするこ
とにより、正極全体の厚み40μmの複合正極を作製し
た。えられた複合正極、高分子固体電解質膜としてエチ
レンオキシド(80.6モル%)と2-(2-メトキシエトキシ)エ
チルグリシジルエーテル(17.7モル%)とアリルグリシジ
ルエーテル(1.7モル%)の共重合体100重量部にLiN(CF3SO
2)2を30重量部溶解させ架橋処理を行った高分子固体電
解質を膜厚50μmに製膜したもの、負極として厚さ100μ
mのLi金属箔をはりあわせてコイン型セルを作製した。6
0℃の恒温槽中で0.2C、上限電圧を3.2、3.5、3.8、4.
1、4.4Vと変化させて定電流充電、0.2C、下限電圧2.0V
で定電流放電を行った。上限電圧が3.6V以上でも、問題
なく充電を行うことができた。それぞれの上限電圧にお
ける放電容量を図2に示す。これから、高い電圧まで充
電することで電池の放電容量を増加させることができ
た。図3に充放電サイクルを10サイクル目の充放電容量
と電池電圧の関係を示す。この図から満充電にあたる容
量270mAh/g付近で電池電圧が急上昇していることがわか
る。充電終止電圧を4.0〜4.2Vに設定することにより簡
単に充電を制御することができることがわかった。Example 3 1.0 g of V 2 O 5 powder and 0.15 g of Ketjen black were collected and mixed well in a mortar. On the other hand, ethylene oxide (8
(8 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (12 mol%) copolymer (weight average molecular weight: 1.5 million)
0.15 g and LiN (CF 3 SO 2 ) 2 0.05 g were dissolved in acetonitrile. The above solution was added to V 2 O 5 and Ketjen Black mixed powder and mixed well in a mortar to obtain a positive electrode slurry. After applying this slurry to a 20 μm thick aluminum foil, the solvent was removed.
Removed in an oven at 80 ° C. This was roll-pressed to produce a composite positive electrode having a total thickness of 40 μm for the positive electrode. The obtained composite positive electrode, 100 wt.% Of a copolymer of ethylene oxide (80.6 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (17.7 mol%) and allyl glycidyl ether (1.7 mol%) as a polymer solid electrolyte membrane LiN (CF 3 SO
2 ) 30 parts by weight of 2 were dissolved and crosslinked, and a polymer solid electrolyte was formed into a film having a thickness of 50 μm.
The m-type Li metal foils were bonded together to produce a coin cell. 6
0.2C in a constant temperature bath at 0 ℃, the upper limit voltage is 3.2, 3.5, 3.8, 4.
1, constant current charging by changing to 4.4V, 0.2C, lower limit voltage 2.0V
At a constant current. Even when the upper limit voltage was 3.6 V or more, charging could be performed without any problem. FIG. 2 shows the discharge capacity at each upper limit voltage. From this, it was possible to increase the discharge capacity of the battery by charging it to a high voltage. FIG. 3 shows the relationship between the charge / discharge capacity and the battery voltage at the 10th charge / discharge cycle. From this figure, it can be seen that the battery voltage sharply rises near a capacity of 270 mAh / g, which corresponds to full charge. It was found that charging can be easily controlled by setting the charging end voltage to 4.0 to 4.2V.
【0018】実施例4 V2O5粉末 1.0g、ケッチェンブラック 0.15gの比率で採
取し、乳鉢でよく混合した。一方、エチレンオキシド(8
8モル%)と2-(2-メトキシエトキシ)エチルグリシジルエ
ーテル(12モル%)の共重合体(重量平均分子量:150万)
0.10g、LiN(CF3SO2)2 0.033gをアセトニトリルに溶解さ
せた。V2O5、ケッチェンブラック混合粉末に上記溶液を
加え、乳鉢でよく混合し、正極スラリーを得た。このス
ラリーを厚み20μmのアルミ箔に塗布したのち、溶媒を
80℃の乾燥器中で除去した。これをロールプレスするこ
とにより、正極全体の厚み40μmの複合正極を作製し
た。えられた複合正極、高分子固体電解質膜としてエチ
レンオキシド(80.6モル%)と2-(2-メトキシエトキシ)エ
チルグリシジルエーテル(17.7モル%)とアリルグリシジ
ルエーテル(1.7モル%)の共重合体100重量部にLiN(CF3SO
2)2を30重量部溶解させ架橋処理を行った高分子固体電
解質を膜厚50μmに製膜したもの、負極として厚さ100μ
mのLi金属箔をはりあわせてコイン型セルを作製した。6
0℃の恒温槽中で上限電圧4.1Vで定電流充電、下限電圧
2.0Vで定電流放電を行った。0.2Cの電流で充放電を200
サイクル繰り返したとき、電池の容量は初期容量の76%
となった。また、0.5Cで充放電を行うと0.2Cで充放電を
行ったときの容量の約68%となった。Example 4 1.0 g of V 2 O 5 powder and 0.15 g of Ketjen black were collected and mixed well in a mortar. On the other hand, ethylene oxide (8
(8 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (12 mol%) copolymer (weight average molecular weight: 1.5 million)
0.10 g and LiN (CF 3 SO 2 ) 2 0.033 g were dissolved in acetonitrile. The above solution was added to V 2 O 5 and Ketjen Black mixed powder and mixed well in a mortar to obtain a positive electrode slurry. After applying this slurry to a 20 μm thick aluminum foil, the solvent was removed.
Removed in an oven at 80 ° C. This was roll-pressed to produce a composite positive electrode having a total thickness of 40 μm for the positive electrode. The obtained composite positive electrode, 100 wt.% Of a copolymer of ethylene oxide (80.6 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (17.7 mol%) and allyl glycidyl ether (1.7 mol%) as a polymer solid electrolyte membrane LiN (CF 3 SO
2 ) 30 parts by weight of 2 and a crosslinked polymer solid electrolyte formed into a film having a thickness of 50 μm, and a negative electrode having a thickness of 100 μm
The m-type Li metal foils were bonded together to produce a coin cell. 6
Constant current charging at the upper limit voltage of 4.1 V in a constant temperature bath at 0 ° C, lower limit voltage
A constant current discharge was performed at 2.0V. 200 charge / discharge with 0.2C current
After repeated cycles, battery capacity is 76% of initial capacity
It became. When charging and discharging were performed at 0.5 C, the capacity when charging and discharging was performed at 0.2 C was about 68%.
【0019】実施例5 V2O5粉末 1.0g、ケッチェンブラック 0.15gの比率で採
取し、乳鉢でよく混合した。一方、エチレンオキシド(8
2モル%)と2-(2-メトキシエトキシ)エチルグリシジルエ
ーテル(18モル%)とアリルグリシジルエーテル(1.7モル
%)の共重合体(重量平均分子量:150万)0.10g、LiN(CF
3SO2)2 0.033g、過酸化ベンゾイル0.005gをアセトニト
リルに溶解させた。V2O5、ケッチェンブラック混合粉末
に上記溶液を加え、乳鉢でよく混合し、正極スラリーを
得た。このスラリーを厚み20μmのアルミ箔に塗布した
のち、溶媒を80℃の乾燥器中で除去した。これをロール
プレスすることにより、正極全体の厚み40μmの複合正
極を作製した。この複合正極をアルゴンガス中、100
℃、3時間加熱処理を行うことにより複合正極中の重合
体の架橋を行った。高分子固体電解質膜としてエチレン
オキシド(80.6モル%)と2-(2-メトキシエトキシ)エチル
グリシジルエーテル(17.7モル%)とアリルグリシジルエ
ーテル(1.7モル%)の共重合体100重量部にLiN(CF3SO2)2
を30重量部溶解させ架橋処理を行った高分子固体電解質
を膜厚50μmに製膜したもの、負極として厚さ100μmのL
i金属箔をはりあわせてコイン型セルを作製した。60℃
の恒温槽中で上限電圧4.1Vで定電流充電、下限電圧2.0V
で定電流放電を行った。0.2Cの電流で充放電を200サイ
クル繰り返したとき、電池の容量は初期容量の81%とな
った。また、0.5Cで充放電を行うと0.2Cで充放電を行っ
たときの容量の約63%となった。これは、複合正極中の
重合体を架橋処理することにより、正極活物質粒子およ
び導電性粒子との結着性があがったため電池のサイクル
寿命が伸び、架橋処理により複合正極中の高分子固体電
解質のイオン導電性が低下したために0.5Cでの容量の低
下が大きかったと考えられる。Example 5 1.0 g of V 2 O 5 powder and 0.15 g of Ketjen black were collected and mixed well in a mortar. On the other hand, ethylene oxide (8
2 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (18 mol%) and allyl glycidyl ether (1.7 mol
%) Copolymer (weight average molecular weight: 1.5 million) 0.10 g, LiN (CF
0.033 g of 3 SO 2 ) 2 and 0.005 g of benzoyl peroxide were dissolved in acetonitrile. The above solution was added to V 2 O 5 and Ketjen Black mixed powder and mixed well in a mortar to obtain a positive electrode slurry. After this slurry was applied to an aluminum foil having a thickness of 20 μm, the solvent was removed in a dryer at 80 ° C. This was roll-pressed to produce a composite positive electrode having a total thickness of 40 μm for the positive electrode. This composite positive electrode was placed in argon gas for 100
The polymer in the composite positive electrode was crosslinked by performing a heat treatment at a temperature of 3 ° C. for 3 hours. As a polymer solid electrolyte membrane, ethylene oxide (80.6 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (17.7 mol%) and allyl glycidyl ether (1.7 mol%) 100 parts by weight of a copolymer of LiN (CF 3 SO 2 ) 2
Was prepared by dissolving 30 parts by weight of a polymer solid electrolyte having been subjected to crosslinking treatment to a film thickness of 50 μm.
A coin-shaped cell was produced by bonding metal foils. 60 ℃
Constant-current charging with an upper limit voltage of 4.1 V in a constant temperature bath, lower limit voltage of 2.0 V
At a constant current. When charging and discharging were repeated 200 times at a current of 0.2 C, the capacity of the battery was 81% of the initial capacity. When charging and discharging were performed at 0.5C, the capacity when charging and discharging was performed at 0.2C was about 63%. This is because the polymer in the composite positive electrode is crosslinked to increase the binding life between the positive electrode active material particles and the conductive particles, thereby extending the cycle life of the battery. It is considered that the decrease in capacity at 0.5 C was large due to the decrease in ionic conductivity.
【0020】実施例6 V2O5粉末 1.0g、ケッチェンブラック 0.15gの比率で採
取し、乳鉢でよく混合した。一方、エチレンオキシド(8
2モル%)と2-(2-メトキシエトキシ)エチルグリシジルエ
ーテル(18モル%)とアリルグリシジルエーテル(1.7モル
%)の共重合体(重量平均分子量:150万)0.10g、分子量
約2000のポリエチレングリコールジメチルエーテル 0.0
5g、LiN(CF3SO2)2 0.033g、過酸化ベンゾイル 0.005gを
アセトニトリルに溶解させた。V2O5、ケッチェンブラッ
ク混合粉末に上記溶液を加え、乳鉢でよく混合し、正極
スラリーを得た。このスラリーを厚み20μmのアルミ箔
に塗布したのち、溶媒を80℃の乾燥器中で除去した。こ
れをロールプレスすることにより、正極全体の厚み40μ
mの複合正極を作製した。この複合正極をアルゴンガス
中、100℃、3時間加熱処理を行うことにより複合正極中
の重合体の架橋を行った。高分子固体電解質膜としてエ
チレンオキシド(80.6モル%)と2-(2-メトキシエトキシ)
エチルグリシジルエーテル(17.7モル%)とアリルグリシ
ジルエーテル(1.7モル%)の共重合体100重量部にLiN(CF3
SO2)2を30重量部溶解させ架橋処理を行った高分子固体
電解質を膜厚50μmに製膜したもの、負極として厚さ100
μmのLi金属箔をはりあわせてコイン型セルを作製し
た。60℃の恒温槽中で上限電圧4.1Vで定電流充電、下限
電圧2.0Vで定電流放電を行った。0.2Cの電流で充放電を
200サイクル繰り返したとき、電池の容量は初期容量の7
9%となった。また、0.5Cで充放電を行うと0.2Cで充放
電を行ったときの容量の約72%となった。これは、複合
正極中の重合体を架橋処理することにより、正極活物質
粒子および導電性粒子との結着性があがったため電池の
サイクル寿命が伸び、複合正極中に添加したポリエチレ
ングリコールジメチルエーテルにより、イオン導電性が
向上したため0.5Cでの容量の低下が小さくなったと考え
られる。Example 6 1.0 g of V 2 O 5 powder and 0.15 g of Ketjen black were collected and mixed well in a mortar. On the other hand, ethylene oxide (8
2 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (18 mol%) and allyl glycidyl ether (1.7 mol
%) Copolymer (weight average molecular weight: 1.5 million) 0.10 g, polyethylene glycol dimethyl ether having a molecular weight of about 2000 0.0
5 g, LiN (CF 3 SO 2 ) 2 0.033 g and benzoyl peroxide 0.005 g were dissolved in acetonitrile. The above solution was added to V 2 O 5 and Ketjen Black mixed powder and mixed well in a mortar to obtain a positive electrode slurry. After this slurry was applied to an aluminum foil having a thickness of 20 μm, the solvent was removed in a dryer at 80 ° C. This is roll-pressed to obtain a total positive electrode thickness of 40μ.
m composite positive electrode was produced. The polymer in the composite positive electrode was crosslinked by subjecting the composite positive electrode to a heat treatment at 100 ° C. for 3 hours in an argon gas. Ethylene oxide (80.6 mol%) and 2- (2-methoxyethoxy) as polymer solid electrolyte membrane
100 parts by weight of a copolymer of ethyl glycidyl ether (17.7 mol%) and allyl glycidyl ether (1.7 mol%) was mixed with LiN (CF 3
SO 2 ) 2 dissolved in 30 parts by weight of a crosslinked polymer solid electrolyte was formed into a film having a thickness of 50 μm, and a negative electrode having a thickness of 100 μm.
A coin-shaped cell was produced by bonding together a μm Li metal foil. Constant current charging was performed at an upper limit voltage of 4.1 V and constant current discharging was performed at a lower limit voltage of 2.0 V in a 60 ° C. constant temperature bath. Charge and discharge with 0.2C current
After 200 cycles, the battery capacity is 7
9%. When charging and discharging were performed at 0.5 C, the capacity when charging and discharging was performed at 0.2 C was about 72%. This is because, by cross-linking the polymer in the composite positive electrode, the binding life with the positive electrode active material particles and the conductive particles is increased, so that the cycle life of the battery is extended, and the polyethylene glycol dimethyl ether added in the composite positive electrode causes It is considered that the decrease in capacity at 0.5 C was reduced due to the improved ionic conductivity.
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【発明の効果】本発明によれば、小型軽量で充放電容量
の大きいリチウムポリマー電池を供する複合正極ならび
にその正極を用いたリチウムポリマー電池がえられる。
本発明の電池は高い電圧まで充電することが可能であ
り、このことにより高容量を達成しうる。本発明の電池
は高温下においても安定に作動するため、電池温度が上
がりやすい電気自動車やハイブリッド自動車、ロードレ
ベリング用電池等として使用できる。According to the present invention, there can be obtained a composite positive electrode for providing a lithium polymer battery which is small and lightweight and has a large charge / discharge capacity, and a lithium polymer battery using the positive electrode.
The batteries of the present invention can be charged to high voltages, which can achieve high capacities. Since the battery of the present invention operates stably even at a high temperature, it can be used as an electric vehicle, a hybrid vehicle, a battery for road leveling, and the like in which the battery temperature easily rises.
【図1】V2O5複合正極を用いた全固体リチウムポリマー
電池の放電容量とサイクル特性との関係を示す。FIG. 1 shows the relationship between the discharge capacity and cycle characteristics of an all-solid lithium polymer battery using a V 2 O 5 composite positive electrode.
【図2】V2O5複合正極を用いたリチウムポリマー電池の
充電時の上限電圧と放電容量との関係を示す。FIG. 2 shows the relationship between the upper limit voltage and the discharge capacity during charging of a lithium polymer battery using a V 2 O 5 composite positive electrode.
【図3】V2O5複合正極を用いたリチウムポリマー電池の
充放電容量と電池電圧の関係を示す。FIG. 3 shows a relationship between charge / discharge capacity and battery voltage of a lithium polymer battery using a V 2 O 5 composite positive electrode.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 経済産 業省産業技術総合研究所大阪工業技術研究 所内 Fターム(参考) 5H029 AJ01 AJ05 AK02 AL06 AM16 DJ16 EJ12 HJ01 HJ02 HJ11 5H050 AA05 AA07 BA17 CA02 CB07 FA17 GA22 HA01 HA02 HA11 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Tetsuo Sakai 1-38 Midorioka, Ikeda-shi, Osaka Prefecture F-term (reference) 5H029 AJ01 AJ05 AK02 AL06 AM16 DJ16 EJ12 HJ01 HJ02 HJ11 5H050 AA05 AA07 BA17 CA02 CB07 FA17 GA22 HA01 HA02 HA11
Claims (10)
重合度1〜12のエチレンオキシド単位を有するグリシジ
ルエーテル5〜70モル%からなる重量平均分子量が100万
以上の共重合体に電解質塩としてリチウム塩を溶解した
高分子固体電解質、正極活物質粒子としてバナジウム系
酸化物VXO5(X=2〜2.5)、および導電性粒子からなる複合
体を集電体上に塗着したことを特徴とする複合正極。1. A copolymer having 30 to 95 mol% of ethylene oxide and 5 to 70 mol% of a glycidyl ether having an ethylene oxide unit having a degree of polymerization of 1 to 12 in a side chain and having a weight average molecular weight of 1,000,000 or more. A composite consisting of a solid polymer electrolyte in which salts are dissolved, a vanadium-based oxide V X O 5 (X = 2 to 2.5) as positive electrode active material particles, and conductive particles is coated on a current collector. Composite positive electrode.
重合度1〜12のエチレンオキシド単位を有するグリシジ
ルエーテル5〜70モル%からなる重量平均分子量が100万
以上の共重合体に電解質塩としてリチウム塩を溶解した
高分子固体電解質、平均分子量が500以上2000以下のポ
リエチレングリコールまたはそのエーテル化合物、正極
活物質粒子としてバナジウム系酸化物VXO5(X=2〜2.
5)、および導電性粒子からなる複合体を集電体上に塗着
したことを特徴とする複合正極。2. A copolymer comprising 30 to 95 mol% of ethylene oxide and 5 to 70 mol% of a glycidyl ether having an ethylene oxide unit having a degree of polymerization of 1 to 12 in a side chain and having a weight average molecular weight of 1,000,000 or more is lithium as an electrolyte salt. A solid polymer electrolyte in which salts are dissolved, polyethylene glycol having an average molecular weight of 500 or more and 2000 or less, or an ether compound thereof, and a vanadium-based oxide V X O 5 (X = 2 to 2.
5) and a composite positive electrode, wherein a composite comprising conductive particles is coated on a current collector.
重合度1〜12のエチレンオキシド単位を有するグリシジ
ルエーテル5〜69モル%とアリルグリシジルエーテル1〜5
モル%からなる重量平均分子量が100万以上の共重合体
に電解質塩としてリチウム塩を溶解した高分子固体電解
質、正極活物質粒子としてバナジウム系酸化物VXO5(X=2
〜2.5)、および導電性粒子からなる複合体を集電体上に
塗着したことを特徴とする複合正極。3. A glycidyl ether having 30 to 94 mol% of ethylene oxide, an ethylene oxide unit having a polymerization degree of 1 to 12 in a side chain, and 5 to 69 mol% of allyl glycidyl ether.
Mol% of a copolymer having a weight average molecular weight of 1,000,000 or more and a lithium salt dissolved as an electrolyte salt in a copolymer, and a vanadium-based oxide V X O 5 (X = 2
To 2.5), and a composite comprising conductive particles coated on a current collector.
重合度1〜12のエチレンオキシド単位を有するグリシジ
ルエーテル5〜69モル%とアリルグリシジルエーテル1〜5
モル%からなる重量平均分子量が100万以上の共重合体
に電解質塩としてリチウム塩を溶解した高分子固体電解
質、重量平均分子量が500以上2000以下のポリエチレン
グリコールまたはそのエーテル化合物、正極活物質粒子
としてバナジウム系酸化物VXO5(X=2〜2.5)、および導電
性粒子からなる複合体を集電体上に塗着したことを特徴
とする複合正極。4. A glycidyl ether having 30 to 94 mol% of ethylene oxide and an ethylene oxide unit having a degree of polymerization of 1 to 12 in a side chain, and 5 to 69 mol% of allyl glycidyl ether.
As a solid polymer electrolyte in which a lithium salt is dissolved as an electrolyte salt in a copolymer having a weight-average molecular weight of 1,000,000 or more consisting of polyethylene glycol or an ether compound having a weight-average molecular weight of 500 to 2,000, or a positive electrode active material particle. vanadium oxide V X O 5 (X = 2~2.5 ), and a composite positive electrode, characterized in that the complex consisting of the conductive particles was coated on a current collector.
せたことを特徴とする請求項3または請求項4に記載の複
合正極。5. The composite positive electrode according to claim 3, wherein the solid polymer electrolyte in the composite positive electrode is cross-linked.
がLiN(CF3SO2)2であり、このリチウム塩を共重合体100
重量部に対して5〜50重量部用いることを特徴とする請
求項1から請求項5のいずれかに記載の複合正極。6. The lithium salt used for the polymer solid electrolyte is LiN (CF 3 SO 2 ) 2 , and the lithium salt is used as a copolymer 100
6. The composite positive electrode according to claim 1, wherein the composite positive electrode is used in an amount of 5 to 50 parts by weight based on parts by weight.
はアセチレンブラックであり、これらの導電性粒子を正
極活物質粒子100重量部に対して5〜20重量部用いること
を特徴とする請求項1から請求項5のいずれかに記載の複
合正極。7. The method according to claim 1, wherein the conductive particles are Ketjen black or acetylene black, and the conductive particles are used in an amount of 5 to 20 parts by weight based on 100 parts by weight of the positive electrode active material particles. Item 6. The composite positive electrode according to any one of items 5.
子固体電解質5〜35重量部用いることを特徴とする請求
項1から請求項5のいずれかに記載の複合正極。8. The composite positive electrode according to claim 1, wherein the polymer solid electrolyte is used in an amount of 5 to 35 parts by weight based on 100 parts by weight of the positive electrode active material particles.
複合正極、リチウム金属あるいはリチウム金属合金から
なる負極、ならびにエチレンオキシド30〜94モル%、側
鎖に重合度1〜12のエチレンオキシド単位を有するグリ
シジルエーテル5〜69モル%とアリルグリシジルエーテル
1〜5モル%からなる重量平均分子量が100万以上の共重
合体にリチウム塩を溶解した高分子固体電解質を架橋さ
せた膜からなるリチウムポリマー電池。9. The composite positive electrode according to claim 1, a negative electrode comprising lithium metal or a lithium metal alloy, and ethylene oxide units having 30 to 94 mol% of ethylene oxide and a degree of polymerization of 1 to 12 in a side chain. Glycidyl ether having 5 to 69 mol% and allyl glycidyl ether
A lithium polymer battery comprising a membrane in which a polymer solid electrolyte in which a lithium salt is dissolved in a copolymer having a weight average molecular weight of 1,000,000 or more and comprising 1 to 5 mol% is crosslinked.
充電方法において、3.6〜4.2Vの範囲で終了することを
特徴とするリチウムポリマー電池の充電方法。10. The method for charging a lithium polymer battery according to claim 9, wherein the charging is completed in a range of 3.6 to 4.2V.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001096504A JP4624589B2 (en) | 2001-03-29 | 2001-03-29 | Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001096504A JP4624589B2 (en) | 2001-03-29 | 2001-03-29 | Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002298844A true JP2002298844A (en) | 2002-10-11 |
JP4624589B2 JP4624589B2 (en) | 2011-02-02 |
Family
ID=18950411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001096504A Expired - Lifetime JP4624589B2 (en) | 2001-03-29 | 2001-03-29 | Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4624589B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002305028A (en) * | 2001-04-04 | 2002-10-18 | Nissan Motor Co Ltd | Manufacturing method of solid polyelectrolytic battery and solid polyelectrolyte |
JP2012209230A (en) * | 2011-03-30 | 2012-10-25 | Daiso Co Ltd | Nonaqueous electrolyte secondary battery |
US9219257B2 (en) | 2003-01-20 | 2015-12-22 | Sony Corporation | Non-aqueous electrolyte battery with gas adsorbing carbon material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH117980A (en) * | 1997-06-13 | 1999-01-12 | Daiso Co Ltd | Lithium polymer battery |
JPH1173992A (en) * | 1997-07-04 | 1999-03-16 | Daiso Co Ltd | Novel lithium polymer battery |
JP2000306425A (en) * | 1999-04-19 | 2000-11-02 | Daiso Co Ltd | Crosslinked polymer solid electrolyte and its use |
-
2001
- 2001-03-29 JP JP2001096504A patent/JP4624589B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH117980A (en) * | 1997-06-13 | 1999-01-12 | Daiso Co Ltd | Lithium polymer battery |
JPH1173992A (en) * | 1997-07-04 | 1999-03-16 | Daiso Co Ltd | Novel lithium polymer battery |
JP2000306425A (en) * | 1999-04-19 | 2000-11-02 | Daiso Co Ltd | Crosslinked polymer solid electrolyte and its use |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002305028A (en) * | 2001-04-04 | 2002-10-18 | Nissan Motor Co Ltd | Manufacturing method of solid polyelectrolytic battery and solid polyelectrolyte |
US9219257B2 (en) | 2003-01-20 | 2015-12-22 | Sony Corporation | Non-aqueous electrolyte battery with gas adsorbing carbon material |
JP2012209230A (en) * | 2011-03-30 | 2012-10-25 | Daiso Co Ltd | Nonaqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4624589B2 (en) | 2011-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9318771B2 (en) | Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte | |
US7288339B2 (en) | Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof | |
CN112514132B (en) | Composite electrolyte membrane and all-solid-state battery containing the composite electrolyte membrane | |
KR20190113605A (en) | Hybrid solid electrolyte membrane for all solid state secondary battery and all solid state secondary battery comprising the same | |
JP4352475B2 (en) | Solid electrolyte secondary battery | |
US20200251714A1 (en) | Cathode for Solid Electrolyte Battery and Solid Electrolyte Battery Comprising Same | |
WO2002084775A1 (en) | Lithium polymer secondary cell | |
JP2005142141A (en) | Organic electrolyte and lithium battery using the same | |
JP2003242964A (en) | Non-aqueous electrolyte secondary battery | |
JP2001357883A (en) | Gel electrolyte and lithium battery using the same | |
JP2001210377A (en) | Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it | |
JP4559587B2 (en) | Solid lithium polymer battery | |
JP4412808B2 (en) | Lithium polymer secondary battery | |
JP4142921B2 (en) | Lithium ion secondary battery | |
CN111837258B (en) | Method for producing an electrode comprising a polymer solid electrolyte and electrode obtained thereby | |
KR100327915B1 (en) | Polymer electrolyte, method for preparing the same, and lithium secondary battery employing the same | |
JP4086939B2 (en) | Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same | |
TW201836201A (en) | Electrode and secondary battery using radical polymer | |
JP2002216848A (en) | Gelled electrolyte, and gelled electrolyte cell using the same | |
TW202012457A (en) | Secondary battery using radical polymer in electrode | |
JP5066804B2 (en) | Lithium ion secondary battery | |
JP4624589B2 (en) | Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same | |
JP2003100348A (en) | Composite polymer electrolyte and electrochemical device using the same | |
JP2004200122A (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP2002343433A (en) | Manganese-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070419 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100416 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4624589 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |