JP2002289888A - Substrate for solar cell and method of manufacturing the same, and the solar cell formed by using the same - Google Patents
Substrate for solar cell and method of manufacturing the same, and the solar cell formed by using the sameInfo
- Publication number
- JP2002289888A JP2002289888A JP2001084198A JP2001084198A JP2002289888A JP 2002289888 A JP2002289888 A JP 2002289888A JP 2001084198 A JP2001084198 A JP 2001084198A JP 2001084198 A JP2001084198 A JP 2001084198A JP 2002289888 A JP2002289888 A JP 2002289888A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- substrate
- uneven
- layer
- uneven step
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000002245 particle Substances 0.000 claims abstract description 41
- 239000000919 ceramic Substances 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 19
- 238000010248 power generation Methods 0.000 claims abstract description 15
- 239000011230 binding agent Substances 0.000 claims abstract description 11
- 238000005488 sandblasting Methods 0.000 claims abstract description 11
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 5
- 230000007547 defect Effects 0.000 abstract description 7
- 230000001788 irregular Effects 0.000 abstract 3
- 238000003754 machining Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 20
- 239000006061 abrasive grain Substances 0.000 description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 9
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は凹凸形状を有する太
陽電池用基板とその製造方法及びその太陽電池用基板を
用いて形成された太陽電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell substrate having an uneven shape, a method for manufacturing the same, and a solar cell formed using the solar cell substrate.
【0002】[0002]
【従来の技術】一般的な太陽電池は、ガラス、金属、樹
脂などの基板上に、下部電極層と、発電層(例えばアモ
ルファスシリコン層)と、上部電極層の積層膜で構成さ
れていた。また、前記太陽電池の発電層への光の吸収量
を増加させるために、表面に凹凸形状が形成された基板
上に前記積層膜を形成することで光電変換効率を向上さ
せていた。2. Description of the Related Art A general solar cell comprises a laminated film of a lower electrode layer, a power generation layer (for example, an amorphous silicon layer) and an upper electrode layer on a substrate made of glass, metal, resin or the like. Further, in order to increase the amount of light absorbed by the power generation layer of the solar cell, the photoelectric conversion efficiency has been improved by forming the laminated film on a substrate having an uneven surface.
【0003】以下に、その具体的に開示された従来の構
造とその製造方法について説明する。図4は、従来の太
陽電池用基板の製造方法を示す断面工程図である。[0003] The conventional structure specifically disclosed and its manufacturing method will be described below. FIG. 4 is a sectional process view showing a conventional method for manufacturing a solar cell substrate.
【0004】特開平10−70294号公報には、図4
(c)に示すように、第1の凹凸段差部1の表面に、そ
れよりも小さい第2の凹凸段差部2を有するセラミック
基板について記載されている。前記基板を用いて、その
上層に前記太陽電池を形成すれば、基板表面に設けた第
1、第2の大小の凹凸段差部の形状により前記積層膜の
界面で光が散乱し、アモルファスシリコン層内での光路
長を増加させることができ、太陽電池の短絡電流及び光
電変換効率を向上が可能となる。Japanese Patent Application Laid-Open No. 10-70294 discloses FIG.
As shown in (c), a ceramic substrate having a second uneven step 2 smaller than the first uneven step 1 on the surface of the first uneven step 1 is described. If the solar cell is formed as an upper layer using the substrate, light is scattered at the interface of the laminated film due to the shape of the first and second large and small uneven portions provided on the substrate surface, and the amorphous silicon layer is formed. It is possible to increase the optical path length in the inside, and it is possible to improve the short-circuit current and the photoelectric conversion efficiency of the solar cell.
【0005】また、前記公報では、前記第1、第2の大
小の凹凸段差部を形成する方法として、サンドブラスト
処理を2回施している。具体的には、図4(a)に示す
ように、平滑なセラミック基板44の表面に粒径50μ
m以上の第1の砥粒46を用いて1回目のサンドブラス
ト処理を行い、図4(b)に示す平均段差d1が3μm
以上になる第1の凹凸段差部1を形成し、粒径20μm
以下の第2の砥粒48を用いて2回目のサンドブラスト
処理を施すことにより、図4(c)に示す平均段差が3
μm以上の第1の凹凸段差部1の表面に、平均段差d2
が0.5μm以下の第2の凹凸段差部2を有する太陽電
池形成面50を備えた、セラミック基板44を得ること
ができると開示している。In the above-mentioned publication, sandblasting is performed twice as a method for forming the first and second large and small uneven steps. Specifically, as shown in FIG. 4A, the surface of the smooth ceramic substrate 44 has a particle size of 50 μm.
The first sandblasting process is performed using the first abrasive grains 46 of m or more, and the average step d1 shown in FIG.
The above-mentioned first uneven step portion 1 is formed, and the particle size is 20 μm.
By performing the second sandblasting process using the following second abrasive grains 48, the average step shown in FIG.
The average step d2 is formed on the surface of the first uneven portion 1
Discloses that it is possible to obtain a ceramic substrate 44 having a solar cell forming surface 50 having a second uneven step portion 2 of 0.5 μm or less.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来技
術の方法においては、1回目のサンドブラスト処理後の
基板表面は、粒径50μm以上の第1の砥粒46によっ
てダメージを受け、多くの欠けや亀裂が不規則に生じて
おり、2回目のサンドブラスト処理によって比較的滑ら
かな表面に加工できるが、完全に欠陥を取り除かれた太
陽電池用基板を形成することはできない。However, in the prior art method, the substrate surface after the first sandblasting is damaged by the first abrasive grains 46 having a particle size of 50 μm or more, and many chips and cracks are formed. Are irregularly generated and can be processed into a relatively smooth surface by the second sandblasting process, but a solar cell substrate from which defects have been completely removed cannot be formed.
【0007】さらに、一般にブラスト処理を行うと被ブ
ラスト物に歪みや反りが生じるため、基板にサンドブラ
スト処理を2回行うことによって、より歪みや反りの程
度が大きくなる問題もある。[0007] Further, in general, when blasting is performed, distortion or warpage occurs in the blasted object. Therefore, there is a problem that the degree of distortion or warping is further increased by performing sandblasting on the substrate twice.
【0008】本発明の目的は、上記技術的課題に鑑みて
為されたものであって、欠けや亀裂等の欠陥や、歪み、
反りを生じることない太陽電池に好適な第1、第2の凹
凸段差部を有する太陽電池用基板と、その製造方法、及
びその太陽電池用基板を用いて形成された太陽電池を提
供することである。An object of the present invention has been made in view of the above technical problems, and includes a defect such as a chip or a crack;
By providing a solar cell substrate having first and second uneven steps suitable for a solar cell that does not warp, a method of manufacturing the same, and a solar cell formed using the solar cell substrate. is there.
【0009】[0009]
【問題を解決するための手段】本発明の太陽電池用基板
は、3μm以上の第1の凹凸段差部表面にそれよりも小
さな第2の凹凸段差部が形成された太陽電池用基板にお
いて、粒径3〜6μmの粒子と粒径0.5〜1μmの粒
子を任意の割合で混合した80〜95wt%のセラミッ
ク粉体の原料粉と、20〜5wt%の有機質のバインダ
により形成された平均段差3μm以上の第1の凹凸段差
部を有する焼結成型体に、該第1の凹凸段差部の表面に
砥粒加工を行い、該太陽電池用基板上に形成される太陽
電池の発電層の厚みよりも小さい平均段差に設定された
第2の凹凸段差部が形成されていることを特徴とする。Means for Solving the Problems A solar cell substrate according to the present invention is a solar cell substrate in which a second uneven step smaller than 3 μm is formed on the surface of the first uneven step of 3 μm or more. An average step formed by a raw material powder of 80 to 95 wt% ceramic powder in which particles having a diameter of 3 to 6 μm and particles having a particle size of 0.5 to 1 μm are mixed at an arbitrary ratio and an organic binder of 20 to 5 wt% The surface of the first uneven step is subjected to abrasive processing on a sintered molded body having a first uneven step of 3 μm or more, and the thickness of the power generation layer of the solar cell formed on the solar cell substrate It is characterized in that a second uneven portion having a smaller average step is formed.
【0010】さらに、本発明の太陽電池用基板で行う砥
粒加工は、サンドブラストまたは液体ホーニングである
ことを特徴とする。Further, the abrasive processing performed on the solar cell substrate of the present invention is sand blasting or liquid honing.
【0011】本発明の太陽電池用基板の製造方法は、粒
径3〜6μmの粒子と粒径0.5〜1μmの粒子を、そ
れぞれ任意の割合で混合したセラミック粉体を原料粉と
して、該原料粉80〜95wt%に対して有機質のバイ
ンダ20〜5wt%を含む基板状の成型体を焼結し、平
均段差3μm以上の第1の凹凸状段差表面を有する焼結
体を形成した後に、該第1の凹凸段差部表面に砥粒加工
により、該基板上に形成される太陽電池の発電層の厚み
よりも小さい平均段差とした第2の凹凸段差部を形成す
ることを特徴とする。The method for manufacturing a solar cell substrate according to the present invention is characterized in that ceramic powder obtained by mixing particles having a particle size of 3 to 6 μm and particles having a particle size of 0.5 to 1 μm at an arbitrary ratio as raw material powder After sintering a substrate-like molded body containing 20 to 5 wt% of an organic binder with respect to 80 to 95 wt% of a raw material powder to form a sintered body having a first uneven step surface having an average step of 3 μm or more, A second uneven step portion having an average step smaller than the thickness of the power generation layer of the solar cell formed on the substrate is formed on the surface of the first uneven step portion by abrasive processing.
【0012】本発明の太陽電池は、前記製造方法によっ
て形成された太陽電池用基板上に下部電極層、発電層、
上部電極層の積層膜が形成されていることを特徴とす
る。The solar cell according to the present invention comprises a lower electrode layer, a power generation layer,
A stacked film of an upper electrode layer is formed.
【0013】[0013]
【発明の実施の形態】本発明の太陽電池用基板の製造方
法は、表面に平均段差3μm以上の第1の凹凸段差部1
を有するセラミックの焼結体を作成してから、第1の凹
凸段差部1表面に1回だけブラスト処理を施して、太陽
電池の発電層の厚み以下の平均段差の第2の凹凸段差部
2が形成された構造体であるので、従来の2回ブラスト
処理によって生じる基板の欠陥や歪み、反りを最小限に
抑えることができる。前記第1、第2の凹凸段差部形状
における最適な実施の形態ついて、以下図3を用いて説
明する。BEST MODE FOR CARRYING OUT THE INVENTION The method for manufacturing a solar cell substrate according to the present invention is directed to a method for manufacturing a solar cell substrate, comprising the steps of:
After a ceramic sintered body having the following structure, a blast process is performed only once on the surface of the first uneven step portion 1, and the second uneven step portion 2 having an average step equal to or less than the thickness of the power generation layer of the solar cell. Is formed, it is possible to minimize the defects, distortion, and warpage of the substrate caused by the conventional blast processing twice. An optimal embodiment of the first and second uneven step shapes will be described below with reference to FIG.
【0014】図3は、本発明の製造方法による太陽電池
用基板を用いて形成したアモルファスシリコン太陽電池
の断面図である。本発明により形成された太陽電池42
は、平均段差3μm以上の第1の凹凸段差部1の表面
に、太陽電池の発電層の厚み以下の平均段差の第2の凹
凸段差部2が形成された太陽電池用基板24の太陽電池
形成面26に、下部電極層としてAl、Agなどの金属
膜28、発電層としてアモルファスシリコン膜38、上
部電極層として透明導電膜40が順次積層されている。
アモルファスシリコン膜38はアモルファスシリコンn
層(以下n層と略す。)30、アモルファスシリコンi
層(以下i層と略す。)32、アモルファスシリコンカ
ーボンバッファー層(以下b層と略す。)34、アモル
ファスシリコンカーボンp層(以下p層と略す)36の
順に積層した構成体である。FIG. 3 is a cross-sectional view of an amorphous silicon solar cell formed by using the solar cell substrate according to the manufacturing method of the present invention. Solar cell 42 formed according to the present invention
The solar cell formation of the solar cell substrate 24 in which the second uneven step portion 2 having an average step not more than the thickness of the power generation layer of the solar cell is formed on the surface of the first uneven step portion 1 having an average step not less than 3 μm. On the surface 26, a metal film 28 of Al, Ag or the like as a lower electrode layer, an amorphous silicon film 38 as a power generation layer, and a transparent conductive film 40 as an upper electrode layer are sequentially laminated.
The amorphous silicon film 38 is made of amorphous silicon n
Layer (hereinafter abbreviated as n layer) 30, amorphous silicon i
This is a structure in which a layer (hereinafter abbreviated as i layer) 32, an amorphous silicon carbon buffer layer (hereinafter abbreviated as b layer) 34, and an amorphous silicon carbon p layer (hereinafter abbreviated as p layer) 36 are laminated in this order.
【0015】積層膜の界面の第2の凹凸段差部2は膜中
で光を散乱させる効果があり、光の散乱は屈折率(n)
の差が大きい界面、例えば、透明導電膜(n=1.9)
と、アモルファスシリコン膜(n=3.5)の界面で、
導光された光は散乱されることとなる。屈折した光はi
層32を斜めに導光されることとなり、光が垂直に導光
される場合と比べて光路長をより長くさせることができ
る。その結果として、太陽電池の光のi層32への吸収
量が増加して短絡電流を増加させることができる。The second uneven step portion 2 at the interface of the laminated film has an effect of scattering light in the film, and the scattering of light is a refractive index (n).
Interface, for example, a transparent conductive film (n = 1.9)
And at the interface of the amorphous silicon film (n = 3.5)
The guided light will be scattered. The refracted light is i
Since the light is guided obliquely through the layer 32, the optical path length can be made longer than when the light is guided vertically. As a result, the amount of light absorbed by the solar cell into the i-layer 32 increases, and the short-circuit current can be increased.
【0016】前記第2の凹凸段差部2が大きくなるよう
に設定して前記積層膜の界面の凹凸を大きくすれば、光
の散乱効果を増大させることができるが、凹凸の段差が
アモルファスシリコン膜38の厚み(一般的には0.5
μm程度)よりも大きくなると、上部電極層の金属膜2
8と下部電極層の透明導電膜40が短絡しやすい構造と
なってしまう。そこで、前記第2の凹凸段差部2の平均
段差は太陽電池の発電層の厚み以下にする必要がある。If the unevenness at the interface of the laminated film is increased by setting the second unevenness step portion 2 to be large, the light scattering effect can be increased. 38 thickness (typically 0.5
μm), the metal film 2 of the upper electrode layer
8 and the transparent conductive film 40 of the lower electrode layer are likely to be short-circuited. Therefore, it is necessary that the average step of the second uneven step portion 2 is equal to or less than the thickness of the power generation layer of the solar cell.
【0017】また、第1の凹凸段差部1は光を散乱する
だけでなく、一度アモルファスシリコン膜38を透過し
た光の下部電極28による反射光を再度アモルファスシ
リコン膜に入射させる効果があり、平均段差3μm以上
でその効果が顕著となることは周知の事実であり、従来
技術(特開平10−70294)に記載されている実験
結果からも明らかである。The first uneven step portion 1 not only scatters light but also has the effect of causing the reflected light of the light once transmitted through the amorphous silicon film 38 and reflected by the lower electrode 28 to enter the amorphous silicon film again. It is a well-known fact that the effect is remarkable when the step is 3 μm or more, and it is clear from the experimental results described in the prior art (Japanese Patent Laid-Open No. 10-70294).
【0018】以上の説明で明らかなように、前記第2の
凹凸段差部2の平均段差を、太陽電池の発電層の厚み以
下とし、第1の凹凸段差部1の平均段差を3μm以上に
すれば、上下電極層の短絡もなく、最適な光の散乱効果
を得ることができる。As is clear from the above description, the average step of the second uneven step 2 is set to be equal to or less than the thickness of the power generation layer of the solar cell, and the average step of the first uneven step 1 is set to 3 μm or more. Thus, an optimum light scattering effect can be obtained without short-circuiting the upper and lower electrode layers.
【0019】(実施例)以下、図面を用いて本発明の実
施の形態について詳細に説明する。図2(a)〜(c)
は、本発明の太陽電池用基板の製造方法を示す工程断面
図であり、図3は本発明の実施形態により作成された基
板を用いた太陽電池の概略断面図である。(Embodiments) Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 (a) to (c)
Is a process cross-sectional view showing a method for manufacturing a solar cell substrate of the present invention, and FIG. 3 is a schematic cross-sectional view of a solar cell using a substrate prepared according to an embodiment of the present invention.
【0020】まず、表面に平均段差3μm以下の凹凸を
有するセラミックの焼結体を得る方法について、セラミ
ック原料にアルミナ(Al2O3)を用いた場合を例に挙
げて説明するが、アルミナの他に、マグネシア(Mg
O)、シリカ(SiO2)、ジルコニア(ZrO2)、ム
ライト(3Al2O3・2SiO2)等を用いても同様
に、本発明の太陽電池用基板を形成することができる。First, a method of obtaining a ceramic sintered body having a surface having irregularities with an average step of 3 μm or less will be described with reference to a case where alumina (Al 2 O 3 ) is used as a ceramic raw material. In addition, magnesia (Mg
O), silica (SiO 2 ), zirconia (ZrO 2 ), mullite (3Al 2 O 3 .2SiO 2 ), or the like, can similarly form the solar cell substrate of the present invention.
【0021】上記割合で混合されたアルミナ粉末から図
2(a)に示すような基板状の成形体10を作成した。
成形体10は、粒径3〜6μmのアルミナ粒子12と、
粒径0.5〜1μmのアルミナ粒子14を70wt%、
30wt%の割合で混合したアルミナ粉末と、有機質の
バインダ16を有機溶剤と共に混練した後、基板上に成
型した。前記アルミナ粉末80〜95wt%と、バイン
ダ16が20〜5wt%の範囲で形成されていることが
好ましく、他のセラミック原料を使用する際も同様であ
る。A substrate-like molded body 10 as shown in FIG. 2A was prepared from the alumina powder mixed in the above ratio.
The molded body 10 includes alumina particles 12 having a particle size of 3 to 6 μm,
70 wt% of alumina particles 14 having a particle size of 0.5 to 1 μm,
An alumina powder mixed at a ratio of 30 wt% and an organic binder 16 were kneaded together with an organic solvent, and then molded on a substrate. It is preferable that the alumina powder is formed in the range of 80 to 95 wt% and the binder 16 is formed in the range of 20 to 5 wt%, and the same applies when other ceramic raw materials are used.
【0022】前記アルミナ粉末の粒径は焼結体の表面形
状に大きく影響するので、粉末の粒度を選定して適切な
混合比とする事は重要であり、アルミナ以外の原料を用
いる場合でも適用される。Since the particle size of the alumina powder greatly affects the surface shape of the sintered body, it is important to select the particle size of the powder and to set an appropriate mixing ratio. Is done.
【0023】なお、粒径0.5〜1μmのアルミナ粒子
14は粒径3〜6μmのアルミナ粒子12の隙間を埋め
るように存在しており、焼結体の欠陥や空隙を減らし、
密度を高くして強度を増大させるためには、図2(a)
のように成形体10をできる限り最密充填に近くしてお
くことが望ましい。The alumina particles 14 having a particle size of 0.5 to 1 μm exist so as to fill gaps between the alumina particles 12 having a particle size of 3 to 6 μm, thereby reducing defects and voids in the sintered body.
To increase the density and increase the strength, FIG.
It is desirable to keep the compact 10 as close as possible to the closest packing.
【0024】前記バインダ16は、成形時の成形性や可
塑性、接着性を高めたり、セラミックスが焼成されるま
でセラミック粉末を強固に結びつけておくために使用す
るもので、例えばポリメタクリレート、ジブチルフタレ
ートなどを用いることができる。The binder 16 is used to enhance the moldability, plasticity and adhesiveness during molding and to firmly bind the ceramic powder until the ceramic is fired. For example, the binder 16 is made of polymethacrylate, dibutyl phthalate or the like. Can be used.
【0025】次に前記成形体10を、電気炉を使用し2
00〜600℃付近でバインダ16を分解蒸発させた
後、1550〜1650℃で焼成して、第1の凹凸段差
部1の平均段差D1を3μm以上とした焼結体18を得
ることができた。Next, the molded body 10 was placed in an electric furnace for 2 hours.
After the binder 16 was decomposed and evaporated at around 00 to 600 ° C., it was fired at 1550 to 1650 ° C. to obtain a sintered body 18 having an average step D1 of the first uneven step portion 1 of 3 μm or more. .
【0026】また、前記焼結体18の表面20はアルミ
ナ粒子が焼結して形成されているので、従来の方法によ
る粒径50μm以上の砥粒を用いてサンドブラスト処理
を行った基板の表面よりも亀裂や欠陥の少ない滑らかな
表面を有する基板を形成することができる。Further, since the surface 20 of the sintered body 18 is formed by sintering alumina particles, the surface 20 of the substrate is subjected to sandblasting using abrasive grains having a particle diameter of 50 μm or more according to a conventional method. In addition, a substrate having a smooth surface with few cracks and defects can be formed.
【0027】次に図2(b)に示してあるように、焼結
体18の表面20に、湿式の液体ホーニング処理にて砥
粒加工を行った。前記湿式の液体ホーニング処理は、砥
粒を含んだ水を加工物に吹き付けるので、小さい砥粒を
用いた場合には加工性がよく、水で洗浄しながら研削で
きるので、加工処理後の基板の洗浄も容易になる。前記
湿式の液体ホーニング処理の条件は、粒径20μm以下
のアルミナ砥粒を用い、投射距離20mm、投射角度9
0度、処理速度10mm/sec、エア圧0.8〜1.
2Kg/cm2程度とし、噴射口のサイズは処理する基
板の大きさに応じて設定して行った。前記アルミナ砥粒
にシリコンカーバイド(SiC)を用いても同様な効果
を得ることができる。Next, as shown in FIG. 2B, the surface 20 of the sintered body 18 was subjected to abrasive processing by a wet liquid honing process. In the wet liquid honing process, water containing abrasive grains is sprayed on the workpiece, so that when using small abrasive grains, the workability is good, and the grinding can be performed while washing with water. Cleaning is also easier. The conditions of the wet liquid honing treatment are as follows: alumina abrasive grains having a particle diameter of 20 μm or less are used, a projection distance is 20 mm, and a projection angle is 9 mm.
0 degree, processing speed 10 mm / sec, air pressure 0.8-1.
The ejection port was set at about 2 kg / cm 2, and the size of the injection port was set according to the size of the substrate to be processed. Similar effects can be obtained by using silicon carbide (SiC) for the alumina abrasive grains.
【0028】また、前記砥粒加工をサンドブラストによ
り粒径20μm以下のアルミナの砥粒22を用いて行っ
ても同様な形状を得ることができる。A similar shape can be obtained by performing the above-described abrasive grain processing by sandblasting using alumina abrasive grains 22 having a particle size of 20 μm or less.
【0029】更に、焼結体18の表面20に上述の砥粒
加工を行うことにより、図2(c)に示すような太陽電
池用基板24が得られ、その表面すなわち太陽電池形成
面26は、平均段差3μm以上の凹凸状の表面に第2の
凹凸段差部2が形成され、その平均段差D2は0.5μ
m以下とすることができた。Further, by subjecting the surface 20 of the sintered body 18 to the above-mentioned abrasive processing, a solar cell substrate 24 as shown in FIG. 2C is obtained. A second uneven step portion 2 is formed on an uneven surface having an average step of 3 μm or more, and the average step D2 is 0.5 μm.
m or less.
【0030】上述したように太陽電池用基板24は、滑
らかな表面を有する焼結体18に小さな砥粒を用いたブ
ラスト処理を1回のみ行って作成できるので、砥粒が基
板に与えるダメージを極力抑えることができ、歪みや反
りの発生が押さえられ、太陽電池形成面26には欠けや
亀裂が生じない。As described above, the solar cell substrate 24 can be formed by performing the blasting process using the small abrasive grains only once on the sintered body 18 having a smooth surface, so that the abrasive grains do not damage the substrate. As much as possible, generation of distortion and warpage is suppressed, and chipping or cracking does not occur on the solar cell forming surface 26.
【0031】以上のようにして製造した太陽電池用基板
24の太陽電池形成面26に、例えば図3に示すよう
に、スパッタ装置を用いて下部電極層としてのAl、A
gなどの金属膜28を厚さ1μm、プラズマCVD装置
を用いて発電層であるアモルファスシリコン膜38を厚
さを約500nm、さらにスパッタ装置などを用いて上
部電極層としてのITOやSnO2などのを厚さ80n
mで順次形成し、太陽電池42を得ることができた。透
明導電膜40側から入射した光に対し、小さな凹凸段差
部2による散乱効果に大きな凹凸段差部による散乱効果
が加わり、アモルファスシリコン膜38内での光路長が
増大するので、短絡電流を増加させることができ、太陽
電池の光電変換効率が向上することは既知のとおりであ
る。On the solar cell forming surface 26 of the solar cell substrate 24 manufactured as described above, for example, as shown in FIG.
g of a metal film 28 having a thickness of 1 μm, an amorphous silicon film 38 serving as a power generation layer having a thickness of about 500 nm using a plasma CVD device, and further using ITO or SnO 2 as an upper electrode layer using a sputtering device. 80n thickness
m, the solar cell 42 was obtained. Light incident from the transparent conductive film 40 side is added to the scattering effect of the small uneven step portion 2 in addition to the scattering effect of the large uneven step portion 2, and the optical path length in the amorphous silicon film 38 increases, thereby increasing the short-circuit current. It is known that the photoelectric conversion efficiency of the solar cell can be improved.
【0032】以下に前記発電層の具体的な製造方法を示
す。前記アモルファスシリコン膜38はアモルファスシ
リコンn層(以下n層と略す)30を厚さ40nm、ア
モルファスシリコンi層(以下i層と略す)32を厚さ
400nm、b層(アモルファスシリコンカーボン組成
変化層、以下b層と略す)34を厚さ15nm、アモル
ファスシリコンカーボンp層(以下p層と略す)36を
厚さ12nmの順に積層する。以下各層の形成条件を記
す。n層30が基板温度225℃、パワー0.05W/
cm2、圧力120Pa、ガス流量はSiH4/PH3
(2%H2希釈)の順に400/40sccmである。
i層32は、基板温度225℃、パワー0.05W/c
m2、圧力80Pa、ガス流量はSiH4が600sc
cmである。b層34は、基板温度225℃、パワー
0.02W/cm2、圧力120Pa、ガス流量はSi
H4/CH4/H2の順に300/300/300scc
mである。p層36は、基板温度225℃、パワー0.
02W/cm2、圧力120Pa、ガス流量はSiH4/
CH4/B2H6(2%H2希釈)の順に45/105/4
5sccmで行った。Hereinafter, a specific method of manufacturing the power generation layer will be described. The amorphous silicon film 38 has an amorphous silicon n layer (hereinafter abbreviated as n layer) 30 having a thickness of 40 nm, an amorphous silicon i layer (hereinafter abbreviated as i layer) 32 having a thickness of 400 nm, and a b layer (amorphous silicon carbon composition change layer). Hereinafter, the layer b is abbreviated to a thickness of 15 nm, and an amorphous silicon carbon p layer (hereinafter abbreviated as a p layer) 36 is laminated to a thickness of 12 nm. The conditions for forming each layer are described below. The n layer 30 has a substrate temperature of 225 ° C. and a power of 0.05 W /
cm 2 , pressure 120Pa, gas flow rate is SiH4 / PH3
(2% H2 dilution) in the order of 400/40 sccm.
The i-layer 32 has a substrate temperature of 225 ° C. and a power of 0.05 W / c.
m 2 , pressure 80Pa, gas flow rate is 600sc for SiH4
cm. The b layer 34 has a substrate temperature of 225 ° C., a power of 0.02 W / cm 2 , a pressure of 120 Pa, and a gas flow rate of Si.
300/300 / 300scc in the order of H 4 / CH 4 / H 2
m. The p-layer 36 has a substrate temperature of 225 ° C. and a power of 0.
02W / cm 2, pressure 120 Pa, gas flow rate SiH 4 /
CH 4 / B 2 H 6 (2% H 2 dilution) in the order of 45/105/4
The test was performed at 5 sccm.
【0033】上記のようにして形成した太陽電池42の
特性としては、短絡電流47.1μA/cm2、解放電
圧0.64V、曲線因子0.73、光電変換効率15.
1%を得ることができた。この特性は、従来技術を用い
て製造した太陽電池用セラミック基板に形成した太陽電
池の特性と遜色ないのはもちろんのこと、本発明の製造
方法による太陽電池用基板は、凹凸を有するセラミック
の焼結体を作成してから、小さな砥粒を用いて1回のブ
ラスト処理を行うので、砥粒加工に起因する欠け、亀裂
の発生が押さえられるとともに、基板の歪みや反りの問
題も解決でき、その後の取り扱いにおいても基板割れを
おこすことがないのである。The characteristics of the solar cell 42 formed as described above include a short-circuit current of 47.1 μA / cm 2 , an open voltage of 0.64 V, a fill factor of 0.73, and a photoelectric conversion efficiency of 15.
1% could be obtained. This characteristic is not inferior to the characteristics of a solar cell formed on a ceramic substrate for a solar cell manufactured by using the conventional technique, and the solar cell substrate according to the manufacturing method of the present invention is a ceramic substrate having irregularities. Since the blast process is performed once using small abrasive grains after forming the consolidated body, chipping and cracking caused by abrasive grain processing can be suppressed, and the problem of substrate distortion and warpage can be solved. Substrate cracking does not occur in subsequent handling.
【0034】さらに、前記1回のブラスト処理により、
太陽電池用基板として好適な表面形状を、セラミック基
板において実現することが可能になる。Further, by the one blast process,
A surface shape suitable for a solar cell substrate can be realized on a ceramic substrate.
【0035】[0035]
【発明の効果】以上のように本発明によって形成された
太陽電池用基板は、セラミック焼結体の段階で形成され
た、第1の凹凸段差部1の表面に砥粒加工を1回のみ行
って第2の凹凸段差部2を作成できるので、大小の段差
の凹凸による太陽電池に与える効果はそのままに、該基
板への欠けや亀裂等の欠陥を生じさせることなく、反り
や歪み、割れのない太陽電池用基板とその製造方法及び
その太陽電池用基板を用いて形成された太陽電池を提供
することができた。As described above, in the solar cell substrate formed by the present invention, the surface of the first uneven step portion 1 formed at the stage of the ceramic sintered body is subjected to abrasive grain processing only once. The second uneven step portion 2 can be formed in this way, so that the effect on the solar cell due to the unevenness of the large and small steps can be maintained, without causing defects such as chipping or cracks on the substrate, and warping, distortion, and cracking. A solar cell formed using the solar cell substrate, the method of manufacturing the same, and the solar cell substrate could be provided.
【0036】尚、本発明の太陽電池用基板は、太陽電池
時計の、太陽電池用基板を兼ねた半透過のセラミック文
字板を作成する際にも適用することができる。The solar cell substrate of the present invention can also be applied to the production of a translucent ceramic dial for a solar cell watch that also serves as a solar cell substrate.
【図1】本発明の実施形態における太陽電池用基板を示
す構造断面図である。FIG. 1 is a structural sectional view showing a solar cell substrate according to an embodiment of the present invention.
【図2】本発明の実施形態における太陽電池用基板の製
造方法を示す工程断面図である。FIG. 2 is a process cross-sectional view illustrating a method for manufacturing a solar cell substrate according to an embodiment of the present invention.
【図3】本発明の実施形態により形成された太陽電池用
基板を用いたて構成された太陽電池の概略構造断面図で
ある。FIG. 3 is a schematic structural cross-sectional view of a solar cell configured using a solar cell substrate formed according to an embodiment of the present invention.
【図4】従来の太陽電池用基板の製造方法を示す工程断
面図である。FIG. 4 is a process sectional view showing a conventional method for manufacturing a solar cell substrate.
1 第1の凹凸段差部 2 第2の凹凸段差部 10 成形体 12 粒径3〜6μmのアルミナ粒子 14 粒径0.5〜1μmのアルミナ粒子 16 バインダ 18 焼結体 20 焼結体表面 22 砥粒 24 太陽電池用基板 26 太陽電池形成面 28 金属膜 30 n層 32 i層 34 b層 36 p層 38 アモルファスシリコン膜 40 透明導電膜 42 太陽電池 DESCRIPTION OF SYMBOLS 1 1st uneven | corrugated step part 2 2nd uneven | corrugated step part 10 Molded body 12 Alumina particles with a particle diameter of 3-6 μm 14 Alumina particles with a particle diameter of 0.5-1 μm 16 Binder 18 Sintered body 20 Sintered body surface 22 Grinding Particles 24 Solar cell substrate 26 Solar cell forming surface 28 Metal film 30 n layer 32 i layer 34 b layer 36 p layer 38 amorphous silicon film 40 transparent conductive film 42 solar cell
Claims (4)
れよりも小さな第2の凹凸段差部が形成された太陽電池
用基板において、粒径3〜6μmの粒子と粒径0.5〜
1μmの粒子を任意の割合で混合した80〜95wt%
のセラミック粉体の原料粉と、20〜5wt%の有機質
のバインダにより形成された平均段差3μm以上の第1
の凹凸段差部を有する焼結成型体に、該第1の凹凸段差
部の表面に砥粒加工を行い、該太陽電池用基板上に形成
される太陽電池の発電層の厚みよりも小さい平均段差に
設定された第2の凹凸段差部が形成されていることを特
徴とする太陽電池用基板。1. A solar cell substrate in which a second uneven step smaller than 3 μm is formed on the surface of a first uneven step having a diameter of 3 μm or more and a particle having a particle diameter of 3 to 6 μm and a particle having a diameter of 0.5 to 0.5 μm.
80-95 wt% of 1 μm particles mixed at any ratio
And a first powder having an average level difference of 3 μm or more formed by a raw material powder of ceramic powder and an organic binder of 20 to 5 wt%.
An abrasive step is performed on the surface of the first uneven step on the sintered molded body having the uneven step of the above, and an average step smaller than the thickness of the power generation layer of the solar cell formed on the solar cell substrate. Characterized in that a second uneven step portion is formed.
液体ホーニングであることを特徴とする請求項1に記載
の太陽電池用基板。2. The solar cell substrate according to claim 1, wherein the abrasive processing is sand blasting or liquid honing.
μmの粒子を、それぞれ任意の割合で混合したセラミッ
ク粉体を原料粉として、該原料粉80〜95wt%に対
して有機質のバインダ20〜5wt%を含む基板状の成
型体を焼結し、平均段差3μm以上の第1の凹凸状段差
表面を有する焼結体を形成した後に、該第1の凹凸段差
部表面に砥粒加工により、該基板上に形成される太陽電
池の発電層の厚みよりも小さい平均段差とした第2の凹
凸段差部を形成することを特徴とする太陽電池用基板の
製造方法。3. A particle having a particle size of 3 to 6 μm and a particle size of 0.5 to 1
A ceramic powder obtained by mixing particles of each μm in an arbitrary ratio is used as a raw material powder, and a substrate-like molded body containing 20 to 5 wt% of an organic binder with respect to 80 to 95 wt% of the raw material powder is sintered. After forming a sintered body having a first uneven step surface having a step of 3 μm or more, the thickness of the power generation layer of the solar cell formed on the substrate by abrasive processing on the surface of the first uneven step A method for manufacturing a solar cell substrate, comprising: forming a second uneven step portion having a small average step.
たことを特徴とする太陽電池。4. A solar cell using the solar cell substrate according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001084198A JP2002289888A (en) | 2001-03-23 | 2001-03-23 | Substrate for solar cell and method of manufacturing the same, and the solar cell formed by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001084198A JP2002289888A (en) | 2001-03-23 | 2001-03-23 | Substrate for solar cell and method of manufacturing the same, and the solar cell formed by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002289888A true JP2002289888A (en) | 2002-10-04 |
Family
ID=18939903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001084198A Pending JP2002289888A (en) | 2001-03-23 | 2001-03-23 | Substrate for solar cell and method of manufacturing the same, and the solar cell formed by using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002289888A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010120669A3 (en) * | 2009-04-13 | 2011-01-20 | Miasole | Polishing a thin metallic substrate for a solar cell |
WO2012027308A1 (en) * | 2010-08-24 | 2012-03-01 | Corning Incorporated | Light scattering inorganic substrates |
JP2013074066A (en) * | 2011-09-27 | 2013-04-22 | Pv Crystalox Solar Plc | Method of manufacturing semiconductor wafer and semiconductor wafer |
US8536054B2 (en) | 2008-01-18 | 2013-09-17 | Miasole | Laser polishing of a solar cell substrate |
US8546172B2 (en) | 2008-01-18 | 2013-10-01 | Miasole | Laser polishing of a back contact of a solar cell |
US8586398B2 (en) | 2008-01-18 | 2013-11-19 | Miasole | Sodium-incorporation in solar cell substrates and contacts |
-
2001
- 2001-03-23 JP JP2001084198A patent/JP2002289888A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8536054B2 (en) | 2008-01-18 | 2013-09-17 | Miasole | Laser polishing of a solar cell substrate |
US8546172B2 (en) | 2008-01-18 | 2013-10-01 | Miasole | Laser polishing of a back contact of a solar cell |
US8586398B2 (en) | 2008-01-18 | 2013-11-19 | Miasole | Sodium-incorporation in solar cell substrates and contacts |
WO2010120669A3 (en) * | 2009-04-13 | 2011-01-20 | Miasole | Polishing a thin metallic substrate for a solar cell |
WO2012027308A1 (en) * | 2010-08-24 | 2012-03-01 | Corning Incorporated | Light scattering inorganic substrates |
JP2013074066A (en) * | 2011-09-27 | 2013-04-22 | Pv Crystalox Solar Plc | Method of manufacturing semiconductor wafer and semiconductor wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108530110A (en) | A kind of superhigh temperature ceramics coating of C/C composite materials and preparation method thereof | |
US10340886B2 (en) | Ceramic substrate, layered body, and saw device | |
KR101453706B1 (en) | Component for plasma etching apparatus and method for manufacturing of component for plasma etching apparatus | |
KR100983952B1 (en) | Complex structure | |
CN1809513A (en) | Methods of finishing quartz glass surfaces and components made by the methods | |
JP2010016176A (en) | Test piece holder | |
CN1940119A (en) | Thermal spray powder and forming method of thermal spray coating | |
CN105190839A (en) | Handle substrate of composite substrate for semiconductor | |
JP2002289888A (en) | Substrate for solar cell and method of manufacturing the same, and the solar cell formed by using the same | |
JP3593707B2 (en) | Aluminum nitride ceramics and method for producing the same | |
JP2002293644A (en) | Substrate for solar cell and manufacturing method thereof, solar cell using the substrate for solar cell and solar cell clock using solar cell as clock face | |
JPH1070294A (en) | Substrate for solar cell and production thereof | |
JP3897631B2 (en) | Composite structure and manufacturing method thereof | |
TWI798510B (en) | Sputtering target and manufacturing method thereof | |
TW202238658A (en) | Semiconductor component, method for forming the same, and plasma processing apparatus | |
CN1557018A (en) | Method of processing quartz member for plasma processing device, quartz member for plasma processing device, and plasma processing device having quartz member for plasma processing device mounted ther | |
CN108558444A (en) | A kind of laser melting method improving silicon substrate non-oxide ceramic material surface environment barrier coating hardness and thermal shock resistance | |
CN102863144B (en) | Method for manufacturing quartz ceramic crucible used for polycrystalline silicon casting ingot | |
WO2006117887A1 (en) | Corrosion-resistant member and process for producing the same | |
CN116364805B (en) | Semiconductor processing method and semiconductor processing equipment | |
TWI815291B (en) | Sputtering target and manufacturing method | |
CN116337903B (en) | Ultrathin electron microscope sample of 3DNADA flash memory vertical channel and sample preparation method thereof | |
JP2005123556A (en) | Wafer polishing suction plate | |
TW201925511A (en) | Method of maintaining wafer carrier including an inspecting step, a determining step, and a repairing step and is applied in MOCVD | |
US6576981B1 (en) | Reduced particulate etching |