JP2002289235A - Fuel cell system - Google Patents
Fuel cell systemInfo
- Publication number
- JP2002289235A JP2002289235A JP2001088589A JP2001088589A JP2002289235A JP 2002289235 A JP2002289235 A JP 2002289235A JP 2001088589 A JP2001088589 A JP 2001088589A JP 2001088589 A JP2001088589 A JP 2001088589A JP 2002289235 A JP2002289235 A JP 2002289235A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- hydrogen
- oxygen
- amount
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 98
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 83
- 239000001257 hydrogen Substances 0.000 claims abstract description 82
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 82
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000001301 oxygen Substances 0.000 claims abstract description 49
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000015556 catabolic process Effects 0.000 abstract 3
- 238000006731 degradation reaction Methods 0.000 abstract 3
- 230000032683 aging Effects 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 101100219325 Phaseolus vulgaris BA13 gene Proteins 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素及び酸素から
電力を発生させる燃料電池を有する燃料電池システムに
関するものであり、電気自動車に適用して有効である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system having a fuel cell for generating electric power from hydrogen and oxygen, and is effective when applied to an electric vehicle.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】図2は
車両用の(固体高分子型)燃料電池の模式図であり、一
般的に燃料電池は、表面に白金触媒が担持された電解質
膜1a、供給される空気(酸素)と水素とを電解質膜1
a全体に拡がるように拡散させるカーボンクロス(拡散
層)1b、各電解質膜1aを分離するとともに電極を構
成する炭素製のセパレータ1c、冷却水が流通する冷却
水通路1d、空気(酸素)が流通する空気(酸素)通路
1e、及び水素が流通する水素通路1f等から構成され
ている。2. Description of the Prior Art FIG. 2 is a schematic view of a (solid polymer type) fuel cell for a vehicle. In general, a fuel cell has an electrolyte membrane having a platinum catalyst carried on the surface. 1a, Supplying air (oxygen) and hydrogen to electrolyte membrane 1
a, a carbon cloth (diffusion layer) 1b for diffusing so as to spread over the entirety, a separator 1c made of carbon which separates each electrolyte membrane 1a and forms an electrode, a cooling water passage 1d through which cooling water flows, and air (oxygen) flowing And a hydrogen passage 1f through which hydrogen flows.
【0003】ところで、燃料電池では、前述のごとく、
水素と酸素と化学反応させて電力を取り出すが、その際
に発生する水(生成水)や供給する水素(水素リッチガ
ス)及び酸素(空気)中に含まれた水蒸気の凝縮により
発生する水(凝縮水)により、空気通路1eや水素通路
1fが閉塞してしまうおそれがある。By the way, in a fuel cell, as described above,
Electric power is extracted through a chemical reaction with hydrogen and oxygen. Water (condensed water) generated at that time and water (condensation) generated by condensation of hydrogen (hydrogen-rich gas) and water vapor contained in oxygen (air) are supplied. Water) may block the air passage 1e and the hydrogen passage 1f.
【0004】そこで、従来は、必要とする電力量を得る
に必要な理論上の水素量及び酸素量より多くの水素(水
素リッチガス)及び酸素(空気)を供給することによ
り、空気通路1eを流通する空気の流速、及び水素通路
1fを流通する水素の流速を増大させて、空気通路1e
や水素通路1fに溜まった水を排出して(吹き飛ばし
て)いた。Therefore, conventionally, more hydrogen (hydrogen-rich gas) and oxygen (air) than the theoretical amount of hydrogen and oxygen necessary to obtain the required amount of electric power are supplied to flow through the air passage 1e. The flow rate of air flowing through the hydrogen passage 1f and the flow rate of hydrogen flowing through the hydrogen passage
And the water accumulated in the hydrogen passage 1f was discharged (blown off).
【0005】しかし、空気通路1eを流通する空気の流
速、及び水素通路1fを流通する水素の流速を増大させ
るには、空気や水素を供給するポンプの仕事量を増大さ
せる必要があるが、ポンプは(バッテリを介して)燃料
電池から電力の供給を受けているので、ポンプの仕事量
を増大させると、燃料電池で発電した電力のうちポンプ
で消費される電力量が増大してしまい、燃料電池から走
行用モータに供給することができる電力量の割合が低下
して燃料電池システム全体の効率が低下してしまう。However, in order to increase the flow rate of the air flowing through the air passage 1e and the flow rate of the hydrogen flowing through the hydrogen passage 1f, it is necessary to increase the work of a pump for supplying air and hydrogen. Since power is supplied from the fuel cell (via the battery), if the work of the pump is increased, the amount of power consumed by the pump out of the power generated by the fuel cell increases. The ratio of the amount of power that can be supplied from the battery to the traveling motor decreases, and the efficiency of the entire fuel cell system decreases.
【0006】一方、ポンプの仕事量を過度に減少させる
と、空気通路1eや水素通路1fに水が溜まってしま
い、電解質膜1aに水素と酸素とを十分に供給すること
ができなくなり、燃料電池が機能(発電)しなくなるお
それがある。On the other hand, if the work of the pump is excessively reduced, water accumulates in the air passage 1e and the hydrogen passage 1f, so that hydrogen and oxygen cannot be sufficiently supplied to the electrolyte membrane 1a. May not function (power generation).
【0007】本発明は、上記点に鑑み、燃料電池システ
ム全体の効率が大きく低下することを防止しつつ、燃料
電池に水素及び酸素を供給することを目的とする。[0007] In view of the above, it is an object of the present invention to supply hydrogen and oxygen to a fuel cell while preventing the efficiency of the entire fuel cell system from being greatly reduced.
【0008】[0008]
【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1に記載の発明では、水素と酸素
との化学反応により電力を発生させる複数個の燃料電池
セルからなる燃料電池(1)と、燃料電池セルの起電圧
を検出するセル電圧検出手段(8)と、燃料電池(1)
に供給する水素量及び酸素量を制御する燃料供給量制御
手段(7)とを有し、燃料供給量制御手段(7)は、セ
ル電圧検出手段(8)が検出した検出値のバラツキ値
(ΔV)が所定値以下となるように燃料電池(1)に供
給する水素量及び酸素量を制御することを特徴とする。According to the present invention, in order to achieve the above object, the present invention comprises a plurality of fuel cells which generate electric power by a chemical reaction between hydrogen and oxygen. Fuel cell (1), cell voltage detecting means (8) for detecting electromotive voltage of fuel cell, and fuel cell (1)
And a fuel supply amount control means (7) for controlling the amount of hydrogen and oxygen supplied to the fuel cell. The fuel supply amount control means (7) controls a variation value of the detection value detected by the cell voltage detection means (8). The amount of hydrogen and the amount of oxygen supplied to the fuel cell (1) are controlled so that ΔV) is equal to or less than a predetermined value.
【0009】これにより、燃料電池(1)内の空気(酸
素)通路や水素通路が閉塞してしまうことを防止しつ
つ、燃料電池(1)で発電した電力(エネルギ)が水素
及び酸素の供給のために消費されることを抑制できる。
したがって、燃料電池システム全体の効率が大きく低下
することを防止しつつ、燃料電池1に水素及び酸素を供
給することができる。This prevents the power (energy) generated by the fuel cell (1) from supplying hydrogen and oxygen while preventing the air (oxygen) passage and the hydrogen passage in the fuel cell (1) from being blocked. Consumption can be suppressed.
Therefore, it is possible to supply hydrogen and oxygen to the fuel cell 1 while preventing the efficiency of the entire fuel cell system from being greatly reduced.
【0010】ところで、バラツキ値と過剰率(必要とす
る電力量を得るに必要な理論上の水素量及び酸素量に対
する、供給する水素量及び酸素量の比)との関係は、後
述する図5に示すように、燃料電池(1)の個体差によ
り燃料電池毎にバラツキがある。このため、過剰率を固
定値とすると、燃料電池(1)の個体差を考慮する必要
があるため、必然的に大きな値を選定せざるを得ない。The relationship between the variation value and the excess rate (the ratio of the amount of supplied hydrogen and oxygen to the theoretical amount of hydrogen and oxygen required to obtain the required amount of power) is shown in FIG. As shown in (1), there is variation among the fuel cells due to individual differences of the fuel cells (1). For this reason, if the excess ratio is set to a fixed value, it is necessary to consider individual differences of the fuel cell (1), so that a large value must be necessarily selected.
【0011】これに対して、本発明のごとく、バラツキ
値(ΔV)が所定値以下となるように過剰率を変更(学
習制御)すれば、過剰率を比較的に小さな値とすること
が可能であるので、燃料電池システム全体の効率が大き
く低下することを防止しつつ、燃料電池(1)に水素及
び酸素を供給することができる。On the other hand, if the excess rate is changed (learning control) so that the variation value (ΔV) becomes equal to or less than a predetermined value as in the present invention, the excess rate can be made a relatively small value. Therefore, it is possible to supply hydrogen and oxygen to the fuel cell (1) while preventing the efficiency of the entire fuel cell system from being greatly reduced.
【0012】また、燃料電池セルが経年変化しても、そ
の状態において最適となるように過剰率が選定されるの
で、長期に渡って燃料電池システム全体の効率が大きく
低下することを防止しつつ、燃料電池(1)に水素及び
酸素を供給することができる。Further, even if the fuel cell changes over time, the excess ratio is selected so as to be optimal in that state, so that the efficiency of the entire fuel cell system is prevented from greatly decreasing over a long period of time. And hydrogen and oxygen to the fuel cell (1).
【0013】請求項2に記載の発明では、燃料供給量制
御手段(7)は、前回、燃料電池(1)に供給した水素
量及び酸素量を記憶し、その記憶した水素量及び酸素量
に基づいて、複数個のセル電圧検出手段(8)が検出し
た検出値のバラツキ値(ΔV)が所定値以下となるよう
に燃料電池(1)に供給する水素量及び酸素量を制御す
ることを特徴とする。According to the second aspect of the present invention, the fuel supply amount control means (7) stores the amount of hydrogen and the amount of oxygen previously supplied to the fuel cell (1), and stores the amount of hydrogen and the amount of oxygen stored therein. Controlling the amount of hydrogen and the amount of oxygen supplied to the fuel cell (1) so that the variation value (ΔV) of the detection values detected by the plurality of cell voltage detection means (8) is equal to or less than a predetermined value. Features.
【0014】これにより、次回、過剰率を決定するとき
に、初期値(工場出荷時における過剰率)から適切な過
剰率を決定する場合に比べて、過剰率を速やに適切な値
に収束させることができる。Thus, when the excess ratio is determined next time, the excess ratio is quickly converged to an appropriate value as compared with the case where an appropriate excess ratio is determined from the initial value (the excess ratio at the time of factory shipment). Can be done.
【0015】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.
【0016】[0016]
【発明の実施の形態】本実施形態は、本発明に係る燃料
電池システムを電気自動車に適用したものであって、図
1は本実施形態に係る燃料電池システム(電気自動車の
走行用動力システム)の模式図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In this embodiment, the fuel cell system according to the present invention is applied to an electric vehicle. FIG. 1 shows a fuel cell system according to the embodiment (power system for driving an electric vehicle). FIG.
【0017】図1中、1は水素と酸素との化学反応を利
用して電力を発生し、走行用電動モータやバッテリ等の
電気機器に電力を供給する燃料電池(FCスタック)で
あり、この燃料電池1は、図2に示すように、表面に白
金触媒が担持された電解質膜1a、供給される空気(酸
素)と水素とを電解質膜1a全体に拡がるように拡散さ
せるカーボンクロス(拡散層)1b、各電解質膜1aを
分離するとともに電極を構成する炭素製のセパレータ1
c、冷却水が流通する冷却水通路1d、空気(酸素)が
流通する空気(酸素)通路1e、及び水素が流通する水
素通路1f等からなる複数個の燃料電池セルを電気的に
直列接続した公知の固体高分子型のもである。In FIG. 1, reference numeral 1 denotes a fuel cell (FC stack) which generates electric power by utilizing a chemical reaction between hydrogen and oxygen and supplies electric power to electric equipment such as an electric motor for driving or a battery. As shown in FIG. 2, the fuel cell 1 has an electrolyte membrane 1a having a platinum catalyst supported on its surface, and a carbon cloth (diffusion layer) for diffusing supplied air (oxygen) and hydrogen so as to spread throughout the electrolyte membrane 1a. 1) 1b, a carbon separator 1 that separates each electrolyte membrane 1a and constitutes an electrode
c, a plurality of fuel cells including a cooling water passage 1d through which cooling water flows, an air (oxygen) passage 1e through which air (oxygen) flows, and a hydrogen passage 1f through which hydrogen flows are electrically connected in series. It is a known solid polymer type.
【0018】また、図1中、2は水とメタノールとの混
合溶液(以下、この混合溶液をメタノール混合溶液と呼
ぶ。)から水素が多量に含まれた水素リッチガスを製造
(生成)して燃料電池1に水素リッチガスを供給する水
素製造器(水素供給手段)であり、この水素製造器2
は、メタノール混合溶液を蒸発させる水素製造用燃料蒸
発器(図示せず。)、及び水素製造用燃料蒸発器にて蒸
発(気化)したメタノール蒸気と水蒸気とを化学反応さ
せて、水素と二酸化炭素と少量の一酸化炭素とに改質す
る水素製造用燃料改質器(図示せず。)、製造された水
素リッチガスを燃料電池1に供給するポンプ(図示せ
ず。)等を有して構成されている。In FIG. 1, reference numeral 2 designates a fuel rich by producing (generating) a hydrogen-rich gas containing a large amount of hydrogen from a mixed solution of water and methanol (hereinafter, this mixed solution is referred to as a methanol mixed solution). A hydrogen generator (hydrogen supply means) for supplying a hydrogen-rich gas to the battery 1;
Is a fuel evaporator for hydrogen production (not shown) for evaporating a methanol mixed solution, and a chemical reaction between methanol vapor evaporated and vaporized by the fuel evaporator for hydrogen production, and hydrogen and carbon dioxide. A hydrogen reforming fuel reformer (not shown) for reforming the fuel into a small amount of carbon monoxide, and a pump (not shown) for supplying the produced hydrogen-rich gas to the fuel cell 1. Have been.
【0019】3は燃料電池1に酸素(空気)を供給する
エアポンプ(酸素供給手段)であり、このエアポンプ3
は大気中から空気を吸入して空気(酸素)を燃料電池3
に供給する。なお、燃料電池1に供給される水素(水素
リッチガス)及び空気(酸素)は、加湿器2a、3aに
より加湿された状態で燃料電池1に供給される。Reference numeral 3 denotes an air pump (oxygen supply means) for supplying oxygen (air) to the fuel cell 1.
Inhales air (oxygen) from the atmosphere into the fuel cell 3
To supply. Note that hydrogen (hydrogen-rich gas) and air (oxygen) supplied to the fuel cell 1 are supplied to the fuel cell 1 in a humidified state by the humidifiers 2a and 3a.
【0020】4は充放電可能なバッテリ(二次電池)で
あり、このバッテリ4は燃料電池1から供給される電力
及び回生制動時に発生する電力により充電され、後述す
る走行用電動モータ(メインモータ)やその他の電動補
機類(エアポンプ3や後述する制御機器等)に電力を供
給する。Reference numeral 4 denotes a chargeable / dischargeable battery (secondary battery). The battery 4 is charged by the power supplied from the fuel cell 1 and the power generated during regenerative braking. ) And other electric accessories (such as the air pump 3 and a control device described later).
【0021】5は走行用電動モータ(以下、モータと略
す。)であり、6はモータ5を制御するモータ制御機器
(パワーコントローラ)であり、このモータ制御機器6
は、燃料電池システム(走行用動力システム)全体を制
御するシステム制御機器(システムコントローラ)7か
らの制御信号を受けてモータ5に供給する電力を制御す
る。Reference numeral 5 denotes a traveling electric motor (hereinafter abbreviated as a motor). Reference numeral 6 denotes a motor control device (power controller) for controlling the motor 5.
Controls the power supplied to the motor 5 in response to a control signal from a system controller (system controller) 7 for controlling the entire fuel cell system (power system for traveling).
【0022】また、システム制御装置7には、各燃料電
池セルの起電圧をそれぞれ検出するセル電圧モニタ装置
(セル電圧検出手段)8の検出値が入力されてり、シス
テム制御装置7はセル電圧モニタ装置8の検出値、及び
モータ5が必要とする電力などに基づいて燃料電池1に
供給する水素量及び酸素量を制御する。A detection value of a cell voltage monitoring device (cell voltage detecting means) 8 for detecting an electromotive voltage of each fuel cell is input to the system control device 7. The amount of hydrogen and the amount of oxygen supplied to the fuel cell 1 are controlled based on the detection value of the monitor device 8, the electric power required by the motor 5, and the like.
【0023】次に、本実施形態に係る燃料電池システム
の特徴的作動及びその効果を述べる。Next, the characteristic operation of the fuel cell system according to this embodiment and its effects will be described.
【0024】図3は本実施形態に係る燃料電池システム
の特徴的作動を示すフローチャートであり、燃料電池シ
ステムが始動すると、セル電圧モニタ装置8の検出値が
読み込まれ、その読み込んだ検出値のバラツキ値ΔVが
所定値Vo以下であるか否かを判定する(S100)。FIG. 3 is a flowchart showing the characteristic operation of the fuel cell system according to the present embodiment. When the fuel cell system starts, the detected value of the cell voltage monitoring device 8 is read, and the read detected value varies. It is determined whether or not the value ΔV is equal to or less than a predetermined value Vo (S100).
【0025】ここで、検出値のバラツキ値ΔVとは、検
出したセル電圧の最大値と最小値との差であり、通常、
必要とする電力量を得るに必要な理論上の水素量及び酸
素量より多くの水素(水素リッチガス)及び酸素(空
気)を供給するほど、バラツキ値ΔVが小さくなる傾向
にある。Here, the variation ΔV of the detected value is the difference between the maximum value and the minimum value of the detected cell voltage, and
As more hydrogen (hydrogen-rich gas) and oxygen (air) are supplied than the theoretical amount of hydrogen and oxygen required to obtain the required amount of power, the variation value ΔV tends to decrease.
【0026】なお、以下、必要とする電力量を得るに必
要な理論上の水素量及び酸素量に対する、供給する水素
量及び酸素量の比を過剰率と呼ぶ。したがって、過剰率
が大きくなるほど、図4に示すように、バラツキ値ΔV
が小さくなる。Hereinafter, the ratio of the amount of supplied hydrogen and the amount of oxygen to the theoretical amount of hydrogen and oxygen required to obtain the required amount of power is referred to as an excess ratio. Therefore, as the excess rate increases, as shown in FIG.
Becomes smaller.
【0027】これは、過剰率が大きくなるほど、「従来
の技術及び発明が解決しようとする課題」の欄で述べた
ように、空気通路1eや水素通路1fに溜まった水を排
出することができるので、各燃料電池セルにて十分に発
電能力が発揮され、燃料電池セル間の個体差の影響が小
さくなるためである。As described above, as the excess ratio increases, water accumulated in the air passage 1e and the hydrogen passage 1f can be discharged as described in the section of "Problems to be Solved by the Related Art and the Invention". Therefore, each fuel cell has a sufficient power generation capability, and the influence of individual differences between the fuel cells is reduced.
【0028】そして、S100にてバラツキ値ΔVが所
定値Voより大きいと判定されたときには、図3に示す
ように、過剰率を大きくしてバラツキ値ΔVを小さくし
(S110)、一方、バラツキ値ΔVが所定値Voより
小さいときには、過剰率を小さくしてバラツキ値ΔVを
大きくし(S120)、バラツキ値ΔVが所定値Voと
一致したときは、現状の過剰率を維持するとともに、そ
の過剰率を記憶する(S130、S140)。When it is determined in S100 that the variation value ΔV is larger than the predetermined value Vo, as shown in FIG. 3, the excess ratio is increased to reduce the variation value ΔV (S110), while the variation value is decreased. When ΔV is smaller than the predetermined value Vo, the excess ratio is reduced to increase the variation value ΔV (S120). When the variation value ΔV matches the predetermined value Vo, the current excess ratio is maintained and the excess ratio Is stored (S130, S140).
【0029】なお、バラツキ値ΔVが所定値Voより小
さいときには、過剰率を小さくするが、過剰率が所定の
最小過剰率未満となるときは、過剰率を最小過剰率とす
る。When the variation value .DELTA.V is smaller than the predetermined value Vo, the excess ratio is reduced, but when the excess ratio is smaller than the predetermined minimum excess ratio, the excess ratio is set to the minimum excess ratio.
【0030】これにより、本実施形態では、過剰率が所
定値Vo以下となるように燃料電池1に供給する水素量
及び酸素量が制御されるので、空気通路1eや水素通路
1fが閉塞してしまうことを防止しつつ、燃料電池1で
発電した電力のうちエアポンプ3や水素供給用ポンプで
消費される電力量が増大してしまことを抑制できる。し
たがって、燃料電池システム全体の効率が大きく低下す
ることを防止しつつ、燃料電池1に水素及び酸素を供給
することができる。Thus, in the present embodiment, the amount of hydrogen and the amount of oxygen supplied to the fuel cell 1 are controlled such that the excess rate becomes equal to or less than the predetermined value Vo, so that the air passage 1e and the hydrogen passage 1f are closed. It is possible to prevent an increase in the amount of power consumed by the air pump 3 and the hydrogen supply pump out of the power generated by the fuel cell 1 while preventing the occurrence of such a situation. Therefore, it is possible to supply hydrogen and oxygen to the fuel cell 1 while preventing the efficiency of the entire fuel cell system from being greatly reduced.
【0031】また、バラツキ値ΔVが所定値Voと一致
したときは、現状の過剰率を維持するとともに、その過
剰率を記憶するので、次回、過剰率を決定するときに、
初期値(工場出荷時における過剰率)から適切な過剰率
を決定する場合に比べて、過剰率を速やに適切な値に収
束させることができる。When the variation value ΔV matches the predetermined value Vo, the current excess ratio is maintained and the excess ratio is stored, so that the next time the excess ratio is determined,
As compared with the case where an appropriate excess rate is determined from an initial value (excess rate at the time of factory shipment), the excess rate can be quickly converged to an appropriate value.
【0032】なお、本実施形態では、バラツキ値ΔVが
所定値Voより小さいときには、過剰率を小さくしてバ
ラツキ値ΔVを大きくしたが、バラツキ値ΔVが所定値
Voと一致したときと同様に、現状の過剰率を維持して
もよい。In the present embodiment, when the variation value ΔV is smaller than the predetermined value Vo, the excess ratio is reduced to increase the variation value ΔV. However, similarly to the case where the variation value ΔV matches the predetermined value Vo, The current excess rate may be maintained.
【0033】因みに、バラツキ値と過剰率との関係は、
図5に示すように、燃料電池1の個体差により燃料電池
毎にバラツキがある。このため、過剰率を固定値とする
と、燃料電池1の個体差を考慮する必要があるため、必
然的に大きな値を選定せざるを得ない。Incidentally, the relationship between the variation value and the excess rate is as follows:
As shown in FIG. 5, there is variation among the fuel cells due to individual differences of the fuel cells 1. For this reason, if the excess ratio is set to a fixed value, it is necessary to consider individual differences of the fuel cell 1, so that a large value is necessarily selected.
【0034】これに対して、本実施形態のごとく、セル
電圧のバラツキ値ΔVが所定値Vo以下となるように過
剰率を変更(学習制御)すれば、過剰率を比較的に小さ
な値とすることが可能であるので、燃料電池システム全
体の効率が大きく低下することを防止しつつ、燃料電池
1に水素及び酸素を供給することができる。On the other hand, when the excess ratio is changed (learning control) so that the variation value ΔV of the cell voltage becomes equal to or less than the predetermined value Vo as in the present embodiment, the excess ratio is set to a relatively small value. Therefore, it is possible to supply hydrogen and oxygen to the fuel cell 1 while preventing the efficiency of the entire fuel cell system from being greatly reduced.
【0035】また、燃料電池セルが経年変化しても、そ
の状態において最適となるように過剰率が選定されるの
で、長期に渡って燃料電池システム全体の効率が大きく
低下することを防止しつつ、燃料電池1に水素及び酸素
を供給することができる。Further, even if the fuel cell changes over time, the excess ratio is selected so as to be optimal in that state, so that the efficiency of the entire fuel cell system is prevented from greatly decreasing over a long period of time. And hydrogen and oxygen to the fuel cell 1.
【0036】(その他の実施形態)上述の実施形態で
は、バラツキ値ΔVとして、検出したセル電圧の最大値
と最小値との差を採用したが、本発明はこれに限定され
るものではなく、例えば検出したセル電圧の平均値や分
散等であってもよい。(Other Embodiments) In the above embodiment, the difference between the maximum value and the minimum value of the detected cell voltage is adopted as the variation value ΔV. However, the present invention is not limited to this. For example, the average value or the variance of the detected cell voltages may be used.
【0037】また、上述の実施形態では、水素供給手段
として炭化水素系の燃料を改質して水素が多量に含まれ
た水素リッチガスを製造する水素製造器2を用いたが、
本発明はこれに限定されるものでなく、水素供給手段と
して純水素ガスを供給することができる高圧水素タンク
や水素吸蔵合金を用いた水素タンク等を使用してもよ
い。In the above-described embodiment, the hydrogen supply unit 2 is used as the hydrogen supply means for reforming the hydrocarbon fuel to produce a hydrogen-rich gas containing a large amount of hydrogen.
The present invention is not limited to this, and a high-pressure hydrogen tank or a hydrogen tank using a hydrogen storage alloy that can supply pure hydrogen gas may be used as the hydrogen supply means.
【0038】また、上述の実施形態では、電気自動車に
本発明を適用したが、本発明はこれに限定されるもので
はなく、定置型の燃料電池システムにも適用することが
できる。In the above-described embodiment, the present invention is applied to an electric vehicle. However, the present invention is not limited to this, and can be applied to a stationary fuel cell system.
【0039】また、上述の実施形態では、バラツキ値Δ
Vのしきい値である所定値Voが一定値であったが、所
定の範囲を持った値であってもよい。In the above embodiment, the variation value Δ
Although the predetermined value Vo as the threshold value of V is a constant value, it may be a value having a predetermined range.
【図1】本発明の実施形態に係る燃料電池システムの模
式図である。FIG. 1 is a schematic diagram of a fuel cell system according to an embodiment of the present invention.
【図2】燃料電池の構造図である。FIG. 2 is a structural diagram of a fuel cell.
【図3】本発明の実施形態に係る燃料電池システムの作
動を示すフローチャートである。FIG. 3 is a flowchart showing an operation of the fuel cell system according to the embodiment of the present invention.
【図4】燃料電池のセル電圧バラツキと過剰率との関係
を示すグラフである。FIG. 4 is a graph showing a relationship between a cell voltage variation of a fuel cell and an excess ratio.
【図5】燃料電池のセル電圧バラツキと過剰率との関係
を示すグラフである。FIG. 5 is a graph showing a relationship between a cell voltage variation of a fuel cell and an excess ratio.
1…燃料電池、2…水素製造器(水素供給手段)、3…
エアポンプ(酸素供給手段)、4…バッテリ、5…モー
タ、6…モータ制御機器、7…システム制御装置。DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 2 ... Hydrogen production device (hydrogen supply means), 3 ...
Air pump (oxygen supply means), 4 ... battery, 5 ... motor, 6 ... motor control equipment, 7 ... system control device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河合 利幸 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 岡本 邦夫 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 5H026 AA06 CC03 HH02 HH06 5H027 AA06 BA01 BA13 DD03 KK54 MM04 MM09 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Kawai 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. F-term (reference) 5H026 AA06 CC03 HH02 HH06 5H027 AA06 BA01 BA13 DD03 KK54 MM04 MM09
Claims (2)
生させる複数個の燃料電池セルからなる燃料電池(1)
と、 前記燃料電池セルの起電圧を検出するセル電圧検出手段
(8)と、 前記燃料電池(1)に供給する水素量及び酸素量を制御
する燃料供給量制御手段(7)とを有し、 前記燃料供給量制御手段(7)は、前記セル電圧検出手
段(8)が検出した検出値のバラツキ値(ΔV)が所定
値以下となるように前記燃料電池(1)に供給する水素
量及び酸素量を制御することを特徴とする燃料電池シス
テム。1. A fuel cell comprising a plurality of fuel cells for generating electric power by a chemical reaction between hydrogen and oxygen.
And a cell voltage detecting means (8) for detecting an electromotive voltage of the fuel cell, and a fuel supply amount controlling means (7) for controlling an amount of hydrogen and an amount of oxygen supplied to the fuel cell (1). The fuel supply amount control means (7) controls the amount of hydrogen supplied to the fuel cell (1) such that the variation (ΔV) of the detection value detected by the cell voltage detection means (8) is equal to or less than a predetermined value. And a fuel cell system for controlling the amount of oxygen.
回、前記燃料電池(1)に供給した水素量及び酸素量を
記憶し、その記憶した水素量及び酸素量に基づいて、前
記複数個のセル電圧検出手段(8)が検出した検出値の
バラツキ値(ΔV)が所定値以下となるように前記燃料
電池(1)に供給する水素量及び酸素量を制御すること
を特徴とする請求項1に記載の燃料電池システム。2. The fuel supply amount control means (7) stores a hydrogen amount and an oxygen amount previously supplied to the fuel cell (1), and based on the stored hydrogen amount and oxygen amount. The amount of hydrogen and the amount of oxygen supplied to the fuel cell (1) are controlled so that the variation value (ΔV) of the detection values detected by the cell voltage detection means (8) becomes equal to or less than a predetermined value. The fuel cell system according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001088589A JP4915031B2 (en) | 2001-03-26 | 2001-03-26 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001088589A JP4915031B2 (en) | 2001-03-26 | 2001-03-26 | Fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002289235A true JP2002289235A (en) | 2002-10-04 |
JP4915031B2 JP4915031B2 (en) | 2012-04-11 |
Family
ID=18943660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001088589A Expired - Fee Related JP4915031B2 (en) | 2001-03-26 | 2001-03-26 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4915031B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004207029A (en) * | 2002-12-25 | 2004-07-22 | Nissan Motor Co Ltd | Fuel battery system |
JP2005228688A (en) * | 2004-02-16 | 2005-08-25 | Toyota Motor Corp | Wet state determination device for polymer electrolyte fuel cell |
JP2006127860A (en) * | 2004-09-29 | 2006-05-18 | Honda Motor Co Ltd | Starting the fuel cell |
JP2006156059A (en) * | 2004-11-26 | 2006-06-15 | Honda Motor Co Ltd | Fuel cell system |
JP2007172843A (en) * | 2005-12-19 | 2007-07-05 | Honda Motor Co Ltd | Fuel cell system and starting method thereof |
US7690458B2 (en) | 2003-05-22 | 2010-04-06 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for vehicle-mounted fuel cell power generation system |
JP2011044376A (en) * | 2009-08-24 | 2011-03-03 | Nissan Motor Co Ltd | Fuel cell system |
US8247122B2 (en) | 2003-07-25 | 2012-08-21 | Nissan Motor Co., Ltd. | Device and method for controlling fuel cell system with vibration amplitude detection |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07307163A (en) * | 1994-05-13 | 1995-11-21 | Tokyo Gas Co Ltd | Load control device for fuel cell power generator |
JPH0979073A (en) * | 1995-09-12 | 1997-03-25 | Mazda Motor Corp | Fuel injection control device for engine |
JPH1047772A (en) * | 1996-08-02 | 1998-02-20 | Paloma Ind Ltd | Hot water supply device |
JP2000208161A (en) * | 1999-01-14 | 2000-07-28 | Nissan Motor Co Ltd | Operating method of and operating device for fuel cell |
-
2001
- 2001-03-26 JP JP2001088589A patent/JP4915031B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07307163A (en) * | 1994-05-13 | 1995-11-21 | Tokyo Gas Co Ltd | Load control device for fuel cell power generator |
JPH0979073A (en) * | 1995-09-12 | 1997-03-25 | Mazda Motor Corp | Fuel injection control device for engine |
JPH1047772A (en) * | 1996-08-02 | 1998-02-20 | Paloma Ind Ltd | Hot water supply device |
JP2000208161A (en) * | 1999-01-14 | 2000-07-28 | Nissan Motor Co Ltd | Operating method of and operating device for fuel cell |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004207029A (en) * | 2002-12-25 | 2004-07-22 | Nissan Motor Co Ltd | Fuel battery system |
US7690458B2 (en) | 2003-05-22 | 2010-04-06 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for vehicle-mounted fuel cell power generation system |
US8247122B2 (en) | 2003-07-25 | 2012-08-21 | Nissan Motor Co., Ltd. | Device and method for controlling fuel cell system with vibration amplitude detection |
US8679690B2 (en) | 2003-07-25 | 2014-03-25 | Nissan Motor Co., Ltd. | Device and method for controlling fuel cell system having oxygen concentration transient reduction |
EP3133686A1 (en) | 2003-07-25 | 2017-02-22 | Nissan Motor Co., Ltd. | Device and method for controlling fuel cell system and fuel cell system |
JP2005228688A (en) * | 2004-02-16 | 2005-08-25 | Toyota Motor Corp | Wet state determination device for polymer electrolyte fuel cell |
JP2006127860A (en) * | 2004-09-29 | 2006-05-18 | Honda Motor Co Ltd | Starting the fuel cell |
JP2006156059A (en) * | 2004-11-26 | 2006-06-15 | Honda Motor Co Ltd | Fuel cell system |
JP2007172843A (en) * | 2005-12-19 | 2007-07-05 | Honda Motor Co Ltd | Fuel cell system and starting method thereof |
JP2011044376A (en) * | 2009-08-24 | 2011-03-03 | Nissan Motor Co Ltd | Fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP4915031B2 (en) | 2012-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8795861B2 (en) | Fuel cell system and vehicle equipped with the same | |
KR101109715B1 (en) | Fuel cell system | |
US6158537A (en) | Power supply system, electric vehicle with power supply system mounted thereon, and method of charging storage battery included in power supply system | |
EP1095414B1 (en) | System and method of water management in the operation of a fuel cell | |
US9118049B2 (en) | Fuel cell system | |
US6638653B2 (en) | Fuel cell system | |
CN104137315B (en) | Fuel cell system | |
CN104205454B (en) | fuel cell system | |
CA2698472C (en) | Fuel cell system with high potential avoidance | |
US6500573B1 (en) | Humidifer device for fuel cells and operating system thereof | |
US6537692B1 (en) | Fuel cell apparatus | |
KR100862445B1 (en) | Oxygen supply device in load fluctuation of fuel cell vehicle | |
JP4915031B2 (en) | Fuel cell system | |
CN104185920A (en) | fuel cell system | |
JP3443237B2 (en) | Solid polymer fuel cell power generation system | |
EP1052717B1 (en) | Fuel cell system | |
JP5023447B2 (en) | Fuel cell system | |
JP2002289209A (en) | Fuel cell system for mobile body | |
JP2002252011A (en) | Fuel cell system | |
JP2007323993A (en) | Fuel cell system | |
JP4287563B2 (en) | Method for treating surplus reformed fuel gas in fuel reforming type fuel cell power supply system | |
JP2002313385A (en) | Fuel cell system | |
EP0980106B1 (en) | Solid polymer electrolyte fuel cell system with supply of liquid water to the cathode | |
JP2002289238A (en) | Fuel cell system | |
JP5103783B2 (en) | Fuel cell system and operation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111227 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150203 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150203 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |